302

G. E. Heidorn

Automatic Programming Through Natural Language

Dialogue: A Survey

Abstract: This paper describes and compares four research projects whose goal is to develop an automatic programming system that
can carry on a natural language dialogue with a user about his requirements and then produce an appropriate program. It also discusses

some of the important issues in this research area.

Introduction
Since the early days of computing, effort has been put
into automating more and more of the programming pro-
cess. (Reference [ 1] describes some of the most recent
work.) The ultimate objective in automatic programming
is a system that can carry on a natural language dialogue
with a user (especially a nonprogrammer) about his
requirements and then produce an appropriate program
for him. Although the basic idea of “programming in
English” has often been expressed in the literature [2—
4], only in recent years have any serious attempts been
made toward producing such a system.

Three major research efforts of this sort are currently
in progress. One is at the Information Sciences Institute
(ISI) of the University of Southern California; another is

Figure 1 Portion of a semantic network (NPGS).

ACTION { ENTITY )
-~
//' K\

|
i /
N
, // \
|

‘ UNIT >
>
AN

@ NLOAD) ( man ) ( DOCK ) CTRUCK) ( nour )
o0

P X
NUMBER NUM BER NUMBER
NUMBER
TYPE TYPE, TYPE TYPE
ENT OWNER @ @
LOCATION
OBJECT
DURATION

G. E. HEIDORN

at Project MAC at the Massachusetts Institute of Tech-
nology (MIT), and the third is at IBM’s Thomas J.
Watson Research Center. A fourth effort of interest, al-
though it has been discontinued, was at the Naval Post-
graduate School (NPGS) in Monterey, California.
Whereas the broadly stated objectives of these projects
are the same and their techniques are similar, they do dif-
fer markedly in the details.

This paper describes and compares these four proj-
ects. The NPGS work is presented first and in the great-
est detail because to date it is the only one for which
there is a complete running system. Then the ISI and
MIT projects are discussed, followed by a description of
the work being done at IBM. After a brief comparison of
the four projects, some of the important research issues
are considered. (See note [5] and references [6-8].)

NPGS

The NPGS work was actually begun at Yale University
in 1967 as a doctoral dissertation and then was completed
at NPGS during the years 1968-1972 [9-11]. The
goal of this project was to develop a system that would
generate a Gpss simulation program after carrying on an
English dialogue with a user about a simple queuing
problem. A general purpose natural language processing
system called NLp was developed and was then used to
develop the automatic programming system for queuing
problems, called NLPQ, by furnishing it with an appro-
priate grammar and information about queuing.

A sample problem presented to NLPQ and taken from
[10] is shown in Tables 1-3. The dialogue has been
divided into three parts to illustrate the main steps re-
quired to produce a program. All lower case typing was

IBM J. RES. DEVELOP.




done by the user and all upper case typing by the com-
puter. Table 1 shows the dialogue through which the
system acquired a description of the problem. It can be
seen that the user can make statements, give commands,
answer questions, and ask questions, and that the sys-
tem can ask and answer questions and respond to com-
mands. Table 2 shows an English description of the
complete problem ‘“‘in the computer’s own words,”
which can be helpful to the user for checking the com-
puter’s “‘understanding.”” Table 3 shows the Gpss pro-
gram produced, complete with English comments and
meaningful symbolic names. This sample problem used
about 34 minutes of virtual CPU time on an IBM Sys-
tem 360/model 67 and about 350 K bytes of virtual
storage. (On an IBM 370/168, it uses only about 33
seconds of virtual CPU time.)

The data structure used by NLP is a form of semantic
network. It consists of a collection of objects called rec-
ords, each of which is just a list of attribute-value pairs.
These records represent such things as concepts, words,
physical entities, and probability distributions. The attri-
butes of a particular record depend upon what it repre-
sents. The value of an attribute is usually a pointer to
another record, but it may be simply a number or a
name.

The processing to be done by NLP is specified by rules
written in a rule language designed especially for this
system. “Decoding” rules specify how strings of text are
to be converted into records, and “encoding” rules spec-
ify how records are to be converted into text. These
rules are basically phrase structure grammar rules, but
they are augmented with arbitrary conditions and struc-
ture building actions.

Prior to a dialogue, NLP is given a set of about 300
“named” records containing information about some
words and concepts relevant to simple queuing prob-
lems. Also, it is furnished with a set of about 300 En-
glish decoding rules and 500 English and Gpss encoding
rules. (NLP augmented with these records and rules is in
fact NLPQ.) As the dialogue progresses, the system uses
the information it obtains from the user to build a sub-
network called the Internal Problem Description (1PD).

Basically an 1pD describes the flow of mobile entities,
such as vehicles, through a system consisting of station-
ary entities, such as pumps, by specifying the actions
that take place there and their interrelationships. Each
action is represented by a record whose attributes fur-
nish such information as the type of action, the entity
doing the action (i.e., the agent), the entity that is the
object of the action, the location where it happens, its
duration, its frequency of occurrence, and what happens
next. For example, the action ‘“The men unload the
truck at a dock for two hours” could be represented
(approximately) by the record:

JULY 1976

Table 1 Problem acquisition (NPGS).

1. when a vehicle arrives at a station, it leaves there im-
mediately if the length of the line at a pump in the station
is not less than 2.

. 75 percent of the vehicles are cars and a fourth are trucks.

. there is just 1 pump.

. a simulation run time of 8 hours is desired.

. ask questions for further info.

. HOW OFTEN DO THE VEHICLES ARRIVE AT THE
STATION?

7. the arrivals of vehicles are normally distributed with a
mean of 8 minutes.

8. WHAT IS THE STANDARD DEVIATION OF THE
NORMAL DISTRIBUTION?

9. 1 minute.

10. OTHERWISE, WHAT DO THE VEHICLES DO?

11. what?

12. AFTER ARRIVING AT THE STATION, IF THE
LENGTH OF THE LINE AT THE PUMP IN THE
STATION IS NOT LESS THAN 2, THE VEHICLE
WILL LEAVE THE STATION. OTHERWISE, WHAT
DO THE VEHICLES DO?

13. they are serviced.

14. WHERE ARE THE VEHICLES SERVICED?

15. at the pump.

16. HOW LONG ARE THE VEHICLES SERVICED AT
THE PUMP IN THE STATION?

7. vehicle service times are exponential.

18. THE TIME FOR THE VEHICLES TO BE SERVICED
AT THE PUMP IN THE STATION IS EXPO-
NENTIALLY DISTRIBUTED. WHAT IS THE
MEAN OF THE EXPONENTIAL DISTRIBUTION?

19. 5 minutes for cars and 9 minutes for trucks.

20. AFTER BEING SERVICED AT THE PUMP IN
THE STATION, WHAT DO THE VEHICLES DO?

21. leave the station.

22. WHAT IS THE BASIC TIME UNIT TO BE USED
IN THE MODEL?

23. 30 seconds.

24. THE PROBLEM STATEMENT IS COMPLETE.

25. how often does a vehicle arrive at the station?

26. THE TIME BETWEEN ARRIVALS OF THE VE-
HICLES AT THE STATION IS NORMALLY DIS-
TRIBUTED, WITH A MEAN OF 8 MINUTES AND
A STANDARD DEVIATION OF 1 MINUTE.

27. the standard deviation of the time between arrivals should
be 2 minutes.

28. are vehicles serviced at the pump?

29. YES, THE VEHICLES ARE SERVICED AT THE
PUMP IN THE STATION.

[oANRS B SNV )

R1: Type unload
Agent men
Object truck
Location dock
Duration 2 hours

In the usual graphical notation for semantic networks,
arecord is depicted as a node with a set of arcs emanat-
ing from it. The attribute names appear as labels on the
arcs, and the attribute values appear at the arc termini.
A portion of such a semantic network for the action just
stated is shown in Fig. 1. The nodes in the top two rows

303

AUTOMATIC PROGRAMMING




304

Table 2 Model verification {(NPGS).

30. state the complete problem in english.

31. THE VEHICLES ARRIVE AT THE STATION.
THE TIME BETWEEN ARRIVALS OF THE VE-
HICLES AT THE STATION IS NORMALLY DIS-
TRIBUTED, WITH A MEAN OF 8 MINUTES AND
A STANDARD DEVIATION OF 2 MINUTES. 75
PERCENT OF THE VEHICLES ARE CARS, AND
THE REST ARE TRUCKS. AFTER ARRIVING AT
THE STATION, IF THE LENGTH OF THE LINE
AT THE PUMP IN THE STATION IS LESS THAN 2,
THE VEHICLE WILL BE SERVICED AT THE PUMP
IN THE STATION. OTHERWISE, THE VEHICLE
WILL LEAVE THE STATION. THE TIME FOR THE
VEHICLES TO BE SERVICED AT THE PUMP IN
THE STATION 1S EXPONENTIALLY DISTRIB-
UTED, WITH A MEAN OF 5 MINUTES FOR THE
CARS, AND 9 MINUTES FOR THE TRUCKS. AFTER
BEING SERVICED AT THE PUMP IN THE STA-
TION, THE VEHICLES LEAVE THE STATION.

THE SIMULATION IS TO BE RUN FOR 8
HOURS, USING A BASIC TIME UNIT OF 30
SECONDS.

of the figure show some of the named records that must
be available prior to a dialogue. The dotted arcs imply
that one or more nodes representing concepts intermedi-
ate to those shown have been left out (e.g., mobile entity
between truck and entity). The nodes in the lower part
of the figure (i.e., R1, R2, etc.) are part of the 1pD built
during a dialogue. The owner arc between nodes R3 and
R2 indicates that: “The men own the dock.”

The English dialogue for specifying the problem must
furnish all of the information needed by the system to
enable it to build a complete 1PD. The flow of mobile en-
tities through the queuing system must be described by
making statements about the actions that take place in
the system and how these actions are related to one an-
other. Each mobile entity must “arrive” at or “enter”
the system. Then it may go through one or more other
actions, such as ‘“service,” “load,” ‘‘unload,” and
“wait.” Then, typically, it “‘leaves” the system. The or-
der in which these actions take place must be made ex-
plicit by the use of subordinate clauses beginning with
such conjunctions as “after,” ‘““when,” and ‘“‘before,” or
by using the adverb ‘“‘then.” If the order of the actions
depends on the state of the system being simulated, an
“if”” clause may be used to specify the condition for per-
forming an action. Then a sentence with an ‘‘otherwise”
in it is used to give an alternative action to be performed
when the condition is not met.

The English dialogue must also furnish other informa-
tion needed to simulate the system, such as the various
times involved. It is necessary to specify the time be-
tween arrivals, the time required to perform each activi-
ty, the length of the simulation run, and the basic time

G. E. HEIDORN

unit to be used in the GPss program. Inter-event and ac-
tivity times may be given as constants or as probability
distributions, such as uniform, exponential, normal, or
empirical. The quantity of each stationary entity should
also be specified, unless 1 is to be assumed.

The user may either state the complete problem im-
mediately, or he may state just some part of it and then
let the system ask questions to obtain the rest of the in-
formation, as was done in Table 1. The latter method
results in a scanning of the partially built 1PD for missing
or erroneous information and the generation of appro-
priate questions. Each time the system asks a question,
it is trying to obtain the value of some specific attribute
that will be needed to generate a Gpss program. A ques-
tion may be answered by a complete sentence or simply
by a phrase to furnish a value for the attribute. The user
may ask the system specific questions also to check on
specific pieces of information in the 1PD. Answers are
generated from this information. In order to check the
entire IPD as it exists at any time the user may request
that an English problem description be produced, as was
done in Table 2.

The user of NLPQ is constrained to using words and
grammatical constructions known to the system. Part of
the vocabulary has words for about 25 actions and enti-
ties. In addition to grammatical information about each
word, such as its part of speech and how the plural or
past participle is formed, semantic information is fur-
nished. This primarily specifies whether an entity is
mobile or stationary and whether an action is an event
or an activity. The vocabulary also includes about 200
other words, such as attribute names, time units, certain
prepositions, pronouns, conjunctions, and forms of to
be. This information is entered in the form of named rec-
ords.

The grammar for the system, embodied in the decod-
ing and encoding rules, has both syntactic and semantic
aspects, with the syntactic reflecting general English
usage and the semantic being more narrowly oriented
toward queuing problem jargon. For instance, verb
phrase syntax has been treated fairly thoroughly, includ-
ing various tenses, passives, negatives, and interroga-
tives. Most reasonable orderings of phrases in clauses
and clauses in sentences are accommodated.

It is important to realize, however, that even though
NLPQ can handle a fairly wide range of inputs, there
are many more that it does not handle. As a specific
example, the following are some of the ways in which
statement 17 in Table 1 could have been made to NLPQ
for that problem:

Vehicle service times are exponential.
Service times are exponentially distributed.
The time to service vehicles is exponential.

IBM J. RES. DEVELOP.




The time for vehicles to be serviced is exponential.
The time to service vehicles at the pump is exponential.

In the above, “exponential” and “‘exponentially distrib-
uted” are interchangeable. The following are some of the
ways in which statement 17 could not have been made
t0 NLPQ:

Vehicle service times have an exponential distribution.

Service times are distributed exponentially.

Service times may be described by an exponential distri-
bution.

Service times are drawn from an exponential distribu-
tion.

The service times of vehicles are exponential.

To extend the system to handle these forms would re-
quire furnishing it with additional English decoding
rules. Whereas syntactic extensions of this sort would be
fairly straightforward, arbitrary semantic extensions
generally would be more difficult.

An English problem description such as in Table 2 is
essentially a “dump” of the information in the IPD put
out by the English encoding rules. The overall flow of
the process is for the system to make one or more state-
ments about each action. For an action with no prede-
cessor, a new paragraph is begun with a simple action
sentence containing information about the type of ac-
tion, its agent and/ or object, and its location. This may be
followed by a statement about the inter-event time or
duration. Then, a statement beginning with “after’ is
produced from the successor attribute. A conditional
successor may result in two sentences, with the first one
having an if clause in it and the second one beginning
with otherwise. After all of the actions have been de-
scribed, a separate one-sentence paragraph is produced
with the values of the run time and the basic time unit.

The Gpss program shown in Table 3 was produced
from the 1pD using the Gpss encoding rules. Definitions
are put into the beginning of the Gpss program for the
stationary entities, mobile entities, and distributions.
Then for each action a comment consisting of a simple
English action sentence is produced, followed by the
GPSS statements appropriate to this action. For exam-
ple, an ““arrive” usually produces a GENERATE and an
ASSIGN, a “leave” produces a TABULATE and a
TERMINATE, and most activities produce a sequence
like QUEUE, SEIZE, DEPART, ADVANCE, and
RELEASE. These are usually followed by some sort of
TRANSFER, depending upon the type of value the ac-
tion’s successor attribute has. Finally a standard ““‘timing
loop” is produced to govern the run length of the simula-
tion.

Although this project was ‘“‘completed,” a system
ready for production use was not developed. The NLPQ

JULY 1976

Table 3 Automatic coding (NPGS).

32. produce the gpss program.

33. SIMULATE
RMULT 277, 423, 715, 121, 655, 531, 999, 813

STAT1 EQU ILF.Q

PUMP2 EQU 2,F,Q

CAR2 EQU 2, T

2 TABLE MI. 1, 1,2

TRUC3 EQU 3, T

3 TABLE ML I, 1,2

1 FUNCTION RNI, C24
0.0, 0.0/0.100, 0.104/0.200, 0.222/0.300, 0.355/
0.400, 0.509/0.500, 0.690/0.600, 0.915/0.700, 1.200/
0.750, 1.390/0.800, 1.600/0.840, 1.830/0.880, 2.120/
0.900, 2.300/0.920, 2.520/0.940, 2.810/0.950, 2.990/
0.960, 3.200/0.970, 3,500/0.980, 3.900/0.990, 4.600/
0.995, 5.300/0.998, 6.200/0.999, 7.000/1.000, 8.000/

2 FUNCTION RN2, C29
0.0, —3.000/0.012, —2.250/0.027, ~1.930/0.043, —1.720/
0.062, —1,540/0.084, —1.380/0.104, —1.260/0.131, —1.120/
0.159, —1.000/0.187, -0.890/0.230, —0.740/0.267, —0.620/
0.334,-0.430/0.432, —0.170/0.500, 0.0/0.568, 0.170/
0.666, 0.430/0.732, 0.620/0.770, 0.740/0.813, 0.890/
0.841, 1.000/0.869, 1.120/0.896, 1.260/0.916, 1.380/
0.938, 1.540/0.957, 1.720/0.973, 1.930/0.988, 2.250/

1.000, 3.000/

3 FUNCTION RN3, D2
0.750, CAR2/1.000, TRUC3/

4 FUNCTION PI1, D2

CAR2, 10/TRUC3, 18/
1 FVARIABLE 16 + 4*FN2

*

. THE VEHICLES ARRIVE AT THE STATION.
GENERATE V1
ASSIGN 1, FN3
TEST L QSPUMP2, 2, ACT2
TRANSFER  ,ACT3
.
* THE VEHICLES LEAVE THE STATION.
ACT2 TABULATE PI
TERMINATE
* THE VEHICLES ARE SERVICED AT THE PUMP.
ACT3 QUEUE PUMP2
SEIZE PUMP2
DEPART PUMP?2

ADVANCE FN4, FN1
RELEASE PUMP2
TRANSFER ,ACT2

* TIMING LOOP
GENERATE 960
TERMINATE 1
START 1
END

prototype has been demonstrated several times on a va-
riety of problems, but usually with the author as the
user. Although the capabilities of the system implement-
ed are limited, the research did establish an overall
framework for such a system, and useful techniques
were developed. Enough details were worked out to
enable the system to perform in an interesting manner,
as evidenced by the sample problem in Tables 1-3.

This project was about a five man-year effort and was
partially supported by the Information Systems Program
of the Office of Naval Research. The primary documen-
tation is a 376-page technical report [9], but introduc-
tory papers are available also, e.g., [ 10, 11].

305

AUTOMATIC PROGRAMMING




306

I1SI

The ISI work began in 1972 with a large report [12] de-
scribing the form that an automatic programming system
could take. Such a system would have four phases:
problem acquisition, process transformation, model veri-
fication, and automatic coding. The first phase would
consist of a natural language dialogue in problem domain
terms. In the second phase the system would manipulate
the information obtained during the first phase to trans-
form it into a high level process for solving the problem.
The third phase would be used to verify that this process
was the one desired and that it was adequate for the
problem solution. Finally, the fourth phase would opti-
mize the process and produce the actual code to solve the
problem. (The titles on Tables 1-3 were chosen to show
how NLPQ fits within this framework.)

By early 1974 a prototype implementation of such a
system was underway [ 13]. A key feature of this work
is its emphasis on “domain-independence.” This means
that prior to the dialogue the system has not been
primed with information about a specific problem area
(e.g., queuing simulation or accounts receivable) but
must obtain all of this information. The dialogue consists
of the user initially stating his problem, from which the
system constructs a ‘“‘loose model.” Then the system,
through a process called “model completion,” attempts
to transform this loose model into an operational, inter-
pretable form called the “precise model.” The model
completion process usually requires further dialogue
with the user.

In this system knowledge is represented as stored tu-
ples, which may be considered to be a form of semantic
network. The processing is specified in AP/1 (an exten-
sion of the list processing language Lisp) developed spe-
cifically for this project [ 14]. The language AP/1 sup-
ports associative relational data bases, strongly typed
variables, compound pattern matches, and failure con-
trol.

In late 1974 this group decided to limit their imple-
mentation efforts to a very specific task domain, i.e., mil-
itary message distribution [15], and one year later suc-
ceeded in generating their first program [16]. The exam-
ple that their system handled is shown in Table 4. The
program generated consists of about 6 pages of AP/
code and took about one hour of CPU time on a Digital
Equipment Corp. PDP/ 10 to produce.

So far this group has been concentrating their efforts
on the processing required to convert an imprecise func-
tional description of a task into a precise program rather
than on the initial acquisition of the task description in
natural language. Consequently, at this time, each input
sentence must be manually translated into a parenthe-
sized format that segments each clause and noun phrase.
Table 5 shows this input form for the example in Table

G. E. HEIDORN

4. Workers on this project intend to eventually replace
the use of this form with an *“‘off-the-shelf”’ natural lan-
guage interface.

The processing that this system does is driven by
trying to produce a viable program. First the system ex-
tracts intra-sentence information about the domain and
the actions that occur there; it then builds a semantic
network to represent this information. Next it does in-
ter-statement processing to organize the actions into an
appropriate control structure. This whole process re-
quires 1) the filling in of omitted details and 2) the rec-
ognition of what is being referred to by the various
phrases and clauses in the problem description. To do
this the processor makes heavy use of both static and
dynamic program well-formedness criteria.

Although the ISI group has been concentrating on the
particular task domain of military message distribution,
they are still concerned with domain independence and
have made a strong effort to keep information about the
domain separate from the more general information. By
mid-1976 they hope to have done examples in several
different domains to test their techniques. They are pres-
ently not concerned with generating optimized pro-
grams,

This project is sponsored by ARPA. The group at ISI
currently consists of three people, although it has had as
many as six. The references already cited give a reason-
ably good idea of what this group is trying to do and how
they are going about doing it. Reference [17] provides
an especially good, concise progress report.

MIT

In 1972 work was begun at MIT’s Project MAC toward
the goal of a natural language automatic programming
system for business applications. In the first progress
report [ 18], an overview of Protosystem I, a partially
implemented system, was given. The user’s interaction
with this system begins with a questionnaire, but one
that allows constructive responses rather than just multi-
ple-choice answers. The user’s particular application is
constrained to being an instantiation of a general model
of a business procedure, such as billing, constructed in a
relational modeling language called MAPL. After acquir-
ing the user’s description of his application, the system
guides him in the construction of an appropriate block
diagram. He is then allowed to explore the resulting pro-
cedure through simulation. Finally, the block diagram is
translated into an optimized PL/1 program.

MAPL was intended to be a language in which rela-
tional models of the world could be built and was de-
signed especially for this system. This form of knowledge
representation is basically a semantic network also. A
routine for translating natural language text into a
MAPL expression was also designed. It uses an aug-

IBM J. RES. DEVELOP.




Table 4 Message distribution example (ISI).

Table 5 Actual input for message distribution example (ISI).

MESSAGES RECEIVED FROM THE AUTODIN-ASC
ARE PROCESSED FOR AUTOMATIC DISTRIBUTION
ASSIGNMENT.

THE MESSAGE IS DISTRIBUTED TO EACH AS-
SIGNED OFFICE.

THE NUMBER OF COPIES OF A MESSAGE DIS-
TRIBUTED TO AN OFFICE IS A FUNCTION OF
WHETHER THE OFFICE IS ASSIGNED FOR ACTION
OR INFORMATION.

THE RULES FOR EDITING MESSAGES ARE (1)
REPLACE ALL LINE FEEDS WITH SPACES (2) SAVE
ONLY ALPHANUMERIC CHARACTERS AND SPACES
AND THEN (3) ELIMINATE ALL REDUNDANT
SPACES.

IT IS NECESSARY TO EDIT THE TEXT PORTION OF
THE MESSAGE.

THE MESSAGE IS THEN SEARCHED FOR ALL KEYS.

WHEN A KEY IS LOCATED IN A MESSAGE, PER-
FORM THE ACTION ASSOCIATED WITH THAT TYPE
OF KEY.

THE ACTION FOR TYPE-0 KEYS IS: IF NO ACTION
OFFICE HAS BEEN ASSIGNED TO THE MESSAGE,
THE ACTION OFFICE FROM THE KEY IS ASSIGNED
TO THE MESSAGE FOR ACTION. IF THERE IS AL-
READY AN ACTION OFFICE FOR THE MESSAGE,
THE ACTION OFFICE FROM THE KEY 1S TREATED
AS AN INFORMATION OFFICE. ALL INFORMA-
TION OFFICES FROM THE KEY ARE ASSIGNED TO
THE MESSAGE IF THEY HAVE NOT ALREADY BEEN
ASSIGNED FOR ACTION OR INFORMATION.

THE ACTION FOR TYPE-1 KEYS IS: IF THE KEY IS
THE FIRST TYPE-1 KEY FOUND IN THE MESSAGE
THEN THE KEY IS USED TO DETERMINE THE AC-
TION OFFICE. OTHERWISE THE KEY IS USED TO
DETERMINE ONLY INFORMATION OFFICES.

mented transition network approach and pays special
attention to verb case frames. The process of PL/1 code
generation and optimization is described in this report
too, using an inventory system example.

From the second year’s progress report [19] it be-
came apparent that the emphasis had shifted from trying
to build a single integrated system to studying the pieces

somewhat independently. Currently there are basically -

three prototypes being constructed. One is owL, which
is intended to be a very general system for dealing with
knowledge representation and natural language process-
ing. Another is a system for putting together packages of
programs configured according to answers a user gives
to a multiple choice questionnaire, for the domain of
planning and scheduling in production and distribution
systems. The third prototype deals with automatically

JULY 1976

* ((MESSAGES ((RECEIVED) FROM (THE “AUTO-
DIN-ACS”))) (ARE PROCESSED) FOR (AUTOMATIC
DISTRIBUTION ASSIGNMENT))

* ((THE MESSAGE) (IS DISTRIBUTED) TO (EACH
((ASSIGNED)) OFFICE))

* ((THE NUMBER OF (COPIES OF (A MESSAGE)
((DISTRIBUTED) TO (AN OFFICE)))) (1S) (A FUNC-
TION OF (WHETHER ((THE OFFICE) (IS ASSIGNED)
FOR ((“ACTION”) OR (“INFORMATION"))))))

* ((THE RULES FOR ((EDITING) (MESSAGES)))
(ARE) (: ((REPLACE) (ALL LINE-FEEDS) WITH
(SPACES)) ((SAVE) (ONLY (ALPHANUMERIC
CHARACTERS) AND (SPACES))) ((ELIMINATE)
(ALL REDUNDANT SPACES))))

* (((TO EDIT) (THE TEXT PORTION OF (THE MES-
SAGE))) (IS) (NECESSARY))

* (THEN (THE MESSAGE) (IS SEARCHED) FOR
(ALL KEYS))

* (WHEN ((A KEY) (IS LOCATED) IN (A MESSAGE))
((PERFORM) (THE ACTION ((ASSOCIATED) WITH
(THAT TYPE OF (KEY))))))

* ((THE ACTION FOR (TYPE-0 KEYS)) (IS) (: (IF
((NO OFFICE) (HAS BEEN ASSIGNED) TO (THE
MESSAGE) FOR (“ACTION”)) ((THE “ACTION”
OFFICE FROM (THE KEY)) (IS ASSIGNED) TO (THE
MESSAGE) FOR (“ACTION"))) (IF ((THERE IS) AL-
READY (AN “ACTION” OFFICE FOR (THE MES-
SAGE))) ((THE “ACTION” OFFICE FROM (THE
KEY)) (IS TREATED) AS (AN “INFORMATION”
OFFICE))) (((LABEL OFFS! (ALL “INFORMATION”
OFFICES FROM (THE KEY))) (ARE ASSIGNED) TO
(THE MESSAGE)) IF ((REF OFFS1 THEY) (HAVE
(NOT) (ALREADY) BEEN ASSIGNED) FOR ((“AC-
TION”) OR (“INFORMATION"))))))

* ((THE ACTION FOR (TYPE-1 KEYS)) (IS) (: (IF
((THE KEY) (IS) (THE FIRST TYPE-1 KEY ((FOUND)
IN (THE MESSAGE)))) THEN ((THE KEY) (IS USED)
TO ((DETERMINE) (THE “ACTION” OFFICE)}))))
(OTHERWISE (THE KEY) (IS USED) TO ((DETER-
MINE) (ONLY “INFORMATION" OFFICES)))))

optimizing data organization and accessing procedures
for data processing systems operating on large keyed
files [20].

A related effort, which was completed in 1974, dealt
with understanding how a user might interact with a
knowledge-based application system [21]. A series of
experiments were performed in which a manager was
given a problem to solve by obtaining information in
unrestricted English from a data base about a hypotheti-
cal small company. The experimenter would intercept
the questions and answer them with the aid of a more
restricted system. By recording and analyzing these dia-
logues, much was learned about the capabilities required
of an actual system of this sort.

307

AUTOMATIC PROGRAMMING




308

Table 6 Hypothetical dialogue with Susie software (MIT).

HELLO, I AM SUSIE. WHAT IS YOUR NAME?
bill. i need a program written to manipulate blocks.

I CAN HELP YOU SOLVE THE PROBLEM OF WRIT-
ING A PROGRAM WHICH BUILDS A SCENE USING
THE BLOCKS FROM ANOTHER SCENE.

that is what i want.

OK. I NEED A DESCRIPTION OF THE INITIAL AND
FINAL SCENES.

the final scene contains 3 blocks: B1, B2, B3
OK.
what else do you want to know about the final scene?

WHAT ARE THE POSITIONS OF B1, B2, and B3 WITH
RESPECT TO EACH OTHER?

B1 is on top of B2 and B3 is on top of B1.

OK.

initially, all of them are on the ground.

DO YOU MEAN IN THE INITIAL SCENE?
yes. can you write a program from that?

I HAVE ENOUGH INFORMATION TO START WRIT-
ING THE PROGRAM. I CAN'T DETERMINE ALL OF
THE INFORMATION WHICH 1 WILL NEED UNTIL
I WRITE THE PROGRAM.

ok. start writing it.

DO YOU WANT ME TO DECIDE IMPLEMENTATION
ISSUES SUCH AS WHAT TO GRASP A BLOCK WITH?

yes, if i can ask you about them later.

YOU CAN. IS THERE A BLOCK ON TOP OF B2 IN
THE INITIAL SCENE?

the initial scene only contains B1, B2, and B3.

I SEE. 1 HAVE FINISHED THE PROGRAM. DO YOU
WANT ME TO DESCRIBE THE PROCEDURE?

yes

FIRST I MOVE B2 WITH MY LEFT HAND, THEN I
PUT B1 ON TOP OF B2 WITH MY LEFT HAND, THEN
1 PUT B3 ON TOP OF Bt WITH MY LEFT HAND.

how did you decide to use your left hand to move B2?

I NEEDED TO CHOOSE A HAND WITH WHICH TO
GRASP B2. BOTH OF MY HANDS ARE FREE AT THAT
POINT IN THE PROBLEM. YOU TOLD ME TO DECIDE
THE IMPLEMENTION ISSUES. I CHOSE THE FIRST
HAND WHICH I THOUGHT OF. '

OwL is considered to be central to the MIT project
and has been described in considerable detail [22-
24]. The owL language, which has replaced mMapL for
representing knowledge, has as its major feature that
English has been used as a guide in the definition of its
data structures. It is still basically a form of semantic
network, however.

G. E. HEIDORN

Table 7 Definition of PUT-ON-TOP in OWL (MIT).

(LEARN (DEFINE PROCEDURE (PUT-ON-TOP-OF BLOCK-1))
(AGENT (PUT-ON-TOP-OF BLOCK-1} PERSON-1)
(INSTRUMENT (PUT-ON-TOP-OF BLOCK-1) HAND-1)
(PART AGENT HAND-1)

(SPECIFIC-POSITION (PUT-ON-TOP-OF BLOCK-1)
(ON-TOP-OF BLOCK-2)
{PRINCIPAL-RESULT (PUT-ON-TOP-OF BLOCK-1()
(POSITION OBJECT SPECIFIC-POSITION))
(METHOD (PUT-ON-TOP-OF BLOCK-1) (FIND SPACE-1))
(POSITION SPACE-1 SPECIFIC-POSITION)
(BENEFICIARY SPACE-1 OBJECT)
(THEN (FIND SPACE-1) (GRASP OBIECT))
{THEN (GRASP OBJECT)
(MOVE (INSTRUMENT-1 (GRASP OBJECT))))

(DESTINATION (MOVE |NSTRUMENT-1) POSITION-1)
(RESULT (MOVE INSTRUMENT-1)

(POSITION OBJECT SPECIFIC-POSITION)
(THEN (MOVE INSTRUMENT-1) (LET-GO-OF OBJECT))
(Y-COORDINATE POSITION-1

(PLUS 2

(Y-COORDINATE (POSITION (OBJECT (FIND SPACE-1))))
(MEASURE (HEIGHT OBJECT)}))

(X-COORDINATE POSITION-1

(X-COORDINATE (POSITION (OBJECT (FIND SPACE-1)}))))

Two basic structural devices are used in the owL for-
malism: specialization and restriction. Specialization
says essentially that one concept is a-kind-of another
concept (e.g., a dog is a kind of animal). Restriction has
to do with giving properties to a concept (e.g., a dog has
four legs). The use of case relations, such as agent, ob-
ject, location, and duration, is basic to owL also.

Effort has been put into building an augmented transi-
tion network parser [25] for translating English sen-
tences into owL data structures [19, 22]. For debug-
ging purposes, this group is attempting to write a pro-
gram in OWL capable of carrying on the dialogue shown
in Table 6. The owL language also provides for the
specification of procedures in such a manner that they
can be executed for their effect or merely inspected for
their information. Table 7 shows an owL procedure
relevant to the dialogue of Table 6.

This project also is sponsored by ARPA and currently
involves 12 faculty members and students. In addition to
the cited references, there are a number of internal
memos and student papers describing various aspects of
the work.

IBM
The work in this area of automatic programming at IBM
took on project status in 1974, although much of the
groundwork was laid prior to that [26]. The long range
goal of the Computer Assisted Application Definition
Group is to develop a system that will permit users to
create business application programs by holding an in-
formal, interactive dialogue with the computer. Cur-
rently under development is a more modest system that
will help a user to customize a set of highly parameter-
ized application programs for business accounting by
means of a natural language dialogue.

An example of the sort of dialogue that this system is
expected to support is shown in Table 8. It can be seen
that this dialogue has similar characteristics to the ones

IBM J. RES. DEVELOP.




shown in Tables 1 and 6, namely that both the user and
the computer make statements and ask and answer ques-
tions. There is also some verification included. It is in-
tended that the user also be able to request a simulated
execution of his application program to explore its be-
havior under various conditions.

The data structure used by this system is a form of
semantic network too [27]. This network is considered
to have basically three parts, called the program model,
the application model, and the linguistic model. The
program model furnishes an abstract description of the
parameterized programs available to be customized, in-
cluding information about the various options, using con-
cepts from the Business Definition System, Bps [28,
29]. The application model provides information about
concepts relevant to business, such as that invoices and
statements are kinds of documents that normally are
sent to customers. The linguistic model provides infor-
mation about the words of the English language and how
they are used. The interrelationship of these models is
important. Each object in the program model is linked to
its “‘related application object,” which serves as a sort of
conceptual explanation for it, and each object in the ap-
plication model (and possibly some in the program
model) is linked to its “‘related linguistic object,” which
is used for communicating in natural language.

A simplified example of a very small portion of such a
semantic network is shown in Fig. 2. Each node repre-
sents an object and has a name in it for reference pur-
poses. The relationships among objects are shown as
directed arcs, sometimes labeled. All of the arcs are ac-
tually two-way links, but the label names shown are
meaningful only in the direction shown.

The unlabeled arcs in the figure represent the ‘‘in-
stance” relation, which serves the same purpose as the
type relation in Fig. 1, although it is drawn in the oppo-
site direction. For example, F1 is an instance of Field
(i.e., the type of F1 is Field), and Field is an instance of
POB (Program OBject). Because of the transitivity of
the instance relation, every object in the program model
is ultimately an instance of POB. Similarly, every object
in the application model is ultimately an instance of
AOB (Application OBject), and every object in the lan-
guage model is ultimately an instance of LOB (Language
OBject). In the full network there tends to be many
more levels between the most general objects at the top
and the most specific objects at the bottom than appears
in this small example.

The portion of program model shown in the figure
may be interpreted as saying that some field F1 is de-
rived by performing an operation OP3 using fields F2
and F3 as operands. By following the RAO (Related
Application Object) arcs it can be seen that in terms of
application concepts this calculation is EXT-PR =

JULY 1976

Table 8 Hypothetical customizing dialogue (IBM).

IN ORDER FOR ME TO CREATE A BILLING PRO-
GRAM FOR YOU I WILL NEED TO GET CERTAIN
INFORMATION FROM YOU ABOUT WHAT YOU
WANT. FEEL FREE TO ASK QUESTIONS AS WE GO
ALONG.

WOULD YOU LIKE YOUR SYSTEM TO BE TRANS-
ACTION ORIENTED OR BATCH ORIENTED?

what is a transaction oriented system?

IN A TRANSACTION ORIENTED SYSTEM AN IN-
VOICE 1S PRODUCED IMMEDIATELY WHEN AN
ORDER ARRIVES.

i want invoices to be produced just once a day at 5 p.m.

DO YOU WANT A SEPARATE INVOICE FOR EACH
ORDER OR DO YOU WANT THE ORDERS GROUPED
BY CUSTOMER?

separate invoices.

ARE THE CUSTOMER’S NAME AND ADDRESS FUR-
NISHED ON EACH ORDER OR MUST THEY BE
LOOKED UP IN THE CUSTOMER MASTER FILE?

looked up; is it possible to specify a different address on an
order?

NO, NOT IF THEY ARE TO BE LOOKED UP IN THE
CUSTOMER MASTER FILE.

how would i handle an order from a new customer?

BY “NEW CUSTOMER” DO YOU MEAN ONE WHO
IS NOT IN THE MASTER FILE?

yes.

YOU WOULD HAVE TO MAKE AN ENTRY FOR HIM
IN THE CUSTOMER MASTER FILE BEFORE THE
ORDER IS PROCESSED.

okay.

DOES THE SAME TAX RATE APPLY TO ALL CUS-
TOMERS?

yes, 5%.

TO SUMMARIZE YOUR REQUIREMENTS:

INVOICES ARE TO BE PRODUCED IN A BATCH
AT 5 PM EACH DAY.

A SEPARATE INVOICE WILL BE PRODUCED FOR
EACH ORDER.

THE CUSTOMER’S NAME AND ADDRESS WILL
BE LOOKED UP IN THE CUSTOMER MASTER
FILE.

A TAX RATE OF 5% APPLIES TO ALL CUS-
TOMERS.

DO YOU HAVE ANY FURTHER QUESTIONS?
what does an invoice look like?

(SYSTEM PRINTS A SAMPLE INVOICE)

how is extended price calculated?

THE EXTENDED PRICE FOR AN ITEM IS CALCU-
LATED BY MULTIPLYING THE UNIT PRICE BY
THE QUANTITY.

that’s all.

AUTOMATIC PROGRAMMING

309



310

PROGRAM APPLICATION

POB AOB

L

LANGUAGE

LOB

C FIELD) @PERATION

C = ) Gnor) (o)

!
(NOUN ) C ADJJ VERB) ( PREP) (CHAR-@

\ M >

( m ) HRAOLC ExTeR \ RLO
DERIV

Jf :
yr;ICE :r_‘BY ’

j RLO
opz YL RAOLL wurt 4

RLO

&

=
S{EXTENDED]

+ QQS ‘ TO ’
»(MULTIPLY ADD

r ¥ ¥
C F2 ) C F3 )—b@UANT ) RLO

RAOL(UNIT-PR RLO

—+{QUANTITY,

CALCULATE

DEFN

Qo)
e

*v\‘ “the price for a single item” )4————~

Figure 2 Portion of a semantic network (IBM).

UNIT-PR * QUANT. By making use of the relation-
ships given in the program and application models, along
with the RAO’s and RLO’s (Related Language Objects)
given, it is possible to generate the sentence, “Extended
price is calculated by multiplying unit price by quantity.”
The semantic network for this system is still in its early
stages of development, and undoubtedly its final form
will be somewhat different from that shown here.

The dialogue is driven by the options given in the pro-
gram model. In its simplest form this is not much dif-
ferent from providing the user with a questionnaire of
the sort that is central to the Application Customizer
Service, acs [30]. However, in this case the question-
ing is dynamic, with later questions being dependent
upon information supplied by the user earlier in the con-
versation. Also, the user may ask questions about terms
he does not understand and about the effects of making
certain choices.

The natural language processing in this system is be-
ing done by an expanded version of NLp. Whereas the
original version of NLp used for the queuing problem
application described earlier was implemented in FOR-
TRAN, this new version has been implemented in LISP so
that the facilities of this more powerful list processing
language may be taken advantage of. In order to support
the large amount of network manipulation required by
the system described here, a companion special purpose
language, called THINKER, which has some of the same
features as ISI’s AP/1, has been implemented in LISP also
[27]. The business application programs are written in
the BDs language.

G. E. HEIDORN

To observe the kinds of questions a user of this sys-
tem might ask, a series of actual dialogues with a man-
ually simulated system have been recorded and analyzed
[31, 32]. This manual system is also providing a frame-
work for building the actual system. As appropriate
techniques are developed, parts of the system are auto-
mated, with the eventual goal being to completely elimi-
nate the need for manual intervention.

This project is funded internally by IBM and currently
has six people on it. In addition to the references already
cited, an overview is also available [33].

Comparison

It should be apparent by now that none of these groups
is trying to develop what might be called “an English-
like programming language.” (After all, that is what
some people would say coBoL is.) Rather, what they are
trying to do is develop knowledge-based systems that
can “‘understand” a user’s statement of a problem or a
procedure in his own terms and convert it into a com-
puter program. As stated by Balzer [13], ““the main dis-
tinction between conventional and automatic program-
ming is the latter’s use of a semantic model of a domain
to structure the dialogue between the system and the
user, to understand the user’s responses, and to translate
the user’s responses into actions.”

A tabular summary of information about the four proj-
ects just described is presented in Table 9 for quick ref-
erence and comparison. The philosophy underlying all of
these projects is that the ultimate automatic program-
ming system is one that carries on a natural language

IBM J. RES. DEVELOP.



Table 9 Summary of the four projects.

NPGS

IS1

Location Monterey, CA.
Sponsor ONR
Principal investigator George Heidorn
Time period 1968-72
People currently on project 0

Problem domain queuing simulations
Task generate progs.
Data structure semantic network

Marinadel Rey, CA.
ARPA
Robert Balzer
1972-

3
any
generate progs.
semantic network

MIT

IBM

Cambridge, MA.
ARPA
William Martin
1972-

12
business applications

gen. or cust. progs.

semantic network

Yorktown Heights, NY.
IBM
Irving Wladawsky
1974-
6
accounting applications
customize progs.
semantic network

Nat. lang. technique aug. phrase struc. none yet aug. trans. net. aug. phrase struc.
Computer used 360/67 PDP-10 PDP-10 370/168
Language used FORTRAN LISP LISP LISP
Language developed NLP AP/ 1 MAPL, OWL THINKER
Target language GPSS ar/1 pL/1 BDL

Current status completed prototype

completed prototype
for message distribution
Relevant references 9-11 12-17

implementing
three prototypes
18-25 26-33

implementing prototype

dialogue with a user about his requirements and then
produces an appropriate program for him. They also
share the philosophy that the way to bring this about is
by trying to build extendable prototype systems that will
support this processing for at least a limited class of ap-
plications.

Except for the NPGS project, detailed documentation
about the techniques being used is lacking. Also, that
which does exist becomes out-of-date pretty quickly
because this work is constantly breaking new ground.
Consequently, it would be difficult and probably not very
useful to compare these projects in great detail at this
time. However, some general comments can be made.

Of the three current projects, two (IBM and MIT)
are concerned with business applications, and the other
(ISI) is striving to be “domain independent.” (However,
the ISI group has been concentrating on a military mes-
sage distribution application.) The ISI system is intended
to generate programs “‘from scratch,” whereas the IBM
system is intended initially just to customize parameter-
ized programs. The MIT system is intended to do both.

All three of the current projects are using LISP as their
basic implementation language, but each is also develop-
ing a higher level language embedded in Lisp to make the
processing easier to specify. All are using basically some
form of semantic network representation for their
knowledge base and some form of procedural specifica-
tion for their natural language processing. Because each
of these groups is in its early stages of prototype imple-
mentation, nothing can be said yet about their relative
performance.

Research issues

As implementation progresses these researchers are
faced with many problems. For instance, saying that a

JULY 1976

semantic network representation is being used is a rather
general statement, What is the specific form that is best
for the system? What are the specific concepts that must
be represented? How are these concepts related to each
other? How many might there be? Will this form of rep-
resentation support the large number of inductive and
deductive inferences likely to be required? Some inter-
esting work on a formalism for semantic networks (or
“conceptual graphs™) that eventually may be useful in
projects of this sort is described by Sowa [34]. An ex-
cellent discussion of many of the issues involved with
the use of semantic networks appears in [35].

The natural language processing to be done by these
systems requires techniques that are more advanced
than those currently available, and it is likely that the
only way these techniques are going to be developed
is by work on such systems. A communication view of
language must be taken, rather than being concerned
with parsing and interpreting sentences in isolation as is
done in most query systems [e.g., 36, 37]. In an auto-
matic programming system the user and the computer
engage in a dialogue with the mutual goal of finding a
match between the user’s requirements and what the
system can provide. They must enter into the conversa-
tion with a certain amount of knowledge in common, and
then each must help the other to know more. In any
conversation the actual words and sentences uttered
provide only a very small part of new information. Pri-
marily they serve as keys that enable the listener to open
up new paths through information he already has.

The important point is that a dialogue takes place for a
purpose. This sets the overall context. As the dialogue
progresses, many sub-purposes are established and satis-
fied, each setting its own local context. ( Actually, this
may be multi-layered.) By knowing these purposes at

3N

AUTOMATIC PROGRAMMING




312

each point in time, a listener is able to set up expecta-
tions that help him to understand what is being said.
Making this notion of context operational would seem to
be crucial for supporting a truly natural language dia-
logue in an automatic programming system. In our work
at IBM we feel that this will be possible because we are
dealing with a very restricted domain of discourse and a
system with a very specific purpose. Also, because the
dialogue is driven by options in the program model, we
have a good basis for establishing local contexts
throughout the dialogue. A technique for dealing with
context in task-oriented dialogues is described in [38].

In addition to devising an operational notion of con-
text, another problem to be faced in the natural language
processing part of such a system has to do with giving
the user freedom in the way he expresses himself, which
is especially important when the need for training him is
to be minimized. Ultimately this means that the system
should be able to process completely, both syntactically
and semantically, every user utterance (i.e., it would
“understand” anything that was said). Clearly this
would be extremely difficult, if not impossible, to bring
about. What is needed is a technique for partially pro-
cessing utterances, to make it possible for the system to
get something out of an utterance when it is not able to
do a complete syntactic and semantic analysis. To do
this, it would have to be able to recognize some words
and phrases and make assumptions about the unrecog-
nized portions. The idea would be for the system to get
enough information out of such an utterance to be able
to respond in a manner that the user would feel is rea-
sonable. In many cases this response could take the form
of one or more fairly specific clarifying questions [39].

Debugging can be a major difficulty with any program
generator. How could we ever be sure that all of the
huge number of programs that might be produced would
be correct? The usual approach is to test each piece in-
dependently and then put them together “‘very care-
fully,” performing some tests on their interaction. When
the input is in natural language, there is an additional
level of difficulty. How can we be sure that the computer
interprets correctly each of the essentially infinite nrum-
ber of different statements that the user might make? It
would seem essential to provide facilities to enable a
user to readily check for himself the programs produced
but without requiring him to have an intimate knowledge
of the programming language. The computer-produced
English verification and the comments and symbolic
names in the Gpss program from NLPQ are considered to
be initial steps in this direction, but additional facilities,
such as the computer-assisted running of test cases, will
have to be provided.

This debugging issue is not of such great concern in
our initial work at IBM because of the fact that the sys-

G. E. HEIDORN

tem under development will customize programs rather
than generate them. This makes it possible to completely
check out the various programs that can result before-
hand. Also, as Mikelsons has pointed out [27], in this
system the burden of matching a procedure to a task is
being placed more on the user than on the machine, and
he is better suited for doing it. The planned capability of
the system to do simulated execution of an application
program should be helpful to the user in this regard, too.

There will probably always be the danger that a com-
puter conversing in English may give the appearance of
being more knowledgeable than it actually is, thus instill-
ing false confidence on the user’s part. It might be able
to discuss an application beautifully, but produce an er-
roneous program that would be accepted simply because
“it came from the computer.” Higher level consider-
ations such as this will have to be dealt with in addition
to the more technical issues discussed above before nat-
ural language automatic programming can become a
practical reality.

Acknowledgments

This paper benefitted from discussions with R. Balzer,
A. Brown, C. Green, A. Malhotra, W. Martin,
M. Mikelsons, J. Sammet, P. Sheridan, N. Sondheimer,
and 1. Wladawsky.

References and notes

1. A. W. Biermann, “Approaches to Automatic Program-
ming,” Advances in Computers 15, Academic Press, New
York, 1975.

2. J. E. Sammet, “The Use of English as a Programming Lan-
guage,” Commun. ACM 9, 228 (March 1966).

3. M. Halpern, “Foundations of the Case for Natural-Lan-
guage Programming,” AFIPS Conf. Proc., Fall Jt. Comput.
Conf., Spartan Books, Washington, D.C., 1966, p. 639.

4. J. E. Sammet, Programming Languages: History and Fun-
damentals, Prentice-Hall, Englewood Cliffs, New Jersey,
1969.

5. There is another project at the Artificial Intelligence Labo-
ratory of Stanford University that should be mentioned
here, too. This group is currently building a system for au-
tomatically generating concept formation programs through
natural language dialogue. Although this work is very much
in line with the topic of this survey, it was begun only re-
cently and has not yet been described in any published docu-
ments. References [6-8] describe earlier related work.

6. C. C. Green, et al, “Progress Report on Program-Under-
standing Systems,” Memo AIM-240, Artificial Intelligence
Laboratory, Stanford University, Stanford, California,
August 1974.

7. C.C. Green and D. R. Barstow, ““A Hypothetical Dialogue
Exhibiting a Knowledge Base for a Program-Understanding
System,” Memo AIM-258, Artificial Intelligence Labora-
tory, Stanford University, Stanford, California, January
1975.

8. C. C. Green and D. R. Barstow, “Some Rules for the Au-
tomatic Synthesis of Programs,” Advance Papers of the
Fourth International Joint Conference on Artificial Intelli-
gence, 1975, p. 232.

IBM J. RES. DEVELOP.



9.

17.

18.

20.

21.

22,

23,

24.

25.

26.

G. E. Heidorn, “Natural Language Inputs to a Simula-
tion Programming System,” Technical Report NPS-
55HD7210iA, Naval Postgraduate School, Monterey, Cal-
ifornia, October 1972,

. G. E. Heidorn, “English as a Very High Level Language

for Simulation Programming,” Proc. Symp. on Very High
Level Languages, Sigplan Notices 9, 91 (April 1974).

. G. E. Heidorn, “Simulation Programming through Natural

Language Dialogue,” North-Holland / Tims Studies in the
Management Sciences 1, Logistics, edited by M. A, Geisler,
North-Holland Publishing Co., Amsterdam, 1975, p. 71.

. R. M. Balzer, “*Automatic Programming,” Technical Report

RR-73-1, USC/Information Sciences Institute, Marina del
Rey, California, September 1972.

. R. M. Balzer, et al, “Domain-Iindependent Automatic Pro-

gramming,” [Information Processing 74, North-Holland
Publishing Co., Amsterdam, 1974, p. 326.

. R. M. Balzer, et al, “AP/1—A Language for Automatic

Programming,” Technical Report RR-73-13, USC /Infor-
mation Sciences Institute, Marina del Rey, California,
1974.

. R. M. Balzer, “Imprecise Program Specification,” Techni-

cal Report RR-75-36, USC / Information Sciences Institute,
Marina del Rey, California, June 1975.

. R. M. Balzer, N. M. Goldman, and D. S. Wile, “Specifica-

tion Acquisition from Experts,” Presentation transparen-
cies, USC/Information Sciences Institute, Marina del
Rey, California, September 1975.

“Automatic Programming,” Annual Technical Report SR-
75-3, USC/Information Sciences Institute, Marina del
Rey, California, June 1975, p. 24.

“Automatic Programming Group,” Project MAC Progress
Report X, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts, July 1973, p. 172.

. “Automatic Programming Group,” Project MAC Progress

Report X1, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts, July 1974, p. 107.

G. R. Ruth, “Optimization in Protosystem 1,” Project
MAC, Massachusetts Institute of Technology, Cambridge,
Massachusetts, July 1975

A. Malhotra, “Design Criteria for a Knowledge-Based
English Language System for Management: An Experimen-
tal Analysis,” Technical Report TR-146, Project MAC,
Massachusetts Iastitute of Technology, Cambridge, Massa-
chusetts, February 1975.

W. A. Martin, “OWL, A System for Building Expert Prob-
lem Solving Systems Involving Verbal Reasoning,” unpub-
lished course 6.871 notes, Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts, Spring 1974,

L. Hawkinson, “The Representation of Concepts in OWL,”
Advance Papers of the Fourth International Joint Con-
ference on Artificial Intelligence, 1975, p. 107.

W. A. Martin, “Conceptual Grammar,” Automatic Pro-
gramming Group Memo 20, Project MAC, Massachusetts
Institute of Technology, Cambridge, Massachusetts, Octo-
ber 1975.

W. A. Woods, “Transition Network Grammars for Natural
Language Analysis,” Commun. ACM 13, 591 (October
1970).

M. Mikelsons, “Computer Assisted Application Defini-
tion,” Unpublished memo; IBM Thomas J. Watson Re-
search Center, Yorktown Heights, New York, August
1973.

JULY 1976

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

M. Mikelsons, “Computer Assisted Application Defini-
tion,” Proc. Second ACM Symp. on Principles of Program-
ming Languages, Palo Alto, California, January 1975.

W. G. Howe, V. J. Kruskal, and 1. Wladawsky, “A New
Approach for Customizing Business Applications,” Re-
search Report RC 5474, IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, March 1975.

M. Hammer, W. G. Howe, V. J. Kruskal, and 1. Wladawsky,
“A Very High Level Programming [anguage for Data
Processing Applications,” Research Report RC 5583, IBM
Thomas J. Watson Research Center, Yorktown Heights,
New York, August 1975.

Application Customizer Service Application Description,
GH20-0628-5, IBM Data Processing Division, White
Plains, New York, 1971.

J. C. Thomas, “A Method for Studying Natural Language
Dialogues,” Research Report RC 5882, 1BM Thomas J.
Watson Research Center, Yorktown Heights, New York,
February 1976.

A. Malhotra and P. B. Sheridan, “Experimental Determina-
tion of Design Requirements for a Program Explanation
System,” Research Report RC 5831, 1BM Thomas J.
Watson Research Center, Yorktown Heights, New York,
January 1976.

I. Wiadawsky, ‘“The Mentor for Business Applications
(MBA): A Natural Language Automatic Programming Sys-
tem,” Unpublished memo, IBM Thomas J. Watson Re-
search Center, Yorktown Heights, New York, March
1975.

J. F. Sowa, “Conceptual Graphs for a Data Base Interface,”
IBM J. Res. Develop. 20, 336 (1976, this issue).

W. A. Woods, “What’s in a Link?” Representation and
Understanding: Studies in Cognitive Science, edited by
D. G. Bobrow and A. Collins, Academic Press, New York,
1975.

W. J. Plath, “REQUEST: A Natural Language Question-
Answering System,” IBM J. Res. Develop. 20, 326 (1976,
this issue).

S. R. Petrick, “On Natural Language Based Computer Sys-
tems.” IBM J. Res. Develop. 20, 326 (1976, this issue).
B. G. Deutsch, “Establishing Context in Task-Oriented
Dialogs, Amer. Journ. Computational Linguistics, Micro-
fiche 35, 1975.

E. F. Codd, “Seven Steps to RENDEZVOUS with the
Casual User,” Data Base Management, edited by J. W.
Klimbie and K. L. Koffeman, North-Holland Publishing
Co., Amsterdam, 1974, p. 179.

Received November 25, 1975

The author is located at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York 10598.

AUTOMATIC PROGRAMMING

313



