
G. E. Heidorn

302

Automatic Programming Through Natural Language
Dialogue: A Survey

Abstract: This paper describes and compares four research projects whose goal is to develop an automatic programming system that
can carry on a natural language dialogue with a user about his requirements and then produce an appropriate program. It also discusses
some of the important issues in this research area.

Introduction
Since the early days of computing, effort has been put
into automating more and more of the programming pro-
cess. (Reference [I] describes some of the most recent
work.) The ultimate objective in automatic programming
is a system that can carry on a natural language dialogue
with a user (especially a nonprogrammer) about his
requirements and then produce an appropriate program
for him. Although the basic idea of “programming in
English” has often been expressed in the literature [2-
41, only in recent years have any serious attempts been
made toward producing such a system.

Three major research efforts of this sort are currently
in progress. One is at the Information Sciences Institute
(ISI) of the University of Southern California; another is

Figure 1 Portion of a semantic network (NPGS).

a ACTION (-)
I

4
I
I
I
I

I /’ I \\
I ,’ I \
I / I

t T T T

at Project MAC at the Massachusetts Institute of Tech-
nology (MIT), and the third is at 1BM’s Thomas J.
Watson Research Center. A fourth effort of interest, al-
though it has been discontinued, was at the Naval Post-
graduate School (NPGS) in Monterey, California.
Whereas the broadly stated objectives of these projects
are the same and their techniques are similar, they do dif-
fer markedly in the details.

This paper describes and compares these four proj-
ects. The NPGS work is presented first and in the great-
est detail because to date it is the only one for which
there is a complete running system. Then the IS1 and
MIT projects are discussed, followed by a description of
the work being done at IBM. After a brief comparison of
the four projects, some of the important research issues
are considered. (See note [5] and references [6- 81.)

NPGS
The NPGS work was actually begun at Yale University
in 1967 as a doctoral dissertation and then was completed
at NPGS during the years 1968-1972 [9- 111. The
goal of this project was to develop a system that would
generate a GPSS simulation program after carrying on an
English dialogue with a user about a simple queuing
problem. A general purpose natural language processing
system called NLP was developed and was then used to
develop the automatic programming system for queuing
problems, called NLPQ, by furnishing it with an appro-
priate grammar and information about queuing.

A sample problem presented to NLPQ and taken from
[101 is shown in Tables 1-3. The dialogue has been
divided into three parts to illustrate the main steps re-
quired to produce a program. All lower case typing was

G . E. HElDORN IBM J . RES. DEVELOP.

done by the user and all upper case typing by the com-
puter. Table 1 shows the dialogue through which the
system acquired a description of the problem. It can be
seen that the user can make statements, give commands,
answer questions, and ask questions, and that the sys-
tem can ask and answer questions and respond to com-
mands. Table 2 shows an English description of the
complete problem “in the computer’s own words,”
which can be helpful to the user for checking the com-
puter’s “understanding.” Table 3 shows the GPSS pro-
gram produced, complete with English comments and
meaningful symbolic names. This sample problem used
about 34 minutes of virtual CPU time on an IBM Sys-
tem 360/model 67 and about 350 K bytes of virtual
storage. (On an IBM 370/168, it uses only about 33
seconds of virtual CPU time.)

The data structure used by NLP is a form of semantic
network. I t consists of a collection of objects called rec-
ords, each of which is just a list of attribute-value pairs.
These records represent such things as concepts, words,
physical entities, and probability distributions. The attri-
butes of a particular record depend upon what it repre-
sents. The value of an attribute is usually a pointer to
another record, but it may be simply a number or a
name.

The processing to be done by NLP is specified by rules
written in a rule language designed especially for this
system. “Decoding” rules specify how strings of text are
to be converted into records, and “encoding” rules spec-
ify how records are to be converted into text. These
rules are basically phrase structure grammar rules, but
they are augmented with arbitrary conditions and struc-
ture building actions.

Prior to a dialogue, NLP is given a set of about 300
“named” records containing information about some
words and concepts relevant to simple queuing prob-
lems. Also, it is furnished with a set of about 300 En-
glish decoding rules and 500 English and GPSS encoding
rules. (NLP augmented with these records and rules is in
fact NLPQ.) As the dialogue progresses, the system uses
the information it obtains from the user to build a sub-
network called the Internal Problem Description (IPD).

Basically an IPD describes the flow of mobile entities,
such as vehicles, through a system consisting of station-
ary entities, such as pumps, by specifying the actions
that take place there and their interrelationships. Each
action is represented by a record whose attributes fur-
nish such information as the type of action, the entity
doing the action (i.e., the agent), the entity that is the
object of the action, the location where it happens, its
duration, its frequency of occurrence, and what happens
next. For example, the action “The men unload the
truck at a dock for two hours” could be represented
(approximately) by the record:

JULY 1976

Table 1 Problem acquisition (NPGS).

1. when a vehicle arrives at a station, it leaves there im-
mediately if the length of the line at a pump in the station
is not less than 2.

2. 75 percent of the vehicles are cars and a fourth are trucks.
3. there is just I pump.
4 . a simulation run time of 8 hours is desired.
5 . ask questions for further info.
6 . HOW OFTEN DO THE VEHICLES ARRIVE AT THE

7. the arrivals of vehicles are normally distributed with a

8. WHAT IS THE STANDARD DEVIATION OF THE

9. 1 minute.

STATION?

mean of 8 minutes.

NORMAL DISTRIBUTION?

10. OTHERWISE, WHAT DO THE VEHICLES DO?
I 1. what?
12. AFTER ARRIVING AT THE STATION, IF THE

LENGTH OF THE LINE AT THE PUMP IN THE
STATION IS NOT LESS THAN 2, THE VEHICLE
WILL LEAVE THE STATION. OTHERWISE, WHAT
DO THE VEHICLES DO?

13. they are serviced.
14. WHERE ARE THE VEHICLES SERVICED?
15. at the pump.
16. HOW LONG ARE THE VEHICLES SERVICED AT

THE PUMP IN THE STATION?

18. THE TIME FOR THE VEHICLES TO BE SERVICED
17. vehicle service times are exponential.

NENTIALLY DISTRIBUTED. WHAT IS THE
MEAN OF THE EXPONENTIAL DISTRIBUTION?

20. AFTER BEING SERVICED AT THE PUMP IN
19. 5 minutes for cars and 9 minutes for trucks.

2 I . leave the station.
22. WHAT IS THE BASIC TIME UNIT TO BE USED

23. 30 seconds.
24. THE PROBLEM STATEMENT IS COMPLETE.
25. how often does a vehicle arrive at the station?

AT THE PUMP IN THE. STATION IS EXPO-

THE STATION, WHAT DO THE VEHICLES DO?

IN THE MODEL?

26. THE TIME BETWEEN ARRIVALS OF THE VE-
HICLES AT THE STATION IS NORMALLY DIS-
TRIBUTED, WITH A MEAN OF 8 MINUTES A N D
A STANDARD DEVIATION OF 1 MINUTE.

27. the standard deviation of the time between arrivals should
be 2 minutes.

28. are vehicles serviced at the pump?
29. YES, THE VEHICLES ARE SERVICED AT THE

PUMP IN THE STATION.

R1: Type unload
Agent men
Object truck
Location dock
Duration 2 hours

In the usual graphical notation for semantic networks,
a record is depicted as a node with a set of arcs emanat-
ing from it. The attribute names appear as labels on the
arcs, and the attribute values appear at the arc termini.
A portion of such a semantic network for the action just
stated is shown in Fig. 1. The nodes in the top two rows 303

AUTOMATIC PROGRAMMING

Table 2 Model verification (NPGS) . unit to be used in the GPSS program. Inter-event and ac-
tivity times may be given as constants or as probability
distributions, such as uniform, exponential, normal, or

THE TIME BETWEEN ARRIVALS OF THE VE- empirical. The quantity of each stationary entity should

30. state the complete problem in english.
31. THE VEHICLES ARRIVE AT THE STATION.

HICLES AT THE STATION IS NORMALLY DIS- also be specified, unless 1 is to be assumed.
TRIBUTED, WITH A MEAN OF 8 MINUTES A N D
A STANDARD DEVIATION OF 2 MINUTES. 75 The user may either state the complete problem im-
PERCENT OF THE VEHICLES ARE CARS, AND mediately, or he may state just some part of it and then
THE REST ARE TRUCKS. AFTER ARRIVING AT let the system ask questions to obtain the rest of the in-
THE IF THE LENGTH OF THE formation, as was done in Table 1. The latter method AT THE PUMP IN THE STATION IS LESS THAN 2,
THE VEHICLE WILL BE SERVICED AT THE PUMP results in a scanning of the partially built IPD for missing
IN THE STATION. OTHERWISE, THE VEHICLE or erroneous information and the generation of appro-

~ , ! & & ~ ~ ~ ~ ~ ~ ~ ~ ~ ! ’ ~ ~ ~ ~ ~~~~~~

priate questions. Each time the system asks a question,
THE STATION 1s EXPONENTlALLY DISTRIB- it is trying to obtain the value of some specific attribute
UTED, WITH A MEAN OF 5 MINUTES FOR THE
CARS, A N D 9 MINUTES FORTHE TRUCKS. AFTER

TION, THE VEHICLES LEAVE THE STATION.
THE SIMULATION IS TO BE RUN FOR 8

HOURS, USING A BASlC TIME UNIT OF 30
SECONDS.

BEING SERVICED AT THE PUMP IN THE STA-

of the figure show some of the named records that must
be available prior to a dialogue. The dotted arcs imply
that one or more nodes representing concepts intermedi-
ate to those shown have been left out (e.g., mobile entity
between truck and entity). The nodes in the lower part
of the figure (i.e., R1, R2, etc.) are part of the IPD built
during a dialogue. The owner arc between nodes R3 and
R2 indicates that: “The men own the dock.”

The English dialogue for specifying the problem must
furnish all of the information needed by the system to
enable it to build a complete IPD. The flow of mobile en-
tities through the queuing system must be described by
making statements about the actions that take place in
the system and how these actions are related to one an-
other. Each mobile entity must “arrive” at or “enter”
the system. Then it may go through one or more other
actions, such as “service,” ‘‘load,’’ “unload,” and
“wait.” Then, typically, it “leaves” the system. The or-
der in which these actions take place must be made ex-
plicit by the use of subordinate clauses beginning with
such conjunctions as “after,” “when,” and “before,” or
by using the adverb “then.” If the order of the actions
depends on the state of the system being simulated, an
“if” clause may be used to specify the condition for per-
forming an action. Then a sentence with an “otherwise”
in it is used to give an alternative action to be performed
when the condition is not met.

The English dialogue must also furnish other informa-
tion needed to simulate the system, such as the various
times involved. It is necessary to specify the time be-
tween arrivals, the time required to perform each activi-

304 ty, the length of the simulation run, and the basic time

that will be needed to generate a GPSS program. A ques-
tion may be answered by a complete sentence or simply
by a phrase to furnish a value for the attribute. The user
may ask the system specific questions also to check on
specific pieces of information in the IPD. Answers are
generated from this information. In order to check the
entire IPD as it exists at any time the user may request
that an English problem description be produced, as was
done in Table 2.

The user of NLPQ is constrained to using words and
grammatical constructions known to the system. Part of
the vocabulary has words for about 25 actions and enti-
ties. In addition to grammatical information about each
word, such as its part of speech and how the plural or
past participle is formed, semantic information is fur-
nished. This primarily specifies whether an entity is
mobile or stationary and whether an action is an event
or an activity. The vocabulary also includes about 200
other words, such as attribute names, time units, certain
prepositions, pronouns, conjunctions, and forms of to
be. This information is entered in the form of named rec-
ords.

The grammar for the system, embodied in the decod-
ing and encoding rules, has both syntactic and semantic
aspects, with the syntactic reflecting general English
usage and the semantic being more narrowly oriented
toward queuing problem jargon. For instance, verb
phrase syntax has been treated fairly thoroughly, includ-
ing various tenses, passives, negatives, and interroga-
tives. Most reasonable orderings of phrases in clauses
and clauses in sentences are accommodated.

It is important to realize, however, that even though
NLPQ can handle a fairly wide range of inputs, there
are many more that it does not handle. As a specific
example, the following are some of the ways in which
statement 17 in Table 1 could have been made to NLPQ

for that problem:

Vehicle service times are exponential.
Service times are exponentially distributed.
The time to service vehicles is exponential.

G . E. HEIDORN IBM J. RES. DEVELOP.

The time for vehicles to be serviced is exponential.
The time to service vehicles at the pump is exponential.

In the above, “exponential” and “exponentially distrib-
uted” are interchangeable. The following are some of the
ways in which statement 17 could not have been made
to NLPQ:

Vehicle service times have an exponential distribution.
Service times are distributed exponentially.
Service times may be described by an exponential distri-

Service times are drawn from an exponential distribu-

The service times of vehicles are exponential.

bution.

tion.

To extend the system to handle these forms would re-
quire furnishing it with additional English decoding
rules. Whereas syntactic extensions of this sort would be
fairly straightforward, arbitrary semantic extensions
generally would be more difficult.

An English problem description such as in Table 2 is
essentially a “dump” of the information in the IPD put
out by the English encoding rules. The overall flow of
the process is for the system to make one or more state-
ments about each action. For an action with no prede-
cessor, a new paragraph is begun with a simple action
sentence containing information about the type of ac-
tion, its agent and/ or object, and its location. This may be
followed by a statement about the inter-event time or
duration. Then, a statement beginning with “after” is
produced from the successor attribute. A conditional
successor may result in two sentences, with the first one
having an if clause in it and the second one beginning
with otherwise. After all of the actions have been de-
scribed, a separate one-sentence paragraph is produced
with the values of the run time and the basic time unit.

The GPSS program shown in Table 3 was produced
from the IPD using the GPSS encoding rules. Definitions
are put into the beginning of the GPSS program for the
stationary entities, mobile entities, and distributions.
Then for each action a comment consisting of a simple
English action sentence is produced, followed by the
GPSS statements appropriate to this action. For exam-
ple, an “arrive” usually produces a GENERATE and an
ASSIGN, a ‘‘leave’’ produces a TABULATE and a
TERMINATE, and most activities produce a sequence
like QUEUE, SEIZE, DEPART, ADVANCE, and
RELEASE. These are usually followed by some sort of
TRANSFER, depending upon the type of value the ac-
tion’s successor attribute has. Finally a standard “timing
loop” is produced to govern the run length of the simuia-
tion.

Although this project was “completed,” a system
ready for production use was not developed. The NLPQ

JULY 1976

Table 3 Automatic coding (NPGS) .

3 2 .
33.

produce the gpss program
SIMULATE
RM U LT

STAT1 EQU

CAR2 EQU
PUMP2 EQU

2 TABLE
TRUC3 EQU
3 TABLE

~~~~ ~ 

277,  423, 

2 ,  F,  Q 
I ,  F.  Q 

2, T 
MI, I ,   I ,  
3. T ~~ 

MI. I.  I. 

715. 

2 

2 

121, 655, 5 3 1 ,  999, 8 13  

* 

1 
~, ~. ~ 

0.0, 0.0/0.l00, 0.l04/0.200,  0.222/0.300, 0.355/ 
0.400, 0.509/0.500, 0.690/0.600,  0.915/0.700,  1.200/ 
0.750.  1.390/0.800,  1.600/0.840, 1.830/0.880, 2.120/ 
0.900, 2.300/0.920,  2.520/0.940.  2.8l0/0.950,  2.990/ 
0.960.  3.200/0.970,  3,500/0.980.  3.900/0.990,  4.600/ 
0.995. 5.300/0.998. 6.200/0.999,  7.000/ 1.000, 8.000/ 

FUNCTION RN I ,  ~ 2 4  

2 FUNCTION  RN2, C29 
0.0,”3.000/0.012.  -2.250/0.027,  “1.930/0.043,  -1.720/ 
0.062,  --1,540/0.084,  --1.380/0.104,  -1.260/0.131,--1.120/ 
0.l5Y,-l.000/0.l87.-0.890/0.230,-0.740/0.267,-0.620/ 
0.334,  -0.430/0.432, -0.170/0.500, 0.0/0.568,  0.170/ 
0.666,  0.430/0.732,  0.620/0.770,  0.740/0.813, 0.890/ 
0.841, 1.000/0.869, 1.120/0.896,  1.260/0.916, 1.380/ 
0.938, 1.540/0.957,  1.720/0.973,  1.930/0.988,  2.250/ 
1.000, 3.000,’ 

0.750,  CAR2/ 1.000, TRUC3/ 

CARZ,  IO/TRUC3, 18/  

3 FUNCTION  RN3,  D2 

4  FUNCTION  PI,  D2 

I FVARIABLE 16 + 4*FN2 

* THE  VEHICLES  ARRIVE  AT  THE  STATION. 

ASSIGN 
GENERATE  VI 

I ,  FN3 
TEST L Q$PUMP2,  2,  ACT2 
TRANSFER  ,ACT3 

THE  VEHICLES  LEAVE  THE  STATION. 

TERMINATE 

* 
ACT2  TABULATE PI 

* THE  VEHICLES  ARE  SERVICED  AT  THE  PUMP. 
ACT3 QUEUE  PUMP2 

SEIZE  PUMP2 
DEPART  PUMP2 
ADVANCE  FN4,   FN 1 

TRANSFER  ,ACT2 
RELEASE  PUMP2 

TIMING LOOP 

TERMINATE 1 
GENERATE  960 

START 
END 

I 

prototype  has been demonstrated  several times on a  va- 
riety of problems, but  usually with the  author  as  the 
user.  Although the capabilities of the  system implement- 
ed  are limited, the  research did establish  an overall 
framework  for  such a system,  and useful techniques 
were developed. Enough  details  were  worked  out  to 
enable  the  system  to perform in an  interesting  manner, 
as evidenced by the sample  problem  in Tables 1-3. 

This project  was about a five man-year effort and  was 
partially supported by the Information Systems Program 
of the Office of Naval  Research.  The primary documen- 
tation is a  376-page  technical report [ 91, but introduc- 
tory  papers  are available also, e.g., [ I O ,  I I ] .  305 

AUTOMATIC  PROGRAMMING 



IS1 
The  IS1 work  began in 1972 with a large report [ 121 de- 
scribing the form that  an  automatic programming system 
could take. Such a system would have  four  phases: 
problem  acquisition, process  transformation, model veri- 
fication, and  automatic coding. The first phase would 
consist of a natural  language  dialogue in problem  domain 
terms. In  the  second  phase  the  system would manipulate 
the information obtained during the first phase  to  trans- 
form it into a high level process  for solving the problem. 
The third phase would be used to verify that this process 
was  the  one desired  and that it was  adequate  for  the 
problem  solution.  Finally, the  fourth  phase would opti- 
mize the  process and produce  the  actual  code  to  solve  the 
problem. (The titles on  Tables 1-3 were  chosen  to  show 
how NLPQ fits within this framework.) 

By early 1974 a prototype implementation of such a 
system  was  underway [ 131. A  key feature of this  work 
is its  emphasis  on “domain-independence.’’ This  means 
that  prior  to  the dialogue the  system  has not been 
primed with information about a specific problem area 
(e.g.,  queuing simulation or  accounts receivable) but 
must obtain all  of this  information. The dialogue consists 
of the  user initially stating his problem,  from  which the 
system  constructs a “loose model.” Then  the  system, 
through  a process called “model  completion,” attempts 
to transform  this loose model into  an  operational, inter- 
pretable  form called the  “precise model.” The model 
completion process usually requires  further dialogue 
with the  user. 

In this system knowledge is represented  as  stored  tu- 
ples,  which may be  considered  to  be a form of semantic 
network.  The processing is specified in AP/I  (an  exten- 
sion of the list processing  language LISP) developed  spe- 
cifically for this  project [ 141. The language AP/I  sup- 
ports  associative relational data  bases, strongly typed 
variables, compound  pattern  matches,  and failure  con- 
trol. 

In late 1974 this group  decided to limit their imple- 
mentation efforts to a very specific task  domain, i.e., mil- 
itary message  distribution [ 151, and  one  year  later suc- 
ceeded in generating their first  program [ 161. The  exam- 
ple that  their  system handled is shown in Table 4. The 
program generated  consists of about 6 pages of AP/I 

code  and took about  one  hour of CPU time on a Digital 
Equipment Corp. PDP/  10 to  produce. 

So far this  group has been concentrating  their efforts 
on  the processing  required to  convert  an imprecise  func- 
tional description of a task into a precise program rather 
than  on  the initial acquisition of the  task description in 
natural  language. Consequently,  at this  time, each  input 
sentence  must be manually translated into a parenthe- 
sized format  that segments each  clause  and noun phrase. 

306 Table 5 shows this  input form  for  the  example in Table 

G .  E. HEIDORN 

4. Workers  on this  project  intend to eventually  replace 
the  use of this form with an “off-the-shelf’  natural  lan- 
guage  interface. 

The processing that this system  does is driven by 
trying to  produce a viable program. First  the  system ex- 
tracts  intra-sentence information about  the  domain  and 
the  actions  that  occur  there; it then builds a semantic 
network  to  represent this  information. Next it does in- 
ter-statement processing to organize the  actions  into  an 
appropriate  control  structure.  This whole process re- 
quires 1 )  the filling in of omitted  details  and 2) the rec- 
ognition of what is being referred to by the various 
phrases  and  clauses in the problem description. To  do 
this the  processor makes heavy  use of both  static  and 
dynamic program  well-formedness  criteria. 

Although the IS1 group has been concentrating  on  the 
particular task domain of military message  distribution, 
they  are still concerned with domain independence  and 
have  made a strong effort to  keep information about  the 
domain separate from the  more general  information. By 
mid- 1976 they hope to have  done  examples in several 
different domains  to  test  their  techniques.  They  are pres- 
ently not concerned with  generating  optimized  pro- 
grams. 

This project is  sponsored by ARPA.  The  group  at IS1 
currently  consists of three people,  although it  has had as 
many  as six. The  references  already cited  give  a reason- 
ably  good idea of what this group  is trying to  do and how 
they are going about doing it. Reference [ 171 provides 
an especially good,  concise  progress  report. 

MIT 
In 1972 work was begun at  MIT’s  Project  MAC  toward 
the goal of a natural language automatic programming 
system  for  business applications. In  the first progress 
report [ 181, an  overview of Protosystem  I, a  partially 
implemented system,  was given. The user’s  interaction 
with  this system begins  with a questionnaire, but  one 
that allows constructive  responses  rather  than  just multi- 
ple-choice answers.  The user’s  particular  application is 
constrained  to being an instantiation of a  general model 
of a  business procedure,  such  as billing, constructed in a 
relational modeling language called MAPL. After acquir- 
ing the  user’s description of his application, the  system 
guides him in the  construction of an  appropriate block 
diagram. He  is then allowed to  explore  the resulting  pro- 
cedure through  simulation.  Finally, the block diagram is 
translated  into an optimized pL/1 program. 

MAPL  was intended to be a language in which rela- 
tional models of the world could be built and  was de- 
signed especially for this  system. This form of knowledge 
representation is basically a semantic  network  also. A 
routine  for translating  natural  language text  into a 
MAPL expression was  also  designed. It  uses  an aug- 

IBM J .  RES. DEVELOP. 



Table 4 Message distribution example (ISI)  . 

MESSAGES  RECEIVED  FROM  THE  AUTODIN-ASC 
ARE  PROCESSED  FOR  AUTOMATIC  DISTRIBUTION 
ASSIGNMENT. 

THE  MESSAGE IS DISTRIBUTED  TO  EACH AS- 
SIGNED  OFFICE. 

THE  NUMBER  OF  COPIES  OF  A  MESSAGE  DIS- 
TRIBUTED  TO  AN  OFFICE IS A  FUNCTION  OF 
WHETHER  THE  OFFICE IS ASSIGNED  FOR  ACTION 
OR  INFORMATION. 

THE  RULES  FOR  EDITING  MESSAGES  ARE ( 1 )  
REPLACE  ALL  LINE  FEEDS  WITH  SPACES ( 2 )  SAVE 
ONLY  ALPHANUMERIC  CHARACTERS  AND  SPACES 
AND  THEN (3) ELIMINATE  ALL  REDUNDANT 
SPACES. 

I T  IS NECESSARY TO  EDIT  THE  TEXT  PORTION  OF 
THE MESSAGE. 

THE MESSAGE IS THEN  SEARCHED  FOR  ALL KEYS. 

WHEN  A KEY IS LOCATED  IN  A  MESSAGE,  PER- 
FORM THE ACTION  ASSOCIATED  WITH  THAT  TYPE 
O F  KEY. 

THE  ACTION  FOR  TYPE-0  KEYS IS: I F   N O  ACTION 
OFFICE  HAS  BEEN  ASSIGNED  TO  THE  MESSAGE, 
THE ACTION  OFFICE  FROM  THE  KEY  IS  ASSIGNED 

READY  AN  ACTION  OFFICE  FOR  THE  MESSAGE, 
THE  ACTION  OFFICE  FROM  THE KEY IS TREATED 

TION  OFFICES  FROM  THE  KEY  ARE  ASSIGNED  TO 
THE MESSAGE IF  THEY  HAVE  NOT  ALREADY BEEN 
ASSIGNED  FOR  ACTION  OR  INFORMATION. 

T H E  ACTION  FOR  TYPE-I  KEYS IS: I F   T H E  KEY IS 
THE  FIRST  TYPE-I KEY FOUND  IN  THE  MESSAGE 

TION  OFFICE.  OTHERWISE  THE  KEY IS USED  TO 
DETERMINE  ONLY  INFORMATION  OFFICES. 

TO THE  MESSAGE  FOR  ACTION.  IF  THERE IS AL- 

AS  AN  INFORMATION  OFFICE.  ALL  INFORMA- 

THEN  THE KEY IS USED  TO  DETERMINE  THE  AC- 

mented transition network  approach  and  pays special 
attention  to  verb  case  frames.  The  process of PL/l code 
generation  and optimization is described in this report 
too, using an inventory  system  example. 

From  the second  year’s progress  report [ 191  it be- 
came  apparent  that  the emphasis  had shifted from trying 
to build a single integrated  system to studying the pieces 
somewhat independently. Currently  there  are basically 
three  prototypes being constructed.  One  is OWL, which 
is intended to  be a  very  general system  for dealing with 
knowledge representation and  natural  language process- 
ing. Another is a system for putting together packages of 
programs configured according to  answers a user gives 
to a multiple choice  questionnaire,  for  the domain of 
planning and scheduling in production  and  distribution 
systems.  The third prototype  deals with  automatically 

JULY 1976 

Table 5 Actual input for message distribution example (ISI)  . 

* ((MESSAGES  ((RECEIVED)  FROM  (THE  “AUTO- 
DIN-ACS”)))  (ARE  PROCESSED)  FOR  (AUTOMATIC 
DISTRIBUTION  ASSIGNMENT)) 

* ( ( T H E  MESSAGE) ( I S  DISTRIBUTED)  TO  (EACH 
((ASSIGNED))  OFFICE)) 

* ( (THE NUMBER OF  (COPIES  OF  (A  MESSAGE) 

TION  OF  (WHETHER  ((THE  OFFICE) ( I S  ASSIGNED) 
FOR  ((“ACTION”)  OR  (“INFORMATION”)))))) 

* ((THE  RULES  FOR  ((EDITING)  (MESSAGES))) 

(SPACES))  ((SAVE)  (ONLY  (ALPHANUMERIC 
CHARACTERS)  AND  (SPACES)))  ((ELIMINATE) 
(ALL  REDUNDANT  SPACES) ) ) )  

((DISTRIBUTED)  TO  (AN  OFFICE))))  (IS) (A  FUNC- 

(ARE) (: ((REPLACE)  (ALL  LINE-FEEDS)  WITH 

* (((TO  EDIT)  (THE  TEXT  PORTION  OF  (THE MES- 
SAGE))) (IS) (NECESSARY)) 

* (THEN  (THE  MESSAGE) ( IS  SEARCHED)  FOR 
(ALL  KEYS)) 

* (WHEN  ((A KEY) ( I S  LOCATED) IN (A  MESSAGE)) 
((PERFORM)  (THE  ACTION  ((ASSOCIATED)  WITH 
(THAT  TYPE  OF  (KEY) ) 1) ) ) 

* ((THE  ACTION  FOR  (TYPE-0  KEYS)) ( IS)  (: ( IF  
((NO  OFFICE)  (HAS BEEN ASSIGNED)  TO  (THE 
MESSAGE)  FOR  (“ACTION”))  ((THE  “ACTION” 
OFFICE  FROM  (THE  KEY)) (IS ASSIGNED)  TO  (THE 
MESSAGE)  FOR  (“ACTION”))) (IF ( (THERE IS) AL- 
READY  (AN  “ACTION”  OFFICE  FOR  (THE MES- 
SAGE)))  ((THE  “ACTION”  OFFICE  FROM  (THE 
KEY)) (IS TREATED) AS (AN  “INFORMATION” 
OFFICE)))  (((LABEL  OFFSl  (ALL  “INFORMATION” 
OFFICES  FROM  (THE  KEY)))  (ARE  ASSIGNED)  TO 
(THE  MESSAGE))  IF  ((REF  OFFSl  THEY)  (HAVE 

TION”)  OR  (“INFORMATION”)))) ) )  
(NOT)  (ALREADY) BEEN ASSIGNED)  FOR  ((“AC- 

* ((THE  ACTION  FOR  (TYPE-I  KEYS)) (IS) ( X  ( I F  
( ( T H E  KEY) (IS)  (THE  FIRST  TYPE-I  KEY  ((FOUND) 
IN  (THE  MESSAGE))))   THEN  ((THE KEY) ( IS  USED) 
TO  ((DETERMINE)  (THE  “ACTION”  OFFICE)) 1 )  

MINE)  (ONLY  ‘‘INFORMATION’’  OFFICES))))) 
(OTHERWISE  (THE  KEY) (IS USED)  TO  ((DETER- 

optimizing data organization and accessing procedures 
for  data processing systems operating on large keyed 
files [20]. 

A related  effort,  which was completed in 1974,  dealt 
with  understanding how a user might interact with a 
knowledge-based  application  system [ 211. A  series of 
experiments  were performed in which a manager  was 
given  a  problem to  solve by obtaining  information in 
unrestricted English from a data  base  about a  hypotheti- 
cal small company.  The  experimenter would intercept 
the  questions  and  answer them  with the aid of a more 
restricted system. By recording  and  analyzing these dia- 
logues, much was learned about  the capabilities  required 
of an actual system of this sort. 307 

AUTOMATIC  PROGRAMMING 



Table 6 Hypothetical dialogue with Susie  software (MIT).  

HELLO, 1 AM SUSIE.  WqAT IS YOUR  NAME? 

bill. i need a program  written to manipulate  blocks. 

I CAN  HELP  YOU  SOLVE  THE  PROBLEM OF WRIT- 
ING  A  PROGRAM  WHICH  BUILDS  A  SCENE  USlNG 
THE BLOCKS  FROM  ANOTHER  SCENE. 

that is what i want. 

OK. I NEED  A  DESCRIPTION  OF  THE  INITIAL  AND 
FINAL  SCENES. 

the final scene  contains 3 blocks: B1, B2, B3 

OK. 

what else  do you want to know about  the final scene? 

WHAT  ARE  THE  POSITIONS  OF B1, B2, and 8 3  WITH 
RESPECT TO  EACH  OTHER? 

B1 is on top of B2 and B3 is on top of B1. 

QK. 

initially, all of them are on the ground. 

DO  YOU  MEAN  IN  THE  INITIAL  SCENE? 

yes. can you write a  program  from that? 

I HAVE  ENOUGH  INFORMATION TO START  WRIT- 
ING THE  PROGRAM. I CAN'T  DETERMINE  ALL  OF 
THE  INFORMATION  WHICH I WILL  NEED  UNTIL 
I WRITE THE PROGRAM. 

ok.  start writing it. 

DO YOU  WANT  ME  TO  DECIDE  IMPLEMENTATION 
ISSUES  SUCH  AS  WHAT  TO  GRASP A BLOCK  WITH? 

yes, if i  can ask you about  them  later. 

YOU  CAN. IS THERE  A  BLOCK Ow TOP OF B2 IN 
THE  INITIAL  SCENE? 

the initial scene only contains B1, 82, and B3. 

I SEE. I HAVE  FINISHED  THE  PROGRAM.  DO  YOU 
WANT  ME  TO  DESCRIBE  THE  PROCEDURE? 

yes 

FIRST I MOVE B2 WITH  MY  LEFT  HAND,  THEN I 
PUT B1 ON  TOP  OF B2 WITH  MY  LEFT  HAND,  THEN 
I PUT B3 ON  TOP  OF  Bl  WITH  MY  LEFT  HAND. 

how did you decide  to  use  your left  hand to move B2? 

I NEEDED  TO  CHOOSE  A  HAND  WITH  WHICH  TO 
GRASP B2. BOTH O F  MY  HANDS  ARE  FREE  AT  THAT 
POINT  IN  THE PROBLEM.  YOU  TOLD MET0  DECIDE 
THE  IMPLEMENTION  ISSUES. I CHOSE  THE  FIRST 
HAND  WHICH I THOUGHT  OF. 

OWL  is  considered  to  be  central  to  the  MIT  project 
and has  been  described in considerable  detail [ 22- 
241. The OWL language,  which has replaced MAPL for 
representing knowledge, has  as  its major feature  that 
English has been  used as a  guide in the definition of its 
data  structures.  It is still basically a form of semantic 

308 network, however. 

G .  E. HEIDORN 

Table 7 Definition of PUT-ON-TOP in OWL  (MI 
( I  EARN (DEFINE  PROCEDURE  (PUT-ON-TOP-OF  BLOCK~IJJ 

(AGENT  (PUI-ON-TOP-OF HI.OCK-I) PERSON-IJ 
(INSTRUMENT  (PUT-ON-TOP-OF  BLOCK-I)  HAND-I) 

(SPECIFIC-POSITION  (PUT-ON-TOP-OF  BLOCK-I) 
(PART  AGENT  HAND-I) 

(PRINCIPAL-RESULT  (PUT-ON-TOP-OF  BLOCK~IJ 

(METHOD  (PUT-ON-TOP-OF B1.OCK-I) (FIND  SPACE-I) )  
(POSITION  SPACE-I  SPECIFIC-POSITION) 
(BENEFICIARY  SPACE-I  OBJECT) 
(THEN  (FIND  SPACE-I)  (GRASP  OBJECT)) 

(ON-TOP-OF BLOCK-2! 

IPOSITION  OBJECT  SPECIFIC-POSITlON!J 

(THEN  (GRASP OBJECT! 
(MOVE  IINSTRUMENT~I  (GRASP  OBJECT))!! 

(DESTINATION  (MOVE  INSTRUMENT-I)  POSITION~I) 
(RESULT  (MOVE  INSTRUMENT-I) 

(THEN  (MOVE  INSTRUMENT-I)  (I.ET-GO-OF  OBJECT)) 
(POSITION  OBJECT  SPECIFIC-POSITION) 

(Y-COORDINATE  POSITION-I 
lPI.US 2 

(Y-COORDINATE  (POSITION  (OBJECT  (FIND  SPACE-I)!)) 
(MEASURE  (HEIGHT OBJECT!!)) 

(X-COORDINATE  POSITION-I 
(X-COORDINATE  !POSITION  (OBJECT  !FIND  SPACE-I)!)))) 

Two basic structural  devices  are used in the OWL for- 
malism: specialization and restriction.  Specialization 
says essentially that  one  concept is a-kind-of another 
concept (e.g.,  a  dog is a kind of animal). Restriction has 
to  do with giving properties  to a concept (e.g.,  a dog has 
four  legs).  The  use of case  relations,  such  as  agent, ob- 
ject, location, and  duration,  is  basic  to OWL also. 

Effort has been  put into building an augmented  transi- 
tion network  parser  [25]  for translating  English  sen- 
tences  into OWL data  structures [ 19, 221. For debug- 
ging purposes, this  group is attempting  to write a pro- 
gram  in OWL capable of carrying on the dialogue  shown 
in Table 6. The OWL language also provides for  the 
specification of procedures in such a manner  that they 
can be executed  for  their effect or merely inspected  for 
their information. Table 7 shows an OWL procedure 
relevant to the dialogue of Table  6. 

This project also  is  sponsored by ARPA  and  currently 
involves 12 faculty members  and  students.  In addition to 
the cited references,  there  are a number of internal 
memos and  student  papers describing  various aspects of 
the work. 

IBM 
The work  in  this area of automatic programming at IBM 
took  on project status in 1974, although  much of the 
groundwork  was laid prior  to  that [ 261. The long  range 
goal of the  Computer  Assisted Application Definition 
Group is to  develop a system  that will permit users  to 
create  business application  programs  by holding an in- 
formal, interactive dialogue  with the  computer.  Cur- 
rently under  development is a more  modest  system  that 
will help  a user  to  customize a set of highly parameter- 
ized  application  programs for  business accounting  by 
means of a natural language  dialogue. 

An example of the  sort of dialogue that this system is 
expected  to  support is shown in Table 8. It  can  be  seen 
that this  dialogue has similar characteristics  to  the  ones 

IBM J .  RES. DEVELOP. 



shown in Tables 1 and 6, namely that  both  the  user and Table 8 Hypothetical customizing  dialogue (IBM) 
the  computer  make  statements  and  ask and answer  ques- 
tions. There is also some verification included. It  is in- 
tended that  the  user  also  be  able  to  request a simulated 
execution of his application  program to  explore its  be- 
havior under various  conditions. 

The  data  structure used by this system is a form of 
semantic  network  too [ 271. This  network is considered 
to  have basically three  parts, called the program  model, 
the application  model,  and the linguistic model. The 
program model furnishes an abstract description of the 
parameterized  programs  available to  be  customized, in- 
cluding information about the  various options, using con- 
cepts  from  the Business Definition System, BDS [28, 
291. The application model provides  information about 
concepts relevant to business, such  as  that invoices  and 
statements  are kinds of documents  that normally are 
sent  to  customers.  The linguistic model provides  infor- 
mation about  the  words of the English  language  and how 
they are used. The interrelationship of these models is 
important. Each  object in the program model is linked to 
its “related  application object,” which serves  as a sort of 
conceptual explanation for it, and  each  object in the ap- 
plication model (and possibly  some in the program 
model) is linked to  its “related linguistic object,” which 
is used for communicating in natural  language. 

A simplified example of a very small portion of such a 
semantic  network is shown in Fig. 2. Each  node repre- 
sents  an  object  and  has a  name in it  for  reference  pur- 
poses.  The relationships  among objects  are  shown  as 
directed arcs,  sometimes labeled. All of the  arcs  are  ac- 
tually two-way  links, but  the label names  shown  are 
meaningful only in the direction shown. 

The unlabeled arcs in the figure represent  the “iri- 
stance” relation,  which serves  the  same  purpose  as  the 
type relation in Fig. 1, although it is drawn in the oppo- 
site  direction.  For example, F1 is an  instance of Field 
(i.e., the  type of F 1 is  Field),  and Field is an  instance of 
POB  (Program  OBject). Because of the transitivity of 
the  instance relation, every  object in the program model 
is ultimately an  instance of POB. Similarly, every  object 
in the application model is ultimately an  instance of 
AOB (Application  OBject),  and  every  object in the lan- 
guage model is ultimately an  instance of LOB (Language 
OBject).  In  the full network  there  tends  to  be many 
more levels between  the most  general objects at the  top 
and the  most specific objects at the  bottom  than  appears 
in this small example. 

The portion of program  model shown in the figure 
may be  interpreted  as saying that  some field F1 is de- 
rived  by  performing an  operation  OP3 using fields F2  
and  F3  as  operands. By following the  RAO  (Related 

IN  ORDER  FOR  ME  TO  CREATE  A  BILLING  PRO- 
GRAM  FOR  YOU I WILL  NEED  TO  GET  CERTAIN 

WANT.  FEEL  FREE  TO  ASK  QUESTIONS  AS  WE  GO 
ALONG. 

INFORMATION  FROM YOU ABOUT WHAT YOU 

WOULD  YOU  LIKE  YOUR  SYSTEM  TO BE TRANS- 
ACTION  ORIENTED  OR  BATCH  ORIENTED? 

what is a  transaction  oriented system? 

IN  A  TRANSACTION  ORIENTED  SYSTEM  AN  IN- 
VOICE IS PRODUCED IMMEDIATELY  WHEN AN 
ORDER  ARRIVES. 

i want  invoices to be produced just  once a day  at 5 p.m. 

DO  YOU  WANT  A  SEPARATE  INVOICE  FOR  EACH 
ORDER  OR  DO  YOU  WANT  THE  ORDERS  GROUPED 
BY CUSTOMER? 

separate invoices. 

ARE  THE  CUSTOMERS  NAME  AND  ADDRESS  FUR- 
NISHED  ON  EACH  ORDER OR MUST  THEY BE 
LOOKED  UP IN T H E  CUSTOMER  MASTER  FILE? 

looked up; is it possible to specify  a  different address  on  an 
order? 

NO,  NOT  IF  THEY  ARE  TO BE LOOKED  UP  IN  THE 
CUSTOMER  MASTER  FILE. 

how would i  handle  an order  from a new customer? 

BY “NEW  CUSTOMER’  DO  YOU  MEAN  ONE  WHO 
IS NOT  IN  THE MASTER  FILE? 

yes. 

YOU  WOULD  HAVE  TO  MAKE  AN  ENTRY  FOR  HIM 
IN  THE  CUSTOMER  MASTER  FILE  BEFORE  THE 
ORDER IS PROCESSED. 

okay. 

DOES  THE  SAME  TAX  RATE  APPLY  TO  ALL  CUS- 
TOMERS? 

yes, 5%. 

TO  SUMMARIZE  YOUR  REQUIREMENTS: 
INVOICES  ARE  TO BE PRODUCED  IN  A  BATCH 

A  SEPARATE  INVOICE  WILL BE PRODUCED  FOR 
AT 5 PM EACH  DAY. 

EACH  ORDER. 
THE CUSTOMER’S  NAME AND  ADDRESS  WILL 

BE LOOKED  UP  IN  THE  CUSTOMER  MASTER 
FILE. 

TOMERS. 
A  TAX  RATE OF 5% APPLIES TO ALL  CUS- 

DO YOU  HAVE  ANY  FURTHER  QUESTIONS? 

what does  an invoice  look  like? 

(SYSTEM  PRINTS A SAMPLE  INVOICE) 

how is extended  price calculated? 

THE  EXTENDED  PRICE  FOR  AN  ITEM  IS  CALCU- 
LATED BY MULTIPLYING  THE  UNIT  PRICE BY 
THE  QUANTITY. 

Application Object)  arcs it can  be  seen  that in terms of that,s all. 
application concepts this  calculation is EXT-PR = 309 

JULY 1976 AUTOMATIC  PROGRAMMING 



PROGRAM APPLICATION 

5x2 FIELD OPERATION 

RLO 

6 QUANT 

Figure 2 Portion of a semantic  network ( I B M )  

UNIT-PR * QUANT. By making use of the relation- 
ships  given in the program and application  models,  along 
with the  RAO’s  and RLO’s (Related Language Objects) 
given, it is possible to  generate  the  sentence,  “Extended 
price is calculated by multiplying unit price by quantity.” 
The semantic network  for this  system is still in its  early 
stages of development,  and undoubtedly  its final form 
will be somewhat different from that shown here. 

The dialogue is driven by the options given in the pro- 
gram  model. In its simplest  form  this is not much dif- 
ferent from providing the  user with a questionnaire of 
the  sort  that is central  to  the Application Customizer 
Service, ACS [30].  However, in this case  the  question- 
ing is dynamic,  with later  questions being dependent 
upon information  supplied  by the  user  earlier in the  con- 
versation.  Also,  the  user may ask  questions  about  terms 
he  does  not  understand  and  about  the effects of making 
certain  choices. 

The natural language processing in this system is be- 
ing done by an expanded version of NLP. Whereas the 
original version of NLP used for the queuing  problem 
application  described  earlier was implemented in FOR- 

TRAN, this new version has been  implemented in LISP so 
that  the facilities of this more powerful  list  processing 
language may be taken  advantage of. In  order  to  support 
the large amount of network manipulation  required by 
the  system described here, a companion  special purpose 
language, called THINKER, which has some of the  same 
features  as ISI’s A P / l ,  has been  implemented in Lisp also 
[27]. The business  application  programs are written in 

31 0 the BDS language. 

LANGUAGE 

.(” / 
X d  “the mice for a aingle item” 

T o  observe  the kinds of questions a user of this sys- 
tem might ask, a series of actual dialogues  with a man- 
ually simulated system  have been recorded  and analyzed 
[ 3 1 ,  321. This manual system is also providing a frame- 
work for building the actual system.  As  appropriate 
techniques  are  developed,  parts of the  system  are  auto- 
mated, with the  eventual goal being to completely elimi- 
nate  the need for manual intervention. 

This project is funded  internally by IBM and  currently 
has six people on it. In addition to  the  references already 
cited, an overview i s  also available [33]. 

Comparison 
It should be  apparent by now that  none of these  groups 
is trying to  develop  what might be called “an English- 
like programming  language.” (After all, that is what 
some  people would say COBOL is.)  Rather,  what they are 
trying to do is develop knowledge-based systems  that 
can  “understand” a  user’s statement of a problem or a 
procedure in his own terms  and  convert it into a com- 
puter program. As  stated by Balzer [ 131, “the main dis- 
tinction between conventional  and automatic program- 
ming is the latter’s  use of a  semantic model of a  domain 
to  structure  the dialogue between  the  system  and  the 
user,  to  understand  the user’s responses,  and  to  translate 
the user’s responses  into  actions.” 

A tabular summary of information about  the  four proj- 
ects  just  described is presented in Table 9 for  quick ref- 
erence  and  comparison.  The philosophy  underlying all of 
these projects is that  the ultimate automatic program- 
ming system is one  that  carries on a  natural  language 

G .  E. HEIDORN IBM J .  RES. DEVELOP. 



Table 9 Summary of the  four  projects. 

N P G S  IS1 MI T IBM 

Location 
Sponsor 
Principal  investigator 
Time  period 
People  currently on project 
Problem  domain 
Task 
Data  structure 
Nat. lang.  technique 
Computer  used 
Language  used 
Language  developed 
Target  language 
Current  status 

Relevant  references 

Monterey,  CA. 
ONR 

George  Heidorn 
1968-72 

0 
queuing  simulations 

generate progs. 
semantic  network 
aug.  phrase  struc. 

360167 
FORTRAN 

N  LP 
GPSS 

completed  prototype 

9-1 1 

Marinade1  Rey, CA. 
ARPA 

Robert  Balzer 
1972- 

3 
any 

generate  progs. 
semantic  network 

none  yet 
PDP-10 

LISP 
AP/  1 
AP/ 1 

completed  prototype 
for message  distribution 

12-17 

Cambridge,  MA. 
ARP A 

William Martin 
1972- 

12 
business  applications 

gen.  or  cust.  progs. 
semantic  network 

aug. trans.  net. 
PDP- 10 

LISP 
MAPL, OWL 

PL/ 1 
implementing 
three  prototypes 

18-25 

Yorktown  Heights, NY. 
IBM 

Irving Wladawsky 
1974- 

6 
accounting  applications 

customize  progs. 
semantic  network 
aug. phrase  struc. 

3701 168 
LISP 

THINKER 
B D L  

implementing  prototype 

26-33 

dialogue  with a user  about his requirements  and  then 
produces  an  appropriate program for him. They  also 
share  the philosophy that  the way to bring this about is 
by trying to build extendable  prototype  systems  that will 
support this  processing for  at  least a limited class of ap- 
plications. 

Except  for  the NPGS project,  detailed documentation 
about  the techniques being used is lacking. Also,  that 
which does  exist  becomes out-of-date pretty quickly 
because this  work is constantly breaking  new ground. 
Consequently, it would be difficult and  probably  not  very 
useful to  compare  these projects in great detail at this 
time. However,  some general comments can  be  made. 

Of the  three  current projects, two  (IBM  and  MIT) 
are  concerned with  business  applications, and  the  other 
( H I )  is striving to be  “domain  independent.” (However, 
the IS1 group  has been concentrating  on a military mes- 
sage  distribution application.)  The IS1 system is intended 
to generate programs “from scratch,”  whereas  the  IBM 
system is intended initially just  to customize parameter- 
ized programs.  The MIT  system is intended to do  both. 

All three of the  current projects are using LISP as  their 
basic  implementation  language,  but each is also  develop- 
ing a  higher level language  embedded in LISP to  make  the 
processing  easier to specify. All are using basically some 
form of semantic network  representation  for  their 
knowledge  base and  some form of procedural specifica- 
tion for  their  natural language  processing.  Because each 
of these  groups is in its  early  stages of prototype imple- 
mentation, nothing can be  said yet  about  their relative 
performance. 

Research issues 
As implementation progresses  these  researchers  are 
faced with many problems. For  instance, saying that a 

semantic network  representation is being used is a rather 
general statement.  What is the specific form that is best 
for  the  system?  What  are  the specific concepts  that  must 
be  represented?  How  are  these  concepts related to  each 
other?  How many might there  be? Will this  form of rep- 
resentation  support  the large number of inductive and 
deductive  inferences likely to  be required?  Some  inter- 
esting  work on a  formalism for semantic networks  (or 
“conceptual  graphs”)  that eventually may be useful in 
projects of this sort is described by Sowa [34]. An  ex- 
cellent  discussion of many of the  issues involved  with 
the  use of semantic networks  appears in [35]. 

The natural  language  processing to  be  done by these 
systems  requires  techniques  that  are  more  advanced 
than  those  currently available,  and it is likely that  the 
only way these  techniques  are going to be  developed 
is  by work on  such  systems. A communication view of 
language must  be  taken,  rather than being concerned 
with  parsing and interpreting sentences in isolation as is 
done in most query  systems [e.g., 36,  371. In  an  auto- 
matic  programming system  the  user  and  the  computer 
engage in a  dialogue  with the mutual goal of finding a 
match  between  the user’s requirements  and  what  the 
system  can provide. They  must  enter  into  the  conversa- 
tion with a certain  amount of knowledge in common,  and 
then  each must  help the  other  to know  more. In  any 
conversation  the  actual  words and sentences  uttered 
provide only a  very small part of new  information.  Pri- 
marily they  serve  as  keys  that enable the  listener to open 
up new paths  through information he already  has. 

The  important point is  that a dialogue takes  place  for a 
purpose.  This  sets  the overall context. As the dialogue 
progresses,  many  sub-purposes  are established and satis- 
fied, each setting  its own local context.  (Actually, this 
may be  multi-layered.) By knowing these  purposes  at 31 1 

AUTOMATIC  PROGRAMMING JULY 1976 



each  point in time, a listener is able  to  set up expecta- 
tions  that help him to understand  what  is being said. 
Making  this  notion of context  operational would seem  to 
be  crucial for  supporting a  truly  natural  language  dia- 
logue in an  automatic programming system.  In  our work 
at  IBM  we feel that this will be  possible because  we  are 
dealing  with a very  restricted  domain of discourse  and a 
system with a very specific purpose. Also, because  the 
dialogue is  driven by options in the program model, we 
have a good  basis for establishing local contexts 
throughout  the dialogue. A technique  for dealing  with 
context in task-oriented  dialogues is described in [38]. 

In addition to devising an  operational notion of con- 
text,  another problem to  be  faced in the natural  language 
processing part of such a system  has  to  do with giving 
the  user freedom in the way he  expresses himself, which 
is especially important when the need for training him is 
to be minimized. Ultimately  this means  that  the  system 
should  be able  to  process  completely, both  syntactically 
and semantically, every  user  utterance (i.e., it would 
“understand” anything that was said).  Clearly this 
would be extremely difficult, if not  impossible, to bring 
about.  What is needed is a technique  for partially pro- 
cessing utterances, to make  it  possible  for  the  system  to 
get something out of an  utterance when it is not  able  to 
do a complete  syntactic  and  semantic analysis. To do 
this, it would have  to be able to recognize some  words 
and  phrases  and  make  assumptions  about  the unrecog- 
nized portions.  The  idea would be for  the  system  to  get 

tem under  development will customize programs rather 
than  generate  them.  This  makes it possible to completely 
check  out  the various  programs that  can  result before- 
hand. Also, as Mikelsons  has pointed out [ 2 7 ] ,  in  this 
system  the  burden of matching a procedure  to a task is 
being placed more  on  the  user  than  on  the machine, and 
he is better suited for doing it. The planned  capability of 
the  system to do simulated execution of an application 
program  should be helpful to  the  user in this regard, too. 

There will probably  always be  the  danger  that a com- 
puter conversing in English may give the  appearance of 
being more knowledgeable than it actually  is, thus instill- 
ing false confidence on  the  user’s  part.  It might be  able 
to  discuss  an application  beautifully,  but produce  an  er- 
roneous program that would be  accepted simply because 
“it came from the  computer.”  Higher level  consider- 
ations  such  as this will have  to be dealt with in addition 
to  the  more technical  issues discussed  above  before nat- 
ural  language automatic programming can become a 
practical  reality. 

Acknowledgments 
This  paper benefitted from  discussions with R. Balzer, 
A. Brown, C.  Green, A. Malhotra, W. Martin, 
M. Mikelsons, J. Sammet, P. Sheridan, N .  Sondheimer, 
and  I. Wladawsky. 

enough  information out of such  an  utterance  to  be  able References  and  notes 
to  respond in a manner  that  the  user would feel is rea- l .  A. W. Biermann, “Approaches  to  Automatic Program- 

ming,” Advances in Computers 15, Academic Press,  New 
sonable. In  many  cases this response could take  the form York, 1975. 
of one  or  more fairly specific clarifying questions [39]. 2.  J .  E. Sarnmet, “The  Use of English as a  Programming Lan- 

generator.  How could we  ever  be  sure  that all of the guage  Programming,” AFlPS ConJ: Proc., Fall J t .  Comput. 
huge  number of programs that might be produced would Conf., Spartan Books,  Washington, D.C., 1966, p. 639. 
be correct? The usual approach is to test each piece in- 4. J. E. Sammet, Programming  Languages:  History and Fun- 

damentals, Prentice-Hall, Englewood  Cliffs, New  Jersey, 
dependently  and  then put  them together  “very  care- 1969. 

Debugging can be a major with any program 3.  M, Halpern,  “Foundations of the  Case  for  Natural-Lan- 
guage,” Commun.  ACM 9, 228 (March  1966). 

fully,”  performing some  tests  on  their  interaction. When 
the input is in natural  language, there is an additional 
level of difficulty. How  can  we be sure  that  the  computer 
interprets  correctly  each of the essentially infinite num- 
ber of different statements  that  the  user might make?  It 
would seem essential to provide facilities to  enable a 
user  to readily check  for himself the programs produced 
but without  requiring him to  have  an intimate  knowledge 
of the programming  language. The  computer-produced 
English verification and  the  comments  and symbolic 
names in the GPSS program  from NLPQ are  considered  to 
be initial steps in this direction, but  additional  facilities, 
such  as  the  computer-assisted running of test  cases, will 

5 .  There  is  another project at  the Artificial Intelligence Labo- 
ratory of Stanford University  that should be mentioned 
here, too.  This  group is currently building a system  for au- 
tomatically  generating concept formation  programs  through 
natural  language  dialogue.  Although  this  work is very much 
in line with the  topic of this survey, it  was  begun  only  re- 
cently  and  has not  yet  been  described in any  published  docu- 
ments.  References [6-81  describe earlier  related  work. 

6. C .   C .  Green,  et al, “Progress  Report  on Prograrn-Under- 
standing Systems,” Memo AIM-240, Artificial Intelligence 
Laboratory, Stanford University,  Stanford, California, 
August 1974. 

7. C .  C .  Green  and D. R. Barstow, “A Hypothetical Dialogue 
Exhibiting a Knowledge  Base for a Program-Understanding 
System,” Memo A lM-258,  Artificial Intelligence Labora- 
tory, Stanford University,  Stanford, California, January 
1975. 

~. 

have  to  be  provided. 8. C .  C .  Green  and D. R. Barstow, “Some Rules  for the  Au- 
tomatic Synthesis of Programs,”  Advance  Papers of the 

31 2 
Fourth International Joint  Conference  on Artificial Intelli- 

our initial work  at  IBM  because of the  fact  that  the  sys- gence, 1975, p. 232. 
This debugging issue is not of such  great  concern in 

0. E. HEIDORN IBM J. RES. DEVELOP. 



9. G. E. Heidorn,  “Natural Language Inputs to a  Simula- 
tion  Programming System,” Technical  Report  NPS- 
SSHD72101A, Naval Postgraduate  School,  Monterey, Cal- 
ifornia, October 1972. 

IO. G .  E.  Heidorn, “English as a Very High Level Language 
for Simulation  Programming,” Proc.  Symp.  on  Very High 
Level  Languages, Sigplun Notices 9, 91 (April  1974). 

1 1. G .  E. Heidorn, “Simulation  Programming  through Natural 
Language  Dialogue,” North-Holland/  Tims  Studies in  the 
Management  Sciences 1, Logistics, edited by M. A. Geisler, 
North-Holland Publishing Co.,  Amsterdam, 1975, p. 71. 

12. R. M.  Balzer, “Automatic Programming,” Technical  Report 
RR-73-1,  USC/Information  Sciences Institute, Marina del 
Rey, California, September 1972. 

13. R.  M. Balzer, et  al, “Domain-Independent  Automatic Pro- 
gramming,” Information  Processing 74, North-Holland 
Publishing Co.,  Amsterdam, 1974, p. 326. 

14. R. M. Balzer, et al, “AP/ I -A  Language for  Automatic 
Programming,” Technical  Report  RR-73-13, USC/Infor- 
mation Sciences  Institute,  Marina del  Rey,  California, 
1974. 

15. R. M. Balzer, “Imprecise Program  Specification,” Techni- 
col  Reporr  RR-75-36, USC/Information  Sciences  Institute, 
Marina del  Rey,  California, June 1975. 

16. R.  M. Balzer, N .  M.  Goldman,  and  D. S. Wile, “Specifica- 
tion  Acquisition  from Experts,”  Presentation  transparen- 
cies, USC / Information Sciences  Institute,  Marina del 
Rey,  California, September  1975. 

17. “Automatic Programming,” Annual  Technical  Report  SR- 
75 -3 ,  USC/ Information Sciences  Institute,  Marina del 
Rey, California, June 1975, p. 24. 

18. “Automatic Programming  Group,’’ Project  MAC  Progress 
Report X ,  Massachusetts  Institute of Technology,  Cam- 
bridge, Massachusetts, July  1973, p. 172. 

19. “Automatic Programming Group,” Project  MAC  Progress 
Report  X I ,  Massachusetts  Institute of Technology,  Cam- 
bridge, Massachusetts, July 1974, p. 107. 

20. G. R. Ruth, “Optimization in Protosystem I,” Project 
MAC,  Massachusetts  Institute of Technology, Cambridge, 
Massachusetts,  July 1975 

21. A.  Malhotra,  “Design  Criteria  for a  Knowledge-Based 
English Language System  for Management:  An Experimen- 
tal Analysis,” Technical  Report  TR-146, Project  MAC, 
Massachusetts  Institute of Technology,  Cambridge, Massa- 
chusetts,  February  1975. 

22. W.  A. Martin, “OWL, A System for Building Expert  Prob- 
lem Solving Systems Involving  Verbal  Reasoning,”  unpub- 
lished course 6.871 notes,  Massachusetts  Institute of Tech- 
nology,  Cambridge, Massachusetts, Spring  1974. ’ 

23. L. Hawkinson,  “The  Representation of Concepts in OWL,” 
Advance  Papers of the  Fourth  International  Joint  Con- 
ference on Artificial Intelligence,  1975, p. 107. 

24. W. A. Martin,  “Conceptual  Grammar,” Automatic  Pro- 
gramming  Group  Memo 20, Project  MAC,  Massachusetts 

ber 1975. 
Institute of Technology, Cambridge, Massachusetts,  Octo- 

25. W.  A.  Woods,  “Transition  Network  Grammars for Natural 
Language Analysis,” Commun.   ACM 13, 591 (October 
1970). 

26. M. Mikelsons, “Computer Assisted  Application Defini- 
tion,”  Unpublished memo; IBM Thomas J .  Watson  Re- 
search  Center,  Yorktown  Heights,  New  York,  August 
1973. 

27. M, Mikelsons, “Computer Assisted  Application Defini- 
tion,” Proc.   Second  ACM  Symp.  on Principles of Program- 
ming  Languages, Palo  Alto, California, January 1975. 

28. W. G .  Howe,  V.  J. Kruskal, and I. Wladawsky, “A  New 
Approach  for Customizing  Business  Applications,” Re-  
search  Report   RC  5474,  IBM  Thomas  J.  Watson  Research 
Center,  Yorktown  Heights,  New  York,  March 1975. 

29. M.  Hammer, W. G. Howe,  V. J .  Kruskal, and I. Wladawsky, 
“A  Very High  Level  Programming  Language for  Data 
Processing  Applications,” Research  Repor t   RC  5583,  IBM 
Thomas  J. Watson Research  Center,  Yorktown Heights, 
New  York,  August 1975. 

30. Application  Customizer  Service  Application  Description, 
GH20-0628-5,  IBM  Data Processing  Division,  White 
Plains, New  York, 1971. 

3 I .  J.  C.  Thomas,  “A Method for Studying Natural Language 
Dialogues,” Research  Report   RC 5882, IBM  Thomas J .  
Watson Research  Center,  Yorktown  Heights,  New York, 
February 1976. 

32. A.  Malhotra  and  P. B. Sheridan,  “Experimental  Determina- 
tion of Design Requirements  for a Program  Explanation 
System,” Research  Report   RC  5831,  IBM  Thomas  J. 
Watson Research  Center,  Yorktown  Heights,  New York. 
January  1976. 

33. I .  Wladawsky, “The  Mentor  for Business  Applications 
(MBA): A Natural Language Automatic Programming  Sys- 
tem,”  Unpublished  memo, IBM  Thomas J .  Watson Re- 
search  Center,  Yorktown  Heights,  New  York,  March 
1975, 

34. J. F. Sowa,  “Conceptual  Graphs  for a Data  Base  Interface,” 
IBM J .  Res.  Develop. 20, 336 (1976, this issue). 

35. W.  A.  Woods, “What’s in a  Link?” Representation  and 
Understanding:  Studies in Cognitive  Science, edited by 
D. G. Bobrow and  A. Collins, Academic  Press,  New  York, 
1975. 

36. W. J.  Plath,  “REQUEST: A Natural Language  Question- 
Answering  System,” IBM J .  Res .   Deve lop .  20, 326 (1976, 
this issue). 

37. S. R.  Petrick,  “On  Natural Language  Based Computer Sys- 
tems.” IBM J .  Res .   Deve lop .  20, 326 (1976,  this  issue). 

38. B. G. Deutsch, “Establishing Context in Task-Oriented 
DialoEs. Amer.  Journ.  Computational  Linguistics, Micro- 
fiche 35, 1975. 

39. E. F. Codd,  “Seven  Steps  to RENDEZVOUS with the 
Casual  User,” Data  Base  Management,  edited by J .  W. 
Klimbie and K. L. Koffeman, North-Holland Publishing 
Co., Amsterdam, 1974, p. 179. 

Received  November 25, 1975 

The  author is located  at the IBM Thomas J .  Watson 
Research  Center,  Yorktown  Heights, New York 10598. 

31 3 

JULY 1976 AUTOMATIC  PROGRAMMING 


