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Communication 

H. J. Nussbaurner 

Complex  Convolutions  via  Fermat  Number  Transforms 

Abstract: An approach is described for computing  complex  convolutions  modulo a Fermat  number.  It is shown  that this technique is 
particularly efficient when the complex  convolution is computed by means of Fermat  Number  Transforms  and  leads  to improved im- 
plementation of complex digital filters. 

Introduction 
In most  applications that involve the processing of digital 
signals, the bulk of the processing  workload corresponds 
generally to digital filter functions.  Among the various 
techniques  that  have been proposed  for  the efficient 
implementation of digital filters, those using finite field 
transforms [ 1 ,  21 are particularly promising. In  such ap- 
proaches,  the  continuous convolution corresponding to 
the digital filtering process is divided into a series of cir- 
cular convolutions  by the  conventional  overlap-add, 
overlap-save  methods [ 3 ]  and  the various circular con- 
volutions are  computed by means of finite field trans- 
forms having the  circular convolution property.  The 
advantages of these  transforms  are  the elimination of 
roundoff errors  and  the possibility of computation with- 
out multiplications.  Additional computational savings 
can  be  achieved by using Fermat  Number  Transforms 
[4, 51 which are finite-field or ring transforms  amenable 
to fast  transform algorithms. 

In this  communication we consider  the  case of filtering 
complex signals. This  case is important in many  applica- 
tions such  as  radar,  sonar,  and modem  equalizers [6]. 
We  show  that, owing to the special representation of com- 
plex numbers in a Fermat  number ring, it permits more 
efficient computation of complex  convolutions than  does 
the  conventional complex number field. We  then extend 
these  results  to  the  case of complex  convolutions  com- 
puted with Fermat  transforms  and  show  that  the  number 
of multiplications can  be  reduced by a factor of two when 
compared to the  conventional  Fermat  transform ap- 
proach. 

Complex convolutions in a Fermat field 
Consider a  complex  integer sequence { y , }  to  be filtered 
by  a  complex sequence having N terms {b,}, in which 

282 {u,} is the filtered output  sequence. 

{u,}  is defined by the convolution 
N - l  

urn = b n  Y(rn-n). ( 1 )  
n=o 

Assuming {x,}, {a,}, { z,} and {i,}, {in}, {in} are  respec- 
tively the in-phase and  quadrature signal components of 
{Y,} ,  {b,}, {u,,}, we  have: 

y ,  = x, + j in; 
b, = u,  + j 6,; 
u, = z, + j in, j =  G. (4) 

Under  these  conditions,  the  in-phase and quadrature 
components of the  output  sequence become: 

n=O 

It  can  be  seen  that  direct  computation of each complex 
output sample W,requires 4N multiplications and 4N - 2 
additions. These figures can be lowered to 3 N multiplica- 
tions and 3 N + 2 additions  by  computing z, with Golub's 
algorithm [ 71 

Now  consider  the  case of a convolution computed 
modulo  a Fermat  number p = 2' + 1 with q = 2', as 

2' = - 1, and 4 = 2r-1, j = fl can be represented in  this 

ring by 2''2. It is therefore possible to  compute directly a 
complex convolution u, in a Fermat  number  system by 
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where  any quantity  enclosed by superfluous double 
parentheses is to be  replaced by its  value  modulo p .  

Because 2' = - 1, Eq. (8)  becomes 

u, = ( (2, + 24'2&,) ) . (9) 

The in-phase and  quadrature  components z, and 2, of 
the  output sample can be separated by considering the 
auxiliary  convolution 

u,  = (( ( a ,  - 2"'6,) (x,-, - 2 ' / ' i , 4 ) ,  
A- 1 

(10) 
n=O 

u, = ( (2, - 2"2i,) 1 .  ( 1 1 )  

Combining (9) and ( I I )  yields 

2, = ( (-2'-l(Um + u , ) ) )  ; 

3,  = ( (-2'-*/*( u, - U r n )  ) ) , 

which shows  that computing  a  complex output sample 
requires  only 2N multiplications and 2N + 4  additions, 
that is to say half as many multiplications as with the 
conventional  approach. 

With this method, it is therefore possible to  compute a 
complex  convolution  modulo  a Fermat  number with 
fewer  operations  than with the  conventional  approach  or 
Golub's algorithm. The price to  be paid for this  reduction 
in number of operations is that all multiplications  and 
additions  must  be  performed in the finite Fermat field or 
ring. This will usually lead to  the  use of word  lengths 
longer  than with the conventional approach,  or  Golub's 
algorithm, in order  to  prevent overflow in the final result. 
This  means  that  the reduction in number of operations 
achieved with the proposed approach  does  not  neces- 
sarily translate  into processing  workload  reduction. 

We show, however, in the  next section that when the 
complex  convolution is computed by means of Fermat 
Number  Transforms, it is possible to  reduce  the  number 
of operations without  additional  penalty in word length 
increase,  thereby achieving an overall  processing work- 
load reduction. 

Complex convolutions using Fermat  Number 
Transforms 
As outlined in [ 41 and [ 51, a promising approach  to  com- 
puting convolutions consists in replacing direct  or  Fast 
Fourier  Transform implementation (FFT) by Fermat 
Number  Transform (FNT)  implementation. 

In  such  an  approach,  the  continuous convolution is 
converted  into a series of circular  convolutions on blocks 
of samples {x,} and {a,} to which zeros  are  appended  to 
prevent folding and aliasing. F N T  transforms { A , }  and 
{X , }  of {a,} and {x,} are then computed  and,  because 

the F N T  transform  has  the cyclic  convolution property, 
taking the  inverse F N T  transform of { A ,  . X,} yields the 
desired  convolution products.  As  Fermat  Number  Trans- 
forms can  be computed by fast algorithms without multi- 
plications,  this  method  yields  a drastic reduction in num- 
ber of multiplications  when compared  to  either  direct  or 
FFT implementation. 

Fermat  Number  Transforms  are  computed modulo a 
Fermat  number.  The  method  described in the preceding 
section for computing  complex  convolutions  modulo a 
Fermat  number is therefore directly  applicable to  the  case 
of a F N T  implementation. However, in contrast with the 
approach  discussed in the preceding section, taking  ad- 
vantage of the particular representation of complex  num- 
bers in a Fermat ring to  reduce  the  number of operations 
will not yield additional  word  length increases  because 
word  sizes  must  already be tailored for  operation modulo 
a Fermat  number in the F N T  implementation [ 4, 51. 

In  order  to make these points  precisely,  let us first 
consider  the  conventional  computation of a  complex 
cyclic  convolution via FNT.  The  Fermat  and  Inverse 
Fermat  Number  Transforms  can be defined as 

F N T  (x,) = A X ,  = ((X Q") ; (14) 

I F N T  ( X , )  x, = ( ( R  X,2-"')) ; (15) 
N-1 

k=O 

N = 2-4 R = 2-'"" n ,  k = 0 ,  l;.., N -  1 .  

Assuming X,, i,, A,, a, are respectively the  Fermat 
Number  Transforms of x,, in, a,, ri,, the in-phase and 
quadrature  components of the complex circular  convolu- 
tion  become 

Z, = I F N T  { A , X ,  - A,i,}, (16) 

i, = I F N T  { A,X, + A,X,} .  (17) 

We can  see  that  for a complex circular  convolution of 
N points,  this  method requires computing six Fermat  or 
Inverse  Fermat  Number  Transforms  and 4 N  multipli- 
cations  and 2N additions in the transform domain. 

As all operations  are performed  modulo a Fermat num- 
ber, we can  reduce  the  number of multiplications in the 
transform  domain by using the method described in the 
preceding  section. Under  these conditions, z, and i, be- 
come 

Z, = ( (-2'" ( I F N T  { ( A ,  + 2""A,) ( X ,  + 2'"i,) 

+ ( A , - 2"*Ak) ( x, - 2"'X,) } ) ) ) ; (18) 

im=((-2'-'''(IFNT { ( A ,  + 2'"Ak)(X,  + 2"'2,) 

- ( A ,  - 2""J ( X ,  - 2'/*ik) } ) ) ) . ( 19) 

COMPUTING ( 
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If we  compare  the conventional approach ( 16), ( 17) 
to  that corresponding to ( 18) ,  ( 19), we can  see  that  both 
methods  require computing six Fermat  or  Inverse  Fermat 
Transforms  but  that  the proposed approach  requires only 
2N multiplications and 6 N  additions in the transform 
domain. 

Moreover, if the filter is time  invariant, -2‘”(Ak + 
2‘”’2,), -2‘”(A, - 2”’A,) can be  precomputed once and 
for all so that  the number of additions in the transform 
domain reduces  to 4N.  

The  proposed  approach permits, therefore,  the  com- 
putation of a circular convolution by means of F N T  with 
an  average of only two multiplications per complex out- 
put sample instead of four multiplications in the  conven- 
tional case.  This processing  workload  reduction is 
achieved  without word  length increase. 

Conclusion 
It has been shown  that complex convolutions  can be 
computed efficiently modulo  a Fermat  number  thanks  to 
the  particular  representation of complex numbers in the 
corresponding field or ring. 

This  result is especially significant when complex  con- 
volutions are  computed by means of Fermat  Number 
Transforms.  In  that  case, all operations  are already  per- 
formed  modulo a Fermat  number so that  the  proposed 
approach permits halving the required number of multi- 
plications without imposing additional  overflow con- 
straints  over  what is required for  the  conventional  tech- 
nique using Fermat  Number  Transforms. 

The method described in this paper may be  used for 
filtering complex signals and therefore  can find applica- 
tion in a  number of cases concerning, e.g., radars,  sonars, 
and modems. 
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