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H. J. Nussbhaumer

Complex Convolutions via Fermat Number Transforms

Abstract: An approach is described for computing complex convolutions modulo a Fermat number. It is shown that this technique is
particularly efficient when the complex convolution is computed by means of Fermat Number Transforms and leads to improved im-

plementation of complex digital filters.

Introduction

In most applications that involve the processing of digital
signals, the bulk of the processing workload corresponds
generally to digital filter functions. Among the various
techniques that have been proposed for the efficient
implementation of digital filters, those using finite field
transforms [1, 2] are particularly promising. In such ap-
proaches, the continuous convolution corresponding to
the digital filtering process is divided into a series of cir-
cular convolutions by the conventional overlap-add,
overlap-save methods [3] and the various circular con-
volutions are computed by means of finite field trans-
forms having the circular convolution property. The
advantages of these transforms are the elimination of
roundoff errors and the possibility of computation with-
out multiplications. Additional computational savings
can be achieved by using Fermat Number Transforms
{4, 5] which are finite-field or ring transforms amenable
to fast transform algorithms.

In this communication we consider the case of filtering
complex signals. This case is important in many applica-
tions such as radar, sonar, and modem equalizers [6].
We show that, owing to the special representation of com-
plex numbers in a Fermat number ring, it permits more
efficient computation of complex convolutions than does
the conventional complex number field. We then extend
these results to the case of complex convolutions com-
puted with Fermat transforms and show that the number
of multiplications can be reduced by a factor of two when
compared to the conventional Fermat transform ap-
proach.

Complex convolutions in a Fermat field

Consider a complex integer sequence {y,} to be filtered
by a complex sequence having N terms {b,}, in which
{u,} is the filtered output sequence.

H. J. NUSSBAUMER

{u,} is defined by the convolution

N-1
u,, = 2 by Yoneny 1
n=0

Assuming {x,}, {a,}, {2,} and {X,},{4,}, {2} are respec-
tively the in-phase and quadrature signal components of
{v.}s {b,}, {u,}, we have:

Yo =X, HJ X (2)
b,=a,+ ja,; (3)
w,=z,+j%, j= V-1. (4)

Under these conditions, the in-phase and quadrature
components of the output sequence become:

N-1

Zm = 2 (anx(m—n) - anx(m—n))’ (5)
n=0
N-1

2,= Y (anx(m_n) + anx(m_n)). (6)
n=

It can be seen that direct computation of each complex
output sample W, requires 4N multiplications and 4N —2
additions. These figures can be lowered to 3N multiplica-
tions and 3N + 2 additions by computing z,, with Golub’s
algorithm [7]

N-1

zm = 2 <(an - dn) (x(m—n) + 'f(m—n))
0

by
— S + onn)- 7

Now consider the case of a convolution computed
modulo a Fermat number p=27+1 with g=2', as
27 =—1, and %= 2!, j=V—1 can be represented in this
ring by 222, It is therefore possible to compute directly a
complex convolution u,, in a Fermat number system by
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“ = ((NEI (a, +27%4,) (x,_,, + z"/zf(m_,,))», (8)

n=0

where any quantity enclosed by superfluous double
parentheses is to be replaced by its value modulo p.
Because 27 = —1, Eq. (8) becomes

u, = ((z, +2%°2,)). 9

The in-phase and quadrature components z, and 2, of
the output sample can be separated by considering the
auxiliary convolution

b, = ((VEI (a, — 2%4,) (x,_, — z"/%emdn))), (10)

v, = ((z,, — 27%2,)). (11)
Combining (9) and (11) yields

2= (2" (u, +v,))): (12)
2, = (2" (u, = v,))), (13)

which shows that computing a complex output sample
requires only 2N multiplications and 2N + 4 additions,
that is to say half as many multiplications as with the
conventional approach.

With this method, it is therefore possible to compute a
complex convolution modulo a Fermat number with
fewer operations than with the conventional approach or
Golub’s algorithm. The price to be paid for this reduction
in number of operations is that all multiplications and
additions must be performed in the finite Fermat field or
ring. This will usually lead to the use of word lengths
longer than with the conventional approach, or Golub’s
algorithm, in order to prevent overflow in the final result.
This means that the reduction in number of operations
achieved with the proposed approach does not neces-
sarily translate into processing workload reduction.

We show, however, in the next section that when the
complex convolution is computed by means of Fermat
Number Transforms, it is possible to reduce the number
of operations without additional penalty in word length
increase, thereby achieving an overall processing work-
load reduction.

Complex convolutions using Fermat Number
Transforms

As outlined in [4] and [5], a promising approach to com-
puting convolutions consists in replacing direct or Fast
Fourier Transform implementation (FFT) by Fermat
Number Transform (FNT) implementation.

In such an approach, the continuous convolution is
converted into a series of circular convolutions on blocks
of samples {x,} and {a,} to which zeros are appended to
prevent folding and aliasing. FNT transforms {4,} and
{X,} of {a,} and {x,} are then computed and, because
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the FNT transform has the cyclic convolution property,
taking the inverse FNT transform of {4, - X,} yields the
desired convolution products. As Fermat Number Trans-
forms can be computed by fast algorithms without multi-
plications, this method yields a drastic reduction in num-
ber of multiplications when compared to either direct or
FFT implementation.

Fermat Number Transforms are computed modulo a
Fermat number. The method described in the preceding
section for computing complex convolutions modulo a
Fermat number is therefore directly applicable to the case
of a FNT implementation. However, in contrast with the
approach discussed in the preceding section, taking ad-
vantage of the particular representation of complex num-
bers in a Fermat ring to reduce the number of operations
will not yield additional word length increases because
word sizes must already be tailored for operation modulo
a Fermat number in the FNT implementation [4, 5].

In order to make these points precisely, let us first
consider the conventional computation of a complex
cyclic convolution via FNT. The Fermat and Inverse
Fermat Number Transforms can be defined as

A N—-1
FNT (x,) £ X, = ((2 x”2nk>>; (14)
n=90
A N—-1
I FNT (X,) S x,, = ((R D sz‘””‘>); (15)
k=0
N=2¢ R=2"" pnk=01,-N—1.

Assuming X, Xk, A /fk are respectively the Fermat
Number Transforms of x,, X,, a,, 4,, the in-phase and
quadrature components of the complex circular convolu-
tion become

2, =1 FNT {4, X, — A, X}, (16)

2, =1FNT {4, X, +4,X,}. (17)

We can see that for a complex circular convolution of
N points, this method requires computing six Fermat or
Inverse Fermat Number Transforms and 4N multipli-
cations and 2N additions in the transform domain.

As all operations are performed modulo a Fermat num-
ber, we can reduce the number of multiplications in the
transform domain by using the method described in the
preceding section. Under these conditions, z,, and 2, be-
come

2, = (-2 '(IFNT {(4, + 2"?4,) (X, + 27°X,)
+ (A4, —2"4) (X, — 27X ))); (18)

i = ((-272(IFNT {(4, + 27°4,) (X, + 27°%,)
— (A, — 24,) (X, — 22 %) 1)), (19)
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If we compare the conventional approach (16), (17)
to that corresponding to (18), (19), we can see that both
methods require computing six Fermat or Inverse Fermat
Transforms but that the proposed approach requires only
2N multiplications and 6N additions in the transform
domain.

Moreover, if the filter is time invariant, —2"'(A4, +
29%4,),—2"7"(4, — 2™4,) can be precomputed once and
for all so that the number of additions in the transform
domain reduces to 4N.

The proposed approach permits, therefore, the com-
putation of a circular convolution by means of FNT with
an average of only two multiplications per complex out-
put sample instead of four multiplications in the conven-
tional case. This processing workload reduction is
achieved without word length increase.

Conclusion

It has been shown that complex convolutions can be
computed efficiently modulo a Fermat number thanks to
the particular representation of complex numbers in the
corresponding field or ring.

This result is especially significant when complex con-
volutions are computed by means of Fermat Number
Transforms. In that case, all operations are already per-
formed modulo a Fermat number so that the proposed
approach permits halving the required number of multi-
plications without imposing additional overflow con-
straints over what is required for the conventional tech-
nique using Fermat Number Transforms.

H. J. NUSSBAUMER

The method described in this paper may be used for
filtering complex signals and therefore can find applica-
tion in a number of cases concerning, e.g., radars, sonars,
and modems.
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