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F. G. Gustavson

Analysis of the Berlekamp-Massey Linear Feedback
Shift-Register Synthesis Algorithm

Abstract: An analysis of the Berlekamp-Massey Linear Feedback Shift-Register (LFSR) Synthesis Algorithm is provided which
shows that an input string of length » requires ¢ (n*) multiplication/ addition operations in the underlying field of definition. We also de-
rive the length distribution for digit strings of length n#. Results show that, on the average, the encoded length is no greater than n + 1.
Furthermore, we exhibit a connection between step | of the Ling-Palermo algorithm and the LFSR Algorithm, and the LFSR Algorithm

turns out to be computationally superior.

Introduction
The Block-Oriented Information Compression (BOIC)
scheme of Ling and Palermo [1] is isomorphic to the
Linear Feedback Shift-Register (LFSR) Synthesis
Algorithm proposed by Massey [2] when one deals with
bit strings. The LFSR algorithm, which is essentially the
same as the Berlekamp Iterative Algorithm [3], was de-
veloped for encoding and is more general and computa-
tionally faster than the BOIC scheme. This work con-
tains analysis of the LFSR scheme; in particular, we
derive the distribution D (n; [) of lengths / needed to gen-
erate strings of length n. In the binary case, D(n; [) ap-
pears when the binary symmetric source is assumed.

The distribution D(n; /) can be used to compute the
expected value E(#n) of a random bit string. It turns out
that » = E(n) = n + 1; hence one gets, on the average,
data expansion with this method. [The length of # (log,n
bits) is not included in this estimate.} A fundamental
result in information theory {4, p. 43, Theorem 3.11]
states that any encoding must lead, on the average, to
data expansion; the result here is quite good in view of
that fact.

The following section of this paper can be considered
a supplement to [2] and [3, Chapter 7]. In it we present
Massey’s algorithm and indicate which steps contribute
to the computation cost. We then prove what the mini-
mum, average, and maximum computation costs are in
terms of the numbers of multiplications and additions.
To first order, these three values are 0, 2n* (2—p™'), and
1n® when computations are done in a field with p elements.
We determine that the average number of polynomial
evaluations is #(2 — p~'). This section also contains a
derivation of formulas for D(n; ) and E(n).

The next section contains a comparison of step 1 of
the BOIC scheme and the LFSR Algorithm. We show
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there that steps 2, 3, and 4 of the BOIC scheme compres-
sion stage are redundant; i.e., the result they seek is con-
tained in step 1. Then we show that step 1 requires more
work than the LFSR Algorithm; step 1 turns out to be
0 (n’) for most sequences. We use the notation of [ 1] and
refer to specific equations there. We do not give a parallel
evaluation of the LFSR Algorithm and the BOIC scheme.
However, assuming that we can count n bit operations
as one operation, we find that the BOIC scheme can be
done in @(n®) operations whereas the LFSR Algorithm
requires no more than ¢'(n log,n) operations.

Description and specification of the LFSR Algorithm
The problem: Given n elements s,, 5,," - -, 5, in a finite or
an infinite field, find / constants c,, ¢,,* -+, ¢, in the same
field such that

l
Sj+1=_2CVsj+l—V’ j=Ln— 1L (1)
v=1
Let L,(s) be the smallest value of /, for which a shift-
register exists, that generates s, -+, 5,; we wish to find
¢, ¢, with [ = L (s). The following result from [2,
p. 124] is most useful:
L, (s)y=max [L,(s},n+1—L(s)]. (2)
It says, suppose (1) generates s,,---, 5, with L, (s) con-

stants. If (1) is satisfied for j = n also, then L, (s) =
L,(s) and the same constants may be used. If (1) is not
satisfied for j = n, then
{Ln(s) if 2L (s) > n,
L, (9=
n+1—L(s)if 2L, (s) = n,

and L, (s) new constants must be found. Let
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C(x)=1 +clx+~~~+clxl

denote a polynomial of degree at most / in the indeter-
minate x. We now state the LFSR Algorithm [2, p. 124]:

1. Initialization:
C(x) < B(x) < 1,
jeb— 1+l k<0

2. If k = n, stop; else compute
{
d= Skt1 + z CiSpr1—r
i=1

3. If d=0, then GO TO 6; else GO TO 4.
4. If 21 > k, then
C(x) « C(x) — bd 'x’'B(x),
GO TO 6;
else GO TO 5.
5. T(x) < C(x),
C(x) < C(x) — db~'x'B(x),
B(x) < T(x),
l—k+1—1
b<—d,
j< 0.
6. je—j+1,
k<—k+1,
GO TO 2.

The computational effort occurs in steps 2, 4, and §
and we endeavor to find minimum, average, and maxi-
mum computation costs of performing these steps. This
computation is performed in a field containing p ele-
ments. By holding n fixed but letting p — o, we ¢an ob-
tain results for the real number field. Another result we
obtain is the distribution of lengths, D(n; I}, of the mini-
mal LFSR’s; our method of proof is induction.

s Length distribution of minimal LFSR’s

Proposition 1 The distribution D (/; n) of minimal LFSR’s
is given by

1 if [=0;
D(n; ) =3p"7p ifl=1," «a
5 i l=a+ 1, n, (3)

where p=p— 1, a=|n/2}, and | x|, [ x] denote respec-
tively the floor, ceiling of x.
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Table 1 Length distribution D(#n; /) for the LFSR Synthesis
Algorithm; p = 2.
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10
1 1
2 1 2 1
31 2 4 1
4 1 2 8 4 1
5 1 2 8 16 4 1
6 1 2 8 32 16 4 1
7 1 2 8 32 64 16 4 1
8 1 2 8 32 128 64 16 4 1
9 1 2 8 32 128 256 64 16 4 1
10 1 2 8 32 128 512 25 64 16 4 1

Proof Suppose (3) is true for n = k and consider vectors
S 7% S S, Here s, can assume p values, and p of
these values cause Eq. (1) to fail; for these cases [ must
be corrected via formula (2). On the other hand, s,
satisfies Eq. (1) for exactly one value and then L, (s) =
L, (s). It follows that p* vectors retain the same length
and the same set of ¢’s. The remaining p*5 vectors get a
new set of ¢’s and a possible length change. We consider
three cases:

Case 1:0= 1= «

By induction, there are pZHp' vectors s, -, s, whose
minimum length generators have length /. Letting s,,, be
arbitrary, we have p2'ﬁ Vectors s, + 5y, 5., to consider.
Of these p*~'p remain of length [; p*~'5° experience a
length change to k+ 1 — L

Case2:k+1—a=[=k+1
By induction, there are p**p vectors s, -, s, of for-
mula length /; there is no vector with formula of length
I=k+ 1. Adding component s, ,, we have p**~""*'p vec-
tors to consider. None of these experiences a length
change because ! > k + 1 — [. Summing these two com-

ponents we obtain p***'"5 formulas of length /.

Case3:a < k—a=1

This case occurs only when £ is odd. We consider for-
mulas of length « + 1, the term missing in Case 2. By in-
duction, there are p** b formulas of this length;
adding component s, ,,"we obtain p*“ 5 formulas to
consider. All have length / = « 4+ 1 because 2(«a + 1) =

k+ 1.

Combining Cases 1, 2, and 3, we see that Eq. (3) holds
with n = k replaced by n = k + 1. To start the induction,
we hypothesize that there is one formula (of length zero)
when n = 0. Table 1 displays the length distribution for
the Boolean case (p = 2) for values of n between one
and ten.
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Next, we compute the length of an average formula,
E(n), assuming random sequences. By definition,

E(n) = [VEZO 2vD(n; V)]/p".

The factor 2 is due to the fact that both s,,- -+, 5,and ¢,
-+, ¢, must be saved to compute s,,- -, 5,. By grouping
sum terms v and n — v, we may write

2vD(n;v) +2(n—v)D(n; n—v)
=n(D(n;v) + Dn; n—v)) +c(n; v)
where

n(p—1)
c(nv) = 2 21 .
P (n—2v)p if v # 0.

if v=20,

Hence,
8-1
E(n) =n+ [2 c(n; V)]/p",

where 8 = [n/2]. Using formulas for the sum and de-
rivative of a geometric series, we get E(n) =rn+ N/D,
where

N=(n=28+2)p"" + (28— n)p*"
—2(n+1)p—2n

and

D= (p+ 1)*p".

We claim 0 = N < D. That 0 = N follows from
B-1

N=[3 et |+ D2

y=0
And,
N<p? P (n+2-28) + (28— n)]
2p™! if # is even,
- [p"(l + p’) if n is odd.
In either case, N < D. We summarize these facts in
n=E(n) <n+1,

which says that the expected value of the encoding length
is always between n and n + 1. Thus, on the average, one
expects a slight data expansion. For example, when p=2
and n is large, we get N/D = 4/9 for n even and 5/9
for n odd.

Computation cost of the LFSR Algorithm

We want to establish the minimum, average, and maxi-
mum ‘“‘costs” (i.e., the numbers of multiplication opera-
tions) of the LFSR Algorithm in terms of executing steps
2, 4, and 5, and also the number of times these steps are
entered. For the minimum and maximum costs we de-
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scribe the types of input data strings that cause the LFSR
Algorithm to do the least and the most multiplication. The
average cost is handled by computing the total cost of
processing each of the p" possible input data strings one
time and then dividing this total by p". A direct measure
of the total cost of processing each of the p" possible
input strings one time is the sum of all multiplications
done by the LFSR Algorithm during this processing. We
call this the sum multiplication count and we determine it
by deriving and solving recurrence relations. More specifi-
cally, we derive multiplication counts for steps 2, 4, and
S at iteration step »=0, 1,- -+, n— 1 and then sum over v
to obtain the total multiplication count of these steps.
The average cost is then the sum of these three counts
divided by p".

In the same manner we compute the number of times
steps 2, 4, and 5 are executed. These counts refer to the
average number of polynomial evaluations required by
the LFSR Algorithm.

It should be noted that in the Boolean case no multi-
plication need be done in steps 4 and 5. This is because
db™" always equals one and thus the polynomial opera-
tions there become EXCLUSIVE OR and shift operations.
However, the add count is identical to the multiplication
count for LFSR’s when p > 2: thus in the Boolean case
the reader should substitute add for multiply in what fol-
lows. This is what we meant above when we said the
multiplication count is a direct measure of the total cost
of processing.

Before turning to an analysis of steps 2, 4, and 5 to de-
termine the average cost, we state some ground rules: The
computations in these steps require /(k) multiplications
and additions, where /(k) is the value of / at the end of the
particular step during the kth iteration. We neglect the
multiplication required to compute bd ™', which is justified
by a remark at the end of the following section. We ignore
operations on the constant term of C(x) because it always
equals one, and ignore savings due to the occasional
cancellation of leading terms in C(x).

o Average cost

Number of polynomial evaluations

Let u, v, and w be vectors of length n whose vth com-
ponents are the number of times, respectively, that d=0
in step 3, that step 4 is done with 2/ > k, and that step 5 is
done at iteration step ». For any s =5, s, and 1 =
v = n, we have

u(v) =1, v(yv) = wl(v) =0, or
viv) =1, u(v) =w(v) =0, or
w) =1, u(v) =v(v) =0,

and one of these three possibilities must occur. Now
consider vectors U(n), V(n) and W{n) which are ob-
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tained by summing u, v, and w over all possible p" input
strings s. For each integer n, U(n) is a vector of length
n; U(n; v) is the vth component of U(n),»=0,---, n—1.
The following recurrence relations hold:

U(n+ 1:n) =p"

n

Vint Lin) =(—1 3 D(mv)
28
=(p-1 bl
W(n+1;n)=(p—l)iD(n;V)
B B p2(1+l+l

where = | n/2],B8=[n/2],and n=0, 1,-- - also
Uln+ 1;v) =p U(n;v);

Vin+ 1;v) =pVinv);

Wn+1,v)=p W, v), (5)

where v =0, - - —l,and n=1, 2,-

Lets=s,5,,, where s is any n-vector. Smce s, takes
on p values, the LFSR Algorithm encounters p copies of
s in processing 5. Hence, by summing over all possible
s, we verify the truth of Egs. (5). Equation (4a) is true
because, for each s, the associated LFSR computes an

s,,, for which Eq. (1) holds. The remaining p p" cases,

at step v = n, divide according to the length distribution
for vectors s of length n; this is the meaning of Egs.
(4b,c).

Now define

n—1
SU(n) =Y Uln:v)

r=0
and similarly for SV (n) and SW(n). Summing (5a, b, ¢)
and then adding them to (4a, b, ¢), we get

SUn+ 1) =pSU(n) +p";
o

SVin+1) —pSV(n)+(p—l) ;

p+1

2a+1
p + 1
SWn+1)=pSWm +(p—1) ———, (6)
p+1
forn=1,2,---

Equations (4), (5), and (6) can be solved either by
induction or by using difference equation methods. We
note that Egs. (7) and (8), and also Eqgs. (12) through
(15) which follow, require a large amount of tedious,
straightforward algebra on polynomials in the variable p.
In doing the calculations we were aided immeasurably by
the SCRATCHPAD system {5]. Each of the expressions
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contained in these equations represents a polynomial
even though it is represented in part as the quotient of
two polynomials, a compact form that allows one to easily
see asymptotic values.

The solutions to equations (4), (5), and (6) are

Un+ 1;v) =p";

n—v _ 28
V(n+l;v)=p (p—1D(p 1);

(p+1)
n—v _1 2041 1
W(n+1;u)=17 (p )p ), (7)
p+1
where o = {v/2], B=[v/2},v=0,--+, n,and n =0,
1, also
SU(n) =np"™;
pZLy_l
- w1, _ .
SVn) =ap”(p—1) P
2a
SW(n) =B " (p— 1) + (8)
P i(p S
where a« = [n/2], B=[n/2].and n=1, 2,- - -. Note that

[Vin+ 1;2) + Wn+ 1;0)]/ U+ 1) =(p—1) so
that, on the average, we correct the LFSR Algorithm
p— 1 out of p times at each iteration step. In the Boolean
case (p=2) we get d=0 (in step 3) S0 percent of the
time. The total polynomial count TPC is the sum of n p",
SV, and SW. We get TPC(n) = n(2p" — p"™"). This in-
dicates that an average input data string s requires
n(2 — p~") polynomial evaluations. The total cost of com-
puting bd " in steps 4 and 5is SV(n) + SW(n)=p"—p"™’
multiplications and the same number of divisions,

Number of multiplications required

Here we establish the multiplication count (which equals
the addition count) for performing the polynomial opera-
tions in steps 2, 4, and 5. Analogous to Eqs. (4) and (35)
we have recurrence relations

MC2(n + l;n)=pz v D(n; v);

v=0

=({p-1 é v D(n; v);

v=a+1

MC4(n+ 1; n)

MC5(n+1;n)=(p—1) i (n+1—v)D(n;v), (9)

where a = |n/2] and n=0, 1, 2,--; MC2, MC4, and
MC5 stand for multiplication count steps 2, 4, and 5
summed over all possible p" formulas:

MC2(n+ 1;v) =p MC2(n; v);
MC4(n+ 1;v) =p MC4(n; v);
MC5(n+ 1;v) =p MC5(n;v), (10)

where v=0,--n—land n=1,2,---
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To verify Egs. (9) and (10), let §=s, s,,, where s is
any input string of length n. Equations (10) are true in the
same way as Eqgs. (5). At iteration step n+ 1, input string
s 18 processed p times. The multiplication count for a
given s is I(s) and, summing over all input strings s, we
obtain E'V':o v D(n; v) since there are D(n, v) formulas of
length v. This verifies Eq. (9a).

We still have to correct the LFSR Algorithm for a
given s, with s fixed, p — 1 times since the LFSR Algo-
rithm for s correctly computes s,, | only once. We choose
step 4 or step 5 according to whether 2/(s) > nor2l(s) =
n. Summing over all s, we get X" v D(n; v) and

v=a+1

2* v D(n; v), where o = |n/2], as the total multipli-

v=0
cation counts for steps 4 and 5. This verifies Eqgs. (9b,¢).
We define

SM2(n) = nil MC2(n; v)

y=0

and similarly for SM4(n) and SMS5(n). Summing Eqgs.
(10) over v and then adding them to Eq. (9), we get

SM2(n+ 1) =p SM2(n) + MC2(n+ 1; n);
SM4(n+ 1) =p SM4(n) + MC4(n+ 1; n);
SM5(n+ 1) =p SM5(n) + MCS5(n+ 1; n), (11)

for n =1, 2,--- Equations (9), (10), and (11) can be
solved in the same manner as Egs. (4), (5), and (6);
their solutions are

MC2(n+1;v)=p"" [Bp"H

s

=T+ 1)p2+vp]
(p+1)°
MC4(n+ 1;v) =p"* [(a +1)p*

28+1

_2(a+ bp

+Qa+DpP+ (v + l)pz-—v].
(p+1)° '
MC5(n+ 1;v)=p"" [(B+ 1) p*!

2B+ )P 2B+ D — (D ot (v 1)]

(p+1)
(12)

where o= (v/2],8=[v/2],v=0,--.n,and n=0,1, - ;

also
u PP —(n+ 1)+ -1
kp —p[ 5 > ];
-1
SM2(n) = B
R 20" — (n+ Dp+n—1
kk+ Dp" = p| o |
208 (-1
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SM4(n) =

1) n
((p— 1) [IC(L;—)p

n—1

="+ (k—1)p"' —p" —kp
-1
. (n+ 1P +p+1 —n]'
-1y

(p—1) [———k(k; D s

. kp"t* = 2p™t — (k+ 1)p"
-1y
N (n+ VP +p+1 —n]_
(P —1)*

(p—1) [——k(k; L) e

-

H

N (k+ )p" 2 —kp" — (n+ D)p* + n]
-1y
(k+ 1)(k+2) s

SMs(n)=<(P-”[ 2

N k+2)p""' — (k+ 1)p" "
(P — 1)
NGRS l)pz—n]
(' —1)

(13)

L

where n = 2k is the condition for using the first expres-
sion in each pair and n = 2k + 1, for the second.

Next, we sum Eqgs. (12) to find the total multiplication

count at iteration step v, v =0, 1, -, n:

TMC(n+ 1;v)

o [(V +
k"t v+ P + kpt
- (p+1)
v+ 1)p*+ (w+ 1)p+1
- p+ 1) 5
pH[(Hl)pm
(k+ D)p"™ +vp™ + (k+ 1)p"
(p+1)
O DY+ @+ Dp+1
(p+1)°

= 2k;

}, v=2k+1. (14)

Finally, the multiplication count of the LFSR Algo-

rithm is the sum from » = 0 to n — 1 of Eq. (14) or, equiv-
alently, the sum of Eqgs. (13):
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MC(n)

’nn—i'l n ne
(—zlp_(,g“)pl

+_pn+2_3pn+pn+pn—l+ (n+ l)pS
(P —1)?
2
—(n—1p—1
+p (2 )[: , n=2k;
pF=1

n(n;— 1) pn_ (k2+k+ l)pu—l

_2pn+2 _pn+1 +pn-l + (n + l)p‘i
(-1

2
it AL VRN (15)
L (1)

From (15) we see that the average multiplication count
for the LFSR Algorithm is approximately 3n(n + 1) —
1’p~". Since one does about n(2 — p~') polynomial
evaluations, the average polynomial evaluation requires
in multiplications (and additions). Table 2 lists the mul-
tiplication counts for the Boolean case (p = 2) for input
strings up to length ten.

+

* Minimum cost

The string s = 0 constitutes the only input data that mini-
mize the computation cost of the LFSR Algorithm.
Clearly, L,(s) = 0 for all » when s = 0. Hence, steps 4
and 5 are never entered and there is no computation
for these steps. Step 2 reduces to the value assign-
ment d = s, for k=0, n— 1 and, as we indicated
previously, we do not count this operation.

o Maximum cost

There are several digit strings that produce a maximum
multiplication count of 4n(n + 1). To show this we give
an induction proof that is more complicated than one
might suspect because in going from strings of length »
to length n + 1, a maximal string s can increase its cost
only by n + 1 whereas other strings can increase their
costs by as much as 2(»n + 1). It turns out that maxima
for odd length input strings can occur at more than one
value. To overcome this difficulty we need a slightly more
complicated induction hypothesis, as follows.

Partition the p" strings of length # into n + 1 groups;
members of group ! require a minimum of L (s) =/ con-
stants to generate them (/= 0, 1,---, n). The maximum
multiplication count for group / is

n+1), =0, a;

MMC(n; )=
Qn+1-2D).l=a+1,-" n, (16)
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Figure 1 Tree diagram showing the maximum multiplication
counts (MMC) for the LFSR Synthesis Algorithm; p = 2.

where o = [n/2]. When n is even (odd), the maximum
occurs for I=a (a + 1); the maximum value is in(n+1)
for both cases.

Figure 1 is a tree diagram that illustrates this induction
hypothesis. Nodes are labeled by a pair of numbers m, n,
where m equals the number of constants needed and n
equals the maximum multiplication count. The edge
label is the increase in multiplication count in going from
iteration step v 1o step v + 1. Any path from the root node
consisting of v edges reaches iteration step v. The set of
nodes whose distance is n from the root constitutes the
n + 1 group maxima; we say these nodes are at level n.
Node 2, 2 illustrates the difficulty: During iteration step 3,
its multiplication count can increase by four (steps 2
and 4 are entered and each contributes a count of two)
and thus it merges with node 2, 6. A similar remark holds
for node 3, 9 at iteration step 4.

We now establish the induction result for MMC. Sup-
pose formula (16) holds for n = k. Nodes at level k with
m=v and 2v = k experience no length change if d in step
3 is equal to zero. In this case, only step 2 is executed and
it uses » multiplications. Hence MMC(k + 1; v) =
v(k + 2) for 0 = 2v = k. Nodes for which 2v > k experi-
ence no length change but experience a maximum change
in multiplication count when d # 0 in step 3; i.e., steps 2
and 4 are executed at a cost of 2v. However, nodes where
2v = k become members of the class 2v > k by exper-
iencing a length change; step 3 then has d # 0 and the
increase in count is » + k+ 1 — v as steps 2 and S are en-
tered. Thus, MMC(k+ 1;k+1—v)=max [A{(v), B(v)].
v=0, -, a whereA(v) = 2v+ 1) (k+ 1—v) and B(v) =
(v+1)(k+1).[The domain of 4 (v) is actually 1 = v = a.
However, evaluate 4 atv=0and note that k+ 1=A4(0) =
B(0); hence this result is valid.] Since A(v) — B(v) =
v(k — 2v) and is non-negative for » =0, -, a, we con-
clude that MMC(k+ 1, k+1—v) =A(v).

Replacing ¥+ 1 — v by v, we get MMC{(k + 1; v) =
v(2k—2v+3),v=k+1—a, -+ k+ 1. When £ is odd,
1+ a < k+ 1— o and we must consider the casev=a + 1.
Here,2(a+ 1) > kand MMC (k+ 1, a+ 1)=A(a+1)=
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Table 2 Multiplication counts for the LFSR Synthesis Algorithm; p = 2.

n 0 1 2 3 4 5 6 7 8 9 Sum
MC2(n; v) SM2(n)
1 0 0
2 0 2 2
3 0 4 8 12
4 0 8 16 26 50
S Q 16 32 52 68 168
6 0 32 64 104 136 174 510
7 0 64 128 208 272 348 408 1428
8 0 128 256 416 544 696 816 962 3818
9 0 256 512 832 1088 1392 1632 1924 2156 9792
10 0 512 1024 1664 2176 2784 3264 3848 4312 4886 24470
MC4(n; v) SM4(n)
1 0 0
2 0 1 1
3 0 2 2 4
4 0 4 4 11 19
5 0 8 8 22 16 54
6 0 16 16 44 32 69 177
7 0 32 32 88 64 138 90 444
8 0 64 64 176 128 276 180 367 1255
9 0 128 128 352 256 552 360 734 452 2962
10 0 256 256 704 512 1104 720 1468 904 1817 7741
MC5(n; v) SM5(n)
1 1 1
2 2 2 4
3 4 4 7 15
4 8 8 14 10 40
5 16 16 20 20 37 117
6 32 32 56 40 74 48 282
7 64 64 112 80 148 96 187 751
8 128 128 224 160 296 192 374 230 1732
9 256 256 448 320 592 384 748 460 913 4377
10 512 512 896 640 1184 768 1496 920 1826 1084 9838
TMC (n; v) MC(n)
1 1 1
2 2 5 7
3 4 10 17 31
4 8 20 34 47 109
5 16 40 68 94 121 339
6 32 80 136 188 242 291 969
7 64 160 272 376 484 582 685 2623
8 128 320 544 752 968 1164 1370 1559 6805
9 256 640 1088 1504 1936 2328 2740 3118 3521 17131
10 512 1280 2176 3008 3872 4656 5480 6236 7042 7787 42049

(a+1)2a+3)=a'(k+2), wherea'=|3(k+ 1) ]. Thus Our induction becomes complete by noting that

we have MMC(1;0)=0and MMC(1; 1) = 1; hence, the induc-

vik+2), v=0,1,--",a; tion result holds for n = 1. The difference between the

oy maximum and the average multiplication counts is ap-

MMC(k+ 15 v) = \w(2k—2v +3). proximately 4n® p~'. As p — = (real case), the average

210 v=o +1,- k+ 1. and the maximum multiplication counts are the same.
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When p = 2 (binary case) the average is about three-
fourths of the maximum count. These cases are the
extremes, and other finite fields yield ratios between
three-fourths and one. Finally, note that Eqgs. (3) and
(16) complement each other; they indicate, respectively,
the number of input strings and the maximum multipli-
cation count for each of the » + 1 groups. Table 3 con-
tains the maximum multiplication counts for each group
for input strings up to length ten.

Comments on the BOIC scheme

The compression stage BOIC scheme consists of four
steps [1, p. 143]. We shall show that the computation
in step 1 contains the answer, «, that they seek; this ob-
viates the need for steps 2, 3, and 4. Step 1 is to be com-
pared with the LFSR Algorithm. Since step 1 is & (n®)
(Gaussian elimination on / rows of length about n — /),
we think the LFSR Algorithm should always be used.
Berlekamp, in his book [3, Chapter 7, Section 5] dis-
cusses the relation between the LFSR Algorithm and
matrices of the BOIC type. Because these matrices have
a special structure (mij = si+j——1)’ it is possible to solve
equations in less than ¢ (x®) operations; e.g., the LFSR
Algorithm does the job in ¢ (n?). It is an open question
as to whether another algorithm could find the L, (s)
constants in less than ¢(x*). Berlekamp also demon-
strates a relation between L, (s) and the singularity of its
associated matrix [3, Theorem 7.51, p. 189]; see the
matrix A[1, p. 142. Eq. (7)]. The singularity of the ma-
trix 4 for all /< | n/2] means the BOIC scheme causes
data expansion for the given input. For [ > |n/2] the
matrix 4 contains x’s (don’t-care elements) ; nonetheless,
matrix 4 can be singular regardless of the values the x’s
assume. An extreme case is given when the input string

is 0, -+, 0, 1; matrix A is then non-singular only if [ = ».

Let 4, | be the n-component vector a,, a, . " d,,
x,- -+ x. In what follows we use the notation of [1]. The
reader can identify 4, with the input string s =s,.,- -+ s,.

The following result is true: 4, = Elyzl aA, ;ie., the
linear combination of blocks that annihilate A, are those
blocks with a, = 1.

Proof 1t follows from Eq. (1) of [1], i.e.,

A, =aa,a,0,a0a0, 4,
A, =a,a,a.0.a.4a, " a,x;
A, =ua.,a,a.a St a XX,

2 3l 45Uy’ n

A, _, = G, XXXx: - xxx,

thatif 4, =c,4,_,+ -+ A, thena,  =ca,, ,+ -+
ca,forv=1,2,---, n— I, as one sees immediately from
the first n — [ columns of the first / + 1 rows of this equa-
tion. Hence [1, p. 142, Eq. (12)}, a,= ¢, ,.v= 1,2,
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Table 3 Maximum multiplication counts for the LFSR
Synthesis Algorithm; p = 2.

n 0 1 2 3 4 5 6 7 8 9 10
1 0 1

20 3 2

3.0 4 6 3

4 0 5 10 9 4

5 0 6 12 15 12 5

6 0 7 14 21 20 15 6

7 0 8§ 16 24 28 25 18 7

8 0 9 18 27 36 35 30 21 8

9 0 10 20 30 40 45 42 35 24 9

10 0 11 22 33 44 55 54 49 40 27 10

-+« [; this establishes the result and also displays the
relation between the LFSR ¢’s and the BOIC a’s.

We now derive the number of additions needed to per-
form step 1. In doing so we include only the cost of add-
ing rows to other rows to produce an upper triangular
matrix form. At stage v + 1, which zeros out row » + 1 up
to the diagonal, we do n+ 1 — » — o additions with rows o,
o=1, - v. This uses $v(2n + 1 — 3v) additions. The
total cost (addition count) of processing rows 2 through
I+ 1is

AC(n;v) =3+ 1)(n—1), I=0,--+[n/2]. (17)

An input string 4, whose associated set of constants
« is of length /, requires processing up to row /+ 1 via the
BOIC scheme. Hence, by subtracting MMC from AC
we can determine a bound on the extra computation re-
quired by step 1. Remember that for the LFSR Algo-
rithm, the addition count equals the multiplication count;
also, in the Boolean case, multiplications can be avoided
in steps 4 and 5. Thus we obtain

AC(n;v) —MMC(n; v) =1[3(1—1D)(n—1-2) = 2],
[=0,--+ |n/2]. (18)

Inspection of (18) shows that the LFSR Algorithm is
almost always superior; however, we have not given a
complete analysis.

Summary

This paper supplements Massey’s paper [2] and Chap-
ter 7 of Berlekamp’s book [3]. Our principal results are
the derivation of the length distribution of the constants
in the LFSR Algorithm and the analysis of its computa-
tion cost. They show that on the average, the LFSR Algo-
rithm cannot be used as a data reduction method. How-
ever, it was found that the LFSR Algorithm is superior
to the BOIC scheme [1], which does not exploit the
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special character of its matrix in step 1. Furthermore,
the BOIC scheme cannot, without additional information
about the input strings, be used for information com-
pression.
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