
F. G. Gustavson

Analysis of the Berlekamp-Massey Linear Feedback
Shift-Register Synthesis Algorithm

Abstract: An analysis of the Berlekamp-Massey Linear Feedback Shift-Register (LFSR) Synthesis Algorithm is provided which
shows that an input string of length 12 requires C (i 2) multiplication/ addition operations in the underlying field of definition. We also de-
rive the length distribution for digit strings of length n. Results show that, on the average, the encoded length is no greater than n + l .
Furthermore, we exhibit a connection between step 1 of the Ling-Palermo algorithm and the LFSR Algorithm, and the LFSR Algorithm
turns out to be computationally superior.

Introduction
The Block-Oriented Information Compression (BOIC)
scheme of Ling and Palermo [11 is isomorphic to the
Linear Feedback Shift-Register (LFSR) Synthesis
Algorithm proposed by Massey [2] when one deals with
bit strings. The LFSR algorithm, which is essentially the
same as the Berlekamp Iterative Algorithm [31, was de-
veloped for encoding and is more general and computa-
tionally faster than the BOIC scheme. This work con-
tains analysis of the LFSR scheme; in particular, we
derive the distribution D (n ; 1) of lengths 1 needed to gen-
erate strings of length n. In the binary case, D (n ; 1) ap-
pears when the binary symmetric source is assumed.

The distribution D (n ; 1) can be used to compute the
expected value E(n) of a random bit string. It turns out
that n i E(n) 5 n + 1 : hence one gets, on the average,
data expansion with this method. [The length of n (log,n
bits) is not included in this estimate.] A fundamental
result in information theory [4, p. 43, Theorem 3.1 I]
states that any encoding must lead, on the average, to
data expansion; the result here is quite good in view of
that fact.

The following section of this paper can be considered
a supplement to [2] and [3, Chapter 71. In it we present
Massey's algorithm and indicate which steps contribute
to the computation cost. We then prove what the mini-
mum, average, and maximum computation costs are in
terms of the numbers of multiplications and additions.
To first order, these three values are 0, in' (2 - p - ') , and
i n z when computations are done in a field with p elements.
We determine that the average number of polynomial
evaluations is n(2 - p") . This section also contains a
derivation of formulas for D (n ; 1) and E(n) .

The next section contains a comparison of step I of
204 the BOIC scheme and the LFSR Algorithm. We show

there that steps 2, 3, and 4 of the BOIC scheme compres-
sion stage are redundant; i.e., the result they seek is con-
tained in step 1. Then we show that step 1 requires more
work than the LFSR Algorithm; step 1 turns out to be
C(n") for most sequences. We use the notation of [I] and
refer to specific equations there. We do not give a parallel
evaluation ofthe LFSR Algorithm and the BOlC scheme.
However, assuming that we can count n bit operations
as one operation, we find that the BOIC scheme can be
done in O(n2) operations whereas the LFSR Algorithm
requires no more than a(n log,n) operations.

Description and specification of the LFSR Algorithm
The problem: Given n elements sl, sZ; . ., s, in a finite or
an infinite field, find 1 constants c , , c2,. . ., cl in the same
field such that

"=l

Let L , (s) be the smallest value of I , for which a shift-
register exists, that generates s',. . ., s,; we wish to find
c,, . . ., cl with I = L , (s) . The following result from [2,
p. 1241 is most useful:

It says, suppose (1) generates s,, . . ., s, with L,(s) con-
stants. If (I) is satisfied for j = n also, then L,+,(s) =

L, (s) and the same constants may be used. If (1) is not
satisfied for j = n, then

and L,+, (s) new constants must be found. Let

F. G . GUSTAVSON IBM J. RES. DEVELOP.

C(x) = 1 + clx +. . . + clxl

denote a polynomial of degree at most 1 in the indeter-
minate x. We now state the LFSR Algorithm [2, p. 1241:

I . Initialization:

C(x) + B (x) + 1,

j + b + I + l + k + O .

2. If k = n, stop; else compute
I

d= Sk+, + CiSLfl-i.
i = l

3. If d = 0, then GO T O 6; else GO T O 4.

4. I f 21 > k , then

C(X) +- C(X) - hd".x'B(x) ,

GO TO 6;

else GO T O 5.

6. j + j + I ,

k + k + 1 ,

GO T O 2.

The computational effort occurs in steps 2, 4, and 5
and we endeavor to find minimum, average. and maxi-
mum computation costs of performing these steps. This
computation is performed in a field containing p ele-
ments. By holding n fixed but letting p + m, we can ob-
tain results for the real number field. Another result we
obtain is the distribution of lengths, D (n; I) , of the mini-
mal LFSR's; our method of proof is induction.

Length distribution of minimal LFSR's

Proposition I The distribution D(1; n) of minimal LFSR's
is given by c if I = 0;

D (n ; 1) = p'"-'p i f / = I , . . . , a ;
2(n-11- p i f / = a + l ; . . , n , (3)

where I., = p - 1 , CY = [n / 21, and [xj , [x] denote respec-
tively the floor, ceiling of x.

Table 1 Length distribution D (n ; I) for the LFSR Synthesis
Algorithm; p = 2.

I

n O 1 2 3 4 5 6 7 8 9 1 0

~ -~ ~ ~~ ~~ ~~~ ~

~~~~~ ~ ~ ~~~ ~ ~~~ ~ 

1 1 1  
2 1 2 1  
3 1 2 4 1  
4 1 2 8  4 1 
5 1 2 8 1 6  4 1 
6 1 2 8 3 2  16  4 1 
7 1 2 8 3 2  64  16  4 1 
8 1 2  8  32  128  64 16 4 I 
9 1 2 8 32  128  256  64  16  4 1 

10 1 2  8  32  128  512  256  64  16 4 1 

Proof Suppose (3 ) is true for n = k and consider  vectors 
sl,. . ., sk, s k + , .  Here s k + l  can assume p  values,  and p of 
these values cause Eq. ( 1 )  to fail; for  these  cases 1 must 
be corrected via formula (2) .  On the  other  hand, sk+, 
satisfies Eq. ( 1 )  for  exactly one value  and  then Lk+l(s) = 

L k ( s ) .  It follows  that pk  vectors retain  the same length 
and the  same  set of c's. The remaining p'p vectors get  a 
new set of e's and a  possible length change.  We consider 
three  cases: 

Case 1 : 0 5  I 5  a 
By induction, there  are p"'"p vectors s,, . ., sk whose 
minimum length generators  have length 1. Letting sk+, be 
arbitrary,  we  have p2'p vectors s,; . ., sk, . s ~ + ~  to  consider. 
Of these p2'-Ip remain of length I ;  p""'p2 experience a 
length change  to k + I - 1. 

C a s e 2 : k + I - a 5 1 5 k + I  
By induction, there  are p2"i-1'p vectors s,, . . ., sk of for- 
mula length I ;  there is no vector with formula of length 
1 = k + 1. Adding component sktl, we have p2"-"+" p vec- 
tors  to  consider.  None of these  experiences a length 
change  because 1 > k + 1 - 1. Summing these two  com- 
ponents we obtain p"'"+""p formulas of length 1. 

C a s e 3 : a  < k - a = l  
This  case  occurs only  when k is odd.  We consider for- 
mulas of length a + 1, the term missing in Case 2.  By in- 
duction,  there  are $'"-*-"- p formulas of this length; 
adding component  sk+,,,we obtain $'""'p formulas  to 
consider. All have length 1 = a + 1 because 2(a  + 1 )  = 

k +  1. 

Combining Cases 1 ,  2, and 3, we see  that Eq. ( 3 )  holds 
with n = k replaced by n = k + 1 .  To start  the induction, 
we hypothesize  that  there is one formula (of length zero) 
when n = 0. Table 1 displays  the length distribution for 
the Boolean case ( p  = 2)  for values of n between  one 
and  ten. 205 

M A Y  1976 LFSR ANALYSIS 



206 

Next, we compute  the length of an  average formula, 
E ( n ) ,  assuming  random sequences. By definition, 

E(n)  = 2 2 v D ( n ;   v ) ] / p " ,  
[":o 

The  factor 2 is due  to  the fact that both sl,. . ., sl and c,, 
. . ., cl must  be  saved to  compute sl,. . ., s,. By grouping 
sum terms v and n - v, we may write 

2 v D ( n ;  v )  + 2 ( n  - v ) D ( n ;  n - v )  

= n ( D ( n ;  V )  + D ( n ;  n - v)) + c ( n ;  v) 

where 

Hence, 

where p = [ n /  21. Using formulas  for  the sum and de- 
rivative of a  geometric series,  we  get E( n)  = n + N /  D ,  
where 

N = ( n  - 2p + 2 ) ~ ' " ~  + ( 2 p  - n ) g P - '  
- 2 ( n  + l ) p  - 2n 

and 

D = ( p  + l ) ' pn .  

We claim 0 5 N < D .  That 0 5 N follows from 

And, 

N < pZP- ' [p2(n  + 2 - 2 p )  + ( 2 p  - n ) ]  

2pn+' if n is even, 

= ( D n (  1 + p ' )  if n is odd. 

In  either  case, N < D .  We  summarize these  facts in 

n 5  E(n)  < n +  1 ,  

which says  that  the  expected value of the encoding  length 
is always  between n and n + 1 .  Thus,  on  the  average,  one 
expects a slight data  expansion.  For  example,  when p = 2 
and n is large, we get N /  D = 4/ 9 for n even  and S/ 9 
for n odd. 

Computation cost of the LFSR Algorithm 
We  want to establish the minimum, average, and maxi- 
mum "costs" (i.e.,  the  numbers of multiplication opera- 
tions) of the  LFSR Algorithm in terms of executing steps 
2,  4, and 5 ,  and also  the  number of times these  steps  are 
entered.  For  the minimum and  maximum costs we de- 

F. G. GUSTAVSON 

scribe the types of input data strings that  cause  the  LFSR 
Algorithm to  do  the  least  and  the  most multiplication. The 
average  cost is handled by computing the total cost of 
processing  each of the pn possible  input data strings one 
time and then dividing this total by pn. A direct  measure 
of the total cost of processing each of the p" possible 
input  strings one time is the  sum of all multiplications 
done by the  LFSR Algorithm during  this  processing. We 
call this the sum multiplication count and we determine it 
by deriving  and solving recurrence relations. More specifi- 
cally, we derive multiplication counts  for  steps 2,  4, and 
5 at iteration  step v = 0, 1 , .  . ., n - 1 and then sum over v 
to  obtain  the total multiplication count of these  steps. 
The  average  cost is then the sum of these  three  counts 
divided by pi'. 

In  the  same  manner we compute  the  number of times 
steps 2,  4, and 5 are  executed.  These  counts refer to  the 
average number of polynomial evaluations  required by 
the  LFSR Algorithm. 

It should be noted that in the Boolean case no multi- 
plication need be done in steps 4 and 5. This is because 
dh" always equals one  and  thus  the polynomial opera- 
tions there become EXCLUSIVE OR and shift operations. 
However,  the add count is identical to  the multiplication 
count for LFSR's when p > 2 ;  thus in the Boolean case 
the  reader should substitute add for multiply in what fol- 
lows. This is what we meant  above when we said the 
multiplication count is a  direct measure of the total cost 
of processing. 

Before turning to  an analysis of steps 2,  4, and 5 to de- 
termine  the average  cost, we state some  ground rules: The 
computations in these  steps  require l ( k )  multiplications 
and additions,  where l ( k )  is the  value of 1 at  the end of the 
particular step during the kth iteration.  We  neglect the 
multiplication required to  compute hd", which is justified 
by a  remark at  the end of the following section.  We  ignore 
operations  on  the  constant term of C ( x )  because it always 
equals  one, and  ignore  savings due  to  the occasional 
cancellation of leading terms in C(x) . 

Average  cost 

Number of polynomial  evaluations 
Let u,  u, and w be  vectors of length n whose vth com- 
ponents  are  the number of times,  respectively, that d=  0 
in step 3 ,  that  step 4 is done with 21 > k ,  and  that step 5 is 
done  at iteration step v. For  any s = sl,. . ., s, and 1 5 
v 5 n, we have 

u ( v )  = 1 ,  v(v) = ~ ( v )  = 0, or 

~ ( v )  = I ,  u(v) = ~ ( v )  = 0, or 

w ( v )  = I ,  u(v) = U ( . )  = 0, 

and one of these  three possibilities must  occur. Now 
consider  vectors U (  n ) ,  V ( n )  and W ( n )  which are ob- 

IBM J.  RES. DEVELOP, 



tained by summing M, u, and w over all possible pn  input 
strings s. For  each integer n, U ( n )  is a vector of length 
n;  U ( n ; v )  isthevthcomponentofU(n),v=O;..,n-1. 
The following recurrence relations hold: 

U ( n  + I ;  n )  = p"; 

V ( n  + I :  n )  = ( p -  I )  x D ( n :  v )  
n 

"=at1 

$0 - 1 
= ( p -  I )  ~. 

p + l  ' 

W ( n  + 1:  n )  = ( p  - 1 )  D ( n ;  v )  
"=O 

w h e r e a = l n / 2 l r P = r n / 2 1 , a n d n = 0 ,  l;..;also 

U ( n +  1: v )  = p  U ( n ;  v); 

V ( n +  I ;  v) = p  V ( n ;  v); 

W ( n  + 1 ;  v )  = p W ( n ;  v), ( 5 )  

w h e r e v = O ; . . , n - l , a n d n = 1 , 2 ; . .  . 
Let S= s, s,,] where s is any n-vector.  Since s,,~ takes 

on p values,  the  LFSR Algorithm encounters p copies of 
s in processing S. Hence, by summing over all possible 
S, we verify the  truth of Eqs. (5) .  Equation (4a) is true 
because,  for each s, the associated LFSR  computes an 
s,,~ for which Eq. ( I )  holds. The remaining p pn  cases, 
at  step v = n, divide  according to  the length distribution 
for  vectors s of length n; this is  the meaning of Eqs. 
(4b,   c) .  

Now define 

S U ( n )  = U ( n :  v) 

and similarly for SV(n )  and S W ( n ) .  Summing (Sa, b,  c) 
and  then  adding them to  (4a,  b,  c) , we get 

S U ( n  + I )  = p S U ( n )  + pn:  

n-1 

v=o 

for n =  1, 2 ; ' .  . 
Equations (4), (5) , and (6) can be solved either by 

induction or by using difference  equation  methods. We 
note  that Eqs. (7 )  and (8),  and  also Eqs. ( 12) through 
( 15) which follow,  require  a  large amount of tedious, 
straightforward  algebra on polynomials in the variable p .  
In doing the calculations we were aided  immeasurably by 
the SCRATCHPAD system [ 5 ] .  Each of the expressions 

MAY 1976 

contained in these  equations  represents a polynomial 
even though it is represented in part as the  quotient of 
two polynomials,  a compact form that allows one to easily 
see  asymptotic values. 

The solutions to  equations (4 ) ,  (5) , and (6) are 

U(n + I ;  v) = p": 

V ( n  + I ;  u )  = 
p"-"(p - 1 )  ($6 - 1) 

( P +  1 )  

p"-"(p - 1) + I )  

( P +  1 )  
W ( n  + 1 ;  v) = ( 7  

w h e r e a = L n / 2 ] , p = [ n / 2 ] . a n d n = l , 2 ; . . . N o t e t h a t  
[ V ( n + 1 ; v ) + W ( n + 1 : v ) ] / C / ( n + l ; v ) = ( p - 1 ) ~ 0  
that, on the  average,  we  correct  the  LFSR Algorithm 
p - I out of p times at  each iteration step. In the Boolean 
case ( p  = 2)  we  get d = 0 (in  step 3 )  50 percent of the 
time. The total polynomial count TPC is the sum of n pn, 
S V ,  and SW.  We get TPC(n) = n(2p" -p"") .  This in- 
dicates  that  an  average input data string s requires 
n (2  - p") polynomial evaluations.  The total cost of com- 
put ingbd" ins teps4and5isSV(n)+SW(n)=p"-pn"  
multiplications  and  the same  number of divisions. 

Number of multiplications  required 
Here we establish the multiplication count  (which  equals 
the addition count)  for performing the polynomial opera- 
tions in steps 2, 4, and 5. Analogous to  Eqs. (4) and (5) 
we have  recurrence relations 

n 

M C 2 ( n  + 1: n) = p  v D ( n ;  v); 
" = O  

n 

MC4(n+  I ;  n )  = ( p -  1) v D ( n ;  v); 
"=a+] 

a 

MC5(n + 1: n )  = ( p  - 1) x ( n  + 1 - v ) D ( n ;  v), (9) 

where a = Ln/ 21 and n = 0, 1, 2 , .  . .; M C 2 ,  MC4, and 
MC5 stand for multiplication count  steps 2,  4, and 5 
summed over all possible p n  formulas: 

M C 2 ( n  + 1:  v) = p M C 2 ( n ;  v) ; 

MC4(n + 1; v) = p MC4(n: v) ; 

MCS(n + 1 ;  v) = p M C S ( n ;  v), (10) 

"=O 

207 

LFSR ANALYSIS 



208 

F. G.  t 

To verify Eqs.  (9)  and ( lo) ,  let S= s, s,+~ where s is 
any input string of length n. Equations ( 10) are  true in the 
same way as  Eqs. (5).  At iteration step n + I ,  input string 
s is processed p times. The multiplication count  for a 
given s is 1 ( s )  and, summing over all input  strings s, we 
obtain E:=n v D ( n ;  v) since  there  are D ( n ,  v) formulas of 
length v. This verifies Eq. (9a).  

We still have  to  correct  the  LFSR Algorithm for  a 
given S, with s fixed, p - 1 times since the LFSR Algo- 
rithm for s correctly  computes only once. We choose 
step 4 or  step 5 according to  whether 2 / (  s) > n or 21( s) 5 
n. Summing over all s, we  get X:=,+, v D ( n ;  v )  and 

v D ( n ;  v), where a = [n/2],  as  the total multipli- 
cation  counts  for  steps 4 and 5.  This verifies Eqs.  (9b, c ) .  

We define 

and similarly for S M 4 (  n)  and  SM5(n). Summing Eqs. 
( 10) over v and  then adding  them to  Eq. (9 ) ,  we get 

S M 2 ( n  + 1 )  = p  SM2(n) + M C 2 ( n  + 1 ;  n ) ;  

SM4(n  + I )  = p SM4(n )  + MC4(n + 1 ;  n ) ;  

for n = 1 ,  2 , .  . .. Equations ( 9 ) ,   ( l o ) ,  and ( 1 1 )  can be 
solved in the  same  manner  as Eqs. (4), ( 5 ) ,  and (6) ; 
their solutions are 

M C 2 ( n  + 1 ; v) = p" 

wherea= L v / 2 J , p =  rv /2] ,v=O, . . . .n ,andn=0,  I , . . . ;  
also 

n+z + p p " -  ( n +  1 ) p 2 + n -  1 

(p' - l)z 
SM2(n) = 

- ( n +  l ) p + n -  1 

(p" - l ) z  

SUSTAVSON 

S M 4 ( n )  = 

S M 5 ( n )  = 

+ ( n +  l ) p ' + p +  1 - n  

( P 2  - 1 I2  1; 

+ ( n +  1 ) p 2 + p +  1 - n  

(p" - 1 1 2  1; 

+ ( k  + l)plL+' - kpn - ( n  + 1 ) p "  + n 

(p" - 1)'  

( k  + l ) ( k  + 2 )  
P"" 

where n = 2k is  the condition for using the first expres- 
sion in each pair  and n = 2k + 1 ,  for  the second. 

Next, we sum Eqs. ( 1 2 )  to find the total multiplication 
count  at iteration step v, v = 0,  1 , .  . ., n:  

I),-" [ (v + l )p"+'  

kp"+' + (v + 1 )pY+' + kp" - 
( P  + 1 I Z  

( v +  1)pZ+ ( v +  I ) p +  1 - 
( P  + 1 Y  I , v = 2k; 

!In-" [ i v  + 1)pY+' 

- ( k  + 1 ) P Y f Z  + vp"+l + ( k  + 1)p" 

( P  + 1 T  

(v + l ) p Z  + ( u  + l ) p  + 1 

( P  + 1 1 2  
- 1, v =  2 k +  1 .  (14) 

Finally,  the multiplication count of the  LFSR Algo- 
rithm is  the sum  from v = 0 to n - l of Eq. ( 14) or, equiv- 
alently, the sum of Eqs. ( 13 ) : 

IBM J. RES, DEVELOP. 



+ -p"+' - 3p" + p n  + p"" + ( n  + 1 )p3  

(P2  - I ) z  

p ' -  ( n -  1 ) p -  1 

(P' - 1) '  
+ , n = 2 k ;  

Figure 1 Tree diagram  showing the maximum  multiplication 
counts ( M M C )  for  the LFSR Synthesis  Algorithm; p = 2. 

From ( 15 ) we see  that  the  average multiplication count 
for  the  LFSR Algorithm is  approximately )n (n  + 1 )  - 
in'p". Since  one  does  about n ( 2  - p")  polynomial 
evaluations,  the  average polynomial evaluation requires 
an multiplications (and  additions).  Table 2 lists the mul- 
tiplication counts  for  the Boolean case ( p  = 2 )  for input 
strings  up to length ten. 

Minimum cost 
The string s = 0 constitutes  the only input data  that mini- 
mize the  computation  cost of the LFSR Algorithm. 
Clearly, L, ( s )  = 0 for all n when s = 0. Hence,  steps 4 
and 5 are  never  entered and there is no  computation 
for  these  steps.  Step 2 reduces  to  the value  assign- 
ment d = sk+, for k = 0, ' . ., n - 1 and,  as we indicated 
previously, we do  not  count this  operation. 

Maximum cost 
There  are several digit strings that  produce a maximum 
multiplication count of $ n ( n  + 1 ).  To show this we give 
an induction proof that  is more  complicated  than one 
might suspect  because in going from strings of length n 
to length n + 1,  a maximal string s can increase  its  cost 
only by n + 1 whereas  other strings  can increase their 
costs by as much as 2 ( n  + 1 ) .  I t  turns  out  that maxima 
for odd length input  strings  can occur  at  more than one 
value. To overcome this difficulty we need  a slightly more 
complicated  induction hypothesis, as follows. 

Partition the p" strings of length n into n + 1 groups; 
members of group 1 require a minimum of L , ( s )  = 1 con- 
stants  to  generate them ( I  = 0, 1 , .  . .. n ) .  The maximum 
multiplication count  for  group 1 is 

l ( n  + 1) .  1 = 0: . ., a ;  

1 ( 2 n + 1 - 2 1 ) , l = a + 1 : . . , n ,  (16) 
M M C ( n ;  I )  = 

where a = [ n / 2 ] .  When n is even  (odd),  the maximum 
occurs  for 1 = a ( a  + 1 ) ; the maximum  value is $n ( n  + 1 ) 
for  both  cases. 

Figure 1 is a tree diagram that illustrates  this  induction 
hypothesis. Nodes  are labeled by a  pair of numbers rn, n ,  
where m equals  the number of constants needed and n 
equals  the maximum multiplication count.  The  edge 
label is the  increase in multiplication count in going from 
iteration step v to  step v + I .  Any path  from the root node 
consisting of v edges  reaches iteration step v. The  set of 
nodes  whose  distance is n from  the  root  constitutes  the 
n + 1 group  maxima;  we  say  these  nodes  are  at level n. 
Node 2 ,  2 illustrates the difficulty: During  iteration step 3, 
its multiplication count  can  increase by four  (steps 2 
and 4 are  entered  and  each  contributes a count of two) 
and  thus it merges with node 2, 6. A  similar remark  holds 
for node 3 ,  9 at iteration step 4. 

We  now  establish the induction  result for M M C .  Sup- 
pose  formula (16) holds for n = k.  Nodes  at level k with 
rn = u and 2v 5 k experience  no length change if d in step 
3 is equal to  zero.  In this case, only step 2 is executed  and 
it uses v multiplications. Hence M M C ( k  + 1 ;  v )  = 

v ( k  + 2 )  for 0 5 2v 5 k. Nodes  for which 2v > k experi- 
ence  no length change  but  experience a maximum change 
in multiplication count when d # 0 in step 3; i.e., steps 2 
and 4 are  executed  at a cost of 2v. However, nodes where 
2v  5 k become members of the  class 2v  > k by exper- 
iencing a length change;  step 3 then has d f 0 and the 
increase in count is Y + k + 1 - v as  steps 2 and 5 are en- 
tered. Thus, M M C ( k +  1 ;  k +  I -v) =max [ A ( v ) , B ( v ) ] ,  
v=O;..,a,whereA(v)=(2v+1)(k+l-v)andB(v)= 
(v+l)(k+l).[ThedomainofA(v)isactually15v5a. 
However,  evaluate A at v = 0 and  note  that k + 1 = A  (0) = 

B (0) ; hence this  result is valid.] Since A ( v )  - B ( v )  = 

v(k - 2 v )  and is non-negative for v = 0, .  . ., a ,  we con- 
clude  that M M C ( k  + 1 ;  k + 1 - v )  = A (v). 

Replacing k + 1 - v by v, we  get M M C ( k  + 1 ; u )  = 

v ( 2 k - 2 v + 3 ) , v = k + l - a ; . . , k + l . W h e n k i s o d d ,  
1+a<k+1-aandwemus tcons ide r thecasev=a+1 .  
Here,2(a+l)>kandMMC(k+l;a+1)=A(a+l)= 209 

LFSR ANALYSIS MAY 1976 



Table 2 Multiplication counts for the LFSR Synthesis Algorithm; p = 2. 

n 0 1 2 3 4 5 6 7 8 9 Sum 
~" .________________~_______ . ~ . . _ _ _ _ _ _ _ . . ~ -  ~ - _ _ _  

MC2(n; v )  SM2 ( n )  

1 0 
2 0 2 
3 0 4 8 
4 0 8 16 26 
5 0 16 32 52 68 
6 0 32 64 104 136 174 
7 0 64 128 208 272 348 408 
8 0 128 256 416 
9 0 256 

544 696  816 962 
512 832 1088 1392 1632 1924 

1024 
2156 

~ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~ -  ________ - .. ~ .~ 

0 
2 

12 
50 

168 
5 10 

1428 
3818 
9792 

10 0 512 1664 2176 2784 3264 3848 43  12 4886 24470 
~ ~ _ _ _ _ _ _ _ _ ~ _ _ _ _ _ _ ~ ~  ~ .. _____ . _______.~~ 

MC4(n; v )  
~ ~_____ ___ 

SM4(n) 

1 0 
2 0 1 
3 0 2  2 
4 0 4  4 11 
5 0 8 8 22  16 
6 0 16  16 44 32 69 
7 0 32 32 88 64 
8 0 64 64 

138 90 
176 128 276 180 

9 0 128 128 352 256 552 360 
367 
734 

704 
452 

"________ _ _ _ _ " _ _ _ ~ " _ _ _ _ _ _ _ _ _ _ _ _ _ " ~  
0 
1 
4 

19 
54 

177 
444 

1255 
2962 

10 0 256 256 512 1104 720 1468 904 1817 774 1 
~ _ _ _ _  - 

MC5 ( n ;  v )  
~- _ _ _ _ ~ . ~  

SM5 ( n )  

1 1 
2 2 2 

1 

3  4  4  7 
4 

4 8 8 14 10 
15 

5 16  16 20 20 
40 

6 32 32 56  40 74 
37 117 

48 
7  64  64 112 80 148 

282 

8 128 
96 187 

128 224 160 296 
75 1 

9 256 256 448 320 
192 374 230 

592 384 
1732 

748 460 913 
1496 

4377 
920 1826 1084 9838 

- ~._______ - -~ - ~~~ ~- ~ 

10 512 512 896 640 1184 768 
_______ 

TMC(n; v )  MC(n) 

I 1 
2  2 5 

1 

3  4 10 17 
7 

4  8 20 34 47 
31 

5 16 40 68 94 121 
109 

6 32 80 136 188 242 
339 

7  64 160 272 376 484 
29 1 969 

8 128 3 20 544 752 
582 685 

968 
2623 

9 256 640 
1164 

1088 
1370 1559 

1504 1936 
6805 

10 512 1280 2176 
2328 2740 

3008 
3118 3521 17131 

3872 4656 5480  6236 7042 7787 42049 

~ _ _ _ _ _ - _ _ _ _ ~ -  

( a +  1)(2af3)=af(k+2),wherea'=~f(k+1)].Thus Our induction becomes  complete by  noting that 
we  have M M C (  1 ;  0) = 0 and M M C (  1; 1) = 1; hence,  the induc- 

v ( k  + 21, u = 0,  1;. ., a';  tion result  holds for n = 1 .  The difference between  the 
maximum and  the  average multiplication counts is ap- 
proximately an' p-l. As p + m (real  case),  the  average 

21 0 v=cu'+ 1 ; . . , k +  1. and  the maximum multiplication counts  are  the same. 

F. G. GUSTAVSON IBM J. RES. DEVELOP. 



When p = 2 (binary  case)  the  average is about  three- 
fourths of the maximum count.  These  cases are the 
extremes,  and  other finite fields yield ratios between 
three-fourths and  one.  Finally, note  that  Eqs. (3 ) and 
(1 6)  complement each  other;  they  indicate,  respectively, 
the  number of input  strings and  the maximum multipli- 
cation count  for  each of the n + 1 groups.  Table 3 con- 
tains the maximum  multiplication counts  for  each group 
for input  strings  up to length ten. 

Comments on the   BOlC  scheme 
The  compression  stage  BOIC  scheme  consists of four 
steps [ 1, p. 1431. We shall show that  the  computation 
in step 1 contains  the  answer, a ,  that they seek; this  ob- 
viates  the need for  steps 2 ,3 ,  and 4. Step 1 is to  be com- 
pared  with the  LFSR Algorithm. Since  step 1 is D ( n 3 )  
(Gaussian elimination on I rows of length about n - I ) ,  
we think the  LFSR Algorithm  should always be used. 
Berlekamp, in his book [3, Chapter 7, Section 51 dis- 
cusses  the relation between  the  LFSR Algorithm  and 
matrices of the  BOIC type. Because  these  matrices  have 
a special structure ( m i j  = it is possible to solve 
equations in less than 0(n3) operations; e.g., the  LFSR 
Algorithm does  the job in O(n’) .  It  is  an  open  question 
as  to  whether  another algorithm  could find the L,(s) 
constants in less  than 0(rz2). Berlekamp also demon- 
strates a  relation between L,(s) and  the singularity of its 
associated  matrix [3, Theorem 7.5 1, p. 1891 ; see  the 
matrix A [ 1, p. 142. Eq. (7) ] .  The singularity of the ma- 
trix A for all 14 Ln/2] means  the  BOIC  scheme  causes 
data  expansion  for  the given input.  For I > Ln/21 the 
matrix A contains x’s (don’t-care elements) ; nonetheless, 
matrix A can be  singular  regardless of the  values  the x’s 
assume.  An  extreme  case is given when  the input  string 
is 0,. . ., 0, 1; matrix A is then  non-singular only if I = n. 

Let A Y - ,  be the n-component vector uy,  a”+,. . . ., a,, 
x,. . ., x. In what  follows we use  the notation of [ 11. The 
reader  can identify A ,  with the input  string s = s,; . ., s,. 
The following result is true: A ,  = ayAv-,;  i.e., the 
linear  combination of blocks that annihilate A ,  are  those 
blocks  with a” = 1. 
Proof It follows from  Eq. ( 1  ) of [ I ] ,  i.e., 

that if A ,  = c1Al-, +. . . + clA,, then ul+v = c , ~ , + ~ - ~  +. . . + 
clav for v = 1, 2 , .  . ., n - I ,  as  one  sees immediately  from 
the first n - / columns of the first I + 1 rows of this  equa- 
tion. Hence [ l ,  p. 142, Eq. (12) ] ,  a y =  c { + ~ - ” .  v =  l ,  2, 

MAY  1976 

Table 3 Maximum  multiplication counts for the LFSR 
Synthesis  Algorithm; p = 2. 

I 

n O I 2 3 4 5 6 7 8 9 1 0  

1 0  1 
2 0  3  2 
3 0  4 6 3 
4 0   5 1 0  9 4 
5 0 6 12 15 12 5 
6  0  7 14 21 20 15 6 
7  0 8 16 24  28 25 18 7 
8 0 9 18 27 36 35 30 21 8 
9 0 10 20 30 40 45  42 35 24 9 

10 0 11 22 33 44 55 54 49 40 27 10 

. . ., I ;  this establishes  the result and  also displays the 
relation between  the  LFSR e’s and  the  BOIC a’s. 

We now derive  the  number of additions  needed to per- 
form step 1. In doing so we include  only the  cost of add- 
ing rows  to  other  rows  to  produce  an  upper triangular 
matrix form. At stage v + 1, which zeros  out  row v + 1 up 
to  the diagonal, we do n + 1 - v - LT additions  with rows LT, 
rn = 1, .  . *, V. This  uses iv(2n + 1 - 3v) additions. The 
total cost  (addition  count) of processing rows 2 through 
I +  1 is 

An input string A,, whose  associated  set of constants 
a is of length I ,  requires processing up  to  row 1 + 1 via the 
BOIC  scheme.  Hence, by subtracting M M C  from AC 
we  can  determine a  bound on  the  extra computation re- 
quired by step 1. Remember  that  for  the  LFSR Algo- 
rithm,  the addition count  equals  the multiplication count; 
also, in the Boolean case, multiplications can  be avoided 
in steps 4 and 5. Thus we obtain 

Inspection of (18) shows  that  the  LFSR Algorithm is 
almost  always  superior;  however, we have not  given a 
complete analysis. 

Summary 
This  paper  supplements Massey’s paper [2] and  Chap- 
ter 7 of Berlekamp’s  book [3]. Our principal results  are 
the derivation of the length  distribution of the  constants 
in the  LFSR Algorithm and  the analysis of its computa- 
tion cost. They  show  that  on  the  average,  the  LFSR  Alge 
rithm cannot be  used as a data reduction  method. How- 
ever, it was  found that  the LFSR Algorithm is superior 
to  the  BOIC  scheme [ 11, which does  not exploit the 21 1 

LFSR ANALYSIS 



special   character of its matrix in s tep 1. Furthermore,  
the BOIC scheme  cannot,  without  additional  information 
abou t  the input  strings, be used  for  information com- 
pression. 

Acknowledgments 
The author   thanks L. R.  Bahl, J. H. Mommens,   and one 
of  the  referees  for  suggestions  that  improved the clarity 
of  this  presentation. 

References 
1. F. P. Palermo  and H. Ling “Block-oriented  Information 

2. J .  L. Massey, “Shift-Register Synthesis  and  BCH  Decoding,” 

3 .  E. Berlekamp, Algrbruic Coding  Theory. McGraw-Hill 

Compression,” IBM J .  Res. Develop. 19, 141 (197.5). 

IEEE Trans.  Information Theor>> IT-IS, 122 (1969). 

Book Co., Inc.. New  York,  1968,  Chapter 7. 

21 2 

F. G .  GUSTAVSON 

4. R. C. Gallager, Information  Theory  and  Reliable Communi- 
cation, John Wiley & Sons, Inc., New  York,  1968,  Chapter 3 ,  
p. 43. 

5 .  J. H. Griesmer and R. D. Jenks,  “Experience with an  On- 
line Symbolic Mathematics  System,” Proceedings of the 
O N L I N E 7 2  Conference. Brunel University,  Uxbridge, Mid- 
dlesex, England, September  1972, Vol. 1, pp. 4.57-476; also 
available as  “The SCRATCHPAD System,” Research  Report 
R C  3925, IBM Thomas  J. Watson Research  Center, York- 
town Heights,  New  York. 

Received  August 22,  1975 

The author is located at the IBM Thomas J .  Watson 
Research  Center,  Yorktown  Heights,  New  York 10598. 

1BM J.  RES.  DEVELOP 


