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J. J. Rissanen

Generalized Kraft Inequality and Arithmetic Coding

Abstract: Algorithms for encoding and decoding finite strings over a finite alphabet are described. The coding operations are arithmetic
involving rational numbers /, as parameters such that 212"1' = 27° This coding technique requires no blocking, and the per-symbol length
of the encoded string approaches the associated entropy within e. The coding speed is comparable to that of conventional coding

methods.

Introduction

The optimal conventional instantaneous Huffman code
[1] for an independent information source with symbol
probabilities (p,," -+, p,,) may be viewed as a solution to
the integer programming problem: Find m natural num-
bers /, as lengths of binary code words such that Zp/, is
minimized under the constraining Kraft inequality

S2i= 1

Then the minimized sum Z,p /;approximates the Shannon-
Boltzmann entropy function H(p,, -~ p,) = —2p, log
p, from above with an error no more than one. If a better
approximation is required, blocking is needed; e.g., a kth
extension of the alphabet must be encoded, which re-
duces the least upper bound of the error to 1/k [2].

We describe another coding technique in which m
positive rational numbers 7, ---, [ are selected such
that a generalized Kraft inequality holds:

S27i=27 e>0.
i

(For € = 0, the rationality requirement would have to
be relaxed.) The length of the code of a sequence s with
n, occurrences of the ith symbol js given by the sum

L(s) = 2 nl,

i

which when minimized over the /; subject to the preceding
inequality and divided by n = X, is never larger than

n, n 1
H(F”Tm> + €+ 0(2),

where € is determined by the difference I, — log{(n/n,).
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This means that, if the strings are generated by an in-
dependent information source, the mean of n'L(s)
approaches the entropy function from above within an
error € + O(1/n).

The coding operations are arithmetic, and they re-
semble the concatenation operations in conventional
coding in that the code of the string sa,, where a, is a
new symbol, is obtained by replacing only a few (always
less than some fixed number) of the left-most bits of the
code representing s by a new longer string. As a result,
the coding operations can be accomplished with a speed
comparable to that of conventional coding.

The primary advantage of the resulting “arithmetic
coding” is that there is no blocking needed even for the
binary alphabet. In addition, for small alphabet sizes the
size of tables to be stored and searched is smaller than
the code word tables in conventional coding methods.
For a binary alphabet a special choice of parameters
I, and /, leads to a particularly simple coding technique
that is closely related to one due to Fano [3].

The coding method described here is reminiscent of
the enumerative coding techniques of Schaikwijk [4]
and Cover [5], and perhaps also of that due to Elias. as
sketched in [2]. All of these are inferior, however, in
one or more crucial respects, especially speed.

Binary alphabet

The coding algorithm is derived and studied for any
finite alphabet, including the binary case. But because of
the special nature of a binary alphabet, which admits
certain simplifications, we study it separately. The im-
portance of applications of the binary alphabet in data
storage also warrants separate study.
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Let /, and /, be two positive rational numbers such that
[, = I, and when written in binary notation they have ¢
binary digits in their fractional part. Further, for x, a
rational number, 0 = x < 1, with ¢ binary digits in its
fractional part, let ¢(x) be a rational-valued approxima-
tion to 2* such that

e(x)=2“81,§zsxzo, (1)

and that ¢(x) has » > 0 binary digits in its fractional part.
Clearly, the minimum size for r depends on € and ¢g. For a
choice of these, see Theorem 2.

Let s denote a binary string and A an empty string.
Write the concatenation of s and &, k = 0 or 1, as sk.
Define the rational-valued function L by the recursion
L(sk)y=L(s) +1,

+12

L\ =r. (2)
Write the numbers L(s) as
L(s)=y(s) + x(s), (3)

where y(s) is the integer part LL(s)] and x(s) is the
fraction with g fractional bits.

The encoding function C transforms binary strings into
nonnegative integers by the recursive formula

C(s0) =C(s)
C(st) =C(s) +2"Ve[x(sD)]
c(\) =0, (4)

Because the code increases only when a 1 has been
appended to the string, C takes a binary string s,,, de-
scribed by the list (k,- -+, k,,), where k, denotes the posi-
tion of its ith 1 from left, to the sum

50 (ke k) S S @(s), (s)
where

®(s;) = 2""e[x(s,)]

y(s)) =Lk~ +il,]+r

x(s) = (k= D +il, + r—y(s,). (6)

The code for s consists of the pair {(C(s), L(s)), where
L(s) may be replaced by the length n = |s| of s and m,
the number of I’s in s. Decoding function D recovers s
from right to left recursively as follows:

If C(s) < 2"%e[x(s)],
Then generate a 0, i.e., s = 5'0; (7)

Else, generate a 1, i.e., s = s'1.
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In addition, in the former case make
C(s') =Cl(s)
L(s") =L(s)—1, (8)
and in the latter case make
C(s') = C(s) —2""e[x(s)],
L(s') = L(s) — 1, 9)

to complete the recursion.
As a practical matter, the test in (7) is done by truncat-
ing C(s) to its r + 1 left-most bits C(s) and writing

C(s) =2""'B(s),

where 1 = B(s) < 2 and a(s) = |C(s)| + 1. Then the
order inequality in (7) is equivalent to the lexicographic
order inequality

(a(s), B(s)) < (¥(s), e[x(s}]). (10)

with priority on the first component.

We next give a Kraft inequality type condition for the
numbers !/, and [,, which guarantees a successful de-
coding.

Theorem 1 If for € > 0,
27 g 2= 27 (11)
then D(C(s), L(s)) = s for all binary strings s.

Proof We have to prove that s = s'1 &= C(s) = 2¥¥
e[x(s)]. By (4) the implication from left to right is clear.
To prove the converse is equivalent to proving that for
all strings s

C(s) < @(s50) 2 2"l x(50)], (12)
because C(s0) = C(s) by (4).

By (1)-(3),

25 Be(5) = @ (sj) < 297D (s), j=0, 1, (13)

and, because by (11) I, > e and /[, > e,

D(s) < D(s)). (14)
We prove (12) by induction. For the induction base

C(\) =0 <2"Pe[x(0)],

because L(0) =/ + r > 0. Assume then that (12) holds
for all s with length |s| < n.

Case ] — s' =350
By (4), (12), and (14), in turn,

C(s')=C(s) <D (s0) =D (s) < D (50),

and (12) holds for all strings s with length n + 1 end-
ing at 0.
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Case 2 — s =5l
By (4), (12), and (13), in turn,

C(s')=C(s) + @ (s1) < ® (50)
+ @ (s1) =< (217 4227 @(s).
Again by (13) twice
D(s) < 272P @(s1) = 2727 x 271 PP (510),
and we have
C(s') < (279" +27%%) o(s50).
By (11), finally,
C(s') < ® (50),

which completes the induction and the proof of the
theorem.

Theorem 2 If s is a binary string of length n with m 1’s,
then

logCs)=ml,+ (n—m)l,+r+1+€/3. (15)

Withe=<¢€,€6,=e+2"and

n_ 1 e

[, =log 7 —7, * e,

l,= log%1 + €,

inequality (11) holds and

1 . m ~q r

Liog C(a)fH(n>+e+2 +o(,—1>, (16)

where H(p) =plogp™ + (1 —p) log (1 —p)~".
Proof By (1), (5), and (13),

C(s) < pr+e i o Uiy ity

i=1

The sum is clearly at its maximum when k,=n—m + i,
and hence

2k

C(S) < 2r+s/3 X z(n—m)l1+mlz X
22—

— (1 + 1 ) X z(n—m)ll+rn12+r+e/3

22—
By (11) and from the fact that [, = [,
272=2""or2% > 2.

Therefore, 1/ (2% — 1) < 1, and the claim (15) follows,
The rest follows by a direct calculation.

Remark If the symbols 0 and 1 are generated by an in-
dependent or memoryless information source, then,
because E(m/n) = p, inequality (16) holds also for the
means of both sides.
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Numerical considerations, example, and special
case
We next study the addition in (9). From (4), (13), and
(12),

C(s1) = ®(s1) =227 Fdb(s) = 22717D(s50)
=227 C (s).

In cases of interest, where /, < } and I, > 2, this gives

C(s1) = 227'C{(s). (17)

It then follows that never more than r— L/, 1 + 2 left-most
bits of C(s) in (9) need be replaced in order to get C(s1).
This means that the recursion (9) is reminiscent of con-
ventional coding methods such as Huffman coding in
which a new code word is appended to the string of the
previous code words. Here, there is a small overlapping
between the manipulated strings.

What then are the practical choices for g, €, and r? Sup-
pose that p = (m/n) < %, which are the values that pro-
vide worthwhile savings in data storage; [ H(3) = 0.81].
Then € should be smaller than, say, p =2 I,. This makes
g not smaller than log p~' — 1 &2 [, — 1. The function 2
is such that (1) in general can be satisfied approximately
with r =g + 2.

The function e(x) may be tabulated for small or mod-
erate values of ¢, or it may be calculated from the stan-
dard formula of the type

e(x) = (1 +b1x+---+bkxk)2. (18)

With a table lookup for e(x) the coding operations
involve only two arithmetic operations each per bit with
the version (7)-(10) and approximately 6(m/n) op-
erations per bit when the formulas (5), (6) are used. In
the latter case the decoding test (10) is not done for

every bit but rather the &, in s, <> (k,, - k;) are solved
as: k, is the maximum for which

(als;), B(s)) = (y(s). e[x(s)]). (19)
In fact,

k,= kKork+1,

where k = rll_’[a(si) +i(l,—1,) — r] 1 can be calculated
recursively with two arithmetic operations. If log e(x)
is also approximated by a table, then £, can be calculated
without the above ambiguity with three arithmetic op-
erations from

k=L, H{a(s,) +log e[B(s)] +il, — L) —r}l (20)

Thus the coding operations can be done at a rate faster
or comparable to that of Huffman coding. If the function
e(x) and its logarithm are tabulated, the sizes of the
tables are of the order of p~*, which gives the error e < p
as the “‘penalty” term in (16).
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with Huffman coding the same penalty term is k™
where & is the block size [2]. Therefore, in order to
guarantee the same penalty term, we must put k& ™' &
p~1, which gives 2* 22 2" for the number of code words.
In typical cases this is much larger than the number of
entries p~' in the table of ¢(x) with the present coding
method.

Example We now illustrate our coding technique by a
simple example. Let [, = 0.01 and /, = 11.11, both num-
bers being in binary form. Then

274272 = 0915 <27

Hence, e=0.128 will do, and we get from (1) r=4. The
function ¢ is defined by the table

x e(x)
0.00 1.0000
0.01 1.0011
0.10 1.0101

0.11 1.1011.

Take s < (1, 3,20, 22, 42). Then from (6) and the table
above,

@1, 1) =2°x1.1011
®(3,2) =2"x%x1.1011
®(20, 3) =2" x 1.0101
®(22,4) =" x 1.0101
$(42, 5) = 2% x 1.0000.

By adding all these we get

f(s) = 10000000010110010100011100101100.

Because of the complications involved in blocking,
Huffman coding is rarely used for a binary alphabet.
Instead, binary strings are often coded by various other
techniques, such as run-length coding in which runs of
consecutive zeros are encoded as their number. We de-
scribe a special case of arithmetic coding that is par-
ticularly fast and simple. This method turns out to be
related to one due to Fano 3], and the resulting com-
pression is much better than in ordinary run-length
coding.

Suppose that we wish to store m binary integers,

w
Z,=(2,,2,," " 2,),0=2=2=--=z =27,

each written with w bits. Let n=[log m ], and let n < w.
The list Z,, may be encoded as a binary string s,, Wwhose
ith 1 is in position k;, = 2, + /, as in (5). Then p is ap-
proximately given by 2”7, and we may put

L,=2"" L=w—n+1.
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Then inequality (11) can be shown to hold for some €
whose size we do not need. By setting e(x) = 1 + x and
r=w—n we get from (6)

vis) =q,+ilr+1)+r,
x(s;) = ri27r,
D(s,) = (2" + r,) 200,

where r; consists of the w — n right-most bits of z; and
q; of the rest; ie.,

z,=q2" " +r,

The encoding of Z,, or, equivalently, of s, is now
straightforward by (5). It can be seen to be a binary
string where the m strings r; and g, appear as follows

17, 0°+0- 1r,0---01r,0- -0,

where the first run of zeros counted from the right is of
length g,, the next of length g, — g,, and so on; the last
or the left-most run is of length g,, — ¢g,,_,. From this the
r, and the g, can be recovered in the evident manner.
The length of the code is seen to be not greater than
m(w — n + 2), which is an excellent approximation to
the optimum, 2“H(2""), whenever w — n > 3.

Finite alphabet

Let {a,, a,," - -, a,,) be an ordered alphabet, and let & be a
positive number, which we will show determines the
accuracy within which the optimum per symbol length,
the entropy, is achieved. Let /, --+, [, be positive ra-
tional numbers with g binary digits in their fractional
parts such that

So2ti=27 (21)
i=1

Further, let p, be a rational number such that

pk=271k+skv%efek55’k=1""’ m, (22)
and define
k
Pk=2 pp Py=0. (23)
i=1

Finally, for x, a g-bit fraction, let ¢(x) be an approxima-
tion to 2° such that

e(x) =2""x,0=<5, = (24)

€
X
Write p,, P,, and e(x) with r fractional bits. Because of
(21) and (22), 1 = P, = m27", so that r = log m.

The encoding function C is defined as follows:

C(sa,) =C(s) + P,_, X ®(sa,), C(A) =0,
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L(sa,) = L(s) + I, = y(sa,) + x(sa,),
L(\) =2r,
®(sa,) = 2" X e[x(sa,)], (25)

where y(sa,) = LL(sa,)] and x(sa,) is the fractional
part of L(sa,).
Let u(¢) be the largest number in {1, - -, m} such that

Py =tfori=1 (26)

Further, for the decoding we need an upper bound for a
truncation of C(s). We pick this as follows:

CT(s) =2""[B(s) +277], (27)

where a(s) = |C(s)| + 1 and B(s), 1 = B(s) < 2, is de-
fined by the vy left-most bits of C(s). Put

v=15.6—logel. (28)
The decoding function D recovers s from (C(s), L(s))

as follows:

s = 8"y

t(s) =C(s)/P(s),

C(s") = C(s) = P pyn_y X ®(s),

L(s") = L(s) = Ly (29)
Theorem 3 1f for e > 0,

27 = 27 (30)

M=

t

then for every s, D(C(s), L(s)) = s.

1

Proof We prove first that

C(s) = d(s) 31)

for every s. This inequality holds for s = X by (25).
Arguing by induction, suppose that it holds for all strings
s of length no more than n. By (25) and (31),

C(sa,) = ®(s) + P,_, X O(sa,). (32)
By (24) and (25)
25D (s) < D(sa,) < 2 PD(s), (33)

which with (32) leads to

C(sa) = %"+ P, ) ®(sa,).
This with (22) and (23) gives
C(sa,) = P, ®(sa,),

and because by (22)

k
pP,=2¢% 27"
i=1

202 the desired inequality,
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C(sa,) = ®(sqa,).

follows with (30). The induction and the proof of (31)
is complete.

When we apply the decoding algorithm to the pair
(C(sa,), L(sa,)), we find that u[t(sa,)] = kif and only if

P, = t(sa,) <P, (34)
If we put C(s) = C(s) + 8(s), where

0<d(s) =27 Cs) =27 D(s), (35)

the inequalities (34) become

- C(sa,)

8(sa,)
17 P (sa,) <P

P D (sa,) k

The former inequality holds by (25) and the fact that &
(sa,) = 0. The second inequality holds with the first
equation of (25), and (23) translates into

C(s) + 8(sa,) < p, ®(sa,). (36)
By (31), (33) and (35),
C(s) +8(sa,) < 27W (1 427" ®(sa,)
=2 () 4 27 2% X p D (sa,)
= (2% 4 2(:/2)—v+17e,\.) P (sa,).

By (22), ¢, — €/2 Z ¢/ 6. Thus by a well-known exponen-
tial inequality we have

€

— (€ —€/2) = ~—€6 < 1—
2 =2 ! 12loge’

The coefficient of p, ® (sa,) is then smaller than one for
the given value (28) for v, and (36) holds. The proof is
complete,

From (31) and (25) we immediately obtain

2r+ 1
R

1 n,
ﬁlogC(s) <Eﬁli+
i

Inequality (30) holds if we put

n —-q
li=10g’—1;+8i,ei §,= e+ 2,
in which case
l ny n -q r
Liog () < 1 2) + e 27+ 0ff).
where
H(p, wp) =3 plogp .

i

By (33) and the fact that P,_, > 271" for k > 1,
P, ®(sa) = 2% @ (s).

It therefore follows that in the first equation of (25) no
more than 2r + 1 — [+ [, left-most bits of C(s) need by
changed in order to get C(sa,).
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The crux of the decoding process is to calculate u(r)
by (26) for the r-bit fractions . This can either be tabu-
lated or calculated from a suitable approximation to
271'1-4»51-

P, =

VR

i=1

Further, the products P, X e[x(sa,)] appearing in
(25) can be tabulated, which is practicable for small or
moderate sized alphabets. Then only two arithmetic
operations per symbol are needed in the coding op-
erations. The general case does not reduce to the binary
case when m = 2, because the factor P, = p, approximated
as 27", can be absorbed by &(s1), which is cheaper.

Finally, if for large alphabets the symbols are ordered
such that the numbers /, form an increasing sequence, the
function £ — P, is concave. Then both are easy to ap-
proximate by an analytic function, and the overhead
storage consists mainly of the table of symbols. The
coding operations then require about the time for the
table lookups k <> a,. In addition, the /, may be chosen,
except for small values for /, in a ‘“‘universal” way;
e.g. as

[;=log i+ (log i)lf,
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and still have a near-entropy compression. (For univer-
sal coding, see [6]). This means that there is no need to
collect elaborate statistics about the symbol probabilities.
We leave the details to another paper.
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