
J. J. Rissanen

Generalized Kraft Inequality and Arithmetic Coding

Abstract: Algorithms for encoding and decoding finite strings over a finite alphabet are described. The coding operations are arithmetic
involving rational numbers li as parameters such that Zi2"i 5 2". This coding technique requires no blocking, and the per-symbol length
of the encoded string approaches the associated entropy within E . The coding speed is comparable to that of conventional coding
methods.

Introduction
The optimal conventional instantaneous Huffman code
[11 for an independent information source with symbol
probabilities (p , , . . ., p ,) may be viewed as a solution to
the integer programming problem: Find m natural num-
bers li as lengths of binary code words such that Cipil, is
minimized under the constraining Kraft inequality

I .
1

Then the minimized sum B,p,l,approximates the Shannon-
Boltzmann entropy function H (p , , . . ., p,) = -zip, log
p i from above with an error no more than one. If a better
approximation is required, blocking is needed; e.g., a kth
extension of the alphabet must be encoded, which re-
duces the least upper bound of the error to 1 / k [2].

We describe another coding technique in which m
positive rational numbers I , , . . ., 1, are selected such
that a generalized Kraft inequality holds:

2"i 5 2-€, E > 0.
1

(For E = 0, the rationality requirement would have to
be relaxed.) The length of the code of a sequence s with
ni occurrences of the ith symbol is given by the sum

L (s) = nili,
i

which when minimized over the I , subject to the preceding
inequality and divided by n = Bini is never larger than

198 where E is determined by the difference li - log(n/n,).

This means that, if the strings are generated by an in-
dependent information source, the mean of n"L(s)
approaches the entropy function from above within an
error E + O (1 / n) .

The coding operations are arithmetic, and they re-
semble the concatenation operations in conventional
coding in that the code of the string sak, where uk is a
new symbol, is obtained by replacing only a few (always
less than some fixed number) of the left-most bits of the
code representing s by a new longer string. As a result,
the coding operations can be accomplished with a speed
comparable to that of conventional coding.

The primary advantage of the resulting "arithmetic
coding" is that there is no blocking needed even for the
binary alphabet. In addition, for small alphabet sizes the
size of tables to be stored and searched is smaller than
the code word tables in conventional coding methods.
For a binary alphabet a special choice of parameters
I , and I, leads to a particularly simple coding technique
that is closely related to one due to Fano [31.

The coding method described here is reminiscent of
the enumerative coding techniques of Schalkwijk [4]
and Cover [5] , and perhaps also of that due to Elias, as
sketched in [2] . All of these are inferior, however, in
one or more crucial respects, especially speed.

Binary alphabet
The coding algorithm is derived and studied for any
finite alphabet, including the binary case. But because of
the special nature of a binary alphabet, which admits
certain simplifications, we study it separately. The im-
portance of applications of the binary alphabet in data
storage also warrants separate study.

J. J. RISSANEN IBM .I. RES. DEVELOP.

Let I , and I , be two positive rational numbers such that
I , 5 I , and when written in binary notation they have q
binary digits in their fractional part. Further, for x, a
rational number, 0 5 x < 1 , with q binary digits in its
fractional part, let e (x) be a rational-valued approxima-
tion to 2s such that

(x) = 2s+% ' 3 I > - 6 , 1 0 , (1)

and that e(x) has r > 0 binary digits in its fractional part.
Clearly, the minimum size for r depends on E and q. For a
choice of these, see Theorem 2.

Let s denote a binary string and A an empty string.
Write the concatenation of s and k , k = 0 or 1 , as sk.
Define the rational-valued function L by the recursion

L (s k) = L (s) + Ik+,,
L (A) = r .

Write the numbers L (s) as

L (s) = y (s) + x (s) , (3)

where y (s) is the integer part L L (s) d and x (s) is the
fraction with fractional bits.

The encoding function C transforms binary strings into
nonnegative integers by the recursive formula

Because the code increases only when a 1 has been
appended to the string, C takes a binary string s,, de-
scribed by the list (k , ; . ., k ,) , where ki denotes the posi-
tion of its ith I from left, to the sum

@ (s i) = 2'/'si"e[x(si)]

Y (s ,) = L (k i - i)I, + d2-I + r

x (s i) = (k i - i) I , + iI, + r - y (s ,) . (6)

The code for s consists of the pair (C (s) , L (s)), where
L (s) may be replaced by the length n = / S I of s and m,
the number of 1's in s. Decoding function D recovers s
from right to left recursively as follows:

If ~ (s) < 2Y'"'e[x(s)l,

Then generate a 0, i.e., s = s'0; (7 1

Else, generate a 1 , i.e., s = s' 1 .

In addition, in the former case make

C (s ') = C (s)

and in the latter case make

C (s ') = C (s) - 2"'"'e[x(s)],

L (s ') = L (s) - I , ,

to complete the recursion.

ing C (s) to its r + 1 left-most bits c(s) and writing
As a practical matter, the test in (7) is done by truncat-

-
C (s) = 2"'"'p(s),

where 1 5 'p(s) < 2 and a (s) = (C (s) l + I . Then the
order inequality in (7) is equivalent to the lexicographic
order inequality

with priority on the first component.
We next give a Kraft inequality type condition for the

numbers 1, and I , , which guarantees a successful de-
coding.

then D (C (s) , L (s)) = s for all binary strings s.

Proof We have to prove that s = s' I C (s) 1 2'")
e[x(s)]. By (4) the implication from left to right is clear.
To prove the converse is equivalent to proving that for
all strings s

and, because by (1 1) I , > E and I, > E ,

@(s) < @ (s j) . (14)

We prove (12) by induction. For the induction base

C(A) = 0 < 2''0'e[x(~)],

because L (0) = I, + r > 0. Assume then that (12) holds
for all s with length Is/ 5 n.

Case 1 - s t = SO
By (4), (12) , and (l 4) , in turn,

and (12) holds for all strings s with length n + 1 end-
ing at 0. 199

ARITHMETIC CODING MAY 1976

Case 2 - s' = s l

By (4), (1 2) , and (1 3) , in turn,

C (s ') = C (s) + @ (SI) < @ (SO)

+ (s l) 5 (211+i3 + 2' / A) @ (s) .

Again by (1 3) twice

~ (~ 1 5 2-12+$3 ~ (~ 1) 5 2-12+43 X 2 - 1 1 + " 3 ~ (s 1 0) ,

and we have

< (, - (I + , + 2-b+') @(do).
By (1 1) , finally,

C (s ') < @ (S 'O) ,

which completes the induction and the proof of the
theorem.

Theorem 2 If s is a binary string of length n with m l's,
then

log C (s) 5 rn 1, + (n - m) l , + r + 1 + ~ / 3 . (1 5)

With E 5 el, E, 5 E + 2-' and

1, = log n" + €1'
n

I , = log + E,,
n

inequality (1 1)' holds and

n + E + 2-'+ O(i),

where H (p) = p log p-' + (1 - p) log (1 - p)"

Proof By (l) , (5) , and (1 3) ,
m

q S) 2r+r/3 2 2(ki-i)ll+i12

i= I

The sum is clearly at its maximum when kt = n - m + i,
and hence

By (1 1) and from the fact that 1, 2 1,,

2 - l ~ 5 2-f-1 or 2'2 > 2.

Therefore, 1 / (212 - 1) < I , and the claim (15) follows.
The rest follows by a direct calculation.

Remark If the symbols 0 and 1 are generated by an in-
dependent or memoryless information source, then,
because E (m / n) = p , inequality (16) holds also for the

200 means of both sides.

J. J. RISSANEN

Numerical considerations, example, and special
case
We next study the addition in (9) . From (4), (1 3) , and
(121 ,

In cases of interest, where I, < and I , > 2 , this gives

It then follows that never more than r - L12d + 2 left-most
bits of C (s) in (9) need be replaced in order to get C (s 1) .
This means that the recursion (9) is reminiscent of con-
ventional coding methods such as Huffman coding in
which a new code word is appended to the string of the
previous code words. Here, there is a small overlapping
between the manipulated strings.

What then are the practical choices for q, E , and r? Sup-
pose that p = (m / n) < $, which are the values that pro-
vide worthwhile savings in data storage; [H (f) E 0.811.
Then E should be smaller than, say, p E I,. This makes
q not smaller than log p-' - 1 E 1, - 1 . The function 2"
is such that (1) in general can be satisfied approximately
with Y = q + 2.

The function e (x) may be tabulated for small or mod-
erate values of q, or it may be calculated from the stan-
dard formula of the type

With a table lookup for e (x) the coding operations
involve only two arithmetic operations each per bit with
the version (7)-(10) and approximately 6(m/n) op-
erations per bit when the formulas (5) , (6) are used. In
the latter case the decoding test (1 0) is not done for
every bit but rather the ki in si c* (k , , . . ., kt) are solved
as: ki is the maximum for which

In fact,

k i = 6 0 r 6 + 1 ,

where 6 = R-'[a(s i) + i(1, - /,) - r] 1 can be calculated
recursively with two arithmetic operations. If log e (x)
is also approximated by a table, then k i can be calculated
without the above ambiguity with three arithmetic op-
erations from

Thus the coding operations can be done at a rate faster
or comparable to that of Huffman coding. If the function
e (x) and its logarithm are tabulated, the sizes of the
tables are of the order of p-', which gives the error E E p
as the "penalty" term in (16).

IBM J . RES. DEVELOP.

With Huffman coding the same penalty term is k"
where k is the block size [2]. Therefore, in order to
guarantee the same penalty term, we must put k E eC1 E
p , which gives 2k 2"Ii for the number of code words.
In typical cases this is much larger than the number of
entries p-' in the table of e(x) with the present coding
method.

Example We now illustrate our coding technique by a
simple example. Let I , = 0.0 I and l2 = 1 1 . 1 I , both num-
bers being in binary form. Then

-1

2-'1 + 2-12 < - 0.9 15 < 2-0.128

Hence, E = 0.128 will do, and we get from (1) r = 4. The
function e is defined by the table

X e (x)

0.00 1 .0000

0.01 1.001 1

0.10 1.0101

0.1 1 1.101 1.

Take s (I , 3 , 20, 22,42). Then from (6) and the table
above,

@ (l , I) = 2 6 x 1.1011

@ (3 , 2) = 21° x 1.1011

@(20, 3) = 218 x 1.0101

@(22, 4) = LZ2 x 1.0101

@ (4 2 , 5) = 231 X LOOOO.

By adding all these we get

f (s) = 100000000101100101000ll100101100.

Because of the complications involved in blocking,
Huffman coding is rarely used for a binary alphabet.
Instead, binary strings are often coded by various other
techniques, such as run-length coding in which runs of
consecutive zeros are encoded as their number. We de-
scribe a special case of arithmetic coding that is par-
ticularly fast and simple. This method turns out to be
related to one due to Fano [3] , and the resulting com-
pression is much better than in ordinary run-length
coding.

Suppose that we wish to store m binary integers,

z , = (z , , z 2 , ~ ~ ~ , z ,) , 0 ~ z l ~ z , ~ ' ~ ~ i z , i 2 " ,

each written with w bits. Let n = [log m l , and let n < w.
The list Z , may be encoded as a binary string s, whose
ith 1 is in position ki = zi + i, as in (5) . Then p is ap-
proximately given by 2"-", and we may put

1 = 2"-m
1 l , = w - n + l .

Then inequality (1 1) can be shown to hold for some E
whose size we do not need. By setting e (x) = I + x and
r = w - n we get from (6)

y (s ,) = qi + i (r + 1) + r,
x(si) = ri2?,

@(si) = (2' + ri)2qi+i'r+1',

where ri consists of the w - n right-most bits of zi and
qi of the rest; i.e.,

zi = qi2w-" + Ti .

The encoding of Z , or, equivalently, of s, is now
straightforward by (5) . It can be seen to be a binary
string where the m strings ri and qi appear as follows

l r , 0 . . . 0 . . . l r 2 0 ~ ~ ~ 0 1 r 1 0 ~ ~ ~ 0 ,

where the first run of zeros counted from the right is of
length ql , the next of length q, - q,, and so on; the last
or the left-most run is of length q, - q,-l. From this the
ri and the qi can be recovered in the evident manner.
The length of the code is seen to be not greater than
m(w - n + 2) , which is an excellent approximation to
the optimum, 22LH(2'-,), whenever w - n > 3.

Finite alphabet
Let (u l , a2; . ., a,) be an ordered alphabet, and let be a
positive number, which we will show determines the
accuracy within which the optimum per symbol length,
the entropy, is achieved. Let I,, . . ., I , be positive ra-
tional numbers with q binary digits in their fractional
parts such that

5 2-1i 5 2".
i= 1

Further, let pk be a rational number such that

and define
k

P , = pi, Po = 0.
i=l

Finally, for x , a q-bit fraction, let e (x) be an approxima-
tion to 2" such that

e (x) = 2s+sx, 0 5 6z 5 5

Write pi, P,, and e(x) with r fractional bits. Because of
(2 1) and (22), 1 1 P , 1 m2-r, so that r P log m.

The encoding function C is defined as follows:

2 ' (24)

C(sa,) = C (s) + Pk- l x @ (S L l ,) , C (h) = 0, 201

:ODlNG MAY 1976 ARITHMETIC (

L(su,) = L (s) + 1, = y(sa,) + x(sa,) ,

L(X) = 2r,

@(sa,) = 2Y(sa,) X e[x(su,)l, (2 5)

where y (sa,) = LL(sa,) and x(sa ,) is the fractional
part of L (s a ,) .

Let u (t) be the largest number in { 1 , . . ., m } such that

Pu(l)-l 5 t for t 5 1. (26)

Further, for the decoding we need an upper bound for a
truncation of C (s) . We pick this as follows:
-
C (s) = 2" [p (s) + 2-y+ '] , (1 7)

where a (s) = IC(s)l + 1 and p (s) , 1 5 p (s) < 2, is de-
fined by the y left-most bits of C (s) . Put

= r5.6 - logel. (28)

The decoding function D recovers s from (C (s) , L (s))
as follows:

s = s'aullcs,,'

t (s) = C (s) / @ (s) ,

C (s ') = C (s) - Pu[t(s),-l x @(SI>

L (s ') = L (s) - (29

-

Theorem 3 If for E > 0,

2-'i 5 2 - ~ ,
m

(30)
i = l

then for every s, D (C (s) , L (s)) = s.

Proof We prove first that

C (s) 5 @ (s) (31)

for every s. This inequality holds for s = A by (25) .
Arguing by induction, suppose that it holds for all strings
s of length no more than n. By (2 5) and (3 1),

C(sa ,) 5 @(s) + Pk-l x @(sa,). (32)

21A!-f/2 @(s) 5 @(sa,) 5 2 1 k + d 2

C(sa,) 5 (2- 'k+t/2 + P k - l) @(sa,).

C(sa ,) 5 P , @(sa,),

By (24) and (2 5)

@(SI> (33)

which with (32) leads to

This with (2 2) and (23) gives

and because by (22)
A!

P , 5 2' E 2-4
i= 1

202 the desired inequality,

J. J. RISSANEN

C(sa,) 5 @(sa ,) ,

follows with (30) . The induction and the proof of (31)
is complete.

When we apply the decoding algorithm to the pair
(C(sa,),L(su,)),wefindthatu[t(su,)]=kifandonlyif

P,-] 5 t (su,) < P,. (34)

0 < 6 (s) 5 2-y+' C (s) 5 2-y+1 @(SI > (35)

If we p u t C (s) = C (s) + t i ($) , where

the inequalities (34) become

The former inequality holds by (25) and the fact that 6
(sa ,) 3 0. The second inequality holds with the first
equation of (2 5) , and (23) translates into

C (s) + S(sa,) < p , @(sa,). (36)

C (s) + S(sa,) 5 2-1"+t12(1 + 2-y+1) @(sa,)

By (31) , (33) and (351,

- * -lA!+c/2 - (1 + 2--y+1) 2l"'k x P k @(sa,)

= (2 (e / 2) - c k + 2 (f / 2) - ~ + l - t ~ 1 P,@ (sa,).

By (22) , E , - E/ 2 ? E / 6. Thus by a well-known exponen-
tial inequality we have

The coefficient of p , @ (sa,) is then smaller than one for
the given value (28) for y , and (36) holds. The proof is
complete.

From (3 I) and (2 5) we immediately obtain

1
n - l o g C (s)

n. 2r + 1

1

Inequality (30) holds if we put

in which case

where

H (P l , . . ., P m) = E Pi log pi-,.

Pk-l @(sa,) 1 21"-1' @(SI.

1

By (33) and the fact that Pk- , > 2-11+"2 for k > 1,

It therefore follows that in the first equation of (2 5) no
more than 2r + 1 - 1, + 1, left-most bits of C (s) need by
changed in order to get C(sa,) .

IBM J. RES. DEVELOP.

The crux of the decoding process is to calculate u (t)
by (26 j for the r-bit fractions t. This can either be tabu-
lated or calculated from a suitable approximation to

k
p = 2-’i+ci.

k
i = l

Further, the products f k - l X e[x(sa , j] appearing in
(25 j can be tabulated, which is practicable for small or
moderate sized alphabets. Then only two arithmetic
operations per symbol are needed in the coding op-
erations. The general case does not reduce to the binary
case when rn = 2, because the factor f , = p , approximated
as 2-Ii, can be absorbed by +(sl), which is cheaper.

Finally, if for large alphabets the symbols are ordered
such that the numbers l i form an increasing sequence, the
function k + P, is concave. Then both are easy to ap-
proximate by an analytic function, and the overhead
storage consists mainly of the table of symbols. The
coding operations then require about the time for the
table lookups k c-2 ak. In addition, the l i may be chosen,
except for small values for i, in a “universal” way;
e.g. as

li E log i + (log

MAY 1976

and still have a near-entropy compression. (For univer-
sal coding, see [61) . This means that there is no need to
collect elaborate statistics about the symbol probabilities.
We leave the details to another paper.

References
1. D. A. Huffman, “A Method for the Construction of Mini-

mum-Redundancy Codes,” Proc. IRE 40, 1098 (1952).
2. N. Abramson, Information Theory and Coding, McGraw-

Hill Book Co., Inc., New York, 1963.
3. R. M. Fano, “On the Number of Bits Required to Implement

an Associative Memory,” Memorandum 61 , Computer
Structures Group, Project MAC, Massachusetts, 1972.

4. J. P. M. Schalkwijk, “An Algorithm for Source Coding,”
IEEE Truns. Information Theory IT-18, 395 (1972).

5 . T. M. Cover, “Enumerative Source Encoding,” IEEE Trans.
lnfornzation Theory IT-19, 73 (1973).

6. P. Elias, “Universal Codeword Sets and Representations of
the Integers,” IEEE Trans. Infiwmution Theory IT-21, 194
(March 1975).

Received May 16, 1975; revised October 15 , 1975

The author is located ut the IBM Research Laborutory,
Monterey and Cottle Roads, Sun Jose, California 95193.

203

ARITHMETIC CODING

