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Generalized Kraft Inequality and Arithmetic Coding 

Abstract: Algorithms for encoding and decoding finite strings over a finite alphabet  are  described.  The coding operations  are  arithmetic 
involving rational numbers li as  parameters such that Zi2"i 5 2". This coding  technique requires no blocking, and  the per-symbol length 
of the encoded  string approaches the associated  entropy within E .  The coding  speed is comparable to that of conventional  coding 
methods. 

Introduction 
The optimal  conventional instantaneous  Huffman  code 
[ 11 for  an  independent information source with symbol 
probabilities ( p , ,  . . ., p , )  may be  viewed as a solution to 
the integer  programming  problem:  Find m natural  num- 
bers li as lengths of binary code  words such that Cipil, is 
minimized under  the constraining Kraft inequality 

I .  
1 

Then  the minimized sum  B,p,l,approximates the Shannon- 
Boltzmann entropy function H ( p , ,  . . ., p,) = -zip, log 
p i  from above with an  error  no  more than one. If a better 
approximation is required, blocking is needed; e.g., a kth 
extension of the  alphabet must  be encoded, which re- 
duces  the  least  upper bound of the  error  to 1 / k  [2]. 

We  describe  another coding technique in which m 
positive rational numbers I , ,  . . ., 1, are selected  such 
that a  generalized  Kraft  inequality  holds: 

2"i 5 2-€, E > 0. 
1 

(For E = 0, the rationality requirement would have  to 
be relaxed.)  The length of the  code of a sequence s with 
ni occurrences of the ith symbol is given by the sum 

L (s)  = nili, 
i 

which when minimized over  the I ,  subject to  the preceding 
inequality and divided by n = Bini is never larger  than 

198 where E is determined by the difference li - log(n/n,). 

This  means  that, if the strings are  generated by an in- 
dependent information source,  the mean of n"L(s) 
approaches  the  entropy function from above within an 
error E + O (  1 / n ) .  

The coding operations  are  arithmetic, and  they re- 
semble  the concatenation  operations in conventional 
coding in that  the  code of the string sak, where uk is a 
new symbol, is obtained by replacing only a few (always 
less  than some fixed number) of the left-most  bits of the 
code representing s by a new longer string. As a result, 
the coding operations  can be  accomplished  with  a  speed 
comparable  to  that of conventional coding. 

The primary advantage of the resulting  "arithmetic 
coding" is that  there is no blocking needed even  for  the 
binary alphabet.  In  addition,  for small alphabet sizes the 
size of tables  to be stored and searched is smaller  than 
the  code word tables in conventional  coding  methods. 
For a  binary alphabet a special choice of parameters 
I ,  and I, leads  to a  particularly simple coding technique 
that is closely related to  one  due  to  Fano [ 31. 

The coding method described here is reminiscent of 
the  enumerative coding techniques of Schalkwijk [4] 
and Cover [ 5 ] ,  and perhaps  also of that  due  to Elias, as 
sketched in [ 2 ] .  All of these  are inferior, however, in 
one  or  more crucial respects, especially speed. 

Binary alphabet 
The coding  algorithm is derived  and studied for  any 
finite alphabet, including the binary case. But because of 
the special nature of a  binary alphabet, which admits 
certain simplifications, we study it separately. The im- 
portance of applications of the binary alphabet in data 
storage  also  warrants  separate study. 
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Let I ,  and I ,  be two  positive rational numbers  such  that 
I ,  5 I ,  and when written in binary  notation  they have q 
binary digits in their fractional  part. Further,  for x, a 
rational number, 0 5 x < 1 ,  with q binary digits in its 
fractional part, let e ( x )  be  a  rational-valued  approxima- 
tion to 2s such  that 

( x) = 2s+% ' 3  I > - 6 , 1 0 ,  ( 1 )  

and that e(x) has r > 0 binary digits in its fractional  part. 
Clearly, the minimum size  for r depends  on E and q. For a 
choice of these, see Theorem 2. 

Let s denote a binary string and A an  empty string. 
Write the  concatenation of s and k ,  k = 0 or 1 ,  as sk. 
Define the rational-valued  function L by the recursion 

L ( s k )  = L ( s )  + Ik+,, 
L ( A )  = r .  

Write  the  numbers L ( s )  as 

L ( s )  = y ( s )  + x ( s ) ,  (3)  

where y ( s )  is the integer  part L L ( s ) d  and x ( s )  is the 
fraction with fractional bits. 

The encoding  function C transforms binary strings  into 
nonnegative  integers by the  recursive formula 

Because the  code  increases only when a 1 has been 
appended  to  the string, C takes a  binary string s,, de- 
scribed by the list ( k , ;  . ., k , ) ,  where ki denotes  the posi- 
tion of its ith I from left, to  the sum 

@ ( s i )  = 2'/'si"e[x(si)] 

Y ( s , )  = L ( k i -  i)I, + d2-I  + r 

x ( s i )  = ( k i  - i ) I ,  + iI, + r - y ( s , ) .  (6) 

The  code  for s consists of the pair (C (s )  , L (s)  ), where 
L (s) may be  replaced by the length n = / S I  of s and m, 
the  number of 1's in s. Decoding function D recovers s 
from right to left recursively as follows: 

If ~ ( s )  < 2Y'"'e[x(s)l, 

Then generate a 0, i.e., s = s'0; (7 1 

Else, generate a 1 ,  i.e., s = s' 1 .  

In  addition, in the  former  case make 

C ( s ' )  = C ( s )  

and in the  latter  case  make 

C ( s ' )  = C ( s )  - 2"'"'e[x(s)], 

L ( s ' )  = L ( s )  - I , ,  

to  complete  the recursion. 

ing C ( s )  to its r + 1 left-most  bits c(s) and writing 
As a practical matter,  the  test in ( 7 )  is done by truncat- 

- 
C ( s )  = 2"'"'p(s), 

where 1 5 'p(s)  < 2 and a ( s )  = ( C ( s ) l  + I .  Then  the 
order inequality in (7) is equivalent to  the lexicographic 
order inequality 

with priority on  the first component. 
We  next  give  a  Kraft  inequality type condition for  the 

numbers 1, and I , ,  which guarantees a  successful  de- 
coding. 

then D ( C ( s ) ,  L ( s ) )  = s for all binary strings s. 

Proof We have  to  prove  that s = s' I C (  s) 1 2'") 
e[x(s)]. By (4) the implication from left to right is clear. 
To  prove  the  converse is equivalent to proving that  for 
all strings s 

and,  because by ( 1   1 )  I ,  > E and I, > E ,  

@(s) < @ ( s j ) .  (14) 

We  prove ( 12) by induction. For  the induction base 

C(A) = 0 < 2''0'e[x(~)],  

because L ( 0 )  = I, + r > 0. Assume then that (12) holds 
for all s with length Is/ 5 n. 

Case 1 - s t  = SO 
By (4), (12) ,  and ( l 4 ) ,  in turn, 

and ( 12) holds for all strings s with length n + 1 end- 
ing at 0. 199 
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Case 2 - s' = s l  

By (4), ( 1 2 ) ,  and ( 1 3 ) ,  in turn, 

C ( s ' )  = C ( s )  + @  (SI) < @ (SO) 

+ ( s l )  5 (211+i3 + 2' / A )  @ ( s ) .  

Again by ( 1 3 )  twice 

~ ( ~ 1  5 2-12+$3 ~ ( ~ 1 )  5 2-12+43 X 2 - 1 1 + " 3 ~ ( s 1 0 ) ,  

and we have 

< ( , - ( I + ,  + 2-b+' ) @(do).  
By ( 1 1 ) , finally, 

C ( s ' )  < @ (S 'O) ,  

which completes  the induction  and the proof of the 
theorem. 

Theorem 2 If s is a  binary string of length n with m l's, 
then 

log C ( s )  5 rn 1, + (n - m) l ,  + r + 1 + ~ / 3 .  ( 1 5 )  

With E 5 el, E, 5 E + 2-' and 

1, = log n" + €1' 
n 

I ,  = log + E,, 
n 

inequality ( 1  1)' holds  and 

n + E + 2-'+ O(i),  

where H ( p )  = p log p-' + ( 1  - p )  log ( 1  - p)" 

Proof By ( l ) ,  ( 5 ) ,  and ( 1 3 ) ,  
m 

q S )  2r+r/3 2 2(ki-i)ll+i12 

i= I 

The sum is clearly at  its maximum when kt = n - m + i, 
and hence 

By ( 1  1) and from the  fact  that 1, 2 1,, 

2 - l ~  5 2-f-1 or 2'2 > 2. 

Therefore, 1 / (212 - 1 )  < I ,  and  the claim (15) follows. 
The  rest follows by a direct calculation. 

Remark If the symbols 0 and 1 are  generated by an in- 
dependent  or memoryless  information source,  then, 
because E ( m /  n )  = p ,  inequality ( 16) holds also  for  the 

200 means of both sides. 
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Numerical considerations, example,  and  special 
case 
We next study the addition in (9) .  From (4), ( 1 3 ) ,  and 
(121 ,  

In  cases of interest,  where I, < and I ,  > 2 ,  this  gives 

It then  follows that  never more  than r -  L12d + 2 left-most 
bits of C (s )  in (9) need be replaced in order  to  get C (s 1 ) . 
This  means  that  the  recursion (9) is reminiscent of con- 
ventional  coding methods  such as Huffman coding in 
which a new code word is appended  to  the string of the 
previous  code words. Here,  there is a small overlapping 
between  the manipulated strings. 

What  then  are  the practical choices  for q,  E ,  and r? Sup- 
pose  that p = ( m / n )  < $, which are  the values that pro- 
vide  worthwhile  savings in data  storage; [ H ( f )  E 0.811.  
Then E should be smaller than,  say, p E I,. This  makes 
q not smaller than log p-' - 1 E 1, - 1 .  The function 2" 
is such that ( 1 )  in general  can  be satisfied approximately 
with Y = q + 2. 

The function e ( x )  may be  tabulated  for small or mod- 
erate  values of q, or it may be  calculated  from the stan- 
dard formula of the  type 

With a table lookup  for e ( x )  the coding operations 
involve  only  two arithmetic  operations each per bit with 
the version (7)-(10) and  approximately 6(m/n )  op- 
erations  per bit when  the  formulas (5 ) , (6)  are used. In 
the  latter  case  the decoding test ( 1 0 )  is not done  for 
every bit but  rather  the ki in si c* ( k , ,  . . ., kt)  are solved 
as: ki is the maximum for which 

In  fact, 

k i = 6 0 r 6 +  1 ,  

where 6 = R-'[ a( s i )  + i(1, - /,) - r ]  1 can be calculated 
recursively with two  arithmetic  operations. If log e ( x )  
is also  approximated by a table, then k i  can  be  calculated 
without the  above ambiguity with three  arithmetic op- 
erations from 

Thus  the coding operations  can  be  done  at a rate  faster 
or  comparable  to  that of Huffman coding. If the function 
e ( x )  and  its logarithm are  tabulated,  the sizes of the 
tables  are of the order of p-', which gives the  error E E p 
as  the "penalty" term in ( 16). 
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With Huffman coding the  same penalty  term is k" 
where k is the block size [2]. Therefore, in order  to 
guarantee  the  same penalty term, we must  put k E eC1 E 
p , which gives 2k 2"Ii for  the  number of code  words. 
In typical cases this is much larger  than the  number of 
entries p-' in the table of e(x) with the  present coding 
method. 

Example We now illustrate our coding technique by a 
simple example. Let I ,  = 0.0 I and l2 = 1 1 . 1  I ,  both num- 
bers being in binary form. Then 

-1 

2-'1 + 2-12 < - 0.9 15 < 2-0.128 

Hence, E = 0.128 will do, and we  get from ( 1 ) r = 4. The 
function e is defined by the table 

X e ( x )  

0.00 1 .0000 

0.01 1.001 1 

0.10 1.0101 

0.1 1 1.101 1. 

Take s ( I ,  3 ,  20,  22,42). Then from (6)  and  the table 
above, 

@ ( l ,  I )  = 2 6 x  1.1011 

@ ( 3 ,  2)  = 21° x 1.1011 

@(20, 3 )  = 218 x 1.0101 

@(22,   4)  = LZ2 x 1.0101 

@ ( 4 2 , 5 )  = 231 X LOOOO. 

By adding all these we get 

f ( s ) =  100000000101100101000ll100101100. 

Because of the complications involved in blocking, 
Huffman coding is rarely used for a  binary alphabet. 
Instead, binary strings are often coded by various other 
techniques, such as run-length coding in which runs of 
consecutive  zeros  are encoded as  their number.  We  de- 
scribe a special case of arithmetic coding that is par- 
ticularly fast and simple. This method turns out to be 
related to  one  due  to  Fano [3] ,  and  the resulting com- 
pression is much better than in ordinary run-length 
coding. 

Suppose  that we wish to  store m binary  integers, 

z , = ( z , , z 2 , ~ ~ ~ , z , ) , 0 ~ z l ~ z , ~ ' ~ ~ i z , i 2 " ,  

each written with w bits. Let n = [log m l ,  and let n < w. 
The list Z ,  may be  encoded as a binary string s, whose 
ith 1 is  in position ki = zi + i, as in ( 5 ) .  Then p is ap- 
proximately given by 2"-", and we may put 

1 = 2"-m 
1 l , = w - n + l .  

Then inequality ( 1  1 )  can be shown to hold for some E 
whose  size we do not  need. By setting e ( x )  = I + x and 
r = w - n we  get from (6 )  

y ( s , )  = qi + i ( r  + 1 )  + r, 
x(si) = ri2?, 

@(si) = (2' + ri)2qi+i'r+1', 

where ri consists of the w - n right-most  bits of zi and 
qi of the  rest; i.e., 

zi = qi2w-" + Ti .  

The encoding of Z ,  or, equivalently, of s, is now 
straightforward by ( 5 ) .  It can  be seen  to be  a  binary 
string where  the m strings ri and qi appear  as follows 

l r , 0 . . . 0 . . .   l r 2 0 ~ ~ ~ 0 1 r 1 0 ~ ~ ~ 0 ,  

where  the first run of zeros counted  from the right is of 
length ql ,  the  next of length q, - q,, and so on;  the last 
or  the left-most  run is of length q, - q,-l. From this the 
ri and  the qi can  be recovered in the  evident manner. 
The length of the  code is seen  to  be not greater  than 
m( w - n + 2) ,  which is an excellent  approximation to 
the optimum, 22LH( 2'-,), whenever w - n > 3. 

Finite alphabet 
Let ( u l ,  a2; . ., a,) be an  ordered  alphabet,  and let be a 
positive number, which we will show  determines  the 
accuracy within which the optimum per symbol length, 
the  entropy, is achieved. Let I,, . . ., I ,  be positive ra- 
tional numbers with q binary digits in their fractional 
parts such that 

5 2-1i 5 2". 
i= 1 

Further, let pk be  a rational number such  that 

and define 
k 

P ,  = pi, Po = 0. 
i=l 

Finally, for x ,  a  q-bit fraction, let e ( x )  be an approxima- 
tion to 2" such that 

e ( x )  = 2s+sx, 0 5 6z 5 5 

Write pi, P,,  and e(x)  with r fractional bits. Because of 
(2 1 ) and (22),  1 1 P ,  1 m2-r, so that r P log m. 

The encoding  function C is defined as follows: 

2 '  (24) 

C(sa,)  = C ( s )  + Pk- l  x @ ( S L l , ) ,  C ( h )  = 0, 201 
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L(su,) = L ( s )  + 1, = y(sa,)  + x(sa,) ,  

L(X) = 2r, 

@(sa,) = 2Y(sa,) X e[x(su,)l, ( 2 5 )  

where y (sa,) = LL(sa,) and x(sa , )  is the fractional 
part of L ( s a , ) .  

Let u ( t )  be the largest  number in { 1 , .  . ., m }  such  that 

Pu(l)-l 5 t for t 5  1.  (26) 

Further,  for  the decoding we need an  upper bound for a 
truncation of C ( s ) .  We pick this as follows: 
- 
C ( s )  = 2" [p (s )  + 2-y+ ' ] ,  ( 1 7 )  

where a ( s )  = IC(s)l + 1 and p ( s ) ,  1 5  p ( s )  < 2, is de- 
fined by the y left-most  bits of C ( s ) .  Put 

= r5.6 - logel. (28) 

The decoding  function D recovers s from (C (s)  , L ( s )  ) 
as follows: 

s = s'aullcs,,' 

t ( s )  = C ( s ) / @ ( s ) ,  

C ( s ' )  = C ( s )  - Pu[t(s),-l x @(SI> 

L ( s ' )  = L ( s )  - (29 

- 

Theorem 3 If for E > 0, 

2-'i 5 2 - ~ ,  
m 

(30) 
i = l  

then  for  every s, D ( C ( s ) ,  L ( s ) )  = s. 

Proof We prove first that 

C ( s )  5 @ ( s )  (31) 

for  every s. This inequality holds for s = A by (25) .  
Arguing by induction, suppose  that it holds for all strings 
s of length no more  than n. By ( 2 5 )  and  (3 1 ), 

C(sa , )  5 @(s) + Pk-l x @(sa,). (32) 

21A!-f/2 @(s)  5 @(sa,) 5 2 1 k + d 2  

C(sa,)  5 (2- 'k+t/2 + P k - l )  @(sa,). 

C(sa , )  5 P ,  @(sa,), 

By (24) and ( 2 5 )  

@(SI> (33) 

which with (32)  leads  to 

This with ( 2 2 )  and (23) gives 

and  because by (22) 
A! 

P ,  5 2' E 2-4 
i= 1 

202 the desired  inequality, 
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C(sa,) 5 @(sa , ) ,  

follows with (30) .  The induction and  the proof of (31) 
is complete. 

When we apply the decoding algorithm to  the pair 
(C(sa,),L(su,)),wefindthatu[t(su,)]=kifandonlyif 

P,-] 5 t (su,)  < P,. (34) 

0 < 6 ( s )  5 2-y+' C ( s )  5 2-y+1 @(SI > (35) 

If we p u t C ( s )  = C ( s )  + t i ( $ ) ,  where 

the inequalities (34) become 

The  former inequality  holds by (25) and the  fact  that 6 
( sa , )  3 0. The second  inequality  holds with the first 
equation of ( 2 5 ) ,  and  (23)  translates  into 

C ( s )  + S(sa,) < p ,  @(sa,). (36) 

C ( s )  + S(sa,) 5 2-1"+t12( 1 + 2-y+1) @(sa,) 

By (31) ,  (33)  and (351, 

- * -lA!+c/2 - ( 1  + 2--y+1) 2l"'k x P k  @(sa,) 

= ( 2 ( e / 2 ) - c k  + 2 ( f / 2 ) - ~ + l - t ~  1 P,@ (sa,). 

By (22) ,  E ,  - E/  2 ? E /  6. Thus by a well-known exponen- 
tial inequality we  have 

The coefficient of p ,  @ (sa,) is  then smaller  than one  for 
the given  value (28) for y ,  and (36) holds. The proof is 
complete. 

From  (3 I )  and ( 2 5 )  we immediately  obtain 

1 
n - l o g C ( s )  

n. 2r + 1 

1 

Inequality (30)  holds if we put 

in which case 

where 

H ( P l , .  . ., P m )  = E Pi log pi-,. 

Pk-l  @(sa,) 1 21"-1' @(SI. 

1 

By (33 ) and the  fact  that Pk- ,  > 2-11+"2 for k > 1, 

It  therefore follows that in the first  equation of ( 2 5 )  no 
more  than 2r + 1 - 1, + 1, left-most bits of C ( s )  need by 
changed in order  to get C(sa,) .  
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The  crux of the decoding process is to  calculate u ( t )  
by (26 j  for the r-bit fractions t. This can either be  tabu- 
lated or calculated from a suitable  approximation to 

k 
p = 2-’i+ci. 

k 
i = l  

Further,  the  products f k - l  X e[x(sa , j ]  appearing in 
(25 j  can be  tabulated, which is practicable for small or 
moderate sized alphabets. Then only two arithmetic 
operations per symbol are needed in the coding op- 
erations.  The general case  does not reduce  to  the binary 
case when rn = 2, because  the  factor f ,  = p ,  approximated 
as 2-Ii, can be absorbed by +(sl), which is cheaper. 

Finally, if for large alphabets  the symbols are  ordered 
such that  the  numbers l i  form an increasing sequence,  the 
function k + P, is concave.  Then  both  are  easy  to ap- 
proximate by an analytic  function,  and the overhead 
storage consists mainly of the  table of symbols. The 
coding operations then  require about  the time for  the 
table  lookups k c-2 ak. In addition,  the l i  may be chosen, 
except  for small values  for i, in a “universal”  way; 
e.g. as 

li E log i + (log 
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and still have a near-entropy compression. (For univer- 
sal coding, see [ 61 ) . This  means  that  there is no need to 
collect elaborate  statistics  about  the symbol  probabilities. 
We  leave the  details  to  another paper. 
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