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Abstract: This  paper  deals with the motor,  the inertia ratio,  and the  power  input  requirements for moving an inertial load over a spe- 
cified distance in a specified time, A linear speed-torque relationship is assumed,  and selected  motor parameters  are normalized to the 
load to establish  generally  applicable  solutions and characteristic curves.  Emphasis is placed on the velocity-time  diagrams  and  the rela- 
tionship  among  the inertia ratio, the  rated motor  power,  and  the electrical input  power. It is shown  that  optimization is possible for input 
power at stall,  input  power  immediately following torque reversal, and average input  power. Computer generated curves  are presented 
for these  three  cases, and  their  relationships are  discussed. Finally. it is shown  that  the motor time constant  has a  great influence on 
power requirements. 

Introduction 
This  paper  describes a general procedure  for finding the 
optimal motor and the optimal  gear ratio  for moving a 
specified load a specified distance in a specified time. 
Optima are found for minimizing the  rated power of the 
motor,  the peak power  input,  and  the average  power 
input. 

The movement of an inertial load from one position to 
another is a  common engineering problem. The time-op- 
timal control has been shown [ I ,  21 to be of the  “bang- 
bang” type.  For  the second order system  considered  here, 
the solution consists of an initial period of maximum 
available  acceleration torque followed by a period of max- 
imum available  deceleration torque. If the  torque of the 
motor is constant and independent of speed,  the optimum 
gear ratio renders  the  motor inertia reflected to the load 
equal to the load inertia [ 31. However, this well-known 
result is not valid when the  torque of the  motor  drops with 
speed,  and this paper  examines  the special, yet  frequent, 
case of a linear speed-torque relationship. 

The differential equations for  acceleration and deceler- 
ation are solved separately in conventional  fashion, and 
then  the  two  parts of the move are joined by stipulating 
that  the velocity at the  end of acceleration must equal  the 
velocity at  the beginning of deceleration.  The resulting 
normalized equations  describe  the  entire range of pos- 
sible moves  and permit the calculation of velocity di- 
agrams. 

The  motor time constant,  the rated motor  power, and 

solutions for optimum  inertia ratios and  powers. The re- 
sults are  presented as curves  for all three  cases of opti- 
mization. 

The paper discusses  the  results of the optimization, 
the general equations for  moves, the  case of direct cou- 
pling between motor and  load, the use of series  resistance 
to boost motor power, and the significance of a short 
time constant of the motor. 

Assumptions 
This section presents  the  assumptions underlying our 
analysis  for a linear speed-torque relationship. For posi- 
tive torques, this  relationship can be expressed as 

Q,, = Q,,, ( 1 - N,/ N , J ,  (1)  

where Q , is the driving torque  at  motor velocity N,,,, Q,,, 
is stall torque, and N,,,= is ultimate no-load speed. (Sub- 
script  m refers  to the motor and subscript o to stall.) For 
negative torques, 

e,=-a,,, ( 1  + N,,,Ifi,J. ( 2) 

In words, Eq. (2) states  that if a motor were electrically 
reversed while running at its ultimate speed,  the braking 
torque would start  at twice  the stall torque,  because of 
the  additional braking torque from counter-emf. 

Furthermore, throughout the  analysis, we assume that 

the inertia  ratio (motor inertia to total inertia) are then I .  There is complete freedom in the  choice of gear ratio 
introduced as  parameters, facilitating optimization  for between motor and  load. However, we show that with 
power. The  motor time constant and the rated  power are a  suitable  choice of motor,  the optimal gear  ratio may 

176 normalized to the load to facilitate iterative  computer be made equal to  one. 
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2. The  gear train has zero inertia. In  cases in which the 
inertia of the  gear train is significant, the estimated 
gear inertia should be  added to  that of the load. 

3. The only losses in the system are  the i2R losses in the 

4. Inductive effects in the  motor upon sudden  applica- 
motor. 

tion of a finite voltage are neglected. 

These  assumptions imply that  there  are no friction 
losses anywhere;  that counter-emf is proportional to 
motor  velocity; that  current is zero  at no-load speed; and 
that during acceleration,  conversion efficiency from elec- 
trical to mechanical  energy is equal to the  ratio of actual 
speed to no-load speed. 

Differential  equations  and  normalized velocity 
diagram 
The  equations  are solved in a  piecewise  linear manner by 
means of the known initial values  for the acceleration 
period  and the known terminal values for  the decelera- 
tion period. These  equations  are then solved simultane- 
ously to yield a necessary relationship between  the total 
move time and the total  move distance  for given motor 
parameters. To begin, a motor with a  linear speed-torque 
relationship is defined by Qmo, N,,, and  its  inertia I,; and 
a  move is defined by 

N , ,  = distance  (in  radians)  over which load moves, 

I, = load inertia,  and 

T ,  = move time. 

Note  that  subscript I is associated with the load and  sub- 
script s with the sum of acceleration  and  deceleration 
distances and  times. 

During acceleration,  the  motor  torque is positive, and 
the condition of equilibrium between motor  torque and 
the inertial torques, all referred to  the load axis, requires 
that 

( I ,  + G'I,,,) N, = Q,,, ( 1 - N I C /  N m J ,  (3) 

where N ,  is the  distance  over which the load has moved 
and G is the  gear ratio (motor  distance/ load distance). 

If time T is normalized to move time T ,  and load dis- 
tance N ,  to final move distance N, ,  by setting 

a = T /  T , ,  ( 4 )  

and 

v = N N,, ,  ( 5 )  

the differential equation  becomes 

From  the  gear  ratio and the  motor and load inertias, an 
inertia ratio may be defined as 

so that  the differential equation  becomes 

This equation  holds  from the  start of motion to  the in- 
stant of torque  reversal, which is identified by the sub- 
script r. For  convenience,  the equation is rewritten as 

VI' + 21' d = 2A, ( 9 )  

where 

r = ' ~  I-' .,,T N-' 
and 

2 mrr m s rnz' (10) 

A = bQ [ - ' I 2  ?lP2( 1 - 7)) '1' T:/,"* 
mo rn ( 1 1 )  

The solution now becomes 

and 

(12)  

During deceleration,  the  motor  torque is negative, and 
by analogy to  the  case of acceleration, the differential 
equation becomes 

V" - 2rv' = -2A. i 16) 

This equation  holds  from the  instant of torque reversal 
to  the end of motion. Thus, 

V I =  v + - e  ( ; -21 (a--arl - 6 
r '  (17 )  

and at  the final condition, a = 1, the velocity must be zero, 
so that 

A 21 (l-a,) - v;, = 7 ( e  1 ) .  (18) I 

The deceleration distance now  becomes 

( 19) 177 
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/Normalized time, n 

Figure 1 Velocity diagrams normalized to uni ty  length of 
move. 

1 +-  . r 21' "I! i 
It  should  be  noted  that  the  velocity v,' at  the  instant  of 

torque  reversal is the  same  for  Eqs. ( 13)  and ( 15),  which 
refer  to  the  end of acceleration,  as  for  Eqs. ( 18) and (20). 
which  refer  to  the  beginning  of  deceleration.  This  equality 
is used  to  establish  relationships  among a,,, I', and A. 

T h e  time a t  reversal  can  be  found  from  the  simulta- 
neous  solutions of Eqs. ( I3  ) and ( 18 ) to  be 

Then,  Eq. ( 13) yields 

V ;  = a tanh I'. 

The  ratio A / I '  may  be  expressed in terms of the  basic 
parameters  as 

I' (22) 

AIr = N , J  WLJTJ? (23 ) 

i.e.,  the  ratio of the  ultimate  speed  to  average  speed;  this 
ratio is calculated  next in terms of r. Addition  of  the 
normalized  move  distances  for  acceleration  and  decelera- 
tion,  Eqs. ( 15) and (20), respectively,  leads  to 

1 = v,+ ( I  - vr) 

A A 
= - [ar - ( I  - a,,)] = ~ (2ar - I ) ,  r r (24) 

178 from  which A l T  is obtained  as 

Equation (25), or  the  direct  solution  for A derived 
from  it, 

represents  the  basic  relationship  governing  a  move. 

obtained  from  Eqs. (22) and (25) as  
T h e  velocity  at  the  instant of torque  reversal is now 

r tanh r '' = In cosh r ' 

Thus,  the  normalized  time  and  velocity  at  the  instant of 
torque  reversal  have  been  expressed in terms  of  the  single 
parameter 1'. For  any  value of I' there  is a single  normal- 
ized  velocity  diagram  that  can  be  calculated  from  Eqs. 
( 12) and ( 17) ; Fig. I shows a family  of  velocity  diagrams 
for 1' = 0.05 to r = 50. 

Convenient compound motor parameters  and their 
normalization to the  load 
The  next  step in the  investigation  concerns  the  effect of 
the  inertia  ratio 7 on  the  power  required  to  accomplish 
a specified  move.  Thus, 7 should be treated as   an inde- 
pendent  parameter,  and  the  other  parameters  should  be 
independent of 7. Whereas  the  parameters r and A proved 
convenient  for  the  solution of the  differential  equations 
and  for  establishing  the  velocity  diagrams.  they  both  con- 
tain 7 and  we  must  revert  to  their  respective  definitions  to 
separate 7 from  the  other  components.  Inasmuch  as A and 
r are  related by Eq. (26) ,  it  is necessary  only  to  express 
either I' or A in terms of 7 and  parameters  independent of 
7. The  choice  clearly is f because  the  definition  of r in 
Eq. ( I O )  involves  fewer  basic  parameters  than  the defini- 
tion of A in Eq. ( 1  I ) .  

Although all subsequent  equations  could  be  written in 
terms of the  basic  motor  and  load  parameters,  certain 
combinations of these  parameters  are sufficient and  re- 
duce  the  numbers  of  parameters  needed.  For  instance, 
possible  compound  parameters  are 

T ,  = I,N ,,,= I Q mc)' (28) 

the  time  constant of the  motor  with  no  external  load; 

P,,, = Q m 0 N r n J  4, (29 

the  rated  power  (peak  mechanical  power) of the  motor; 
fI ,N", , ,  the  kinetic  energy of the  motor  at  no-load  speed; 
and Qi<,/I,,,, the  rate  at  which  the  kinetic  energy of the 
motor  with  zero  load  increases  at  zero  velocity  (power 
rate).  The  latter is the  only  parameter  of  interest if the 
motor  torque is independent of speed,  and  hence it  is the 
dominant  motor  parameter  for  short  moves. 
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the inertia  ratio are sufficient to define a  motor's  perfor- 
mance in moving an inertial load. The time constant is 
chosen  as the first, because for a  particular class of 
motors it is substantially  independent of size  and  voltage 
input. It  serves  as a normalizing factor  for move time T,. 
The rated  power of the motor is chosen  as  the second 
parameter, because we  are  concerned primarily with  op- 
timization of power. 

The move  time is normalized to  the time constant of 
the  motor by setting 

T ,  = T,/ T,. (30) 

The peak power  delivered to  the load by a constant 
torque motor  achieving  a specified move is 

P,  = 8N:,I,/ c, ( 3 1 )  

and the rated  power of the  motor, P,, is normalized to 
Pi by setting 

$,,, = P,/P, = A'/ 16( 1 - q)r (32) 

from the definitions of r and A in Eqs. ( 10) and ( I 1 ) . 
Now  that  the normalized  move  time T ,  and the normal- 
ized rated  power $,,, of the motor  have been introduced, 
their relationship will be established. 

If the move  time is specified, T, can  be  calculated with- 
out knowledge of the  motor  power, and T ,  becomes the 
preferred  independent  parameter. Furthermore,  Eqs. 
( lo) ,  (28),  and (30) combine  into 

r = q r J 2 ,  ( 3 3 )  

so that all parameters can  be expressed in terms of q and 
T ~ .  From  Eq. ( 2 5 ) ,  

A/r = 
v , /  2 

(34) 
In cosh ( q 7 , / 2 )  ' 

from Eq. (26) 

(777s/2)2 
A =  

In cosh ( q ~ , / 2 )  ' 

and from Eq. (32) 

(r/7s/2)3 
4,,, = 

16( 1 - q ) ~ n * c o s h ( q ~ , / 2 )  

Thus,  the rated  motor  power  required to  complete a 
move has been found as a  function of the normalized 
move  time T, and  the inertia  ratio q. Figure 2 illustrates 
this  relationship  and  shows that  for any  particular  value 
of T,, there is an associated  inertia  ratio q that minimizes 
the normalized rated  power of the motor. The  above se- 
lection of parameters has the  advantage  that for  any given 
T,, the inertia  ratio can be chosen and the  gear ratio  es- 
tablished so as  to minimize power. 

z 1.0) , ! 

s 10 so 100 so0 1000 

Normalized move  time, T~ 

Figure 2 Normalized stall power vs normalized move time for 
several inertia ratios. 

Consideration of electrical  input power 
In addition to  the rated power of the  motor,  the electrical 
input  powers (stall, peak, and  average)  are of interest. 
The electrical  input powers, Pi, are  also normalized to 
the load, so that 

Ci = Pi/Pi = Pic/8N;s I , ,  (37)  

where  the  subscript i stands  for input. 
A motor with a  linear speed-torque relationship  de- 

velops its peak  power at a  speed  ratio of one half. The 
efficiency of conversion of electrical  power to mechani- 
cal power is also one half at this  point, so that  power input 
is twice power  output.  The stall input power is twice the 
input  power at half speed;  hence,  the input power  at 
stall is 

Pi" = 4P,, ( 3 8 )  

and, by means of Eq. (36),  the normalized input  power at 
stall is 

(7?7,/2)3 
+io = 4$,,, = (39) 

4( 1 - q)ln*cosh(q~,/2) ' 

The peak  input torque, and hence  the peak  input  power, 
occur immediately following torque reversal. The voltage 
is fixed, and the  current during  deceleration is propor- 
tional to ( 1 + N , , , / N m z ) ,  so that  the normalized  peak in- 
put power is,  from  Eq. (39), 

(40) 

The ratio N m r / N m x  is obtained from Eqs. (12) ,  ( 2 2 ) ,  
and ( 3 3 )  as 

Nmr/Nm, = vC/v: = - 
v ' 

Alr 
- tanh = tanh q 7 , / 2 ,  (41) 

179 
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Figure 3 Optimized  inertia  ratios and normalized powers  vs 
normalized move  times.  Rated  power  of motor is T,,, = *Ti,); 1 is 
optimization for 'Pi,,; 2 is optimization for T,r; and 3 is optimiza- 
tion for T, i , \ .  

so that the normalized input  power drawn  at  the  instant 
of torque reversal  becomes 

The input  energy during acceleration is found as  the 
time integral of the  power drawn  from  the  supply be- 
tween times 0 and ar. The voltage is fixed, and the cur- 
rent is proportional to  one minus the speed ratio, so that 
the normalized power input is, from Eqs.  (38) and ( 12),  

The normalized  energy  input  during  acceleration thus 
becomes 

Optimization  and  selection of motors  and  gear  ratios 
For  any value of T ~ ,  the inertia  ratio 7) can be  optimized 
to result in a minimum of rated motor  power, peak  input 
power,  or  average input  power. 

Minimization of $,,, in Eq.  (39)  results in the smallest 
motor of the  class  under  consideration,  or  for a specified 
motor it leads to  the minimum move  time. 

The normalized input power  at reversal of Eq.  (42) 
should be minimized if the  instantaneous power  drawn 
from the supply is of primary interest. 

When heat dissipation of the  motor is of greatest con- 
cern,  the normalized average energy  input of Eq.  (46) 
should be minimized. 

All three optimizations have been carried  out by com- 
puter, and the  results  are presented in Fig. 3. Curves  are 
shown for optimum -q, Qi,, = 4141,,,, I,!I~~, and $i av as functions 
of 7, for all three optimizations. This permits  examination 
of the sacrifice entailed in the remaining powers when 
7) is optimized  for  any one of the  three powers. 

Generally, the  move is specified and one  has  to select 
a motor  that can accomplish it with either minimum rated 
power, minimum peak  power, or minimum average power. 

For any  particular class of motors, 7, = T, /   T ,  can be 
calculated, and then Fig. 3 shows  the optimum -q and Gi<, 
for  the  three  cases of optimization. The rated power of 
the motor is then  obtained  from Eqs.  (32) and (36)  as 

P ,  = P, $m = *Pi &<,. (47 1 
Further,  the stall input  power is 4P, = Pi the peak in- 
put  power from Eq.  (42) is 

and the average input  power from Eq.  (46) is 

(44) 

The energy  input  during  deceleration is the same  as 
the energy input during acceleration,  because  the  change 
in momentum is the  same,  and  therefore  the  current time 
integral must also be the same. The normalized total 
move  time for  the  above  equation is a = 1 ,  and therefore 
the normalized average input  power for  the  complete 
move is numerically equal to  the normalized total  energy 
input: 

With r, cyr, and +,,,replaced by means of Eqs. (33),  (21), 
and (36),  respectively, the normalized average input 
power becomes 

Where a compromise is indicated  between  optimized 
rated motor power (i.e., minimum motor  size) and  op- 
timized average input power  (i.e., minimum heat  dissipa- 
tion in the  motor), a value of r )  between r),, and q0,, of 
Fig. 3 may be  considered  for the particular T ~ ,  and  then 
$,,, = $i,l/4 and $i av should  be  calculated  from Eqs.  (39) 
and (46). 

Once 7) has been  determined and a motor has been se- 
lected on  the basis of Pm = $,Pi, the motor  inertia be- 
comes known  and the  gear ratio  can  be  calculated from 
Eq. (7).  This  completes  the definition of the system. 

Discussion 

Optimization 
The  asymptotic values for 7, + ~0 are shown in Table 1. 
The framed values represent  the minima for the respec- 
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tive optimized powers  and may be approached with very 
long moves. 

Figure 3 shows that there is relatively little difference 
between  optimization for input  power at stall and optimi- 
zation  for  input  power upon torque reversal. Their q 
curves and  their normalized average power curves  are 
very  similar;  their normalized stall power curves and 
their curves of normalized  power  upon torque reversal 
are practically identical. 

On the  other  hand,  the  results of optimization for  aver- 
age  power are quite different. Only the normalized aver- 
age power  has a finite asymptotic value as T, increases, 
whereas  the normalized powers at stall and upon torque 
reversal have a  broad minimum in the range of T, from 8 
to 25,  and  then  increase  toward infinity. The physical 
explanation for this is that optimization  for average power 
leads  to a greater q for a given T ~ ,  hence to a greater r = 

v T s / 2  and a  more nearly rectangular velocity diagram in 
Fig. 1.  Thus, some  energy is used to bring the system up 
to speed at the start of the move  and to  stop it at  the  end, 
but very little energy is consumed while the system  runs 
at substantially no-load speed. The power  drain upon 
torque reversal is high, of course, in this case and ap- 
proaches twice the stall power  for  values of T ,  above 8. 

A word of caution is in order here: This  entire analysis 
is based on the  only  losses being i2R losses in the motor. 
This assumption does not hold well  in the case of long 
moves at high motor  speed,  where bearing friction and 
wind resistance  are consuming  some  energy. The  expres- 
sions  derived are  therefore minima and  allowance should 
be made for the other losses. 

Moves in  general 
The foregoing selection of a motor and gear ratio was 
based on optimization for a particular  move  time. One 
may now wish to examine how well the system  performs 
for  other move  times,  where it  is no longer  optimized. 
Because 7, N,, = N,,/C, and T, have been defined, the 
examination may proceed by means of Eqs.  (23) 
and (34) :  

from which 

?T 

N , ,  = N , =  In cosh(qTs/2T,), 
L J  

v 
or  conversely, 

The fully generalized equations  are obtained  from  Eqs. 
(5 1 )  and (52) by replacing N , =  by N,,/G and  introduc- 
ing G from Eq. (7 )  : 

Table I Asymptotic values as T~ + 00. 

Optirnizufion , f i w  

ir7put p o r w r  
upon toryur 

reversal 
( V J  

1.756 
1.144 

0.6668 

Direct  coupling betwjeen motor  and  load 
So far,  the  gear ratio could be used to bring about  the de- 
sired inertia ratio. When the  motor is directly  coupled to 
the load,  this  convenience disappears:  the actual  gear 
ratio is 1.0, and  therefore  the optimum gear ratio should 
also be in the vicinity of 1.0. With Go,, = I ,  Eq. ( 7 )  re- 
quires  that 

Because v,,, is a  function of only T, = T , /  T, for  any of 
the  three optimization procedures, the optimum motor 
inertia depends only on the load inertia, the time constant 
of the  motor, and the move  time, but not on the move dis- 
tance. 

As in the  case of unrestricted  gear ratio,  the values of 
q,,, and $, = $,,I4 may be  obtained from Fig.  3  and  then 
I ,  ",, can be calculated  from Eq. (54). However,  the $, 
and I ,  ol) so obtained may be mutually exclusive,  particu- 
larly for long moves (large values of 7,) in that a motor 
with inertia I ,  ol)  may just not  be able  to  develop sufficient 
torque. To  keep inertia down,  the  rotor  diameter  must be 
small and,  to  develop  the required torque, a small diam- 
eter  rotor becomes  very long. However,  there is a  practi- 
cal limit to  the  slenderness of motor  rotors, and  beyond 
this limit optimization  becomes  impossible. 

In such cases,  one  has  to work with an actually  attain- 
able inertia  ratio. Figure 2  and the  equations relating q, 
$, and r, hold generally and are applicable whether or not 
q is optimized. Therefore, they all apply in the  case of 
direct coupling between motor and load,  but  the $ curves 
of Fig. 3 do  not apply  when the actual 7 differs from qop. 

9 Series  resistance t o  boost motor  power 
A series resistance may be used to  boost  motor power 
output  at  the  expense of increased  total power consump- 
tion. If 181 
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Table 2 Effects of adding series  resistance. torque relationship is linear, the  factor of merit is the re- 
ciprocal of  the time constant of the  motor.  This  interest- 

N o  series  Series ing result implies that  the time constant ( a  dynamic term 
resistance  resistance 

-~ usually found by measurement of steady state velocity 
em,, Q& = e,,, 
I ,  1; = I ,  without  any  dynamic  measurements from input power  at 

Stall torque or from  frequency response  data) can  be  determined 
Inertia 
No-load  speed N m x  N$= = ( 1 + p ) N m Z  stall, stall torque, and  inertia. Figure 3 shows that a  move 
Peak  power  output t Q m o N m m  fQ,,,N,_( 1 + P )  
Rated  power can be  made with less  power if T, is large (i.e., T ,  is 
Time constant small), which is the  same  as a  large factor of merit. 
Normalized  move  time T~ = T J  T ,  T; = T J  T,( 1 + p )  Hence, it  is clear that a  large factor of merit  can im- 

~ ~ _ _ _ _  

+QmoNrnx 
T ,  T; = Trn(  I + p )  

P = Re/&, ( 5 5 )  

where Re is series resistance  and R, is motor  resistance, 
and if the supply voltage is increased by ( 1 + p )  to main- 
tain the  same stall current,  the  motor  parameters  and T, 

compare  as  shown in Table 2 ,  where  the  asterisk iden- 
tifies parameters modified by the addition of the series 
resistance. 

Figure 3 holds  for  the  parameters with asterisks  as well, 
and $,,, $:, = 4$:, and +Tav may be read off as functions 
of T,” for any  particular  optimization. The  respective 
powers  consumed by the system are then  obtained as  the 
products $: PI, and the  power dissipated within the  motor 
as $Fa, P , /  ( 1 + p) . The  rated power of the  motor  (with- 
out series  resistance) is found as $:, PI/ 4( 1 + p) .  

For any specified move,  a  series resistance  reduces 
the required power rating of a  motor (of  the  same  class). 
The reduction is greater  for large values of T,, where $,,, 
changes  less  for a given change in T,. The power  dissi- 
pated within the  motor actually decreases when a  series 
resistance is used, and again the  decrease  improves  as 
T,  increases. 

Thus, for large values of T,, the  use of a series  resistor 
becomes  attractive when motor size or heat dissipation 
within the  motor  are limiting factors. In particular,  series 
resistance should be  considered when the load is directly 
coupled to  the  motor and 7 cannot be chosen  at will. 
Here, the series  resistance provides  a  most useful addi- 
tional degree of design flexibility. 

Effect of motor  time  constant on power consumption 
It  has been  shown [3] that an important  measure of mo- 
tor performance is the  power  rate  at stall, which was dis- 
cussed briefly under  “Convenient compound motor 
parameters and  their  normalization to  the load.” In  terms 
of the compound motor  parameters used  here for opti- 
mization, the power rate is 4P,Ti1. The ratio of power 
rate  to power  dissipation at stall is a factor of merit,  which 
has been  shown [3] to be  very high for  reluctance-type 
motors.  Because  power  dissipation at stall was found here 
to be 4P,, this  ratio simply becomes T i ’ .  Hence, if the 
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prove power consumption, particularly in the  case of 
short moves. The potential for improvements  through 
higher factors of merit decreases  as T, becomes larger, 
and Fig. 3 shows that with T, at 30, the theoretically pos- 
sible improvement with the  factor of merit becoming very 
large is below 20%. 

In  the region of T, above 20, an  increase in the  factor 
of merit in combination  with a series  resistance may re- 
sult in a  smaller motor with less  internal  heat  dissipation 
and little increase in power consumption of the  system. 

Summary 
If the  speed-torque  characteristic of the  motor is linear, 
then the power  required is proportional to  the load inertia, 
the  square of the move distance, and the inverse of the 
cube of the move time. All powers  are normalized to 
these  load-dependent  parameters  as given by Eq. (3  1). 
The normalized stall power,  peak  power,  and average 
power are given by Eqs. (39) ,  (42),  and (46), respec- 
tively, in terms of the inertia  ratio  and the normalized 
move time. These  equations  are generally  applicable  and 
can  be used for  detailed  evaluation of power  for specific 
motors and inertia  ratios. 

However, each of these  equations  has  an optimum in- 
ertia  ratio for each  value of move  time, and the power re- 
quired at  the optimum  inertia  ratio is illustrated in Fig. 3 
along with the optimum  inertia  ratio. By using Eq. ( 3  1 ) 
and  Fig. 3, the power necessary  to  achieve a specified 
move  can readily be  found. Also, Fig. 3 or  Table 1 can 
be useful in showing how near to an optimum design any 
operating design is. 

In designing a system, Fig. 3 can be used to select the 
best  gear ratio or  motor inertia from the optimum 77 
curves.  The power curves show that  for  short moves (i.e., 
a ratio of move  time to  motor time constant of under 20), 
the  motor time constant  has a  substantial  influence on 
power requirements;  the  shorter  the time constant, the 
lower the  power required. This is very useful in designing 
or selecting a motor  for a specified move. 

If motor size or heat  dissipation within the  motor is 
important  and if a motor can be found that  makes  the 
ratio of move  time to  motor time constant large (>20) ,  
then  a  series resistor  for  the  motor  was shown to be de- 
sirable. 
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