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Electric Motor Requirements for Positioning an

Inertial Load

Abstract: This paper deals with the motor, the inertia ratio, and the power input requirements for moving an inertial load over a spe-
cified distance in a specified time. A linear speed-torque relationship is assumed, and selected motor parameters are normalized to the
load to establish generally applicable solutions and characteristic curves. Emphasis is placed on the velocity-time diagrams and the rela-
tionship among the inertia ratio, the rated motor power, and the electrical input power. It is shown that optimization is possible for input
power at stall, input power immediately following torque reversal, and average input power. Computer generated curves are presented
for these three cases, and their relationships are discussed. Finally. it is shown that the motor time constant has a great influence on

power requirements.

Introduction

This paper describes a general procedure for finding the
optimal motor and the optimal gear ratio for moving a
specified load a specified distance in a specified time.
Optima are found for minimizing the rated power of the
motor, the peak power input, and the average power
input.

The movement of an inertial load from one position to
another is a common engineering problem. The time-op-
timal control has been shown [ 1, 2] to be of the “bang-
bang” type. For the second order system considered here,
the solution consists of an initial period of maximum
available acceleration torque followed by a period of max-
imum available deceleration torque. If the torque of the
motor is constant and independent of speed, the optimum
gear ratio renders the motor inertia reflected to the load
equal to the load inertia [3]. However, this well-known
result is not valid when the torque of the motor drops with
speed, and this paper examines the special, yet frequent,
case of a linear speed-torque relationship.

The differential equations for acceleration and deceler-
ation are solved separately in conventional fashion, and
then the two parts of the move are joined by stipulating
that the velocity at the end of acceleration must equal the
velocity at the beginning of deceleration. The resulting
normalized equations describe the entire range of pos-
sible moves and permit the calculation of velocity di-
agrams.

The motor time constant, the rated motor power, and
the inertia ratio (motor inertia to total inertia) are then
introduced as parameters, facilitating optimization for
power. The motor time constant and the rated power are
normalized to the load to facilitate iterative computer
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solutions for optimum inertia ratios and powers. The re-
sults are presented as curves for all three cases of opti-
mization.

The paper discusses the results of the optimization,
the general equations for moves, the case of direct cou-
pling between motor and load, the use of series resistance
to boost motor power, and the significance of a short
time constant of the motor.

Assumptions

This section presents the assumptions underlying our
analysis for a linear speed-torque relationship. For posi-
tive torques, this relationship can be expressed as

in = Qm() (I - Nm/Nmoo) ’ (1)

where Q _ is the driving torque at motor velocity N, Q,,
is stall torque, and N, is ultimate no-load speed. (Sub-
script m refers to the motor and subscript o to stall.) For
negative torques,

Qn="0n 1+ N /N,_). (2)

In words, Eq. (2) states that if a motor were electrically
reversed while running at its ultimate speed, the braking
torque would start at twice the stall torque, because of
the additional braking torque from counter-emf,
Furthermore, throughout the analysis, we assume that

1. There is complete freedom in the choice of gear ratio
between motor and load. However, we show that with
a suitable choice of motor, the optimal gear ratio may
be made equal to one.

IBM J. RES. DEVELOP.



2. The gear train has zero inertia. In cases in which the
inertia of the gear train is significant, the estimated
gear inertia should be added to that of the load.

3. The only losses in the system are the i°R losses in the
motor.

4. Inductive effects in the motor upon sudden applica-
tion of a finite voltage are neglected.

These assumptions imply that there are no friction
losses anywhere; that counter-emf is proportional to
motor velocity; that current is zero at no-load speed; and
that during acceleration, conversion efficiency from elec-
trical to mechanical energy is equal to the ratio of actual
speed to no-load speed.

Differential equations and normalized velocity
diagram

The equations are solved in a piecewise linear manner by
means of the known initial values for the acceleration
period and the known terminal values for the decelera-
tion period. These equations are then solved simultane-
ously to yield a necessary relationship between the total
move time and the total move distance for given motor
parameters. To begin, a motor with a linear speed-torque
relationship is defined by Q.. N, and its inertia 7, ; and
a move is defined by

mo?

N, = distance (in radians) over which load moves,
I, = load inertia, and

T, = move time.

Note that subscript | is associated with the load and sub-
script s with the sum of acceleration and deceleration
distances and times.

During acceleration, the motor torque is positive, and
the condition of equilibrium between motor torque and
the inertial torques, all referred to the load axis, requires
that

(11+Gzlm) N1=Qmu(1—NlG/me)’ (3)

where N, is the distance over which the load has moved
and G is the gear ratio (motor distance/load distance).

If time T is normalized to move time T, and load dis-
tance N, to final move distance N, by setting

o= T/Ts, (4)
and
v= Nl/le, (5)

the differential equation becomes

G21m Tstn v = Gzlm Tszo

; : = . . (6)
1,+G* 1N, L,+G*I, I N, N,

where v’ and " are derivatives of v with respect to a.
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From the gear ratio and the motor and load inertias, an
inertia ratio may be defined as

n=G1_/U +G1)
or G = nl/? (1 _ 7’)-1/2 I}/z 1;‘1/2, (7)
so that the differential equation becomes

TQn , _Qun” (1=m)" T
1N, e e N,

m

vt (8)

15

This equation holds from the start of motion to the in-
stant of torque reversal, which is identified by the sub-
script r. For convenience, the equation is rewritten as

v' 4+ 21 v = 2A, (9)
where
F:%Qm()[;ﬂ nTs Nr;lx’ (10)
and
— %Qm()[;/z 171/2(1 — ) 1/2 T5211_1/2 Nl?‘ (11)
The solution now becomes
’ A —2le
sz(l_eﬂ ), (12)
A —2lay
=g (1=e™), (13)
A < 1 e*”) y
v=—_-\a¢a——————1,
r 2r (14)
and
A < 1— e‘”ar) A v,
=— ——=—a, — . 15
T\ o r % or (1)

During deceleration, the motor torque is negative, and
by analogy to the case of acceleration, the differential
equation becomes

V' =2 = —2A. (16)

This equation holds from the instant of torque reversal
to the end of motion. Thus,

A -2l (a—ay) A
= (v + 2 = 17
” ("f r)e r )

and at the final condition, = 1, the velocity must be zero,

so that

A 2l (1—a
VII,IF(EZI(I r]—l). (18)
The deceleration distance now becomes

— -2l (a—ay)
vy = (,, +é>1__<;__
T 2r

A

—r lema), (19)
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Figure 1 Velocity diagrams normalized to unity length of
move.

and the total distance moved at a = 1 is v = [, so that
with v/ from Eq. (18),

A ezl'(hur) —1
| —v, == (a,.— 1 +————»)
r 2r

'

=%<ar-1+u">. (20)

It should be noted that the velocity v/ at the instant of
torque reversal is the same for Egs. (13) and (15), which
refer to the end of acceleration, as for Egs. (18) and (20),
which refer to the beginning of deceleration. This equality
is used to establish relationships among «,, I', and A.

The time at reversal can be found from the simulta-
neous solutions of Egs. (13) and (18) to be

R T

e ==+ -—Incosh I (21)
21 2 2 2r

Then, Eq. (13) yields

v, = »[A* tanh I'. (22)
The ratio A/ I may be expressed in terms of the basic
parameters as

A/T=N,/(N/T,), (23)

L.e., the ratio of the ultimate speed to average speed; this
ratio is calculated next in terms of I'. Addition of the
normalized move distances for acceleration and decelera-
tion, Eqgs. (15) and (20), respectively, leads to

l=v, +(1—v)

=%[ar~(l—ar)]= (20, — 1), (24)

=B

from which A/T is obtained as
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1T
2a¢,—~1 Incosh[ ’

AT = (25)
Equation (25), or the direct solution for A derived
from it,

F2

- 2
In cosh T (26)

represents the basic relationship governing a move.
The velocity at the instant of torque reversal is now
obtained from Eqs. (22) and (25) as

., _T'tanh I

" n coshT’ (27)

Thus, the normalized time and velocity at the instant of
torque reversal have been expressed in terms of the single
parameter I'. For any value of I" there is a single normal-
ized velocity diagram that can be calculated from Eqgs.
(12) and (17); Fig. | shows a family of velocity diagrams
for I'=0.05 to I' = 50.

Convenient compound motor parameters and their
normalization to the load

The next step in the investigation concerns the effect of
the inertia ratio n on the power required to accomplish
a specified move. Thus, n should be treated as an inde-
pendent parameter, and the other parameters should be
independent of 7. Whereas the parameters [" and A proved
convenient for the solution of the differential equations
and for establishing the velocity diagrams. they both con-
tain n and we must revert to their respective definitions to
separate 1 from the other components. Inasmuch as A and
" are related by Eq. (26), it is necessary only to express
either I" or A in terms of v and parameters independent of
m. The choice clearly is I' because the definition of T in
Eq. (10) involves fewer basic parameters than the defini-
tion of A in Eq. (11).

Although all subsequent equations could be written in
terms of the basic motor and load parameters, certain
combinations of these parameters are sufficient and re-
duce the numbers of parameters needed. For instance,
possible compound parameters are

Tm=1mme/Qmo’ (28)
the time constant of the motor with no external load;
Pm = anme/4’ (29)

the rated power (peak mechanical power) of the motor;
41 N2 | the kinetic energy of the motor at no-load speed;
and Qfm)/lm, the rate at which the kinetic energy of the
motor with zero load increases at zero velocity (power
rate ). The latter is the only parameter of interest if the
motor torque is independent of speed, and hence it is the

dominant motor parameter for short moves.
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Any two of these four parameters in conjunction with
the inertia ratio are sufficient to define a motor’s perfor-
mance in moving an inertial load. The time constant is
chosen as the first, because for a particular class of
motors it is substantially independent of size and voltage
input. It serves as a normalizing factor for move time 7.
The rated power of the motor is chosen as the second
parameter, because we are concerned primarily with op-
timization of power.

The move time is normalized to the time constant of
the motor by setting

1,=T,/T, (30)

The peak power delivered to the load by a constant
torque motor achieving a specified move is

P1=8Nis11/T2’ 31

and the rated power of the motor, P_, is normalized to

P, by setting
Y,=P_ /P =A/16(1—mT (32)

from the definitions of I' and A in Eqgs. (10) and (11).
Now that the normalized move time 7, and the normal-
ized rated power ¢, of the motor have been introduced,
their relationship will be established.

If the move time is specified, 7, can be calculated with-
out knowledge of the motor power, and 7, becomes the
preferred independent parameter. Furthermore, Eqgs.
(10), (28), and (30) combine into

I'=mnr/2, (33)

m*

so that all parameters can be expressed in terms of n and
7. From Eq. (25),

n1./2

A M 3
a/r In cosh (97, /2)° (34)
from Eq. (26)

In cosh (n7,/2)
and from Eq. (32)

2 3

v {n7,/2) (36)

©16(1 —m)In*cosh(nr,/2)

Thus, the rated motor power required to complete a
move has been found as a function of the normalized
move time 7, and the inertia ratio ». Figure 2 illustrates
this relationship and shows that for any particular value
of 7, there is an associated inertia ratio » that minimizes
the normalized rated power of the motor. The above se-
lection of parameters has the advantage that for any given
7., the inertia ratio can be chosen and the gear ratio es-
tablished so as to minimize power.

MARCH 1976

28 5
3 VAV
U
I 24+ &
2
=0
g
E 201 v
2 % Ny $
= I & 5 &
E S by
2 16r AN
o
4 S
o~
E 12t &
Z 10 1 1 1 ] i
5 10 50 100 500 1000
Normalized move time, 7

Figure 2 Normalized stall power vs normalized move time for
several inertia ratios.

Consideration of electrical input power

In addition to the rated power of the motor, the electrical
input powers (stall, peak, and average) are of interest.
The electrical input powers, P,, are also normalized to
the load, so that

‘l‘i:Pi/Pl:PiTi/SNilv (37)

where the subscript i stands for input.

A motor with a linear speed-torque relationship de-
velops its peak power at a speed ratio of one half. The
efficiency of conversion of electrical power to mechani-
cal power is also one half at this point, so that power input
is twice power output. The stall input power is twice the
input power at half speed; hence, the input power at
stall is

P, =4P,, (38)

and, by means of Eq. (36), the normalized input power at
stall is

(n7,/2)°

= . . (39)
4(1 — n)In*cosh(nr,/2)

"ljio = 4"llm

The peak input torque, and hence the peak input power,
occur immediately following torque reversal. The voltage
is fixed, and the current during deceleration is propor-
tional to (1 + N, /N,,_), so that the normalized peak in-
put power is, from Eq. (39),

(/2 (1 + N_./N,.)

4(1 — n)In*cosh(nr,/2)
(40)

wirzwio (] +Nmr/Nmm)=

The ratio N, /N, _ is obtained from Eqgs. (12), (22),
and (33) as

’

=/ /v =— - —tanh T = tanh y 7,/2, (41)

N/ N — =
mr/ A/F

Moo
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Figure 3 Optimized inertia ratios and normalized powers vs
normalized move times. Rated power of motor is ¥, = W5 Lis
optimization for ¥, ; 2 is optimization for ¥ ; and 3 is optimiza-
tion for ¥, .

so that the normalized input power drawn at the instant
of torque reversal becomes
(m7./2)*[1 + tanh(n7,/2)]

o , 42
Y 4(1 — m)In*cosh(nr /2) “

The input energy during acceleration is found as the
time integral of the power drawn from the supply be-
tween times 0 and «,. The voltage is fixed, and the cur-
rent is proportional to one minus the speed ratio, so that
the normalized power input is, from Egs. (38) and (12),

Uiy (1= N/ N,,) = 4, e (43)
The normalized energy input during acceleration thus
becomes

ﬂr R 2 .
4wmf e =2 (1 e, (44)
o r

The energy input during deceleration is the same as
the energy input during acceleration, because the change
in momentum is the same, and therefore the current time
integral must also be the same. The normalized total
move time for the above equation is & = 1, and therefore
the normalized average input power for the complete
move is numerically equal to the normalized total energy
input:

o

T (1 — evgl'a‘“). (45)

lI/i av =

With [, «,, and ¢, replaced by means of Egs. (33), (21),
and (36), respectively, the normalized average input
power becomes

4tanh(n7,/2)  (97,/2)*tanh(n7,/2)

nr,/2 4(1 — m)In*cosh(nr,/2) ’
(46)

iav — ¥m
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Optimization and selection of motors and gear ratios
For any value of 7, the inertia ratio n can be optimized
to result in a minimum of rated motor power, peak input
power, Or average input power.

Minimization of ¢ in Eq. (39) results in the smallest
motor of the class under consideration, or for a specified
motor it leads to the minimum move time.

The normalized input power at reversal of Eq. (42)
should be minimized if the instantaneous power drawn
from the supply is of primary interest.

When heat dissipation of the motor is of greatest con-
cern, the normalized average energy input of Eq. (46)
should be minimized.

All three optimizations have been carried out by com-
puter, and the results are presented in Fig. 3. Curves are
shown for optimum 7, ¥, =44, ¥, ,and ¢, as functions
of 7, for all three optimizations. This permits examination
of the sacrifice entailed in the remaining powers when
v is optimized for any one of the three powers.

Generally, the move is specified and one has to select
a motor that can accomplish it with either minimum rated
power, minimum peak power, or minimum average power.

For any particular class of motors, r,= T,/ T, can be
calculated, and then Fig. 3 shows the optimum % and ¢,
for the three cases of optimization. The rated power of
the motor is then obtained from Eqgs. (32) and (36) as

Pm = Pl "llm = %Pl d’m' (47)
Further, the stall input power is 4P = P, i, , the peak in-
put power from Eq. (42) is

Pirzpllllir’ (48)

and the average input power from Eq. (46) is
Piavzpl llJiav' (49)

Where a compromise is indicated between optimized
rated motor power (i.e., minimum motor size) and op-
timized average input power (i.e., minimum heat dissipa-
tion in the motor), a value of n between 7, , and 7, , of
Fig. 3 may be considered for the particular 7, and then
¥, =, /4 and ¥, . should be calculated from Egs. (39)
and (46).

Once 1 has been determined and a motor has been se-
lected on the basis of P = P, the motor inertia be-
comes known and the gear ratio can be calculated from
Eq. (7). This completes the definition of the system.

Discussion
e Optimization

The asymptotic values for 7, — o are shown in Table 1.
The framed values represent the minima for the respec-
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tive optimized powers and may be approached with very
long moves.

Figure 3 shows that there is relatively little difference
between optimization for input power at stall and optimi-
zation for input power upon torque reversal. Their 7
curves and their normalized average power curves are
very similar; their normalized stall power curves and
their curves of normalized power upon torque reversal
are practically identical.

On the other hand, the results of optimization for aver-
age power are quite different. Only the normalized aver-
age power has a finite asymptotic value as r_ increases,
whereas the normalized powers at stall and upon torque
reversal have a broad minimum in the range of 7, from 8
to 25, and then increase toward infinity. The physical
explanation for this is that optimization for average power
leads to a greater 7 for a given 7, hence to a greater I' =
m7,/2 and a more nearly rectangular velocity diagram in
Fig. 1. Thus, some energy is used to bring the system up
to speed at the start of the move and to stop it at the end,
but very little energy is consumed while the system runs
at substantially no-load speed. The power drain upon
torque reversal is high, of course, in this case and ap-
proaches twice the stall power for values of r_ above 8.

A word of caution is in order here: This entire analysis
is based on the only losses being i°R losses in the motor.
This assumption does not hold well in the case of long
moves at high motor speed, where bearing friction and
wind resistance are consuming some energy. The expres-
sions derived are therefore minima and allowance should
be made for the other losses.

» Moves in general

The foregoing selection of a motor and gear ratio was
based on optimization for a particular move time. One
may now wish to examine how well the system performs
for other move times, where it is no longer optimized.
Because m, N_=N, /G, and T, have been defined, the
examination may proceed by means of Eqs. (23)
and (34):

Ny . . Incosh(nT,/2T,)
Su_ TN, JA=N,, 1 : (50)
T, nT,/2T,
from which

. 2T,
lelex—n—ln cosh(nT,/2T,), (51)
or conversely,

2T et

T, = T’" arc cosh "5V, (52)

The fully generalized equations are obtained from Egs.
(51) and (52) by replacing N,_by N _/G and introduc-
ing G from Eq. (7):
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Table { Asymptotic values as 7, — <.

Optimization for

input power input power average
at stall upon torque input
(W) reversal power
(¥,) W, )
"/ 2 1.813 1.756

o0
v, 1144 "
v, 2.209 -

v, 0.5935 0.6668 0.25

le = (l — 77)1/2 n—l/z 1:{(21;1/2 N (53)

e
~ Direct coupling between motor and load
So far, the gear ratio could be used to bring about the de-
sired inertia ratio. When the motor is directly coupled to
the load, this convenience disappears: the actual gear
ratio is 1.0, and therefore the optimum gear ratio should
also be in the vicinity of 1.0. With G, =1, Eq. (7) re-
quires that

Im op 1]7’1)))/ ( - Tlnp) ’ (54)

Because 7, is a function of only 7,= T,/ T, for any of
the three optimization procedures, the optimum motor
inertia depends only on the load inertia, the time constant
of the motor, and the move time, but not on the move dis-
tance.

As in the case of unrestricted gear ratio, the values of
N, and Y, = ¢, /4 may be obtained from Fig. 3 and then
I can be calculated from Eq. (54). However, the ¥,

m op

and [, so obtained may be mutually exclusive, particu-
larly for long moves (large values of 7)) in that a motor
with inertia / , may just not be able to develop sufficient
torque. To keep inertia down, the rotor diameter must be
small and, to develop the required torque, a small diam-
eter rotor becomes very long. However, there is a practi-
cal limit to the slenderness of motor rotors, and beyond
this [imit optimization becomes impossible.

In such cases, one has to work with an actually attain-
able inertia ratio. Figure 2 and the equations relating 7,
i, and 7, hold generally and are applicable whether or not
n is optimized. Therefore, they all apply in the case of
direct coupling between motor and load, but the ¥ curves

of Fig. 3 do not apply when the actual n differs from n,.

o Series resistance to boost motor power

A series resistance may be used to boost motor power
output at the expense of increased total power consump-
tion. If
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Table 2 Effects of adding series resistance.

No series Series
resistance resistance
Stall torque Qo 0r0= Qe
Inertia 1, =1,
No-load speed Np. Ni =(1+p)N,,,
Peak power output 10N 10, N (1 +p)
Rated power 100N
Time constant T, T:=T_(1+p)
Normalized move time 7.=T,/T, F=T,/T,(1+p)

p=R./R, (55)

where R, is series resistance and R is motor resistance,
and if the supply voltage is increased by (1 + p) to main-
tain the same stall current, the motor parameters and 7,
compare as shown in Table 2, where the asterisk iden-
tifies parameters modified by the addition of the series
resistance.

Figure 3 holds for the parameters with asterisks as well,
and 7}, ¥* = 4¢*, and Y, may be read off as functions
of 7¥ for any particular optimization. The respective
powers consumed by the system are then obtained as the
products i P, and the power dissipated within the motor
as ¥sf,, P,/ (1 + p). The rated power of the motor (with-
out series resistance) is found as % P,/ 4(1 + p).

For any specified move, a series resistance reduces
the required power rating of a motor (of the same class).
The reduction is greater for large values of 7, where
changes less for a given change in 7. The power dissi-
pated within the motor actually decreases when a series
resistance is used, and again the decrease improves as
7, Increases.

Thus, for large values of r,, the use of a series resistor
becomes attractive when motor size or heat dissipation
within the motor are limiting factors. In particular, series
resistance should be considered when the load is directly
coupled to the motor and n cannot be chosen at will,
Here, the series resistance provides a most useful addi-
tional degree of design flexibility.

e Effect of motor time constant on power consumption

1t has been shown [3] that an important measure of mo-
tor performance is the power rate at stall, which was dis-
cussed briefly under “Convenient compound motor
parameters and their normalization to the load.” In terms
of the compound motor parameters used here for opti-
mization, the power rate is 4PmT;,‘. The ratio of power
rate to power dissipation at stall is a factor of merit, which
has been shown [3] to be very high for reluctance-type
motors. Because power dissipation at stall was found here
to be 4P, this ratio simply becomes T,'. Hence, if the
only losses in the motor are the iR losses and the speed-
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torque relationship is linear, the factor of merit is the re-
ciprocal of the time constant of the motor. This interest-
ing result implies that the time constant {(a dynamic term
usually found by measurement of steady state velocity
or from frequency response data) can be determined
without any dynamic measurements from input power at
stall, stall torque, and inertia. Figure 3 shows that a move
can be made with less power if 7 is large (ie., T, is
small), which is the same as a large factor of merit.

Hence, it is clear that a large factor of merit can im-
prove power consumption, particularly in the case of
short moves. The potential for improvements through
higher factors of merit decreases as 7, becomes larger,
and Fig. 3 shows that with 7_at 30, the theoretically pos-
sible improvement with the factor of merit becoming very
large is below 20%.

In the region of 7, above 20, an increase in the factor
of merit in combination with a series resistance may re-
sult in a smaller motor with less internal heat dissipation
and little increase in power consumption of the system.

Summary

If the speed-torque characteristic of the motor is linear,
then the power required is proportional to the load inertia,
the square of the move distance, and the inverse of the
cube of the move time. All powers are normalized to
these load-dependent parameters as given by Eq. (31).
The normalized stall power, peak power, and average
power are given by Egs. (39), (42), and (46), respec-
tively, in terms of the inertia ratio and the normalized
move time. These equations are generally applicable and
can be used for detailed evaluation of power for specific
motors and inertia ratios.

However, each of these equations has an optimum in-
ertia ratio for each value of move time, and the power re-
quired at the optimum inertia ratio is illustrated in Fig. 3
along with the optimum inertia ratio. By using Eq. (31)
and Fig. 3, the power necessary to achieve a specified
move can readily be found. Also, Fig. 3 or Table 1 can
be useful in showing how near to an optimum design any
operating design is.

In designing a system, Fig. 3 can be used to select the
best gear ratio or motor inertia from the optimum %
curves. The power curves show that for short moves (i.e.,
a ratio of move time to motor time constant of under 20),
the motor time constant has a substantial influence on
power requirements; the shorter the time constant, the
lower the power required. This is very useful in designing
or selecting a motor for a specified move.

If motor size or heat dissipation within the motor is
important and if a motor can be found that makes the
ratio of move time to motor time constant large (>20),
then a series resistor for the motor was shown to be de-
sirable.
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