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Error  Correcting  Codes  for 
Satellite  Communication  Channels 

Abstract: This  paper  addresses  the  problem of  efficient  forward error  correction on differentially  encoded, quadriphase-shift-keying 
(DQPSK) channels. The approach is to design  codes  to correct the  most  probable  error patterns.  First  the  probability  distribution of 
error  patterns is derived. Then a class of convolutional  codes  that  correct any single  two-bit error is described. Finally a threshold 
decodable  code  that  corrects all  single, and many double,  two-bit  errors is presented. 

Introduction 
A satellite  communication system  for digital data  trans- $i+l  - $i. If a 90" phase shift, or single-bit error,  occurs 
mission must  make efficient use of the available  band- during the transmission of $i, the  output of the differential 
width and power.  This can  be  accomplished by combin- decoder will contain two single-bit errors:  one in the 
ing forward error  correction with an efficient modulation estimate of $i - and  one in the  estimate of $i+l - ${. 
technique. The  greater efficiency of phase-shift keying Thus,  the bit error  rate is doubled and bit errors  are cor- 
(PSK),  as  opposed  to frequency-shift keying, often leads related. The correlation of errors is the  more serious 
to  the choice of PSK as a  modulation  technique for  sat- problem because it severely degrades the efficiency of 
ellite  channels [ 1 ,  21. The implementation of a PSK a  random-error  correcting code.  If,  for example,  a 
modem depends on the  constraints of the  system.  The single-error  correcting  convolutional code is used  for 
number of phase states and the  type of encoding (direct forward error  correction,  there is no  guarantee  that it 
or differential)  can  be  chosen to effect the desired tradeoff will correct  any double-bit errors. 
among power, bandwidth,  transmission rate,  and bit- Forney and  Bower [6] encountered this  problem in 
error probability. In a bandwidth-limited system, quadri- designing a high speed sequential decoder.  Their solution 
phase-shift keying (QPSK) can  be  used  instead of binary was to perform forward error  correction  before dif- 
phase-shift keying to  conserve bandwidth [ 1-31 ,  The ferential  decoding [see Fig. 1 (b)].   In this scheme,  the 
use of differential encoding to resolve the  phase ambiguity error  correction  code (ECC) decoder need  not contend 
at  the receiver can  save  power  that would otherwise be with double-bit errors, but it  is faced with the  same  phase 
required  for  a  residual carrier [4]. For  these  reasons, ambiguity that  the differential  encoding was used to re- 
differentially encoded QPSK  (DQPSK) is a highly solve. Techniques  to resolve  this ambiguity include an 
efficient modulation technique  for satellite  communica-  acquisition  search at  start-up and whenever  the modem 
tion channels. Fig. 1 ( a )  shows  a block diagram of a  undergoes  a 90" phase slippage; much of the benefit of 
communication system using DQPSK and  forward error differential  encoding is lost. 
correction.  This  paper  describes a different approach  to  the prob- 

A disadvantage of DQPSK modulation is that each lem. Standard t-error  correcting codes  are designed to 
failure in recognizing a phase position  results in a  two-bit correct  the  error  patterns most likely to  appear in a bi- 
error. A QPSK modem transmits a  symbol, or bit pair, nary  symmetric  channel. Instead of using these  codes, 
by phase-modulating the  carrier  to some phase $ chosen it seemed  advisable to look for new codes  that  correct 
from  the  set {O0, 90", 180", 270"). In  the  presence of the  error  patterns most likely to  appear in a differentially 
white Gaussian noise, the most likely transmission error encoded  coherent QPsK system. To  correct single- 
is a  phase  shift of* 90" in the  estimate of $. If the sym- channel errors,  for example, we looked for a code that 
bols are encoded using a Gray  code, a 90" phase error corrects  the double-bit errors produced by the differential 
in $ is a single-bit error in the bit pair represented by decoder. Because  they are highly unlikely, this code need 
$ [ 5 ] .  When differential encoding is used, information not correct single" errors. To find such a code, it  is 
is encoded in the difference between successive  phases, first necessary  to  characterize  the probability  distribution 
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Figure 1 Differentially encoded QPSK system with forward error  correction and differential coding ( a )  internal to and (b)  external to 
the error control  coding 

of the  error  patterns.  This is done in the  following  section. 
Next, a class of convolutional  codes,  which  can  correct 
any  single-channel  error, is presented.  Then  another 
convolutional  code,  which  corrects all single-channel 
errors  and  70  percent of double-channel  errors,  is  de- 
scribed. 

Error characterization 
A QPSK  modem  transmits a pair of bits  by  phase- 
modulating  the  carrier  to O", 90", 180", or  270". The  re- 
ceiving  modem  estimates  the  phase  and  translates  it  back 
into a bit pair.  Thus,  to  transmit  the  bit  pair ( I ,  Q ) ,  the 
modem  transmits  the  phase 

0 =AI ,  0 )  1 ( 1 )  

wheref( . ,  .) is a I :  1 mapping of { (0, O ) ,  (0, I ) ,  ( I ,  O ) ,  
( I ,  I ) } onto { O", 90", 180", 270").  The  receiving  modem 
computes  the  maximum  likelihood  estimate 6 of 0 and 

(f, Q )  = f ' " (e^ ) .  (2)  

The  channel  noise is assumed  to  be  white  and  Gaus- 
sian. If the  receiving  modem  has  exact  knowledge of the 
carrier  reference  phase, it can  be  shown [4] that  the 
error in e ,̂ 

+ = e - &  
has  the  probability  distribution 

p r ( 4  = 0') = ( I  - 

P r ( 4 = 9 0 " )  = Pr(4=270")  = p ( l  - p ) ;  

Pr(q5= 180") =$, (4) 

where p = 0.5 e r f c ( V ' m )  and R is the  signal-to-noise 
ratio. 

The  mapping f ' (  ., .) is chosen  to  satisfy 

f " ( 0 )  Of"(0 + 180") = ( I ,  I )  ( 5 )  

for all 0, where 0 denotes  the EXCLUSIVE OR function 
applied  element-by-element.  Then it follows  from (4) 
and ( 5 )  that  the  bit  errors f 0 I and Q 0 Q are  inde- 
pendent  random  variables with distributions 

P r ( f @ I =  I ) =  I - P r ( f @ / = O ) = p , a n d  

P ~ ( Q O C ~ = ~ ) = ~ - P ~ ( $ O C ) = O ) = ~ .  (6)  

In other  words,  the  channel,  including  the  two  QPSK 
modems, is simply a binary  symmetric  channel  with 
crossover  probability p .  

In  general,  however,  the  receiving  modem  does  not 
know  the  carrier  reference  phase  exactly  but  can  esti- 
mate  it  to  within a degrees,  where a is fixed but  unknown. 
In  this  case, e  ̂ = 0 + a + 4 and, in general, 6 # 0 even 
when 4 = 0. Differential  encoding is used  to  resolve  this 
problem.  The  data  sequence { (Ii, Q i )  , i = 1, 2 , .  . .} is 
encoded  into {e,},  where 0, = f (  I i ,  Q,) as before,  but 
instead  of  transmitting Bi, the  modem  transmits  the  se- 
quence { $i} of partial  sums  defined  by 

JI" = 0; 

$, = qJ-] + H , ,  i = 1 ,  2, .  . .. (7) 

3, = $, + a + +,, (8 )  

The  receiving  modem  estimates $ i  by 

where  the  random  errors 4, are independent of each  other 
and of the  input  sequence $ i ,  and  each 4, has  the  distribu- 
tion  shown in (4) .  Then Oi is estimated  by 
^ ^ A  

0, = $, - $,-,, (9) 

(f,, 6,) = p ( 6 , ) .  (10) 

and (I i. QJ is estimated  by 

If the  errors in the  decoded  sequence  are  denoted  by 

( E ~ ,  FJ = ( f i ,  Q i )  0 (I,, ei ) ,  i = I ,  2 , .  . ., 

it  follows  from (8  - 1 1) that 

(E i .  F, )  = f " ( 0 J  0 f '" (0 ,  + 4, - + i + * ) .  

(E,. F i )  = ( ui, V i )  0 ( X i ,  V i ) ,  

ui, V i )  = f'" (0,  - +,-J 0 f'" ( 0 J  , 

( X , ,  Y i )  = J " I ( 0 ,  - +,&l + 6,) 0 J ' " (H i  - +,-1)  

It is convenient  to  rewrite ( 1 2 )  as 

where 

Making  use of ( 5 ) ,  one  can  show  that 
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Table 1 Possible error  patterns when ( X i ,  Y , )  contains  a single- 
bit error and a l l  other symbols are  error  free. 

0 1 0 0 I 
0 1 1 0 

1 I 0 1 0 
0 1 0 I 

where Ci-l = f i _ ]  0 Qi- ,  0 I i  0 Qi.  Therefore,  the se- 
quence { ( Ei,  Fi )  } is completely  determined by { (Xi, Yi) } 
and { ( I i ,  Q i )  I .  

It follows from (4), ( 5 ) ,  ( 14),  and the  independence 
of the $i  that Xi and Yi,  i = 1, 2 , .  . ., are all independent 
random  variables  and  each is equal to 1 with probability 
p and is 0 otherwise.  Combining all these  results and sim- 
plifying, we obtain 

( E i ,  F i )  = ( X i ,  Yi) 0 ( X .  2-1 , Y. 1-1  ) c. 2 - 1  

0 ( Y i + l >  X i - l )  q-l 0 ( W i - ] >  Wj-])>  (16) 

Wi-] = (xi&l 0 Y,&J ( X i  0 Yi) ( 17) 

where 

and X i ,  Yi, i = I ,  2 , .  . ., are all independent, identically 
distributed  random  variables with distributions 

P r ( X f = l , ) = l - P r ( X i = O ) = p ;  

Pr (Yi= 1 )  = 1 - P r ( Y i = O )  = p .  (18) 

This completely specifies the probability distribution of 
the  sequence { ( E i ,  Fi )  1. 

For decoding purposes, it  is preferable to express 
( E i ,  F i )  in terms of (ii, Q i ) ,  since  this sequence is ob- 
servable by the  decoder. I f  is defined by 

ci-l = ii-, 0 Qi-l 0 ii 0 Q i ,  ( 19) 

then it can be  shown that = Ci-, whenever X i - ]  # 
Yi”],  so that (16) is equivalent to 

(Ej, F i )  = ( X j ,  Yi) 0 (Xi-1> Yi-J C i - ]  

0 ( yi-13 Xj-J <-1 0 ( W i - l >  W i - J .  (20) 

Now  consider  classes of most likely error  sequences 
{ ( E i ,  F J } .  For a  fixed-input sequence { ( I i ,  e,)}, Eq. 
( 16) defines  a 1 : 1 mapping between { ( E i ,  F i ) }  and { ( X i ,  
Yi) }. Therefore, the probability of any { ( E i ,  F i ) }  se- 
quence is equal to  the probability of the { ( X i ,  Yi)}  se- 
quence  that maps  into  it,  and the most likely { ( E j ,  F J }  
sequences  can be characterized in terms of the most 
likely { ( X , ,  YJ} sequences.  The {(Xi, YJ} sequence is 

170 distributed like the  error  sequence of a  binary  symmetric 
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channel. An appropriate  class of { ( X i ,  Y,) } sequences is, 
therefore,  the  set of  all sequences containing n or fewer 
1’s for  any  choice of n. A sequence { (E i ,  F J }  may be 
said to contain k channel errors if it maps into  an { ( X i ,  
Y J }  sequence containing  exactly k 1’s. Then  an  appro- 
priate class of most likely { ( E i ,  F i ) )  sequences is the  set 
of all sequences containing n or  fewer channel errors.  It 
is easy to  describe  these  patterns in detail for n = 1 and 
n =  2. 

Single-channel error patterns 
If  a single-channel error  occurs in ( X i ,  Yi) and all other 
bit  pairs ( X j ,  Yj) are  error  free, it is easy to  see from 
(20) that 

( E j ,  F j )  = (0,  0) if j # i or i + 1; 

Then, since ( X i ,  Yi) can take the value (0, 1 )  or ( I ,  0) , 
there  are four  possible patterns for (E,,  Fi ,  Ei+l ,  F,+l).  
These  are  shown in Table I .  

Double-channel error patterns 
Assume  that  the  sequence ( X i ,  Yi) , i = 1, 2, .  . ., contains 
exactly two 1’s. There  are  three  cases, depending on 
whether  the two errors  are in the  same bit pair ( X , ,  Y,), 
in adjacent bit pairs (Xi, Yi) and ( X , + ] ,  Yitl) ,  or in non- 
adjacent bit pairs. 

C ~ ~ s r l I f ( X i , Y i ) = ( l , l ) a n d ( X j , Y j ) = ( O , O ) f o r j # i ,  
it is easy to  see from (20) that  the only possible error 
pattern is 

( E i ,  Fi, Et+l, F i + ] )  = ( 1 ,  1, 1, 11, 

( E j ,  F j )  = (0,  0) for j # i or i + I .  ( 2 2 )  

Case 2 If ( X i ,  Yi) and (Xi+l, Yi+]) each  contain a single 
error, and ( X j ,  Y j )  = (0,O) for j # i or i + 1, then  repeated 
use  of (20) yields 

(E j ,  Fj) = (0, 0) for j # i or i + 1 or i + 2, 

(Ej, F i )  = ( X , ,  YJ, 

Ei+ 1 = Fi+]  = E, 0 Fi+2 @ C i  0 C i + l ,  

Fi+J = ( X i + l ,  Yi+l)C,+l  0 ( Yi+,. Xi+l )c i+ l .  (23)  

From (23) ,  it is clear  that four error  patterns  are possible 
if Ct  0 C,+l = 1, and four  other  patterns  are possible if 
C, 0 Ci+l = 0. These  patterns  are  shown in Table 2. 

Case 3 If ( X i ,  Yi) and ( X j ,  Y j )  each contain  a single er- 
ror, all other bit pairs are  error  free,  and I i - jl > 1, then 
the only 1’s in the  sequence { (Ei, F, ) }  are in the non- 
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overlapping sequences (E i ,  F,,  Ei+l ,  F i+ l )  and (Ej ,   Fj ,  
E j+ l ,  F j + l ) .  The possible error  patterns  can be determined 
independently for  each  sequence,  as in the  case of a single 
error. 

A class of single-channel error correcting convolu- 
tional  codes 
Given  any positive  integer rn, it is possible to  construct 
a  single-error  correcting  convolutional code with decod- 
ing constraint length rnn, where n = 2m-1, and rate 
( n  - 1) / n .  A class of codes satisfying these conditions 
was introduced,  and  shown  to be  optimal, by Wyner  and 
Ash [7]. The  codes  are based on  the  truncated parity 
check matrix 

H = [D,  TD,  T2D, ' .  ., Tm-'D],  (24) 

where  the  columns of D are  the n distinct  binary rn-tuples 
having first elements  equal  to  one,  and T is the rn X rn 
shift  matrix defined by 

i 1 if i- j =  1, 

0 otherwise. 
T i ,  = 

The ordering of the  columns of D is arbitrary. For reasons 
that will become clear  later,  the  jth column of D is set 
equal to  the binary representation of 2m - j .  Thus, for 
rn = 4, 

r 1 1 1 1 1 1 1 1 1  

D = L o l o ~ o l J  1 1   1 1 0 0 0 0  
1 1 0 0 1   1 0 0 '  

This  code  corrects a single-bit error in  any  n-bit block if 
the rn - 1 preceding and following blocks are  error free. 

On a differentially encoded QPSK channel, this code 
is unsuitable. It  miscorrects all single-channel errors 
(because they appear  as double-bit errors)  and almost 
all multiple-channel errors.  It is easy  to  restore  the single- 
channel error  correcting capability of H by degree-two 
interleaving. This technique, however,  doubles  the  con- 
straint length,  requiring  more hardware  and increasing 
the probability that  two or more channel errors  occur 
within the  constraint length.  Interleaving is unnecessary 
because  there  exists a class of convolutional codes, with 
constraint length rnn and  rate ( n  - 1) / n ,  which corrects 
single-channel errors in a differentially encoded, coherent, 
QPSK system. 

The  truncated parity check matrix for a code in this 
class is 

H' = [DV,  TDV,  T'DV,. . ., T"-'DV], (27) 

where D and T are defined above  and  Vis  the n X n matrix 

Table 2 Possible error  patterns when ( X i ,  Yi) and ( X i + l ,   Y i + l )  
each contains a single-bit error and all other symbols are  error 
free. 

ei 0 E< Fi Ei+l  Fi+l Ei+2 Fi+2 

0 I O  1 I 1 0 
1 0  0 0 0 1 
0 1  0 0 1 0 
0 1  1 1 0 1 

1 1 0  0 0 1 0 
1 0  1 1 0 1 
0 1  1 1 1 0 
0 1  0 0 0 1 

V =  

with 

1 0 0 * . - 0  
I I O . ' .  0 
I I I . ' *  
. . . . . . . m Ol 

. . . . . . . 

. . . . . . . 
I I I * . .  I 

I = [: ;] and O =  [E :]. 
If rn = 4, then 

DV=10  0 1 1 0  0 0 01 
0 0 1   1 1   1 0 0 '  

L 0 0 1 0 0 0 1 0 ~  

The matrix H' is used to  encode  the  data in n-bit blocks 
before differential encoding  and to  decode  the  data  after 
differential decoding [see Fig. 1 (a) 1 .  If the kth ECC en- 
coded block is denoted by 

wk = ( I k b + l '   Q k b + l j  ' ' ') Ikb+b'  Qkb+b)' (31)  

where b = n / 2 ,  then Qkb+b is a parity check bit chosen  to 
satisfy 

where h' is the last  row of H ' ,  and X denotes  inner prod- 
uct modulo 2. The kth block received by the ECC de- 
coder, 

@k = (ikb+19 d k b + l '  ' ' ' 9  'kb+b' d k b + b )  7 (33 )  

and  the previous rn - 1 received  blocks are used to de- 
termine  the kth syndrome bit: 
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To explain the decoding algorithm,  and to prove that 
the  code  corrects all single-channel errors, we first ex- 
amine the syndromes  corresponding to the single-channel 
error  patterns shown in Table 1. We assume  that the kth 
block received by the differential decoder, (Xkb+ , ,  Y,,+,, 
. . ., X,,+,, Y,,,,), contains  a single-bit error, and  the 
m - 1 preceding and following blocks are  error free. It 
is easy  to see from Table 1 that the  possible values of e, 
are the  rows of the n X n matrices M ,  and M ,  defined by 

M" = 

. . .  . looo.:. ;] 
- 0 0 0 . . .  I 

where I and 0 are given by (29) and 

J = [ :  :]. 
When m = 4,  (37) becomes 

M ,  = 

M ,  = 

- - 
0 1  1 0 0 0 0 0  
1 0 0 1 0 0 0 0  
0 0 1 0 0 1 0 0  
0 0 0 1  1 0 0 0  
0 0 0 0 0 1  1 0 '  
0 0 0 0 1 0 0 1  
0 0 0 0 0 0 1 0  

e 0 0 0 0 0 0  1- 

1 0 1 0 0 0 0 0 -  
0 I O  1 0 0 0 0  
0 0 1 0 1 0 0 0  
0 0 0 1 0 1 0 0  
0 0 0 0 1 0 1 0 '  
0 0 0 0 0 1 0 1  
0 0 0 0 0 0 1 0  
. o o o o o o o  1- 

(39) 

The matrix M ,  contains all error  patterns for which C i  is 
equal  to zero, and M ,  contains all patterns for which ki 
is equal to one. Error  patterns and e,+1 may have 
non-zero  elements due  to overlapping of an  error in the 
previous  block,  but only in the first two positions. It is 
easy  to see  that 

Decoding of the kth block is based on syndrome bits 
s,, s,+~, . . ., s,+,,-,, which can be represented as a column 
vector: 

= (s,, f,+*'. . ., S,+m-l) t. (41) 

When we compute z using (361, all block error  patterns 
other than e, drop out. This includes e,-m+l and e,+, 
because the first two columns of DV are equal  to 
(0,  0,. . ., 0)'. Therefore, 

and the possible values of z are therefore the columns of 
So and S,, where So and S, are m X n matrices defined by 

So = DVM,' and S, = DVM,'. (43) 

The ordering of the columns of D was chosen in such a 
way that  the sum,  modulo 2,  of columns j+ 1, j +  2, j +  3, 
and j+4isequalto(0,0;~~,0)',forj=0,4,8;~~,n-4. 
The matrix V was chosen as 

Using these facts, we can reduce (43) to 

So = S, = D. (45) 

The first step in decoding is to find the  unique  integer 
r such that  the rth column of D is equal to z. Then, from 
(43) and ( 4 3 ,  e, is equal  to the rth row of either M ,  or 
M,. In  either case,  the channel error must  have  occurred 
in symbol (Xi, Yi) , where i is given by 

and [x]  denotes the  largest  integer  less  than or equal to x. 
Since i is known, ki can be computed using ( 19).  Then 

Finally, it is easy to  see that 

(47) 

Obviously, this procedure  leads to  correct decoding of 
any block containing  a single-channel error,  as long as the 
m - 1 preceding and following blocks are  error free. Then 
the probability that an  uncorrectable error  occurs in a 
block, given that  the m - 1 preceding blocks are  error 
free,  can be approximated by [8 ,  91 

where 
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p = o.ser fc (v 'KW) (SO) 

is the channel error probability. The probability that  an 
information bit is decoded incorrectly, given that  the pre- 
vious mn bits were  decoded  correctly,  can be  approxi- 
mated by 

P , = P , / ( n -  1) .  ( 5 1 )  

The bit error probability P,, for  the  case m = 4, is plotted 
as a  function of R in Fig. 2. 

A rate 3/5 threshold decodable  code 
The  data  conversion from  a  switched connection service 
of 19.2 kilobits per  second  (kbs) transmission rate  to the 
network  channel rate of 32 kbs allows 40 percent redun- 
dancy, which can  be  used to design error correcting codes 
for  data  protection. A rate 3 /  5 (40, 24) threshold  de- 
codable convolutional code  for  data  rate  conversion  and 
error protection is described in this  section. This  code 
was obtained by trial and error  because  the methods of 
the previous  section could not  be  successfully  applied. 
The (40,  24) code designed  for DQPSK is capable of 
correcting  any single-symbol error (+i in the Error  char- 
acterization section) in a sequence of 40 bits. It  also 
corrects  about 70 percent of the double-channel errors 
in 40 bits. 

Encoder 
Figure 3 shows the encoder.  It  consists mainly of shift 
registers and EXCLUSIVE OR gates.  Two parity check bits 
are generated for  every  three input  information  bits ac- 
cording to  the following equations: 

p;  = i; 0 i," 0 0 i: 0 i,' 0 ii, 
p i  = i; 0 i,O 0 0 i," 0 i,C 0 iz, ( 5 2 )  

where  the additions are EXCLUSIVE OR operations; i:, i:, 
ii are  the three  information  bits at time k ;  and p:, P: are 
the check  bits generated  at time k .  

Decoder 
Decoding is done in two  steps.  In  the first step,  two  sets 
of syndrome bits are calculated and  stored.  In  the  second 
step,  error bits are estimated and  the  actual  error  correc- 
tion is made. 

Figure 4 shows the  syndrome bit calculation for  the 
decoder.  Let p ' i ,  it:, it:, p'", and i': be a block of received 
bits at time k.  The  syndrome bits are calculated  according 
to ( 5 2 )  as follows: 

sa = p f a  0 i t a  0 0 it: 0 it: 0 0 i';, 
si = pri 0 0 0 i'i 0 it! 0 0 i'Cq. (53) 

Let e;, e:, e: be the  error bits  corresponding to informa- 
tion bits a, b, c ,  respectively, at time k .  Then, 

8 8 8  

- I  

- 2  

-3 

-4 

- 5  
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-7  

-8 

-9 
J2 

4. 
M 
2 -IC 

i 
I I I I I 1  I I I 1  

I 2 4 6 8 10 12 14 16 18 20 

i 

Figure 2 Bit error probability as a function of the signal-to- 
noise  ratio. 

b P a  

Figure 4 Decoder for  the (40,24) code, showing  the syndrome 
bit calculation. 
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i'l The complementation removes  the effect of e: from  the 
syndrome bits. Similarly, the  estimates of e: and ef are 
determined by the following rules: 

I 
If the value of e; or e; is estimated as I ,  certain  syndrome 
bits are complemented as shown in Fig. 5. 

I h + m l - ~ - b  i h  Error  correcting capability + Let E," and E," be the  error bits  corresponding to  the two 
Complementation I, 

/ 

I Let 

J J  I/ 

Complementation I, 

rt 
Figure 5 Complementation of syndrome bits in error  correc- 
tion with the (40, 24) code. 

The  value of error bit e: is estimated as 

s= [S;  S; . -S3;S; .~~Sbg] ,  

e =  [ E ;  e: e; E! ef E ;  e; e: E," e; E: 

. . . E :  e: e: E: e: ] .  

Assume  that  no decoding error  occurred before  time 1 ,  
i.e., E,", EL, e:, e!, e: are all zero  for k < 1. Then (59) can 
be expressed  as 

S = C . H t ,  ( 60) 

where H = 

- 

I 1  1 0 0  
o o o o n  I I I 0 0  
n o ~ o o o o o n n ~  I l o o  
n n o o o n n 1 n n n n o o o 1 1 1 n n  
o o o o n n o n n n o o ~ o o n n n n n ~ ~ ~ o o  
n n o o ~ o n o n n n n o n o o o ~ o o n o n o n ~ ~ ~ n o  
o o n o ~ n n n n ~ o o o n o o o n n n n o ~ o n o o o o o ~ ~ ~ n n  
n n ~ n o o o o n ~ n o n n ~ o o o o o n n n n n n o ~ n o o o o n n ~ ~ ~ o  
0 1 0 1  I 
n o o o o n 1 n 1 1  
o ~ n o n o o o o o o ~ n ~  I 
o n ~ n n o ~ o o o o o o n n n ~ o ~ ~  
o o n o ~ o o ~ o o n ~ o n n o o o o o o ~ n ~  I 

n n n o o o ~ o o n n o o n ~ o o ~ o o o ~ o o n o n o n n n ~ o ~ ~  
o ~ o n o n n n o ~ n o ~ n o n ~ n o n n o o o o n ~ n ~ ~  

p n o o o o n o o n o ~ o n o o o n n ~ o o ~ n n n ~ n o n n o o n o n ~ n ~  

Now  consider  the  set { Sy, S;,  S!, Si} which is equal to 

If e: is estimated to be 1 ,  then i': is EXCLUSIVE oRed with According to  the rules for the  estimate of e:, the value of 
e: to yield ir. In this case,  the  syndrome bits S i ,  $, S:, e; is correctly  determined if the  number of errors is two 
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A symbol channel error can be either  a  one-bit  or  a 
two-bit error in the two-bit  symbol. A two-bit error  means 
that  the corresponding signal has been shifted 180”. This 
two-bit error  at  the  output of the differential decoder be- 
comes a four-bit error of the form l l l l as discussed in 
the Error ckarac.tc~r-iztrtion section. From (61 ) and  the 
decoding  rules,  the value of e: can be determined correct- 
ly if a four-bit error of the form 1 1  1 I is in a  sequence of 
40 bits. The same  conclusion  can  be made on the esti- 
mates of e’: and P‘,‘. Therefore,  the  code can correct any 
symbol channel error in 40 bits. 

The  code is incapable of correcting all possible  double- 
channel errors. An experimental computer program 
has been used to test the correcting  capability of double- 
channel errors by enumerating all possible error patterns. 
It showed  that 70 percent of double-channel errors  are 
correctable. Therefore,  the probability that  an uncor- 
rectable error  pattern begins in a block, given that  the 
previous  seven  blocks are  error  free, can be approxi- 
mated by 

P,, = 0.3 [ (i) + 5 x 351 if, ( 6 2 )  

and  the probability that an information bit  is decoded in- 
correctly, given that the  previous  seven  blocks are  error 
free, can be approximated by 

P ,  = P B /  3 = 18.5 $. (63) 

This bit error probability P, is plotted as  a function of R 
in Fig. 2 .  
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