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Error Correcting Codes for

C. L. Chen
R. A. Rutledge

Satellite Communication Channels

Abstract: This paper addresses the problem of efficient forward error correction on differentially encoded, quadriphase-shift-keying
(DQPSK) channels. The approach is to design codes to correct the most probable error patterns. First the probability distribution of
error patterns is derived. Then a class of convolutional codes that correct any single two-bit error is described. Finally a threshold
decodable code that corrects all single, and many double, two-bit errors is presented.

Introduction

A satellite communication system for digital data trans-
mission must make efficient use of the available band-
width and power. This can be accomplished by combin-
ing forward error correction with an efficient modulation
technique. The greater efficiency of phase-shift keying
(PSK), as opposed to frequency-shift keying, often leads
to the choice of PSK as a modulation technique for sat-
ellite channels [1, 2]. The implementation of a PSK
modem depends on the constraints of the system. The
number of phase states and the type of encoding (direct
or differential) can be chosen to effect the desired tradeoff
among power, bandwidth, transmission rate, and bit-
error probability. In a bandwidth-limited system, quadri-
phase-shift keying (QPSK) can be used instead of binary
phase-shift keying to conserve bandwidth [1-3]. The
use of differential encoding to resolve the phase ambiguity
at the receiver can save power that would otherwise be
required for a residual carrier [4]. For these reasons,
differentially encoded QPSK (DQPSK) is a highly
efficient modulation technique for satellite communica-
tion channels. Fig. 1(a) shows a block diagram of a
communication system using DQPSK and forward error
correction.

A disadvantage of DQPSK modulation is that each
failure in recognizing a phase position results in a two-bit
error. A QPSK modem transmits a symbol, or bit pair,
by phase-modulating the carrier to some phase ¥ chosen
from the set {0°, 90°, 180°, 270°}. In the presence of
white Gaussian noise, the most likely transmission error
is a phase shift of = 90° in the estimate of . If the sym-
bols are encoded using a Gray code, a 90° phase error
in ¥ is a single-bit error in the bit pair represented by
¥ [5]. When differential encoding is used, information
is encoded in the difference between successive phases,
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¥, — ¥, 1f a 90° phase shift, or single-bit error, occurs
during the transmission of s, the output of the differential
decoder will contain two single-bit errors: one in the
estimate of §, — ¢, _, and one in the estimate of ys,,, — 4.
Thus, the bit error rate is doubled and bit errors are cor-
related. The correlation of errors is the more serious
problem because it severely degrades the efficiency of
a random-error correcting code. If, for example, a
single-error correcting convolutional code is used for
forward error correction, there is no guarantee that it
will correct any double-bit errors.

Forney and Bower [6] encountered this problem in
designing a high speed sequential decoder. Their solution
was to perform forward error correction before dif-
ferential decoding [see Fig. 1(b)]. In this scheme, the
error correction code (ECC) decoder need not contend
with double-bit errors, but it is faced with the same phase
ambiguity that the differential encoding was used to re-
solve. Techniques to resolve this ambiguity include an
acquisition search at start-up and whenever the modem
undergoes a 90° phase slippage; much of the benefit of
differential encoding is lost.

This paper describes a different approach to the prob-
lem. Standard z-error correcting codes are designed to
correct the error patterns most likely to appear in a bi-
nary symmetric channel. Instead of using these codes,
it seemed advisable to look for new codes that correct
the error patterns most likely to appear in a differentially
encoded coherent QPSK system. To correct single-
channel errors, for example, we looked for a code that
corrects the double-bit errors produced by the differential
decoder. Because they are highly unlikely, this code need
not correct single-bit errors. To find such a code, it is
first necessary to characterize the probability distribution
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Figure 1 Differentially encoded QPSK system with forward error correction and differential coding (a) internal to and (b) external to

the error control coding.

of the error patterns. This is done in the following section.
Next, a class of convolutional codes, which can correct
any single-channel error, is presented. Then another
convolutional code, which corrects all single-channel
errors and 70 percent of double-channel errors, is de-
scribed.

Error characterization

A QPSK modem transmits a pair of bits by phase-
modulating the carrier to 0°, 90°, 180°, or 270°. The re-
ceiving modem estimates the phase and translates it back
into a bit pair. Thus, to transmit the bit pair (I, Q), the
modem transmits the phase

0=f(I1.0), (1

where f(-, -) is a 1:1 mapping of {(0, 0), (0, 1), (1, 0),
(1, 1)} onto {0°, 90°, 180°, 270°}. The receiving modem
computes the maximum likelihood estimate & of ¢ and

(1.0)y=5"(9. (2)

The channel noise is assumed to be white and Gaus-
sian. If the receiving modem has exact knowledge of the
carrier reference phase, it can be shown [4] that the
error in 6,

p=0—0, (3)
has the probability distribution

Pr(¢=0) =(1-p*

Pr(¢ =90°) =Pr(¢=270°) =p(1—p);

Pr(¢ = 180°) = p’, (4)

where p = 0.5 erfc(V0.5R) and R is the signal-to-noise
ratio.
The mapping f(-, -) is chosen to satisfy

0 @fF(0+180°) =(1,1) (5)

for all 8, where ® denotes the EXCLUSIVE OR function
applied element-by-element. Then it follows from (4)
and (5) that the bit errors f @ [ and 0 @ Q are inde-
pendent random variables with distributions

Prf@I=1)=1—-Pr{@®I1=0)=p, and
Pri0®Q=1)=1-Pr(Q®Q=0)=p. (6)

MARCH 1976

In other words, the channel, including the two QPSK
modems, is simply a binary symmetric channel with
crossover probability p.

In general, however, the receiving modem does not
know the carrier reference phase exactly but can esti-
mate it to within « degrees, where « is fixed but unknown.
In this case, § = 8 + a + ¢ and, in general, § # 6 even
when ¢ = 0. Differential encoding is used to resolve this
problem. The data sequence {(I,, Q,), i=1,2,-"} is
encoded into {6,}, where 6, = f(/,, Q,) as before, but
instead of transmitting #,, the modem transmits the se-
quence {4} of partial sums defined by

P, =0;

b= F 0, =12, -
The receiving modem estimates i, by

b= tatd, (8)

where the random errors ¢, are independent of each other
and of the input sequence ¥, and each ¢, has the distribu-
tion shown in (4). Then 6, is estimated by

b=d— b, (9)

and (/.. Q) is estimated by

(I, Q) = f(6). (10)
If the errors in the decoded sequence are denoted by

(Ex F)=(,0) @ U, Q). i=12." (1

it follows from (8-11) that

(E.F)=f"(0) @1 (6,+¢,—¢,). (12)

It is convenient to rewrite (12) as

(Ep F) = (U, V) @ (X, Y), (13)

where

W V) =f8,— ) @ f(6),
(Xi’ Yi) = fﬁl(ai -, + d’,) @ fi](()i - ¢i_1). (14)
Making use of (5), one can show that
(X Y ) if €, DX, DY, =1
(U, V)=
{(Yi—l’Xifl) ifci—l@XiGDYi:O’ (15)
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Table 1 Possible error patterns when (X, Y,) contains a single-
bit error and all other symbols are error free.

Ci Ez‘ Fi Ei+1 Fi+1
0 1 0 0 1
0 1 1 0
1 1 0 1 0
0 1 0 1
where C,_ =1, ® Q, ,® I, ® Q, Therefore, the se-

quence {(E, F))} is completely determined by { (X, Y) }
and {(1;, Q) }.

It follows from (4), (5), (14), and the independence
of the ¢, that X;and Y,, i=1, 2.-- -, are all independent
random variables and each is equal to 1 with probability
p and is 0 otherwise. Combining all these results and sim-
plifying, we obtain

(Ex F) = (X, Y)@® (X_.Y,_ ) C,,

O X )T, ® (W W), (16)
where
W =X_ @Y )X ®Y) (17)

and X, Y, i=1, 2,- -, are all independent, identically
distributed random variables with distributions

Pr(X,= 1) =1-~Pr(X,=0) =p;
Pr(Yi=1)=1—Pr( ;= 0) =p. (18)

This completely specifies the probability distribution of
the sequence {(E, F))}.

For decoding purposes, it is preferable to express
(E,, F)) in terms of (fi, Qi), since this sequence is ob-
servable by the decoder. If C‘i_l is defined by

éi—l = Ai—l @ QAiq @ ii @ QAi7 (19)
then it can be shown that C’i_l = C,_, whenever X, | #
Y, ,» so that (16) is equivalent to

(E. F) = (X, Y) ) (X Yy Ci—]
D (Y Xi) €y @ W W), (20)

Now consider classes of most likely error sequences
{(E, F)}. For a fixed-input sequence {(/, Q)}, Eq.
(16) defines a 1:1 mapping between {(E, F,)} and { (X,
Y;)}. Therefore, the probability of any {(E, F)} se-
quence is equal to the probability of the {(X, Y)}} se-
quence that maps into it, and the most likely {(E, F,)}
sequences can be characterized in terms of the most
likely {(X,, Y,)} sequences. The {(X,, Y,)} sequence is
distributed like the error sequence of a binary symmetric
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channel. An appropriate class of { (X, ¥,)} sequences is,
therefore, the set of all sequences containing #n or fewer
I’s for any choice of n. A sequence {(E, F,)} may be
said to contain k channel errors if it maps into an { (X,
Y,)} sequence containing exactly & I’s. Then an appro-
priate class of most likely {(E;, F;}} sequences is the set
of all sequences containing n or fewer channel errors. It
is easy to describe these patterns in detail for » = 1 and
n=2.

e Single-channel error patterns

If a single-channel error occurs in (X,, Y,) and all other
bit pairs (X, Y} are error free, it is easy to see from
(20) that

(E. F)  =(0,0) ifj#iori+1;
(E, F) =(X,Y):
(X, Y) it C,=1:
Buw Fin) :{( Y, X)if ¢, =0. 21

Then, since (X, Y;) can take the value (0, 1) or (1, 0),
there are four possible patterns for (E, F, E, |, F
These are shown in Table 1.

i)

e Double-channel error patterns

Assume that the sequence (X, Y,), i=1, 2,-- -, contains
exactly two 1’s. There are three cases, depending on
whether the two errors are in the same bit pair (X Y,
in adjacent bit pairs (X, Y;) and (X, Y,,,), or in non-
adjacent bit pairs.

Case 1' If (X, Y,) = (1, 1) and (X}, ¥;) = (0,0) for j # i,
it is easy to see from (20) that the only possible error
pattern is

(Eiv Fi’ Ei+l’ Fi+1) = (1’ lﬂ ]a l)a
(E;, F) =(0,0) for j#iori+ 1. (22)

Case 2 If (X, Y;) and (X, Y,,,) each contain a single

error, and (Xj, Yj) =(0,0) for j# iori+ 1, then repeated
use of (20) yields

(E; F)) =(0,0) for j#iori+ lori+2,
(Eia Fl) = (Xia Yl)’
E, =F,=E® Fi+2® C,®C,,

(Eiy Fipp) = (X Yi+1)éi+1 @ (Y X €z+1- (23)

From (23), it is clear that four error patterns are possible
if C; ® C,,, = 1, and four other patterns are possible if
C,® C,,, = 0. These patterns are shown in Table 2.

Case 3 1f (X, Y,) and (X]., Yj) each contain a single er-
ror, all other bit pairs are error free, and |/ — j| > 1, then
the only 1’s in the sequence {(E, F,)} are in the non-
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overlapping sequences (E, F, E,,, F,,,) and (E;, F},
E,..F +1) - The possible error patterns can be determined
independently for each sequence, as in the case of a single

€rror.

A class of single-channel error correcting convolu-
tional codes

Given any positive integer m, it is possible to construct
a single-error correcting convolutional code with decod-
ing constraint length mn, where n = 2™', and rate
(n—1)/n. A class of codes satisfying these conditions
was introduced, and shown to be optimal, by Wyner and
Ash [7]. The codes are based on the truncated parity
check matrix

H=[D,TD,T°D, -, T""'D], (24)

where the columns of D are the n distinct binary m-tuples
having first elements equal to one, and T is the m X m
shift matrix defined by

1ifi—j=1,
T, = (25)
’ 0 otherwise.

The ordering of the columns of D is arbitrary. For reasons
that will become clear later, the jth column of D is set
equal to the binary representation of 2™ — j. Thus, for
m= 4,

D= (26)

11111111
11110000
11001100/
10101010
This code corrects a single-bit error in any n-bit block if
the m — 1 preceding and following blocks are error free.

On a differentially encoded QPSK channel, this code
is unsuitable. It miscorrects all single-channel errors
(because they appear as double-bit errors) and almost
all multiple-channe! errors. It is easy to restore the single-
channel error correcting capability of A by degree-two
interleaving. This technique, however, doubles the con-
straint length, requiring more hardware and increasing
the probability that two or more channel errors occur
within the constraint length. Interleaving is unnecessary
because there exists a class of convolutional codes, with
constraint length mn and rate (n — 1) /n, which corrects
single-channel errors in a differentially encoded, coherent,
QPSK system.

The truncated parity check matrix for a code in this
class is

H' = [DV, TDV, T*'DV, -, T"'DV], (27)

where D and T are defined above and V is the n X n matrix
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Table 2 Possible error patterns when (X, Y,) and (X, .Y, )
each contains a single-bit error and all other symbols are error
free.

CA‘i®éi+1 Ei Fi Ei+1 Fi+1 Ei+2 Fi+2
0 1 0 1 1 1 0
1 0 0 0 0 1
0 1 0 0 1 0
0 1 1 1 0 1
1 1 0 0 0 1 0
1 0 1 1 0 1
0 1 1 1 1 0
0 1 0 0 0 1
(100 - O
110 -0
11 1---0
11 --- 1]
with
10 00
I—[O 1] andO—[O 0]. (29)
If m = 4, then
00110011
00110000
bV=lo0111100/ (30)
00100010

The matrix H' is used to encode the data in n-bit blocks
before differential encoding and to decode the data after
differential decoding [see Fig. 1(a)]. If the kth ECC en-
coded block is denoted by

Wie = Ly 0 Qg " Dipinr Qivan)s (31)

where b=n/2, then Q,, ., is a parity check bit chosen to
satisfy

(w oW cuw,) XA =0, (32)

k-m+1’ Wi—mi2o’

where /' is the last row of H’, and X denotes inner prod-
uct modulo 2. The kth block received by the ECC de-
coder,

Wy = (ikb+1’ ka+1’ Y ikb+b’ ka+b)’ (33)

and the previous m — 1 received blocks are used to de-
termine the kth syndrome bit:

8= Wpmyrs Wiz "5 Wie) XA (34)

If the error pattern in W, is denoted by
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e, =W, @w,= (Eppys Frpiv 5 Eparr Frpin) (35)
then it is clear from (32) and (34) that
e X h. (36)

Sp = (€k~m+1’ Cr-mtor

To explain the decoding algorithm, and to prove that
the code corrects all single-channel errors, we first ex-
amine the syndromes corresponding to the single-channel
error patterns shown in Table 1. We assume that the kth
block received by the differential decoder, (X, Y, .,

“ Xyprwr Yipep) . contains a single-bit error, and the
m — 1 preceding and following blocks are error free. It
is easy to see from Table 1 that the possible values of e,
are the rows of the n X n matrices M, and M, defined by

J 1 O:--0 I 10---0
ol J- -0
or1---0
ooJ---0 001 - -0
My=|- - - pMi=0 B
LO O O - - - 1] 000 !

where I and O are given by (29) and

1=[1 o) o)

When m = 4, (37) becomes

01100000
10010000
00100100
00011000

Mf’00000110’
00001001
00000010

10000000 1]

1010000 0]
01010000
00101000
00010100

Mi=loo001010] (39)
00000101
00000010
(0000000 1

The matrix M, contains all error patterns for which C, is
equal to zero, and M, contains all patterns for which C‘i
is equal to one. Error patterns e,_, ., and e,,, may have
non-zero elements due to overlapping of an error in the
previous block, but only in the first two positions. It is
easy to see that

e

k-m+z T €1 T ke T T Cpim

(0,0,--+0). (40)

ek—m+2 =
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Decoding of the kth block is based on syndrome bits

Sis Spes' > Sgomeyr Which can be represented as a column
vector:

t
2= (S Spap s Spmet) - (41)

When we compute z using (36), all block error patterns
other than ¢, drop out. This includes ¢,_, ., and ¢,,,
because the first two columns of DV are equal to
(0, 0,- -+, 0)", Therefore,

z=DVe,, (42)
and the possible values of z are therefore the columns of
S, and §,, where S, and S, are m X n matrices defined by
S,=DVM, and S, = DVM,' (43)

The ordering of the columns of D was chosen in such a
way that the sum, modulo 2, of columns j+ 1, j+2, j+ 3,
and j+ 4 is equal to (0,0, -+ 0)", for j=0,4,8, -, n—4.
The matrix V was chosen as

V=[M/"T". (44)

Using these facts, we can reduce (43) to

S,=S,=D. (45)
The first step in decoding is to find the unique integer

r such that the rth column of D is equal to z. Then, from

(43) and (45), ¢, is equal to the rth row of either M, or

M . In either case, the channel error must have occurred
in symbol (X, Y,), where i is given by

i=kb+[(1+r)/2] (46)

and [x] denotes the largest integer less than or equal to x.
Since i is known, C; can be computed using (19). Then

M,if C,=0;
e, = rth row of .
M ifC,=1. (47)
Finally, it is easy to see that
(0,0,0,-,0)ifr<n—1;
ek+l= (1’0’0"..’0) if(ryci)=(n_1’ 1) 01‘(’1,0);

(0.1,0,--,0)if (r,C) =(n—1,0) or (n, 1).

(48)

Obviously, this procedure leads to correct decoding of

any block containing a single-channel error, as long as the

m — 1 preceding and following blocks are error free. Then

the probability that an uncorrectable error occurs in a

block, given that the m — 1 preceding blocks are error
free, can be approximated by [8, 9]

[0 )

where
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p=0.5erfc(VO.5R) (50)

is the channel error probability. The probability that an
information bit is decoded incorrectly, given that the pre-
vious mn bits were decoded correctly, can be approxi-
mated by

P,=P,/(n—1). (51)

The bit error probability P,, for the case m = 4, is plotted
as a function of R in Fig. 2.

A rate 3/5 threshold decodable code

The data conversion from a switched connection service
of 19.2 kilobits per second (kbs) transmission rate to the
network channel rate of 32 kbs allows 40 percent redun-
dancy, which can be used to design error correcting codes
for data protection. A rate 3/5 (40, 24) threshold de-
codable convolutional code for data rate conversion and
error protection is described in this section. This code
was obtained by trial and error because the methods of
the previous section could not be successfully applied.
The (40, 24) code designed for DQPSK is capable of
correcting any single-symbol error (¢, in the Error char-
acterization section) in a sequence of 40 bits. It also
corrects about 70 percent of the double-channel errors
in 40 bits.

s Encoder

Figure 3 shows the encoder. It consists mainly of shift
registers and EXCLUSIVE OR gates. Two parity check bits
are generated for every three input information bits ac-
cording to the following equations:

Pisii @i @i @i, @iy @ iy,
R=ii@i@i®i, ® i, ® i, (52)

where the additions are EXCLUSIVE OR operations; iy, i,,
i;, are the three information bits at time k; and Prs py are
the check bits generated at time £.

« Decoder

Decoding is done in two steps. In the first step, two sets
of syndrome bits are calculated and stored. In the second
step, error bits are estimated and the actual error correc-
tion is made.

Figure 4 shows the syndrome bit calculation for the
decoder. Let p's, i't, 'y, p'y, and i’ be a block of received
bits at time &. The syndrome bits are calculated according
to (52) as follows:

Si=p @I @I DI ®ITDIDI,
St=pt @@ DIL®iI DI (53)

Let ey, ¢;, €} be the error bits corresponding to informa-

\ \Wrthoul ECC

)(

Eq. (63), (40,24) code______\ \

Eq. (51), m—4
(32,28) code

-5

log Pb
B

R

Figure 2 Bit error probability as a function of the signal-to-
noise ratio.

Flgure 3 Encoder for the (40 24 code showing encoded bits
in the order- - - if p} it i} p} i Pt & i p}; @ represents the EXCLU-

SIVE OR operatlon

@
i“->|8|7|6|5|4|3i2i

() ¢—
3/

L 4

Figure 4 Decoder for the (40, 24) code, showing the syndrome
bit calculation.

1* = e[sR BRI

|
)¢

>

—{D &
¢
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4 -
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¥ b 4 PI [Sb
@ +@ =? +[8]7]6]s]4f3]2]1]
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tion bits a, b, ¢, respectively, at time k. Then, 173
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Figure 5 Complementation of syndrome bits in error correc-
tion with the (40, 24) code.

=i @ ey

i"e=ir @ e},

=@ (54)
The value of error bit e] is estimated as

€l =1if 3 or 4 of {S], S%, S5, So} are 1;

€;=0if2,3, or 4 of {S%, 5%, S, 5%} are 0. (55)

If ] is estimated to be 1, then i'{ is EXCLUSIVE ORed with
¢} to yield i{. In this case, the syndrome bits §3, §, S5,
and S'é are complemented before the next bit is decoded.
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The complementation removes the effect of e;l from the
syndrome bits. Similarly, the estimates of ¢} and ¢ are
determined by the following rules:

,  (1if3or4of {S], 55, S, Sy} are 1,
{O otherwise; (56)

. (lif3or4of {Sg,S7, 57, S3} are 1,
“aT {0 otherwise. (57)
If the value of ¢! or ¢ is estimated as 1, certain syndrome

bits are complemented as shown in Fig. 5.

* Error correcting capability
Let E; and EZ be the error bits corresponding to the two
parity checks at time k. Then

Pe=E; ®py

p'y=E, @ p,. (58)
Equations (53), (54), and (58) imply that
S;=E;@ei@ei@ei@ D e D e,

S2=E8b®eg®ez@e§®eﬁ@e§®ei. (59)
Let
S=1878; 85818, Sy

- __rpe ¢ b pb ¢ pa a bbb o opa
é=[Eje e E e E,e,¢E,e¢E,

a a b b ¢
<+ Eg €5 ¢, Eg €],
Assume that no decoding error occurred before time 1,

ie., Ey, E;, e, €), ¢; are all zero for k < 1. Then (59) can
be expressed as

S=¢H', (60)
where H =

Plnoo
0000011100
00100000001 110
00000001000000011100
0000000000001000000011100
000010000000000001000000011100
0000100001000000D000001000000011100
0010000001000010000000000001000000011¢1100
01011

0000001011
010000000001011
00100010000000001011

0
0
0
0

0010000
1001000
0000010

c oo
o - o =
—co oo

1
000101 1]

Now consider the set {$?, §%, S%, 8%} which is equal to
t

(61)

0000001011
00001001000100000006001011

[ =
o0 O =
OO D
(=Tl )

According to the rules for the estimate of e‘:, the value of
e} is correctly determined if the number of errors is two

or less; i.e., e} is correctable for single-bit channel errors.
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A symbol channel error can be either a one-bit or a
two-bit error in the two-bit symbol. A two-bit error means
that the corresponding signal has been shifted 180°. This
two-bit error at the output of the differential decoder be-
comes a four-bit error of the form 1111 as discussed in
the Error characterization section. From (61) and the
decoding rules, the value of ¢{ can be determined correct-
ly if a four-bit error of the form 1111 is in a sequence of
40 bits. The same conclusion can be made on the esti-
mates of e'; and c'l Therefore, the code can correct any
symbol channel error in 40 bits.

The code is incapable of correcting all possible double-
channel errors. An experimental computer program
has been used to test the correcting capability of double-
channel errors by enumerating all possible error patterns.
It showed that 70 percent of double-channel errors are
correctable. Therefore, the probability that an uncor-
rectable error pattern begins in a block, given that the
previous seven blocks are error free, can be approxi-
mated by

P,=0.3 [(;) +5x 35} Jo (62)

and the probability that an information bit is decoded in-
correctly, given that the previous seven blocks are error
free, can be approximated by

P, =P,/3=185p" (63)
This bit error probability P, is plotted as a function of R
in Fig. 2.
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