D. B. Lomet

Objects and Values: The Basis of a Storage Model for

Procedural Languages

Abstract: A model for storage in procedural languages is presented. Its fundamental notion is to strictly distinguish values from stor-
age objects. Several difficulties in current languages are resolved in this model, e.g., the problem of flexible locations [1] and the mean-
ing of the term type [2, 3, 4]. In the light of the storage object/value dichotomy, several notions are found to be covered by the term
type. The implications of the model are explored with respect to the more conventional data constructs of procedural languages as well
as to sets and how they might be provided. Finally, data extension mechanisms are considered. Whereas the treatment here is not
complete, the template concept introduced in the model does suggest a useful framework for providing the much talked of but seldom

realized benefits of data extensibility.

Introduction

Much scientific development is a process of going from
the concrete, special case to interesting generalizations.
Such has been the history of procedural programming
languages. In particular, this progression can be seen in
the area of data and storage. Table | presents some of
the important languages together with the data and stor-
age notions given wide exposure by that language.

In examining Table I, it becomes clear that a rather
remarkable amount of progress has occurred since FOR-
TRAN first appeared. Some confusion and controversy
has also arisen. The word type was introduced in FOR-
TRAN to describe variables and to make efficient compi-
lation possible. Although ALGOL 68 substitutes the word
mode for type, the historical situation is that, by and
large, a single term has been used to cover the multitude
of concepts listed in Table 1. The thesis presented here
is that the word type currently includes several distinct
notions and that the situation would be clarified if these
notions were distinguished by unique terms.

The basis for much of the following discussion lies in
strictly separating the notion of value from that of stor-
age object. Most language designers and users probably
believe that their language maintains exactly that separa-
tion. Our contention is that this distinction has broken
down during the process of generalization that has ac-
companied language evolution. Resurecting this distinc-
tion in a rigorous way exposes several of the concepts
embedded in the word type as well as resolving some
other difficulties. First it is necessary to establish what
we mean by these terms. Table 2 enumerates the proper-
ties that characterize values and objects.

MARCH 1976

The relation between values and objects is twofold.
First, references are values that are used to manipulate
objects. Second, values may be stored in and retrieved
from some objects. We call an object that can contain a
single value a cell. The term variable has sometimes
been used for a cell, but it also can mean the symbolic
name used to identify the cell. It should be emphasized

Table 1 Languages and the data and storage features given
exposure by them.

Year Language Feature

1957 FORTRAN [5] scalars and fixed size arrays

1961 COBOL [6] structures

1963 ALGOL 60 [7] local (stack) variables,
settable array bounds
1965 PL/1 [8] dynamic allocation and freeing,
pointers, strings

1966 ALGOL W [9] constrained references

1969 ALGOL 68 [10] unions, flexible arrays,
recursive types

1970 SIMULA 67 [11] class definitions

1970 Pascal {12] ranges, sets

1971 EL1 [13] type variables,

user defined types

157

OBJECTS AND VALUES

158

D. B. LOMET

Table 2 Properties of values and objects.

Property Discussion
Values atomic No references to components.
immutable Values may be replaced by other
values, but it is meaningless to
talk of changing values. If 1 is
added to 3, the effect is not to
change 3 to 4 but to replace 3
by 4.
storable Values can become the contents
of (parts of) storage objects.
returnable Operators may produce values as
results. Further, any result
returned is always a value.
Objects constructible Whereas operators may return

only values, a side effect of
certain operators is the creation
of storage objects that persist
over time.

Reference values are used to
specify the storage objects or
their components that are to be
manipulated.

referable

changeable Storage objects contain the state
of the computation. If an object
is changed, subsequent operations
involving references to it reflect
the change.

deletable Some languages permit storage
objects to be deleted. Subsequent
references to the deleted object
are erroneous.

that there may be other forms of objects, e.g., processes,
locks, modules, etc. We consider in what follows only
cells, aggregates (i.e., groupings of objects that can be
accessed via a common reference and that have a com-
mon lifetime), and sets (i.e., objects that can contain
several values).

Cells and values

Associated with each cell is a predicate that must be sat-
isfied by any value that is to be stored in or retrieved
from the cell. The predicate is the first concept intro-
duced that has been covered by the word type. We use
type to denote this predicate. Note, however, that here
we are taking a term that is currently imprecise and giv-
ing it a very specific meaning; we give other names to
the other notions covered imprecisely by the word type.
The view of types as sets, which has been discussed by
Reynolds [4], is equivalent to our use of the term type.

Several recent languages [10, 12, 13, 14] have types
as values, and further they provide a type calculus by
supplying operations whose results are types. The meth-
odology for this is as follows:

1. As a basis, one is given a collection of primitive types,
e.g., integer, real, boolean, character, and the values

that satisfy them. There is no requirement that the

primitive types be satisfied by disjoint sets of values.

It is entirely reasonable for values satisfying the type

integer to also satisfy the type real. This would permit

the so-called “natural conversions” from integer to

real. In the other direction, an entier function [7]

would be required to convert real values to integers

because there are real values that are not integer
values.

2. Type operators are drawn naturally from set theory.
Some potential operators follow:

a. union The disjunction of two type predicates spec-
ifies the union of the sets of values satisfying either
type.

b. range Sometimes called ‘“‘subrange,” the range op-
erator defines the subset of a type whose values
are ordered by specifying an upper bound and a
lower bound that are imposed on members of the
resulting type [12].

¢. enumeration A type predicate can be specified by
enumerating the values that satisfy the type. This
is sometimes present in only a restricted form, e.g.,
only identifiers may be listed [12, 14]. However, a
general capability can be provided by supplying
a constant operator, which, given any value, yields
a type that is satisfied by precisely that one value.
Enumeration is achieved by applying union to sev-
eral of the results produced by the constant op-
erator.

3. At times, one does not wish to specify any constraints
on the values that can be stored in a particular cell.
For this reason, we introduce the type general, which
is satisfied by all values. This type provides the means
of supporting so-called typeless languages.

More types are needed as new values are introduced,
(e.g., reference types), but we defer consideration of
these until the values themselves are introduced.

Many other set theoretic operations are not generally
included in a type calculus. An operator embodying the
axiom of separation, i.e., designating a subset of a given
type by means of a more or less arbitrary predicate ap-
plied to members of the original type, is not included.
Neither are such simpler operators as intersection, dif-
ference, and Cartesian product. There are two reasons for
excluding these operators: Implementation problems can
be formidable; undecidability can become a problem.

IBM J. RES. DEVELOP.

Both of these difficulties arise when the problem of the
equivalence of types must be faced. When types can be
recursively defined, as in ALGoL 68 [10], determining
type equivalence can be very difficult. One must, in fact,
be careful to ensure that the recursive types are indeed
well defined. Lewis and Rosen discuss these issues in a
recent paper [15]. Thus, the type operators are very
carefully chosen. Whereas all types are value predicates,
all value predicates are decidedly not types.

The operations involving cells, the cells being identi-
fied by means of references to them, consist of the stor-
ing and retrieving of values from them. The storing oper-
ator is generally called assign, and it has two operands, a
target cell and a source that is either a value or a means
of generating such a value. The effect of executing as-
sign is to replace whatever is currently stored in the cell
with the value produced by the source. The retrieving
operation is frequently called val and, given a cell refer-
ence as an operand, returns the current contents of the
cell as its result.

Templates and aggregates

Cells and aggregates are storage objects. As such they
can be created and destroyed. When creating a cell, a
description of the cell must be provided to the create
operator. Because a type is associated with each cell, it
is natural to use a type as the description when a cell of
the given type is desired. There is no harm in this. How-
ever, the extension of this idea to aggregates creates
difficulties.

Typical aggregates in existing languages are arrays,
structures (records), and files. These aggregates are
usually treated as storage objects, not as values. How do
we tell the difference? In IBM pL/1 [16], although not in
the ANSI standard [17], and in ALGOL 60 [7] and
Pascal [12], the following properties of storage objects
also hold for aggregates:

1. Array operators, if any, are simply shorthand nota-
tions for iterations in which a scalar operation is per-
formed on each component of the aggregate(s).

2. Functions never return aggregates as results.

. Components of aggregates can be updated.

. References to aggregates and to their components

can be acquired in those languages that provide refer-
ence types.

~ow

Unlike the above languages, ALGOL 68 attempts to
treat aggregates as both objects and values. This results
in the notion of flexible locations, which is the cause of
some ad hoc restrictions. We explore this more fully later.

An aggregate is a collection of objects, all sharing a
common lifetime, i.e., the objects are all created by a
single execution of the create operator and are all de-

MARCH 1976

stroyed by a single execution of the free operator. In
addition, given a reference to the aggregate, it is possi-
ble, via a selection operation, to acquire a reference to
any of the components of the aggregate. Each compo-
nent is uniquely named within the aggregate. Hence, the
aggregate reference together with one of these names,
called selectors, identifies the desired component in a
system-unique way.

Using types to describe aggregates is clearly inade-
quate. Each cell of an aggregate must be described, via
its type, but, in addition, these cells must be given selec-
tors and must be “aggregated” in whatever way is de-
sired. For this reason, a second term is required. We call
the specification of an aggregate a template, following
the terminology of Wegner [18]. Template denotes the
second meaning that is sometimes attributed to the intui-
tive notion of type. Given that types can be used as
templates for cells, together with the confusion about
whether aggregates are objects or values, it becomes
understandable why types and templates are not univer-
sally distinguished.

Once types and templates are distinguished, it be-
comes necessary to introduce template operators as well
as type operators. Most languages provide notation for
expressing the results of these “‘operations” even when
they do not treat templates as values. Typically, array
and structure construction is provided. File construction
is also frequently provided but is not usually well inte-
grated with the other mechanisms. We wish to treat
these constructions as explicit operators in a template
calculus that augments our previous type calculus.

The template operators introduced are, of course, sen-
sitive to the forms of aggregates that are desired. A rath-
er large number of aggregate forms have been used, e.g.,
structures, arrays, files, tuples, records (similar to
structures), strings, etc. Instead of trying to define oper-
ators for all these different forms, we suggest the follow-
ing alternative. Most aggregates are characterized by the
following set of properties associated with each compo-
nent:

1. A selector that names the component.

2. A template that describes the component. The com-
ponent is itself, of course, a storage object.

3. The current value of the component, when the com-
ponent is a cell.

The operators we describe permit 1) the association
of selectors with templates that describe the components
that the selectors identify and 2) the composition of
previously constructed templates. All aggregate forms
are thus unified. These operators are

1. row (selector set,template). The resulting template
specifies an aggregate, all of whose elements are simi-

159

OBJECTS AND VALUES

160

D. B. LOMET

lar. For example, an array with a range of integers as
a selector set can be specified. Further, using the
constant operator, a single element aggregate can be
specified with any desired selector name. This is useful
in conjunction with the compose operator {(below) in
specifying structures.

2. compose (templatel ;template2). The resulting tem-
plate specifies an aggregate with all the components
specified by both templatel and template2. In par-
ticular, nonhomogeneous aggregates can be specified
via this operator, e.g., structures.

This view is elaborated more fully in [19]. Although
this view is attractive to us, it is by no means essential to
the discussion of fundamental concepts that we have
given.

Let us now illustrate one of the practical advantages
of the fundamental concepts we have been presenting.
To do this, we examine the roles played by cells and
aggregates from a slightly different perspective.

The fundamental purpose of aggregates in higher level
languages is to support a restricted form of address
computation. Thus, given a reference to an aggregate
and a selector value, a selection operation computes a
new address, i.c., the address of the component specified
by the selector. Such address computation is controilled
in high level languages by the requirements that

1. References to aggregates originate as a result of a
create operation, either explicit or implicit. Arbitrary
addresses cannot be computed.

2. Selection operations have a valid address as an argu-
ment, perform a defined selection, and produce an
address to a component of the aggregate originally
referenced.

The purpose of cells is to provide repositories for val-
ues, i.e., to maintain state information. To make this
possible, the assign operation is provided. In our meth-
odology, the only function of assignment is to store a
value in a cell. In no way does it interact with address
computation.

ALGOL 68 does not strictly segregate the functions of
assignment and address computation. These functions
intersect in the case of flexible locations, which arise, e.g.,
as a result of the union operation. We have distinguished
types from templates, based on our distinction between
values and objects. Further, we have restricted union to
apply only to types, not to templates. ALGOL 68 does
not make these distinctions, and hence it does not pre-
vent unions of what in our view would be templates.
Thus, it permits the declaration of a mode (template?):

mode flexloc union(struc (real a,real b),struc

(real b,real ¢))

If a variable X is declared to be of the mode flexloc, it
becomes possible to change the selector set of X from
(a, b) to (b, c) by means of an assignment to X. If taking
a reference to a of X were permitted, every use of this ref-
erence would require checking to determine that the alter-
native for X that contained a of X was the current “‘value”
of X. This checking would also be required if ¢ of X were
passed by reference as an argument. Because of the
uncertainty about the source of a parameter, checking
would frequently be required even if the parameter were
not of this form. Distinguishing templates from types
permits unions to be supported for types while prevent-
ing unions involving templates, thus preventing flexible
locations. The explanation for the restriction arises in a
completely natural way from the value/object distinc-
tions being made. Because ALcoL 68 has no way of
preventing flexible locations, it must cope with them. It
does this by imposing a set of ad hoc restrictions that
prevent a user from acquiring a reference to a compo-
nent of a flexible location. Most of the function of flexi-
ble locations is provided via aggregate values, intro-
duced later, while avoiding these difficulties.

Reference values

Storage objects themselves cannot be assigned from one
variable to another, incorporated directly into programs,
or passed as parameters. Rather, a storage object is
manipulated by means of a value that uniquely denotes
it. This value is called a reference in ALGOL 68 and a
pointer in PL/1. We use the term reference. The concept
of reference occurs in most high level languages, even
when references are not treated as values, i.e., are not
assignable to variables. For example, FORTRAN passes
arguments ‘‘by reference.” Further, if one wishes to
describe the assignment operator in terms of values that
the system can manipulate, then the notion of reference
is unavoidable.

If references are values in a language, it becomes nec-
essary to specify cells that can contain them, i.e., types
that are satisfied by references are needed. In PL/1 the
type POINTER is provided, which is satisfied by all refer-
ences (pointers). Because pL/1 only offers POINTER
cells, the type checking that involves the variables point-
ed at can only be done at run time. In most implementa-
tions, this checking is not done at all because of the seri-
ous performance penalty. In order to perform at least
some of this type checking at compile time, as well as
providing more comprehensive syntax checking, refer-
ence constraints are utilized by such languages as ALGOL
68 and Pascal.

In our methodology, where types are themselves val-
ues, what is required is an operator that, when given a
constraint, produces a type that is satisfied only by refer-
ences to objects that satisfy the constraint. We call this

IBM J. RES. DEVELOP.

operator the ref operator. An operand of ref is a value
that we call a constraint, and constraints denote the
third concept included in the intuitive notion of type.
This is a distinct concept, because a constraint is, in
fact, a predicate over storage objects, and none of the
previous terms play this role.

With Pascal, constraints uniquely specify the form of
object required. That is, a constraint must be satisfied
by objects that were all created by the same template.
Thus, in Pascal it is possible to use templates as con-
straints and thus not introduce special constraint values.
However, ALGOL 68 permits constraints that are satis-
fied by any of several forms of object. One example of
this occurs in the reference type

ref () int

which is satisfied by references to any vector of integers.
ALGOL 68 partially distinguishes template from con-
straint by means of the distinction between actual and
formal declarers.

The need for constraints arises in other contexts than
as operands of the ref operator. In any language that
passes arguments by reference, €.g., FORTRAN and PL/1,
the description associated with a parameter must be
considered as a constraint. With FORTRAN, a parameter
description may specify only a single form of object,
which must be a cell or array of cells. Therefore, tem-
plates can be used as parameter descriptions. It is, of
course, special cases like this that contribute to the con-
fusion concerning types, etc. Although pL/1 calls param-
eter descriptions types, it in fact permits some flexibility
in these descriptions, i.e., a parameter can take one of
several forms. For example, the declaration

DCL X CHAR(*)

requires that the argument passed to X be a character
string of some fixed length. However, the length of the
string is unspecified. One cannot declare such a “type”
to be BASED, and hence be allocated, because CHAR(*) is
not a template, but rather describes many templates.
Having demonstrated the need for constraints, we
now show that it is not necessary to introduce a new set
of values to serve this purpose. Rather, we can make use
of values that, given our previous type and template
operators, we can already generate. The effect of doing
this does not alter the fact that a constraint is fundamen-
tally distinct from type and template concepts. Rather,
the impact is purely pragmatic, i.e., the using of previous
operators to manipulate and generate constraints.
Although constraints are predicates over storage ob-
jects, they may be expressed in terms of predicates over
the templates that describe storage objects. Because we
are treating templates as values, predicates over tem-
plates are, therefore, types. Thus, it becomes possible to

MARCH 1976

apply the type operators to the construction of con-
straints. A constraint satisfied by objects that can all be
described using a single template can be formed using
the constant operator with the template as its operand.
Further, the union operator can be used to form a dis-
junction of constraints. Types of the above form can
serve as operands of the ref operator, yielding a type
that is satisfied only by references to objects that satisfy
the constraint, i.e., are described by templates that satis-
fy the type that is the operand of ref.

Additional constraints (and hence types satisfied by
templates) are very useful. For example, the type satis-
fied by any template, denoted any, when used in ref(any),
produces a type that is satisfied by all references. Thus,
it is equivalent to the PL/1 POINTER type. Predicates over
ranges are useful in forming constraints that are satisfied,
for example, by vectors of unspecified bounds. Opera-
tors for producing such predicates are explored in [19].

Aggregate values

The preceding sections explored the distinction between
values and objects. During this exploration, aggregates
were treated exclusively as storage objects. What we
wish to discuss here is the treatment of aggregates as
values. Languages such as aAprL [20], ALGcoL 68
{10, 21], and ANSI pL/1 [17] support operators and
procedures that can return aggregates as results and
permit aggregate assignments. The problem that we wish
to address is how to reconcile these aggregate values
with object aggregates. In particular, how are aggregate
values introduced so as to avoid the problems that were
discussed in the introduction?

We propose to introduce aggregate values in such a
way that the distinction between values and objects is
rigorously maintained. Thus, whereas aggregate values
have components, it is not possible to either construct a
reference to a component or to alter the value of a com-
ponent. In APL, ALGOL 68, and PL/1 (strings), this dis-
tinction is compromised, either through overlays, elabo-
rate rationalizations such as flexible locations, or by
treating assignment as an operator that is different in
kind from other operators and procedures. In fact, in
none of the above languages is it possible to reproduce
the effect of the assignment operator by means of a pro-
cedure. This is the case for all ApL variables, because
APL does not pass arguments by reference. In pL/1,
substring assignment cannot be handled, because when
SUBSTR appears anywhere except to the left of the as-
signment operator, it designates the SUBSTR function that
produces a string value rather than the sUBSTR pseudo-
variable that designates the location of a substring. In
ALGOL 68, one cannot acquire a reference to a compo-
nent of a flexible location, and hence a procedure cannot
update these components.

161

OBJECTS AND VALUES

162

D. B. LOMET

There is one aspect of aggregate values in most lan-
guages that we want to be sure to preserve. An aggre-
gate value should be characterized in the same way as a
cell aggregate, i.e., by

1. A selector set,
2. A descriptor for each component (i.e., a template),
3. A value for each component.

For example, consider two aggregate values, which we
denote using angle brackets in what we hope is an ob-
vious notation.

a. (a:int := 1, b:real :=1.0)
b. {(a:int := 1, b:union(real, char) := 1.0)

Despite the fact that both of these aggregates have
components with equal values, the aggregates them-
selves are not equal because their second components
are described differently. Property 2) above is a very
useful one for aggregate values for several reasons: It
suggests a way of forming aggregate values, it suggests a
way of providing types satisfied by aggregate values, and
it increases the amount of type checking that is possible
at compile time. It is this characterization of aggregate
values, particularly property 2), that has created much
of the confusion between aggregate values and object
aggregates. The approach taken here carefully avoids
this object/ value confusion while providing almost all
the capability that ALGOL 68 provides by means of flex-
ible locations.

We form aggregate values from references to object
aggregates by means of an operation we call enclose.
Enclosing a reference to an object aggregate yields an
aggregate value: whose selector set equals the selector
set of the object aggregate, whose components are de-
scribed by types that are enclosed forms of the templates
that describe the corresponding components of the ob-
ject aggregate, and whose values consist of the enclosed
forms of the components of the object aggregate. These
enclosed values include the current values contained by
the components of the object aggregate.

Aggregate values can be subjected to selection opera-
tions, but the result of a selection is not a reference to
the selected component but to the value of the compo-
nent. The enclose operator is implemented by merely
copying the cell aggregate and returning an implicit indi-
rection to the copy. All cells to which the aggregate value
is subsequently assigned can share, via the indirection,
this copy of the original aggregate. Because it is not pos-
sible to update aggregate values, no unexpected side
effects can occur because of this sharing. Reclaiming the
storage of the aggregate can be accomplished by main-
taining reference counts, by general purpose garbage
collection, or by normal stack storage reclamation.

Cells with types satisfied by aggregate values can be
provided in a similarly straightforward manner. Con-
straints that are satisfied by various forms of object ag-
gregates can already be constructed. What is required is
an operator, enclose-type, that converts such a con-
straint into a type that is satisfied precisely by aggregate
values formed from references to object aggregates that
satisfy the constraint. The type calculus for aggregate
values is thus exactly as powerful as the constraint cal-
culus that is supported for object aggregates.

Having provided aggregate values in addition to object
aggregates, we now wish to consider the advantages de-
rived from this view. In particular, we consider how ag-
gregate values can be used to support certain data forms
of existing languages while avoiding complications that
give rise to ad hoc restrictions. Strings in PL/T, both
character and bit, can very naturally be treated as en-
closed vectors of characters and bits, respectively. Thus,
they can be treated as ‘“‘scalars” with respect to assign-
ment and comparison operators, while being susceptible
to selection operations, i.e., SUBSTR operations. Selec-
tion operations on aggregate values yield, not a refer-
ence to the component specified, but the value of the
component. This is exactly the manner in which the
SUBSTR function works. Only the sUBSTR pseudo-vari-
able, which permits the assignment operator to alter a
specified substring, is not supported with this characteri-
zation. A cell that can contain varying length strings can
be described by a type that is a union of types, each one
satisfied by a different length enclosed vector. Similarly,
ALGOL 68 flexible locations, e.g., those described by
unions of aggregate modes, can by characterized as
unions of enclosed aggregate types. This characteriza-
tion provides a natural explanation for the prohibition on
taking references to components of flexible locations.
Currently, this is merely an ad hoc limitation.

Assignments to components of flexible locations, as to
substrings of pL/1 strings, can be regarded as follows.
The aggregate value in the target of such an assignment
is accessed in its entirety. A new aggregate is formed
from this value and the value from the source, the select-
ed components being set to the source value and the
resultant aggregate value assigned to the target. Whether
such assignments should be supported at all is a question
that the reader will have to answer for himself.

Sets

Several languages support some form of set data and
operations on sets. Among these languages are Pascal
[12], maDcaP [22, 23], and SETL [22, 24]. Further, the
word set is often used to describe collections of data in
data base systems, e.g., “data set” is a term commonly
used in IBM data management systems, and relations in
relational data base systems are usually considered as

IBM J. RES. DEVELOP.

sets of tuples [25]. While the intuitive notion of set
provides a reasonable justification for calling any of the
preceding entities sets, careful definition in a program-
ming language context requires that some rigorous dis-
tinctions be made. Thus we consider two kinds of sets.
These two forms of sets reflect the distinction we have
been making throughout the paper, i.e., the distinction
between object and value. Thus sets as objects and sets
as values are considered separately.

» Sets as objects
We have discussed cells as objects that can each contain
a single value. A set object is an object that can contain
zero or more values. Note that it is not a cell into which
a set value can be stored. Set values are discussed be-
low. Because a set object is not a value, it cannot be
passed around via assignment or returned as a result of
an operation or procedure. However, references to set
objects are, as expected, values and thus can be treated
in these ways. Hence, whereas sets only contain multi-
ple values, the effect of having sets of set objects, or sets
of objects of any form, can be realized by specifying a
set of references to the objects desired. Further, as a
natural consequence of this view, an object can be ““con-
tained” simultaneously in several such sets because its
reference can freely belong to the several sets.
Programming languages use the assign operator to
store a value in a cell, thereby destroying the existing
value in the cell. With set objects, however, we wish to
be able to add new values or to remove some of the ex-
isting values without affecting the other values in it.
Thus we require a new group of operators for set ob-
jects. Whereas several possible variants for the opera-
tors exist, we specify the following ones for illustrative
purposes.

1. insert(ref to set object,value) This operation includes
the value of operand two in the set object referenced
by operand one. If the set is “full” (see below), an
error condition occurs.

2. delete (ref'to set object,value) This operation removes
the value of operand two from the set referenced by
operand one. If the set does not contain the given
value, no change is made.

3. empty (ref to set object) This operation removes all
values from the set referenced.

The above operators do not produce values as results.
Rather, they are the set analogs of cell assignment. Thus
their execution results in side effects on storage. We
need to retrieve values from sets and to test the contents
of sets. For this purpose, the additional operators below
are introduced.

MARCH 1976

4. member (ref to set object) — value The value pro-
duced by this operation is some member of the set
referenced by its operand. In a particular language, it
might be desirable to specify an ordering on elements
as a set attribute and thus define the member chosen.
We do not pursue this possibility here. In order to
achieve the effect of sequencing through the members
of a set, the result of this operation must be removed
from the set before requesting a member again. If
there are no values in the set, an error condition oc-
curs.

S.in (ref to set object,value) — boolean value The
result is true if the value specified by the second op-
erand is in the set referenced by the first operand.
Otherwise, the result is false.

6. null (ref to set object) — boolean: The result is true
if the set referenced by the operand contains no val-
ues. Otherwise it is false.

The normal set theoretic operations, e.g., union, in-
tersection, have not been provided as primitives for set
objects. These operations must produce new sets as re-
sults. With set objects, this requires the allocation of a
new set object and the returning of its reference. We be-
lieve it is a bad practice to provide primitives that im-
plicitly allocate new objects during the course of their
execution. The set theoretic operations can be pro-
grammed, however, in terms of the primitives already
provided.

We have yet to discuss how set objects are specified
and allocated. We can, of course, already specify sets of
values. These specifications are the types. A type de-
scribes the set of values, one member of which can be
contained in a cell. Because types have been designed so
as to permit their equivalence and satisfiability to be de-
cidable, they form a natural basis for the description of
set objects. Thus, to construct a template for a set ob-
ject, we introduce the set operator such that

set(type) — template

where template describes a set object that can contain
zero or more of the values that satisfy the type.

Sets are enormously useful and a natural construct for
specifying a broad range of algorithms. Given this, the
question arises as to why they are not provided in more
languages. The reason is primarily that it is very difficult
to choose a representation for sets that uses storage
efficiently and simultaneously permits an efficient imple-
mentation of the desired set operations. This is an area
of ongoing research {26]. Given our model of storage,
this problem can be eased considerably. We use a tech-
nique analogous to that used in PL/1 to ease the prob-
lems with VARYING strings [16], i.e., we permit the user
to specify the maximum number of elements that a set is

163

OBJECTS AND VALUES

164

D. B. LOMET

to contain, thus bounding the storage requirements and
suggesting implementation strategies for the set opera-
tions. For this purpose, the cardinality operator is intro-
duced as follows:

cardinality (template for set, integer) — template

where the resulting template specifies a set object that
can contain at most the number of values specified by
operand two.

Whereas the provision of a maximum number of ele-
ments for a set object is an extra burden in some cases,
this information is frequently available to the user but he
has no way of supplying it to the language system. Fur-
ther, such information can be a valuable additional con-
straint on the program that is useful for error detection.

Set objects correspond approximately to the sets of
MADCAP, where the set variables must be regarded as
containing references to the set objects. Operations on
one set variable can cause changes to another set vari-
able if the two variables reference the same set object.
MADCAP has thus been described by Low [26] as a
“pointer language.”

e Sets as values

Values, as discussed previously, are distinguished from
storage objects in that they are atomic and immutable,
can be passed from one object to another, and can be
returned as results of operators and procedures. In par-
ticular, a value may be assigned to and hence become
the contents of a cell. In the case of sets, then, we can
distinguish a cell that contains a set value from a set ob-

ject that contains a number of values.

To support set vaiues requires the introduction of
operations that permit their construction and manipula-
tion and the construction of types that are satisfied by
set values. By introducing set values after set objects,
we can make use of the same device we have used be-
fore for producing values from objects, i.e., we can use
the enclose operator to produce a set value from a set
object. As with aggregates, not only do the set values
reflect the current contents of the set object. The charac-
teristics of the set object itself also characterize the en-
closed set value produced from it. Similarly, types that
are satisfied by set values can be formed by means of the
enclose-type operator. Given a constraint satisfied by a
set object, enclose-type produces a type that is satisfied
by the analogous set value, thus permitting the construc-
tion of cells that can contain set values.

Some of the operations on set objects can be carried
over to work on set values. These are in, member, and
null. The remaining operators have to be alterred so as
to return a modified set value rather than modifying a set
object in place. We prefix the original object operators

with a v and hence introduce the operators y-insert, v-de-
lete, and v-empty to perform these functions.

Set values provide the natural programming language
analog of the mathematical concept of a set. The usual
set theoretic operations, e.g., union, intersection, relative
complement, etc., can all be provided. These can either
be programmed in terms of the preceding primitives or
be supplied directly as primitives themselves. Which al-
ternative is selected depends greatly on the representa-
tion(s) chosen for sets. We do not pursue this further.
Set values are the form of set supported by seTL and
Pascal. These sets possess what J. Schwartz [27] has
called “‘pure value semantics” in that no set operation
involving one group of sets can produce side effects on
any other set. Further, assignment of the usual form for
cells carries over to cells that can contain sets.

Extension mechanisms

The term type as we have defined it is but one of several
concepts included in the intuitive notion of type. Morris
argues that types are not sets or predicates [3]. What is
generally meant by this is that a data type is defined not
only by a set of values but also by a set of operations
that manipulate the values. SIMULA [11], with its CLASS
concept, was the language that first introduced a mecha-
nism in which new objects and their operators could be
defined together. The essentials required are a descrip-
tion of how the objects of the class are to be represented
and the definition, as procedures, of the operators that
are to manipulate the objects. This technique has been
further refined by Brinch Hansen [28], who emphasizes
the importance of protecting the underlying representa-
tion of the object from access and modification by pro-
cedures other than those that were defined as its opera-
tors. In sIMULA, the operators are designated as if they
were components of the object. Liskov and Zilles [29],
in addition to providing a clean syntactic treatment of
class definitions, which they call clusters, change the
operator naming scheme so that an operator is identified
by its own name qualified by the name of the class, not
the object. This seems a small change, but we believe it
represents an important philosophical distinction that we
exploit in what follows.

Data object descriptions (templates) have already
been introduced. We wish to build on the template
mechanism to provide a methodology for constructing
new classes of objects. Thus class is the last term that
we introduce that is included in the intuitive notion of
type. Because we base classes on the notion of template,
a class value is not needed. Rather, the approach we
take is to specify class definitions as generalizations of
template definitions. Hence template values serve as
classes. As will be apparent, not all the problems asso-
ciated with this view have been solved. Rather, we put

IBM J. RES. DEVELOP.

forth the view in an attempt to capture the essential con-
cepts and directions of what is an ongoing research ef-
fort [15, 19, 29, 30].

In order to provide a coherent framework for class
definitions, we need to consider templates in a new light.
Templates for aggregates provide a description of the
aggregate, but we need to understand the nature of that
description. The view we consider here is as follows.
The values that serve to index an aggregate are not to be
considered as the selectors of the aggregate. Rather,
these index values can be used to acquire selectors. The
selectors themselves are functions that take a reference
to an aggregate as an operand and return a reference to
the specified component. Thus, the selector function al-
ready incorporates the index value in its definition, and
this need not be provided as an operand. It is the tem-
plate that serves to relate the index values to the selec-
tor functions. Thus we may regard a template as consist-
ing of the following aspects:

1. A specification of how the aggregate is to be repre-
sented.

2. A dictionary of <index, function> pairs that provides
a way of naming the operators that can manipulate
the aggregate.

3. Perhaps a specification of how the aggregate is to be
constructed and initialized, although this can be pro-
vided in 2) above.

Notice that this functional approach to selectors is
fundamentally different from the functional data objects
discussed by Reynolds [31]. In Reynolds’ scheme, it is
the allocated object that is the function that, when ap-
plied to a selector value (index), yields a reference to
the component.

Our conception of templates and selectors has a sig-
nificant consequence. It permits the addressing compu-
tation that selects a component of an aggregate to be
decomposed into two parts, one of which can be execut-
ed prior to actually having a reference to the aggregate
available, i.e., the selector function can be chosen by
knowing only the index and the template. This part of
the address computation, now exposed in the language
itself, can be precomputed via constant propagation or
subjected to common subexpression elimination by a
compiler. Further, this view gives us a rationale for
knowing the characteristics of the component selected.
Note that with a general purpose select function that is
given the aggregate reference plus an index value, or
with Reynolds’ functional data objects, all we know syn-
tactically when dealing with heterogeneous aggregates is
that the function will return some reference, but not its
precise characteristics. This is not so when we have a
selector function into which the index has already been
incorporated. In this case we know that the type of its

MARCH 1976

operand is a reference to a particular form of aggregate
and that its return value is a reference to a particular
form of object, i.e., the desired component. In order to
acquire the selector functions from the indices of an ag-
gregate, we introduce the index operation. The index
operation takes a template and a value used to index the
aggregate described by the template and returns the
selector function.

Having established the basic framework, it is now a
straightforward matter to augment it by permitting oper-
ations other than selector functions to be included in a
template. This is the capability that Liskov and Zilles
supply with function clusters. For example, to define a
stack, they include push and pop operations in the clus-
ter describing stacks and then refer to these operations
in the body of the program by “indexing’’ into the tem-
plate describing the stack, i.e., the stack cluster. Thus
the pop operation is specified as stack g pop.

AFajor virtue of the above view of templates is its
ability to unify the data definition function. The same
mechanism that explains basic aggregate objects also
can provide 1) a way of providing differing representa-
tions for aggregates, i.e., use the same indices but
change the selector functions; and 2) a way of defining
new objects with their associated operations. However,
there are some unresolved problems. Among them are
the following:

1. If selector functions are to be provided by a user,
when are they executed and how are references rep-
resented? One would like a given selector function,
when applied to an object, to always produce the
same reference value. Suppose we are realizing a
large array using sparse array techniques [32]. Then
the real storage locations of the elements change
dynamically, and immediate execution of the selector
function will not always produce the same result. It
appears to be necessary to delay evaluation of the
selector function, recording in an “extended” refer-
ence the selector to be used at access time. This
causes references to become complex very rapidly,
especially when multilevel selection is required.

2. How do we provide mechanisms by which a generic
object specification can be defined? An example of
this is to provide a generic specification for stacks
and then permit subsequent specification of, e.g., inte-
ger, real, character, etc., stacks. SIMULA provides this
via its subclass mechanism. Liskov and Zilles permit
procedure declarations in which the return type is
dependent on a parameter. Another alternative is to
provide a way of constructing procedures with the
required properties when needed. In any case, in the
stack example, the push and pop operations must be
tailored to the kind of stack that is specified. What-

165

OBJECTS AND VALUES

166

D. B. LOMET

ever method is chosen, an exceedingly careful assess-
ment of the implications of the solution must be made
to assure that the mechanism fits well into other lan-
guage contexts.

3. How can flexible constraints be provided? Given the
constant operator, one can always construct a con-
straint, one template at a time. However, this is not
satisfactory in any practical sense. Constraints such
as those provided in ALGOL 68 in which () int is
satisfied by any integer vector are highly desirable
and cannot be provided by finite unions. Further,
equivalence for templates must be defined so as to be
decidable. The equivalence of templates depends par-
tially on how we choose to regard the equivalence of
procedures in the view of templates as including func-
tions. A solution that requires every template that is
constructed to be unique, i.e., not equivalent to any
other, even those formed in the same way, is not sat-
isfactory for the primitive objects.

4. How does the compose operation interact with the
functions and the representing storage descriptions
contained in its argument templates? When compose
is executed, resulting in a new template, the aggregate
specified has all the components specified in both
arguments. Clearly then the selection functions asso-
ciated with the index values must be modified to re-
flect the change in the aggregate from which the com-
ponent is to be selected. The result is easy to de-
scribe when primitive aggregates are being treated.
However, what are the effects when user-provided
procedures are involved?

5. How is the concept of enclosing objects to form val-
ues applied to the more general situation involving
user-defined extensions? During the enclosing of ag-
gregates and sets, the operations that manipulated
them were re-interpreted (actually new but analogous
operators were provided) so as to work on the en-
closed values. Is there a systematic way in which the
operations on objects can be transformed to operate
on values? Short of this, how are new operators for
values specified that can access the values’ represen-
tations?

Let us now state a general criterion that we feel an
extension mechanism should possess. We feel it is the
goal toward which efforts in the field should be directed.
We also feel that there is still considerable progress that
must be made before the goal is realized. The criterion is
this: An extension mechanism should be capable of de-
fining the primitive storage objects supplied with the
language in terms of an even more primitive undifferen-
tiated storage and some very simple operations on this
storage. Further, the primitive values of the language
should also be definable by extension. With our method-

ology, this would be done by enclosing objects that were
constructed using the extension mechanism.

Summary

We have attempted to make a rigorous distinction be-
tween objects and values and have explored the conse-
quences of this distinction. In so doing, we have identi-
fied four separate concepts that have been lumped under
the intuitive notion of type. These are:

1. type We use the term type to mean a predicate that is
satisfied by values and that characterizes a cell.

2. template A template is a description and specification
of storage objects. Among the objects are cells whose
templates may be types. Other objects, e.g., aggre-
gates, must have templates that are not types.

3. constraint A constraint is a predicate that is satisfied
by objects. One may, however, use types that are sat-
isfied by the templates that describe the desired ob-
jects for this purpose. Hence, separate constraint
values are not required.

4. class A class is a description and specification of
storage objects that includes the operations that are
to be used to manipulate the objects. In our view, a
class can be considered as a generalization of the
template concept.

The features of current languages have been examined
in the light of the value/object distinction, which led us
to introduce the enclose operation as a means of gener-
ating values that are based on objects. This view enabled
us to have a full complement of aggregate values, paral-
leling the aggregate objects, without the difficulties in-
volved with flexible locations. Sets were studied as they
appear in some existing languages to demonstrate that
the value/object distinction and the notion of enclosing
can provide sets in object and value forms, both of
which have proved useful.

Lastly, extension mechanisms were discussed. This
area is the most incomplete despite many efforts extend-
ing over a period of at least ten years [33]. We have
discussed them in terms that integrate them with the
basic concepts already provided, but we have sketched
only the framework in which such a mechanism might be
defined. Some of the problems with extension mecha-
nisms have been discussed in a series of questions. It is
our hope that future work involving extension mecha-
nisms will result in the design of one that satisfies the
criterion that was expressed at the end of that section.

Acknowledgments

Several associates have been helpful in the development
of the ideas presented in this paper, including R. Gold-
berg, W. H. Harrison, C. Lewis, and P. H. Oden. A spe-

IBM J. RES. DEVELOP.

cial debt is owed to M. A. Auslander, who, by pointing
out shortcomings in their precursors, greatly assisted the
emergence of these ideas.

References

1.

13.

14.

15.

16.

17.

K. Walk, “Modeling of Storage Properties of Higher Level
Languages.” SIGPLAN Notices (ACM) 6, 146 (February
1973).

. A. N. Habermann, ““Critical Comments on the Program-

ming Language Pascal,” 4cta Informatica 3,47 (1973).

. J. H. Morris, “Types Are Not Sets,” Conf. Record of

ACM Symposium on Principles of Programming Lan-
guages, October 1973, p. 120.

. J. C. Reynolds, ““A Set-theoretic Approach to the Concept

of Type,” NATO Conf. on Techniques in Software Engi-
neering, Rome, October 1969.

. J. W. Backus, et al., “The FORTRAN Automatic Coding Sys-

tem,” AFIPS Conf. Proc., Fall Joint Computer Conference
11, 1957, p. 188.

. “CoBOL-1961: Revised Specifications for a Common Busi-

ness Oriented Language,” Dept. of Defense, U.S. Govern-
ment Printing Office, Washington, D.C., 1961.

. P. Naur, et al., “Revised Report on the Algorithmic Lan-

guage ALGOL 60,” Commun. ACM 6, 1 (January 1963).

. G. Radin and H. P. Rogoway, “NPL: Highlights of a New

Programming Language,” Common. ACM 8, 9 (January
1963).

. N. Wirth and C. A. R. Hoare, “A Contribution to the De-

velopment of ALGOL,” Commun. ACM 9, 413 (September
1966).

. A. van Wijngaarden, B. J. Mailoux, J. E. L. Peck, and C.

H. A. Koster, “Report on the Algorithmic Language ALGOL
68, MR101, Mathematisch Centrum, Amsterdam, Octo-
ber 1969.

. O.J. Dahl, B. Myhrhaug, and K. Nygaard, The SIMULA

67 Common Base Language, Publication S-22, Norwegian
Computing Center, Oslo, 1970.

. N. Wirth, “The Programming Language Pascal,” Acta In-

formatica 1,35 (1971).

B. Wegbreit, “The Treatment of Data Types in EL1,”
Commun. ACM 17, 251 (May 1974).

B. L. Clark and J. J. Horning, “The System Language for
Project SUE,” SIGPLAN Notices 6,79 (October 1971).
C. H. Lewis and B. K. Rosen, “Recursively Defined Data
Types,” Conf. Record of ACM Symp. on Principles of
Programming Languages, October 1973, p. 125.

PL/ 1 Language Specifications, Order no. GY33-6003-2,
IBM United Kingdom Laboratories, Winchester, Hamp-
shire, England, 1970.

PL/I Basis/1-11, ECMA. TC10/ANSI.X3J1, European
Computer Manufacturers Association, 1974.

MARCH 1976

18.

19.

20.

21.

22.

23.

24.

31.

32.

33.

P. Wegner, Programming Languages, Information Struc-
tures, and Muachine Organization, McGraw-Hill Book
Company, Inc., New York, 1968.

D. B. Lomet, “A Cellular Storage Model for Programming
Languages,” Research Report RC4360, 1BM Thomas J.
Watson Research Center, Yorktown Heights, New York,
1973.

APL/360: User's Manual, GH20-0683, IBM Corporation,
White Plains, New York, 1968.

C. H. Lindsey and S. G. van der Meulen, /nformal Intro-
duction to ALGOL 68, North Holland Publishing Compa-
ny, Amsterdam 1971.

J. B. Morris, A Comparison of MADCAP and SETL, Los
Alamos Scientific Laboratory, University of California,
Los Alamos, Ca., 1973.

M. B. Wells, “Aspects of Language Design for Combina-
torial Computing,” [EEE Trans. Comput. 13, 431 (August
1964).

J. Schwartz, “Automatic and Semi-automatic Optimization
of SETL,” SIGPLAN Notices 9, 43 (April 1974).

. E. F. Codd. “A Relational Model of Data for Large Shared

Data Banks,” Commun. ACM 13,377 (1970).

. J. R. Low, Automatic Coding: Choice of Data Structures,

TRI1, University of Rochester, Rochester, New York 1974,

. Private communication.
. P. Brinch Hansen, Operating Svstem Principles, Prentice

Hall, Inc., Englewood Cliffs, New Jersey 1973.

. B. Liskov and S. Zilles. “‘Programming with Abstract Data

Types.,” SIGPLAN Notices 9, 50 (April 1974).

. R. Goldberg and P. H. Oden, “Data Types and Data Type

Extensions in Programming Languages.” Research Report
RC4651, IBM Thomas J. Watson Research Center. York-
town Heights, New York, 1973.

J. C. Reynolds, “GEDANKEN — A Simple Typeless Lan-
guage Based on the Principle of Completeness and the Ref-
erence Concept,” Commun. ACM 23, 308 (May 1970).

F. Gustavson, W. Liniger, and R. Willoughby, “Symbolic
Generation of an Optimal Crout Algorithm for Sparse Sys-
tems of Linear Equations,” Journal Assoc. Comput. Mach.
17,87 (April 1970).

T. E. Cheatam, “The Introduction of Definital Facilities
into Higher Level Languages,” AFIPS Conf. Proc., Fall
Joint Computer Conference 29,23 (1966).

Received June 26, 1975

The author, who is assigned to the IBM Thomas J. Wat-
son Research Center, Yorktown Heights, N.Y. 10598, is
presently on sabbatical at the University of Newcastle
upon Tyne.

167

OBJECTS AND VALUES

