
D. B. Lomet

Objects and Values: The Basis of a Storage Model for
Procedural Languages

Abstract: A model for storage in procedural languages is presented. Its fundamental notion is to strictly distinguish values from stor-
age objects. Several difficulties in current languages are resolved in this model, e.g., the problem of flexible locations [I] and the mean-
ing of the term type [2, 3, 41. In the light of the storage object/value dichotomy, several notions are found to be covered by the term
type. The implications of the model are explored with respect to the more conventional data constructs of procedural languages as well
as to sets and how they might be provided. Finally, data extension mechanisms are considered. Whereas the treatment here is not
complete, the template concept introduced in the model does suggest a useful framework for providing the much talked of but seldom
realized benefits of data extensibility.

Introduction
Much scientific development is a process of going from
the concrete, special case to interesting generalizations.
Such has been the history of procedural programming
languages. In particular, this progression can be seen in
the area of data and storage. Table 1 presents some of
the important languages together with the data and stor-
age notions given wide exposure by that language.

In examining Table 1 , it becomes clear that a rather
remarkable amount of progress has occurred since FOR-
TRAN first appeared. Some confusion and controversy
has also arisen. The word type was introduced in FOR-
TRAN to describe variables and to make efficient compi-
lation possible. Although ALGOL 68 substitutes the word
mode for type, the historical situation is that, by and
large, a single term has been used to cover the multitude
of concepts listed in Table 1 . The thesis presented here
is that the word type currently includes several distinct
notions and that the situation would be clarified if these
notions were distinguished by unique terms.

The basis for much of the following discussion lies in
strictly separating the notion of value from that of stor-
age object. Most language designers and users probably
believe that their language maintains exactly that separa-
tion. Our contention is that this distinction has broken
down during the process of generalization that has ac-
companied language evolution. Resurecting this distinc-
tion in a rigorous way exposes several of the concepts
embedded in the word type as well as resolving some
other difficulties. First it is necessary to establish what
we mean by these terms. Table 2 enumerates the proper-
ties that characterize values and objects.

The relation between values and objects is twofold.
First, references are values that are used to manipulate
objects. Second, values may be stored in and retrieved
from some objects. We call an object that can contain a
single value a cell. The term variable has sometimes
been used for a cell, but it also can mean the symbolic
name used to identify the cell. It should be emphasized

Table 1 Languages and the data and storage features given
exposure by them.

Year Lunguuge Feature

1957 FORTRAN [5] scalars and fixed size arrays

1961 COBOL [6] structures

1963 ALGOL 60 [7] local (stack) variables,
settable array bounds

1965 P L / I [8] dynamic allocation and freeing,
pointers, strings

1966 ALGOL W [9] constrained references

1969 ALGOL 68 [101 unions, flexible arrays,
recursive types

1970 SIMULA 67 [1 I] class definitions

1970 Pascal [121 ranges, sets

1971 EL1 [I31 type variables,
user defined types

157

OBJECTS AND VALUES MARCH 1976

Table 2 Properties of values and objects. Several recent languages [10, 12, 13, 141 have types
as values, and further they provide a type calculus by
supplying operations whose results are types. The meth-
odology for this is as follows:

Property Discussion
~~~~~ . . ~ ~” 

Values atomic No references  to  components. 

immutable Values may be replaced by other 
values,  but it is meaningless to 
talk of changing values. If 1 is 
added  to 3,  the effect is not to 
change 3 to 4 but to replace 3 
by 4. 

storable Values  can become the  contents 
of (parts  of) storage  objects. 

returnable  Operators may produce values as 
results. Further.  any result 
returned is always a value. 

1. As a basis, one is given a collection of primitive types, 
e.g.,  integer,  real,  boolean, character, and the values 
that satisfy  them. There is no  requirement  that  the 
primitive types be satisfied by disjoint sets of values. 
It is entirely reasonable  for values satisfying the  type 
integer to also satisfy the  type real. This would permit 
the so-called “natural  conversions” from  integer to 
real. In the other  direction,  an & function [7] 
would be  required to  convert real values to integers 
because  there  are real  values that  are not  integer 

”~ 

__ 

Objects  constructible  Whereas  operators may return values. 
only  values,  a side effect of 2. Type  operators  are  drawn naturally  from set  theory. 
certain  operators is the  creation Some potential operators follow: 
of storage objects  that persist 
over time. a. union The disjunction of two  type  predicates spec- 

ifies the union of the  sets of values satisfying either 
Reference  values are used to 
specify the  storage objects  or 
their components  that  are  to be 

~~ 

type. 
b.  range Sometimes called “subrange,”  the range op- - - 

referable 

manipulated. erator defines the  subset of a type  whose values 

changeable Storage  objects contain  the state 
of the computation. If an object 

are  ordered by specifying an  upper bound and a 
lower  bound that  are imposed on members of the 

deletable 

is changed,  subsequent  operations resulting type [ 121. 
involving references to it reflect c.  enumeration A type  predicate  can be specified by 
the  change. 

enumerating the values that satisfy the  type.  This 
Some languages  permit  storage is sometimes present in only  a  restricted form,  e.g., 
objects  to  be deleted. Subsequent only identifiers may be listed [ 12, 141. However, a 
references  to the  deleted  object 
are  erroneous. general  capability  can  be  provided by supplying 

that  there may be other forms of objects, e.g., processes, 
locks, modules, etc. We consider in what follows only 
cells,  aggregates (i.e., groupings of objects that  can be 
accessed via a  common reference and that  have a com- 
mon lifetime), and sets (i.e.,  objects that  can contain 
several values). 

Cells and values 
Associated with each cell is a predicate  that must be sat- 
isfied  by any  value that is to be stored in or retrieved 
from the cell. The predicate is the first concept intro- 
duced that has been covered by the word type.  We  use 
type to  denote this  predicate. Note,  however,  that here 
we are taking a term that is currently  imprecise  and giv- 
ing  it a very specific meaning; we give other names to 
the  other notions covered imprecisely by the word type. 
The view of types as sets, which has been discussed by 

158 Reynolds [4], is equivalent to  our use of the term  type. 

a constant  operator, which,  given  any  value, yields 
a type  that is satisfied by precisely that  one value. 
Enumeration is achieved  by applying union to  sev- 
eral of the  results produced by the  constant op- 
erator. 

3. At times, one  does not wish to specify any constraints 
on the values that  can be stored in a particular cell. 
For this reason, we introduce the type  general, which 
is satisfied by all values. This  type provides the  means 
of supporting so-called typeless  languages. 

More  types  are needed as new values are  introduced, 
(e.g.,  reference  types), but we  defer consideration of 
these until the values themselves  are  introduced. 

Many other  set  theoretic  operations  are not  generally 
included in a type calculus. An  operator embodying the 
axiom of separation, i.e., designating a subset of a given 
type by means of a more or less arbitrary  predicate  ap- 
plied to members of the original type, is not  included. 
Neither  are  such simpler operators  as  intersection, dif- 
ference, and Cartesian  product.  There  are  two  reasons for 
excluding these  operators: Implementation  problems  can 
be  formidable;  undecidability can become a problem. 

D. B. I.OMET IBM J.  RES.  DEVELOP. 



Both of these difficulties arise when the problem of the 
equivalence of types must be faced. When types  can be 
recursively  defined, as in ALGOL 68 [ lo ] ,  determining 
type equivalence  can  be  very difficult. One  must, in fact, 
be  careful to  ensure  that the  recursive types  are indeed 
well defined.  Lewis  and  Rosen discuss  these issues in a 
recent paper [ 151. Thus,  the type operators  are very 
carefully chosen.  Whereas all types  are value predicates, 
all value  predicates are decidedly  not types. 

The  operations involving cells, the cells being identi- 
fied  by means of references to  them,  consist of the  stor- 
ing and  retrieving of values from them. The storing oper- 
ator is generally called assign,  and it has  two operands, a 
target cell and a source  that is either a  value or a means 
of generating such a value. The effect of executing as- 
sign is to replace whatever is currently  stored in the cell 
with the value produced by the  source.  The retrieving 
operation is frequently called valand, given a cell refer- 
ence  as an operand,  returns  the  current  contents of the 
cell as its  result. 

~ 

Templates and aggregates 
Cells and aggregates are storage  objects. As  such they 
can be created and destroyed. When  creating a cell, a 
description of the cell must  be  provided to  the  create 
operator. Because  a type is associated with each cell, it 
is natural to use a type  as the  description when a cell of 
the given type is desired.  There is no harm in this. How- 
ever,  the extension of this idea to aggregates creates 
difficulties. 

Typical  aggregates in existing languages are  arrays, 
structures  (records), and files. These aggregates are 
usually treated  as  storage  objects, not as values. How  do 
we tell the difference? In  IBM PL/I [ 161, although not in 
the  ANSI  standard  [17], and in ALGOL 60 [7] and 
Pascal [ 121, the following properties of storage  objects 
also hold for aggregates: 

1. Array  operators, if any,  are simply shorthand nota- 
tions for iterations in which a scalar  operation is per- 
formed on each  component of the aggregate (s) .  

2. Functions  never  return aggregates as results. 
3 .  Components of aggregates  can be updated. 
4. References to aggregates  and to  their  components 

can be acquired in those languages that provide  refer- 
ence  types. 

Unlike  the above languages, ALGOL 68 attempts  to 
treat aggregates as both objects and  values. This results 
in the notion of flexible locations, which is the  cause of 
some ad hoc  restrictions. We explore this  more fully later. 

An aggregate is a  collection of objects, all sharing  a 
common lifetime, i.e., the  objects  are all created by a 
single execution of the  create  operator  and  are all de- 

stroyed by a single execution of the free operator.  In 
addition, given a  reference to  the aggregate, it  is possi- 
ble, via a  selection operation,  to acquire a reference  to 
any of the  components of the aggregate. Each compo- 
nent is uniquely  named within the aggregate. Hence,  the 
aggregate reference  together with one of these  names, 
called selectors, identifies the desired component in a 
system-unique  way. 

Using types  to  describe aggregates is clearly  inade- 
quate.  Each cell of an aggregate  must  be described, via 
its type,  but, in addition, these cells  must  be given selec- 
tors and must be “aggregated” in whatever way is de- 
sired. For this reason, a second term is required. We call 
the specification of an aggregate a template,  following 
the terminology of Wegner [ 181. Template  denotes  the 
second meaning that is sometimes attributed  to  the intui- 
tive  notion of type.  Given  that  types can be used as 
templates for cells, together with the confusion about 
whether aggregates are  objects  or values, it becomes 
understandable why types and templates  are not univer- 
sally distinguished. 

Once  types and  templates are distinguished, it be- 
comes  necessary  to introduce  template operators as well 
as type  operators.  Most languages provide  notation for 
expressing the results of these  “operations”  even when 
they do not treat  templates as values.  Typically, array 
and  structure  construction is provided.  File construction 
is also frequently  provided but is not usually well inte- 
grated with the  other mechanisms. We wish to  treat 
these  constructions as explicit operators in a  template 
calculus that  augments  our previous type calculus. 

The template operators introduced are, of course,  sen- 
sitive to  the  forms of aggregates that  are  desired. A rath- 
er large number of aggregate  forms have been  used,  e.g., 
structures,  arrays, files, tuples, records  (similar  to 
structures), strings, etc.  Instead of trying to define oper- 
ators for all these different  forms, we suggest  the follow- 
ing alternative.  Most aggregates are  characterized by the 
following set of properties associated with each  compo- 
nent: 

1. A selector  that  names  the  component. 
2. A template that  describes  the  component.  The  com- 

3 .  The  current value of the component, when the com- 
ponent is itself, of course, a storage  object. 

ponent is a cell. 

The  operators we describe permit 1 )  the association 
of selectors with templates  that  describe  the  components 
that  the  selectors identify and  2)  the composition of 
previously constructed templates. All aggregate forms 
are  thus unified. These  operators  are 

1. (selector   set , template) .  The resulting  template 
specifies an aggregate, all of whose elements  are simi- 159 

OBJECTS AND VALUES MARCH 1976 



lar. For  example,  an  array with a range of integers as 
a selector  set can  be  specified. Further, using the 
constant  operator, a single element  aggregate can be 
specified with any  desired  selector name. This is useful 
in conjunction with the  compose  operator  (below) in 
specifying structures. 

2. compose (template I , template2). The resulting tem- 
plate  specifies an aggregate with all the  components 
specified by both template1 and ternplate2. In par- 
ticular,  nonhomogeneous  aggregates can be specified 
via this operator, e.g., structures. 

This view is elaborated  more fully in [ 191. Although 
this view is attractive  to us, it is by no means  essential to 
the discussion of fundamental concepts  that we have 
given. 

Let us now  illustrate one of the practical advantages 
of the fundamental concepts we have been  presenting. 
To  do  this, we examine the roles played by cells and 
aggregates from a slightly different perspective. 

The fundamental  purpose of aggregates in higher level 
languages is to  support a  restricted  form of address 
computation.  Thus, given a reference  to  an aggregate 
and  a selector value,  a  selection operation  computes a 
new address, i.e., the  address of the  component specified 
by the  selector. Such address computation is controlled 
in high level languages by the  requirements  that 

1. References to aggregates  originate as a  result of a 
create  operation, either  explicit or implicit. Arbitrary 
addresses  cannot be computed. 

2. Selection operations  have a valid address  as an argu- 
ment,  perform  a defined selection, and  produce  an 
address  to a component of the aggregate originally 
referenced. 

The  purpose of cells is to provide repositories  for val- 
ues, i.e., to maintain state information. To make  this 
possible, the assign operation is provided. In  our meth- 
odology, the only  function of assignment is to  store a 
value in a cell. In no way does it interact with address 
computation. 

ALGOL 68 does not  strictly  segregate the functions of 
assignment  and address computation. These functions 
intersect in the  case of flexible locations, which arise, e.g., 
as a result of the union operation. We have distinguished 
types from templates, based on  our distinction between 
values and objects. Further,  we  have  restricted union to 
apply  only to  types, not to templates. ALGOL  68  does 
not  make  these distinctions, and  hence it does not pre- 
vent unions of what in our view would be  templates. 
Thus, it permits the declaration of a mode (template?) : 

jlexloc = union(struc  (real a,& 6) ,= 
160 (real b,& c ) )  

D. B. LOME1 

If a variable X is declared  to be of the mode jlexloc, it 
becomes  possible to  change  the  selector  set of X from 
( a ,  6) to (6, c )  by means of an assignment to X .  If  taking 
a reference  to a of X were permitted,  every  use of this ref- 
erence would require checking to  determine  that  the alter- 
native for X that contained a of X was  the  current  “value” 
of X. This checking would also  be  required if a of X were 
passed by reference  as  an argument.  Because of the 
uncertainty about  the  source of a parameter, checking 
would frequently be required even if the  parameter  were 
not of this form.  Distinguishing templates from types 
permits  unions to  be  supported  for  types while prevent- 
ing unions involving templates,  thus preventing flexible 
locations. The explanation for  the  restriction  arises in a 
completely  natural way from the  valuelobject distinc- 
tions being made. Because  ALGOL  68  has  no way of 
preventing flexible locations, it must  cope with  them. It 
does this  by imposing a set of ad hoc restrictions  that 
prevent a user  from acquiring  a reference  to a compo- 
nent of a flexible location. Most of the function of flexi- 
ble locations is provided via aggregate values, intro- 
duced  later, while avoiding these difficulties. 

Reference values 
Storage  objects themselves cannot  be assigned  from one 
variable to  another,  incorporated directly  into programs, 
or  passed  as  parameters.  Rather, a  storage object is 
manipulated by means of a  value that uniquely denotes 
it. This value is called a reference in ALGOL 68  and a 
pointer in ~ L / I .  We  use  the  term reference. The  concept 
of reference  occurs in most high level  languages, even 
when references  are  not  treated  as values, i.e., are not 
assignable to variables. For  example, FORTRAN passes 
arguments  “by  reference.” Further, if one wishes to 
describe  the assignment operator in terms of values that 
the  system  can manipulate,  then the notion of reference 
is unavoidable. 

If references  are values in a  language, it becomes  nec- 
essary  to specify  cells that  can  contain  them, Le., types 
that  are satisfied by references  are needed. In PL/I  the 
type POINTER is provided, which is satisfied by all refer- 
ences  (pointers). Because pL/ I only offers POINTER 

cells, the  type checking that involves the variables  point- 
ed  at  can only  be done  at run  time. In most  implementa- 
tions, this  checking is  not  done  at all because of the seri- 
ous performance penalty. In  order  to perform at  least 
some of this type checking at compile  time, as well as 
providing  more comprehensive  syntax checking,  refer- 
ence  constraints  are utilized by such languages as ALGOL 

68  and Pascal. 
In  our methodology, where  types  are  themselves val- 

ues, what is required is an  operator  that, when given a 
constraint,  produces a type  that  is satisfied only  by  refer- 
ences  to  objects  that satisfy the  constraint. We call this 

IBM J. RES. DEVELOP. 



operator  the ref operator.  An  operand of ref is a value 
that we call a constraint, and  constraints  denote  the 
third concept included in the intuitive  notion of type. 
This is a  distinct concept,  because a constraint  is, in 
fact, a predicate  over  storage  objects,  and  none of the 
previous terms play this role. 

With Pascal,  constraints uniquely  specify the form of 
object required. That is,  a constraint must be satisfied 
by objects that were all created by the  same template. 
Thus, in Pascal it is possible to  use  templates  as con- 
straints  and  thus  not  introduce special constraint values. 
However, ALGOL 68 permits constraints  that  are satis- 
fied by any of several  forms of object.  One  example of 
this occurs in the  reference  type 

- ref ( ) & 
which is satisfied by references  to  any  vector of integers. 
ALGOL 68 partially  distinguishes  template from con- 
straint by means of the distinction between  actual  and 
formal declarers. 

The need for  constraints  arises in other  contexts than 
as  operands of the ref operator.  In  any language that 
passes  arguments by reference, e.g., FORTRAN and p L / I ,  

the description associated with a parameter  must be 
considered as a constraint. With FORTRAN, a parameter 
description may specify only a single form of object, 
which must be  a cell or  array of cells. Therefore, tem- 
plates can be  used as  parameter  descriptions.  It  is, of 
course, special cases like this that  contribute  to  the con- 
fusion  concerning types, etc.  Although pL/ I calls param- 
eter  descriptions  types, it in fact permits some flexibility 
in these  descriptions, i.e.,  a parameter  can  take  one of 
several forms. For  example,  the  declaration 

DCL X C H A R ( * )  

requires  that  the argument passed  to X be a character 
string of some fixed length. However,  the length of the 
string is unspecified. One  cannot  declare  such a “type” 
to be BASED, and  hence be  allocated, because CHAR(*) is 
not  a template, but rather  describes many  templates. 

Having demonstrated  the need for  constraints, we 
now show  that it is not necessary  to  introduce a new set 
of values to  serve this purpose.  Rather, we can  make  use 
of values  that, given our previous type  and  template 
operators, we can already generate.  The effect of doing 
this does  not  alter  the  fact  that a constraint is fundamen- 
tally distinct from  type and template  concepts.  Rather, 
the impact is purely  pragmatic, i.e., the using of previous 
operators  to manipulate and  generate  constraints. 

Although constraints  are  predicates  over  storage ob- 
jects, they may be expressed in terms of predicates  over 
the  templates  that  describe storage  objects.  Because we 
are treating templates  as values, predicates  over tem- 
plates are,  therefore,  types.  Thus, it becomes  possible to 

apply the  type  operators  to  the  construction of con- 
straints. A constraint satisfied by objects  that  can all be 
described using a single template can  be  formed using 
the  constant  operator with the  template  as  its  operand. 
Further,  the  operator  can be  used to form  a  dis- 
junction of constraints.  Types of the  above  form can 
serve  as  operands of the ref operator, yielding a type 
that is satisfied only  by references  to  objects  that satisfy 
the  constraint, i.e., are  described by templates  that satis- 
fy the  type  that is the  operand of ref. 

Additional constraints  (and  hence  types satisfied by 
templates)  are  very useful. For example, the  type satis- 
fied by  any  template,  denoted a n y ,  when  used in ref(any), 
produces a type  that is satisfied by all references. Thus, 
it is equivalent to  the PL/I  POINTER type. Predicates  over 
ranges are useful in forming constraints  that  are satisfied, 
for  example, by vectors of unspecified bounds. Opera- 
tors  for producing such  predicates  are explored in [ 191. 

Aggregate  values 
The preceding  sections  explored the distinction between 
values and objects.  During  this exploration, aggregates 
were  treated exclusively as  storage objects. What  we 
wish to  discuss  here is the  treatment of aggregates as 
values.  Languages such  as APL [20], ALGOL 68 
[ 10, 211, and  ANSI p L / I  [ 171 support  operators  and 
procedures  that  can  return aggregates as  results  and 
permit  aggregate  assignments. The problem that  we wish 
to  address is how to reconcile these aggregate values 
with object aggregates. In particular,  how are aggregate 
values introduced so as  to avoid the  problems  that  were 
discussed in the  introduction? 

We  propose  to  introduce aggregate values in such a 
way that  the distinction between values  and objects is 
rigorously maintained. Thus,  whereas aggregate  values 
have  components, it is not possible to  either  construct a 
reference  to a component  or  to  alter  the value of a com- 
ponent. In APL, ALGOL 68, and P L / I  (strings), this  dis- 
tinction is compromised,  either through overlays, elabo- 
rate rationalizations such  as flexible locations,  or by 
treating  assignment as  an  operator  that is different in 
kind from  other  operators  and  procedures.  In  fact, in 
none of the  above languages is it possible to  reproduce 
the effect of the assignment operator by means of a pro- 
cedure.  This  is  the  case  for all APL variables,  because 
APL does  not  pass  arguments by reference. In ~ L / I ,  

substring  assignment cannot be  handled, because  when 
SUBSTR appears  anywhere  except  to  the left of the  as- 
signment operator,  it designates the SUBSTR function that 
produces a string value rather than the SUBSTR pseudo- 
variable that designates the location of a  substring. In 
ALGOL 68,  one  cannot  acquire a reference  to a  compo- 
nent of a flexible location,  and hence a procedure  cannot 
update  these  components. 161 

OBJECTS AND VALUES MARCH 1976 



There is one  aspect of aggregate  values in most  lan- 
guages that we want  to be sure  to  preserve.  An aggre- 
gate value should be characterized in the  same way as a 
cell aggregate, i.e., by 

1 .  A selector  set, 
2 .  A descriptor  for each component  (i.e., a template), 
3 .  A value for each component. 

For  example,  consider  two aggregate  values,  which we 
denote using angle brackets in what we hope is an ob- 
vious  notation. 

a. (.:a:= I ,  h:& := 1.0) 
b. (.:a := 1 ,  h:union(real,  char) := 1.0) 

Despite  the  fact  that both of these aggregates have 
components with equal values,  the aggregates  them- 
selves  are not  equal because their second  components 
are described differently. Property  2)  above is a very 
useful one  for aggregate  values for  several  reasons: I t  
suggests a way of forming aggregate  values, it suggests a 
way of providing types satisfied by aggregate values,  and 
it increases  the  amount of type checking that is possible 
at compile time. It is this characterization of aggregate 
values, particularly property 2) ,  that  has created  much 
of the confusion  between  aggregate  values and  object 
aggregates. The  approach  taken  here carefully avoids 
this object/value confusion while providing  almost all 
the capability that ALGOL 68 provides by means of flex- 
ible locations. 

We  form  aggregate  values  from references  to  object 
aggregates  by  means of an operation we call enclose. 
Enclosing a reference  to  an  object aggregate yields an 
aggregate  value: whose  selector  set equals the  selector 
set of the object  aggregate, whose  components  are de- 
scribed by types  that  are enclosed forms of the  templates 
that  describe the  corresponding components of the ob- 
ject aggregate,  and  whose  values consist of the  enclosed 
forms of the  components of the  object aggregate. These 
enclosed  values include the  current values  contained by 
the  components of the  object aggregate. 

Aggregate values can  be  subjected to selection opera- 
tions, but the result of a  selection is not a reference  to 
the selected component but to the  value of the compo- 
nent. The  enclose  operator is implemented by merely 
copying the cell aggregate  and  returning an implicit indi- 
rection to  the  copy. All cells to which the aggregate  value 
is subsequently  assigned can  share, via the indirection, 
this  copy of the original aggregate.  Because it is not pos- 
sible to  update aggregate values, no unexpected side 
effects can  occur because of this  sharing. Reclaiming the 
storage of the aggregate can  be accomplished by main- 
taining reference  counts, by general purpose garbage 

162 collection, or by normal stack  storage reclamation. 

D. B. LOMET 

Cells with types satisfied by aggregate  values can be 
provided in a similarly straightforward  manner. Con- 
straints  that  are satisfied by various forms of object ag- 
gregates  can  already  be constructed. What is required is 
an operator,  enclose-type,  that  converts  such a con- 
straint  into a type  that  is satisfied precisely by aggregate 
values  formed  from references  to  object aggregates that 
satisfy the  constraint.  The  type calculus for aggregate 
values is thus  exactly  as powerful as the  constraint cal- 
culus that is supported  for  object aggregates. 

Having  provided aggregate values in addition to  object 
aggregates, we now wish to  consider  the  advantages  de- 
rived  from this view. In particular, we consider how ag- 
gregate  values  can  be  used to  support  certain  data  forms 
of existing  languages while avoiding  complications that 
give rise to  ad hoc  restrictions.  Strings in P L / I ,  both 
character  and bit, can very  naturally  be treated as en- 
closed vectors of characters and  bits,  respectively. Thus, 
they  can be treated as “scalars” with respect  to assign- 
ment  and comparison  operators, while being susceptible 
to selection operations, i.e., SUBSTR operations. Selec- 
tion operations on aggregate  values  yield,  not a refer- 
ence  to  the  component specified, but the value of the 
component.  This is exactly  the  manner in which the 
SUBSTR function works. Only the SUBSTR pseudo-vari- 
able, which permits the assignment operator  to  alter a 
specified substring, is not supported with  this characteri- 
zation. A cell that can  contain  varying  length  strings can 
be  described by a type  that is a union of types, each one 
satisfied by a different length enclosed vector. Similarly, 
ALGOL 68 flexible locations, e.g., those  described by 
unions of aggregate modes,  can by characterized as 
unions of enclosed  aggregate types.  This  characteriza- 
tion provides a natural  explanation for  the prohibition on 
taking references  to  components of flexible locations. 
Currently, this is merely an ad  hoc limitation. 

Assignments to  components of flexible locations, as to 
substrings of P L / I  strings,  can be regarded as follows. 
The aggregate  value in the target of such an assignment 
is accessed in its  entirety. A new aggregate is formed 
from  this  value and  the value  from the  source,  the select- 
ed  components being set  to  the  source value and  the 
resultant  aggregate  value  assigned to  the  target.  Whether 
such  assignments  should be  supported  at all is a question 
that  the  reader will have  to  answer  for himself. 

Sets 
Several  languages support  some form of set  data  and 
operations on sets. Among these languages are  Pascal 
[ 121, MADCAP [22, 231,  and SETL [ 2 2 ,  241. Further,  the 
word  set is often  used to  describe collections of data in 
data  base  systems, e.g., “data  set” is a term  commonly 
used in ISM data management systems,  and relations in 
relational data  base  systems  are usually considered as 

IBM J.  RES. DEVELOP. 



sets of tuples [ 2 5 ] .  While the intuitive  notion of set 
provides  a reasonable justification for calling any of the 
preceding  entities sets, careful definition in a program- 
ming language context  requires  that some  rigorous  dis- 
tinctions  be  made. Thus we consider two  kinds of sets. 
These  two  forms of sets reflect the distinction we have 
been making throughout  the paper, i.e., the distinction 
between object  and  value. Thus  sets  as  objects  and  sets 
as  values  are considered  separately. 

Sets  us objects 
We have discussed  cells as  objects  that can each contain 
a single value. A set  object is an  object  that can  contain 
zero  or more  values. Note  that it is not  a cell into which 
a set value  can  be stored.  Set values are discussed  be- 
low. Because a set  object is not  a  value, it cannot  be 
passed  around via  assignment or  returned  as a  result of 
an  operation  or  procedure.  However,  references  to  set 
objects  are, as expected, values  and thus  can  be  treated 
in these ways. Hence,  whereas  sets only  contain multi- 
ple values, the effect of having sets of set  objects,  or  sets 
of objects of any form, can be  realized by specifying a 
set of references  to  the objects  desired. Further,  as a 
natural consequence of this  view, an  object  can be “con- 
tained”  simultaneously in several such  sets  because its 
reference can  freely  belong to  the several  sets. 

Programming  languages use  the assign operator  to 
store a value in a cell, thereby destroying the existing 
value in the cell. With set  objects,  however,  we wish to 
be able  to add new values or  to  remove some of the ex- 
isting values  without affecting the  other values in it. 
Thus we require a new  group of operators for set ob- 
jects.  Whereas several  possible  variants for  the  opera- 
tors  exist,  we specify the following ones  for illustrative 
purposes. 

1 .  a( ref to set object,  value) This  operation includes 
the value of operand two in the  set  object referenced 
by operand one.  If the  set is “full” (see  below),  an 
error condition occurs. 

2. delete (refto set object,  value) This  operation  removes 
the value of operand two  from the  set referenced by 
operand  one. If the  set  does not  contain  the given 
value, no change is made. 

3. empty(ref to set object) This operation removes all 
values  from the  set referenced. 

The  above  operators  do not produce values as results. 
Rather, they are  the  set analogs of cell assignment. Thus 
their execution results in side  effects on storage.  We 
need to  retrieve values from sets and to  test  the  contents 
of sets.  For this purpose, the  additional operators below 
are introduced. 

4. member (ref to set object) -+ value The value  pro- 
duced by this operation  is some  member of the  set 
referenced by its operand.  In a  particular  language, it 
might be desirable to specify an ordering on  elements 
as a set  attribute  and  thus define the  member  chosen. 
We do not pursue this possibility here.  In  order  to 
achieve the effect of sequencing  through the members 
of a set,  the result of this operation  must be removed 
from the  set before  requesting  a member again. If 
there  are  no values in the  set,  an  error condition oc- 
curs. 

5 .  in (ref  to set object,value) -+ boolean value The 
result is true if the value specified by the second  op- 
erand is in the  set referenced by the first operand. 
Otherwise,  the result is false. 

6. (ref to set object) -+ boolean: The result is true 
if the  set referenced by the operand contains  no val- 
ues. Otherwise it is false. 

The normal set  theoretic  operations, e.g., union, in- 
tersection,  have not been provided as primitives for  set 
objects. These  operations must produce new sets  as re- 
sults. With set  objects, this requires  the allocation of a 
new set object and  the returning of its reference.  We be- 
lieve it is a  bad  practice to provide  primitives  that im- 
plicitly allocate new objects during  the course of their 
execution.  The  set  theoretic  operations can be  pro- 
grammed, however, in terms of the primitives  already 
provided. 

We have  yet  to  discuss how set  objects  are specified 
and allocated.  We can, of course, already specify sets of 
values. These specifications are  the  types. A type  de- 
scribes  the  set of values,  one member of which can be 
contained in a cell. Because types  have been  designed so 
as  to permit their equivalence  and satisfiability to be de- 
cidable,  they form a  natural  basis for  the description of 
set  objects.  Thus,  to  construct a  template for a set ob- 
ject, we introduce  the g o p e r a t o r  such that 

- set (type) + template 

where template describes a set  object  that  can contain 
zero  or more of the values that satisfy the type. 

Sets  are enormously useful and a natural construct  for 
specifying a broad  range of algorithms. Given this, the 
question arises  as  to why they are not  provided in more 
languages. The  reason  is primarily that it is very difficult 
to  choose a  representation for  sets  that  uses  storage 
efficiently and simultaneously  permits an efficient imple- 
mentation of the desired set  operations.  This is an  area 
of ongoing research  [26].  Given  our model of storage, 
this  problem  can  be eased considerably. We use a  tech- 
nique  analogous to  that used in ~ L / I  to  ease  the prob- 
lems with VARYING strings [ 161, i.e., we permit  the user 
to specify the maximum number of elements  that a set is 163 

OBJECTS AND VALUES MARCH 1976 



to  contain,  thus bounding the storage requirements and 
suggesting implementation  strategies for  the  set  opera- 
tions. For this purpose,  the cardinality operator is intro- 
duced as follows: 

where  the resulting template specifies a set object that 
can  contain at most the number of values specified by 
operand two. 

Whereas  the provision of a maximum number of ele- 
ments for a set  object is an extra burden in some cases, 
this information is frequently  available to  the  user but he 
has no way of supplying it to  the language system.  Fur- 
ther,  such information  can  be a valuable  additional  con- 
straint on the program that is useful for  error  detection. 

Set  objects  correspond approximately to  the  sets of 
MADCAP, where  the  set variables  must  be  regarded as 
containing references  to  the  set objects. Operations on 
one  set variable  can cause  changes  to  another  set vari- 
able if the two  variables  reference the  same  set object. 
MADCAP has  thus been  described by Low [26] as a 
“pointer language.” 

Sets  as values 
Values, as discussed  previously, are distinguished  from 
storage objects in that they are atomic and immutable, 
can  be passed  from  one  object  to  another, and  can  be 
returned as results of operators and procedures. In  par- 
ticular, a value may be  assigned to  and  hence become 
the  contents of a cell. In the case of sets,  then, we can 
distinguish a cell that  contains a set value from a set ob- 
ject  that  contains a number of values. 

To support  set values  requires the introduction of 
operations that permit their  construction  and manipula- 
tion and  the  construction of types  that  are satisfied by 
set values. By introducing set values after  set  objects, 
we can make use of the  same device we have used  be- 
fore  for producing  values  from objects, i.e., we can  use 
the  enclose  operator  to produce a set value  from  a set 
object. As with aggregates, not only do  the  set values 
reflect the  current  contents of the  set object. The  charac- 
teristics of the  set  object itself also characterize  the en- 
closed set value  produced  from it. Similarly, types  that 
are satisfied by set values can  be formed by means of the 
enclose-type  operator.  Given a constraint satisfied  by a 
set  object, enclose-type produces a type  that is satisfied 
by the analogous set value, thus permitting the  construc- 
tion of cells that can contain set values. 

Some of the  operations on set  objects can be carried 
over  to work on set values. These  are in. member,  and 
@. The remaining operators  have  to be alterred so as 
to  return a modified set value rather than modifying a set 

164 object in place. We prefix the original object operators 

D. B. LOMET 

with a Land  hence  introduce  the  operators v-insert, v-de- e, and v-empty to perform these  functions. 
Set values  provide the natural programming language 

analog of the mathematical concept of a set.  The usual 
set  theoretic  operations, e.g., union, intersection, relative 
complement, etc.,  can all be provided.  These  can  either 
be  programmed in terms of the  preceding  primitives or 
be supplied  directly as primitives  themselves. Which al- 
ternative is selected  depends greatly on the  representa- 
tion(s)  chosen  for  sets.  We  do not pursue this further. 
Set values are  the form of set  supported by SETL and 
Pascal. These  sets  possess  what J. Schwartz [27] has 
called “pure value semantics” in that  no  set  operation 
involving one group of sets can produce side  effects on 
any other  set.  Further, assignment of the usual form  for 
cells carries  over  to cells that  can contain sets. 

Extension  mechanisms 
The term type  as we have defined it is but one of several 
concepts included in the intuitive  notion of type. Morris 
argues  that  types  are  not  sets  or  predicates [ 31. What is 
generally  meant by this is that a data type is defined not 
only by a set of values  but also by a set of operations 
that manipulate the values. SIMULA [ 1 1 1 ,  with  its CLASS 

concept, was  the language that first introduced a mecha- 
nism in which new objects and their  operators could be 
defined together. The  essentials required are a descrip- 
tion of how the  objects of the  class  are  to be represented 
and the definition, as procedures, of the  operators  that 
are  to manipulate the  objects.  This technique has been 
further refined by Brinch Hansen [28], who emphasizes 
the  importance of protecting the underlying representa- 
tion of the object from access and modification by pro- 
cedures  other than those  that were defined as its opera- 
tors. In SIMULA,  the  operators  are designated as if they 
were  components of the object.  Liskov and Zilles [ 291, 
in  addition to providing a clean syntactic  treatment of 
class definitions, which they call clusters,  change  the 
operator naming scheme so that  an  operator is identified 
by its  own  name qualified by the name of the  class, not 
the object. This  seems a small change, but we believe it 
represents  an  important philosophical  distinction that we 
exploit in what follows. 

Data object descriptions  (templates)  have already 
been introduced.  We wish to build on the  template 
mechanism to provide a methodology for constructing 
new classes of objects. Thus class is the  last  term  that 
we  introduce  that is included in the intuitive  notion of 
type. Because we base  classes on the notion of template, 
a class value is not needed.  Rather, the approach  we 
take is to specify class definitions as generalizations of 
template definitions. Hence  template values serve as 
classes. As will be  apparent,  not all the problems asso- 
ciated with this view have been  solved. Rather, we put 

IBM J. RES. DEVELOP. 



forth  the view in an  attempt  to  capture  the essential con- 
cepts and  directions of what is an ongoing research ef- 
fort [15, 19, 29, 301. 

In  order  to provide  a coherent  framework  for  class 
definitions, we need to consider templates in a new light. 
Templates for  aggregates  provide a description of the 
aggregate, but we need to  understand  the  nature of that 
description. The view we consider  here is as follows. 
The values that  serve  to index an aggregate are not to be 
considered as  the selectors of the aggregate. Rather, 
these index values can  be used to  acquire  selectors.  The 
selectors themselves are functions that take a reference 
to  an aggregate as  an  operand  and  return a reference  to 
the specified component. Thus, the selector function al- 
ready  incorporates  the index value in its definition, and 
this  need  not  be  provided as  an  operand.  It is the tem- 
plate that  serves  to  relate  the index  values to  the selec- 
tor functions. Thus we may regard  a  template as consist- 
ing of the following aspects: 

1 .  A specification of how the aggregate is to be repre- 

2. A  dictionary of <index,  function> pairs that provides 
a way of naming the  operators  that  can manipulate 
the aggregate. 

3. Perhaps a specification of how the aggregate is to be 
constructed and  initialized,  although  this can be pro- 
vided in 2)  above. 

Notice  that this  functional approach  to  selectors is 
fundamentally  different  from the functional data  objects 
discussed by Reynolds [ 3 11. In Reynolds’ scheme, it is 
the allocated object  that is the function that,  when ap- 
plied to a selector value (index), yields  a reference  to 
the component. 

Our  conception of templates  and  selectors  has a sig- 
nificant consequence.  It permits the addressing compu- 
tation  that selects a component of an aggregate to be 
decomposed into  two parts,  one of which  can  be execut- 
ed prior to actually having a reference  to  the aggregate 
available, i.e., the  selector function  can be  chosen by 
knowing only the index  and the template. This part of 
the  address  computation, now exposed in the language 
itself, can be precomputed via codstant propagation or 
subjected to common subexpression elimination by a 
compiler. Further, this view gives us a  rationale for 
knowing the  characteristics of the  component selected. 
Note  that with a  general  purpose  select  function that is 
given the aggregate reference plus an index value,  or 
with Reynolds’  functional data  objects, all we know  syn- 
tactically  when dealing with heterogeneous aggregates is 
that  the function will return some reference, but  not  its 
precise characteristics.  This is not so when we have a 
selector function  into which the index  has  already  been 
incorporated.  In this case we know that  the  type of its 

sented. 

operand is a reference  to a  particular  form of aggregate 
and that its return value is a reference  to a  particular 
form of object, i.e., the desired component.  In  order  to 
acquire the  selector  functions from the indices of an ag- 
gregate, we introduce  the index operation. The index 
operation  takes a template and  a  value  used to index the 
aggregate  described by the  template  and  returns  the 
selector function. 

Having  established the basic framework, it is now  a 
straightforward matter  to augment it by permitting oper- 
ations  other than selector functions to be  included in a 
template. This is the capability that Liskov  and Zilles 
supply  with  function clusters.  For  example,  to define a 
stack,  they include pushand pop operations in the clus- 
ter describing stacks  and then  refer to  these  operations 
in the body of the program by “indexing”  into the tem- 
plate  describing the  stack, Le., the  stack cluster. Thus 
the pop operation is specified as stack $ pop. 

A x a j o r  virtue of the  above view of templates is its 
ability to unify the  data definition function. The  same 
mechanism that explains  basic  aggregate objects  also 
can  provide 1) a way of providing differing representa- 
tions  for aggregates, i.e., use  the  same indices  but 
change the  selector  functions;  and 2) a way of defining 
new objects with  their  associated  operations. However, 
there  are some  unresolved  problems.  Among  them are 
the following: 

1 .  If selector functions are  to be  provided by a user, 
when are they executed  and how are  references rep- 
resented?  One would like a given selector function, 
when  applied to an object,  to always produce  the 
same  reference value. Suppose we are realizing a 
large array using sparse  array techniques [ 321. Then 
the real  storage  locations of the elements  change 
dynamically, and immediate  execution of the  selector 
function will not always produce  the  same result. It 
appears  to be necessary  to delay  evaluation of the 
selector  function, recording in an  “extended” refer- 
ence  the  selector  to be used at  access time. This 
causes  references  to become  complex  very  rapidly, 
especially when multilevel selection is required. 

2. How  do we provide  mechanisms by which a  generic 
object specification can be  defined? An example of 
this is to provide  a  generic specification for  stacks 
and then permit subsequent specification of, e.g., inte- 
ger,  real,  character,  etc.,  stacks. SIMULA provides  this 
via its subclass mechanism.  Liskov and Zilles permit 
procedure  declarations in which the  return  type is 
dependent  on a parameter.  Another  alternative is to 
provide  a  way of constructing  procedures with the 
required properties when needed.  In  any  case, in the 
stack  example,  the pushand pop operations must  be 
tailored to  the kind of stack  that is specified. What- 165 

OBJECTS AND VALUES MARCH 1976 



ever method is  chosen,  an exceedingly  careful assess- 
ment of the implications of the solution  must  be made 
to  assure  that  the mechanism fits well into  other lan- 
guage contexts. 

3. How  can flexible constraints be provided?  Given  the 
constant  operator,  one  can  always  construct a con- 
straint,  one  template  at a  time. However, this is not 
satisfactory in any  practical  sense. Constraints  such 
as  those provided in ALGOL 68 in which ( ) jnJ is 
satisfied by any integer vector  are highly desirable 
and cannot  be provided  by finite unions. Further, 
equivalence for  templates  must  be defined so as  to  be 
decidable. The equivalence of templates depends par- 
tially on how we choose  to regard the equivalence of 
procedures in the view of templates  as including func- 
tions.  A  solution that  requires  every  template  that is 
constructed  to be unique, i.e., not  equivalent to any 
other,  even  those formed in the  same  way,  is  not sat- 
isfactory for  the primitive  objects. 

4. How  does  the  compose  operation  interact with the 
functions and  the representing storage  descriptions 
contained in its  argument templates? When compose 
is executed, resulting in a new template,  the aggregate 
specified has all the  components specified in both 
arguments. Clearly then  the selection  functions asso- 
ciated  with the  index  values must be modified to  re- 
flect the  change in the aggregate from  which the  com- 
ponent is to be  selected. The result is easy to de- 
scribe when  primitive  aggregates are being treated. 
However, what are  the effects when user-provided 
procedures  are involved? 

5. How is the  concept of enclosing objects  to form val- 
ues applied to  the  more general  situation involving 
user-defined extensions?  During  the enclosing of ag- 
gregates and  sets,  the  operations  that manipulated 
them  were  re-interpreted (actually new  but  analogous 
operators  were  provided) so as  to work on  the en- 
closed  values. Is there a systematic way in which the 
operations  on  objects can  be transformed  to  operate 
on  values?  Short of this, how are new operators  for 
values specified that can access  the values’ represen- 
tations? 

Let us now state a  general  criterion that  we feel an 
extension  mechanism  should possess.  We feel it is the 
goal toward which efforts in the field should  be directed. 
We  also feel that  there is still considerable progress  that 
must be  made before the goal is realized. The criterion is 
this: An  extension mechanism  should be  capable of de- 
fining the primitive storage  objects supplied with the 
language in terms of an  even more  primitive undifferen- 
tiated storage  and some  very simple operations on this 
storage. Further,  the primitive  values of the language 

166 should  also be definable by  extension.  With our method- 

D. B. LOMET 

ology, this would be  done by enclosing objects  that were 
constructed using the extension  mechanism. 

Summary 
We have  attempted  to make  a  rigorous  distinction  be- 
tween objects  and values  and have explored the  conse- 
quences of this  distinction. In so doing, we  have identi- 
fied four  separate  concepts  that  have been  lumped under 
the intuitive  notion of type. These  are: 

1. type We use  the term type  to  mean a predicate  that is 
satisfied by values and  that  characterizes a cell. 

2.  template A  template is a description  and specification 
of storage  objects.  Among the  objects  are cells whose 
templates may be  types.  Other  objects, e.g., aggre- 
gates, must have  templates  that  are not types. 

3. constraint A constraint is a predicate  that is satisfied 
by objects.  One  may,  however, use types  that  are  sat- 
isfied by the  templates  that  describe  the desired  ob- 
jects  for this purpose.  Hence,  separate  constraint 
values are  not  required. 

4. class A class is a  description and specification of 
storage  objects  that includes the  operations  that  are 
to be  used to manipulate the  objects. In our  view, a 
class can be considered as a  generalization of the 
template  concept. 

The  features of current languages have been  examined 
in the light of the  value/object distinction,  which  led us 
to introduce the enclose operation  as a means of gener- 
ating values  that  are  based  on  objects.  This view enabled 
us to  have a full complement of aggregate  values, paral- 
leling the aggregate objects,  without  the difficulties in- 
volved  with flexible locations. Sets were  studied as  they 
appear in some  existing languages to  demonstrate  that 
the  valuelobject distinction and  the notion of enclosing 
can provide  sets in object  and value  forms, both of 
which have proved useful. 

Lastly, extension  mechanisms were discussed. This 
area is the most  incomplete despite many  efforts extend- 
ing over a period of at  least  ten  years [33 ] .  We  have 
discussed them in terms  that integrate  them  with the 
basic  concepts already provided,  but we have  sketched 
only the  framework in which such a mechanism might be 
defined. Some of the problems  with  extension  mecha- 
nisms have been discussed in a  series of questions. It is 
our  hope  that  future work involving extension  mecha- 
nisms will result in the design of one  that satisfies the 
criterion that was expressed  at  the  end of that section. 

Acknowledgments 
Several  associates  have been helpful in the  development 
of the ideas  presented in this paper, including R. Gold- 
berg,  W. H.  Harrison, C. Lewis,  and P. H.  Oden. A spe- 

IBM J .  RES. DEVELOP. 



cia1 debt   is   owed  to  M. A.  Auslander,  who,  by  pointing 
out  shortcomings  in  their  precursors,  greatly  assisted  the 
emergence of these  ideas. 

References 
1. K. Walk,  “Modeling of Storage Properties of Higher  Level 

Languages,” SICPLAN  Notices (ACM) 6, 146 (February 
1973). 

2. A. N.  Habermann, “Critical Comments on the  Program- 
ming Language  Pascal,” A( . t t~  Informcrticrr 3, 47 i 1973 ). 

3. J .  H. Morris, “Types  Are  Not  Sets,” Conf: Kccwrd of 
ACM  Symposium  on Principles o j  Programming Ltrn- 
gucrge.5, October  1973, p. 120. 

4. J.  C. Reynolds, “A  Set-theoretic  Approach to the Concept 
of Type,”  NATO  Conf. on Techniques in Software Engi- 
neering. Rome, October 1969. 

5. J. W. Backus, et  al.,  “The FORTRAN Automatic Coding Sys- 
tem,” AFlPS Conf: Proc., Ful l  Joint  Computer Confwrnc.e 
11, 1 9 5 7 , ~ .  188. 

6. “COBOL- 196 1 : Revised Specifications  for a  Common Busi- 
ness Oriented  Language,” Dept. of Defense, U.S. Govern- 
ment Printing Office, Washington, D.C., 196 I. 

7. P.  Naur.  et  al.,  “Revised Report  on  the  Algorithmic Lan- 
guage ALGOL 60,” Commun.  ACM 6 ,  1 (January  1963). 

8. G .  Radin and  H. P. Rogoway, “NPL: Highlights of a  New 
Programming Language,” Common.  ACM 8, 9  (January 
1963). 

9. N.  Wirth  and C.  A. R.  Hoare, “A Contribution  to the  De- 
velopment of ALGOL,” Commun.  ACM 9, 4  I3  (September 
1966). 

IO. A. van Wijngaarden, B. J .  Mailoux, J .  E. L. Peck,  and C.  
H. A. Koster,  “Report  on the  Algorithmic  Language ALGOL 
68,”  MRIOI, Mathematisch Centrum,  Amsterdam,  Octo- 
ber  1969. 

11. 0. J.  Dahl, B. Myhrhaug, and K.  Nygaard, 7‘he SIMULA 
67 Common Base Language>, Publication  S-22.  Norwegian 
Computing Center, Oslo, 1970. 

12. N.  Wirth,  “The Programming Language  Pascal,” Acta In- 
fbrmaticu 1,35  (1971). 

13. B. Wegbreit, “The  Treatment of Data  Types in ELI,” 
Commun.  ACM 17, 25 1 (May  1974). 

14. B. L. Clark  and  J.  J.  Homing,  “The  System Language  for 
Project SUE,” SICPLAN  Notices 6 ,  79  (October 197 1 ) .  

15. C.   H.  Lewis and B. K. Rosen, “Recursively Defined Data 
Types,” Conf Record o j  ACM  Symp. on Principles of 
Progrcrmming Longuages, October 1973. p. 125. 

16. PL/  I Language Spec$cutions, Order no. GY33-6003-2, 
1BM United Kingdom Laboratories,  Winchester,  Hamp- 
shire, England,  1970. 

17. P L / I  B a s i s l l - l l ,  ECMA.TClO/ANSI.X3JI.  European 
Computer  Manufacturers  Association, 1974. 

18. P. Wegner. Progrclnrming Languagc’.s, Information Struc- 
tures,  and  Mtrchinc~  Or~yrrnization, McCraw-Hill Book 
Company,  Inc.,  New  York, 1968. 

19. D. B. Lomet,  “A Cellular Storage Model for Programming 
Languages.” Rcsrurch Report  KC4360, IBM Thomas  J. 
Watson Research Center, Yorktown  Heights.  New York. 
1973. 

20. APL/360:  U w r ’ s  Mtrnrrtrl, GH20-0683, IBM Corporation. 
White Plains. New  York, 1968. 

21. C.  H. Lindsey and S. G .  van der  Meulen, Infiirmal 1nrr.u- 
duction to  A L G O L  6 8 ,  North Holland Publishing Compa- 
ny ,  Amsterdam 197 I .  

22. J. B. Morris, A Cornptrrison uf MADCAP c t n d  SETL,  LOS 
Alamos Scientific Laboratory, University of California, 
Los  Alamos, Ca., 1973. 

23. M. B. Wells. “Aspects of Language  Design  for  Combina- 
torial Computing,” IEEE 7rrrns. Cornput. 13, 43 I (August 
1964). 

24. J .  Schwartz,  “Automatic and  Semi-automatic  Optimization 
of SETL,” SICPLAN  Notic,rs 9, 43 (April  1974). 

25. E.  F.  Codd.  “A Relational Model of Data  for Large Shared 
Data  Banks,” C‘ommun. ACM 13, 377 ( 1970). 

26. J .  R. Low. Automutic,  Coding:  Choice c?fDcrtm Structures, 
T R  I, University of Rochester,  Rochester,  New York  1974. 

27.  Private  communication. 
28. P. Brinch Hansen, Opotrting S y s t e m  Principles, Prentice 

Hall,  Inc., Englewood Cliffs, New  Jersey 1973. 
29. B. Liskov and S. Zilles. “Programming with Abstract  Data 

Types,” SICPLAN Notic.rs 9, 50 (April  1974). 
30. R. Goldberg and P.  H.  Oden.  “Data  Types and Data  Type 

Extensions in Programming  Languages.” Rrsetrrch  Report 
RC465/, I B M  Thomas  J. Watson  Research Center. York- 
town Heights,  New  York. 1973. 

3 1 .  J.  C. Reynolds, “GEDAN  KEN  -A Simple Typeless Lan- 
guage Based on the Principle of Completeness and  the Ref- 
erence  Concept,” Commun.  ACM 23, 308 (May  1970). 

32. F. Gustavson, W. Liniger. and R. Willoughby, “Symbolic 
Generation of an  Optimal Crout Algorithm for Sparse  Sys- 
tems of Linear  Equations,” Jorrrntrl Assoc.  Cornput. Much. 
17,87  (April  1970). 

33. T.  E.  Cheatam,  “The Introduction of Definital Facilities 
into  Higher Level Languages,” AFlPS Conf: P r o ( , . ,  Fmll 
Joint Cornputer Conference 29, 23 ( 1966). 

The uuthor, tr3ho is ussigned to the IBM Thomas J .  W u t -  
son Reseurch   Cen ter ,   York town   He igh t s ,  N .Y .  10598, is 
presently on sabbatical at  the University o j  NeMrastle 
upon Tvne .  

MARCH 1976 ( IBJECTS AND \ 

167 

‘ALUES 


