
W. T. Pirnbley 

Drop  Formation  from  a  Liquid  Jet: A Linear 
One-dimensional  Analysis  Considered  as a 
Boundary  Value  Problem 

Abstract: Using a one-dimensional  model,  the  author  studied  drop  formation using a boundary  value perturbation,  rather than a 
spatially  periodic  one  as  considered by Rayleigh. The Rayleigh  solution  becomes  the high jet velocity  approximation  to  this  linear 
analysis. At lower  velocities  the  analysis shows that the  medium  becomes dispersive, and drop  formation characteristics are quite 
different from that predicted by Rayleigh. In  an appendix, the  gross  momentum  balance and flow rate  conservation  are  used  to  consider 
drop formation from a stream. 

Introduction 
In 1878 Lord Rayleigh considered  the  breakup of an 
inviscid cylindrical jet  into  drops [ 1, 21. He used a ref- 
erence  system wherein the cylinder of liquid was initially 
at  rest and the  perturbation applied was spatially  periodic. 
Under  appropriate  circumstances,  surface tension forces 
broke  the liquid into equally spaced  drops. Rayleigh 
then applied the conclusions to a moving jet of liquid 
emanating  from  a  nozzle. 

In his work on drop formation Rayleigh linearized his 
equations by  assuming the variation of the  jet radius to 
be  very  small compared  to  the radius itself. This  assump- 
tion  becomes invalid, of course,  as  drop  separation 
occurs.  Nonetheless, Rayleigh’s work  has  given  much 
insight into  the phenomenon of liquid jet  breakup. 

A one-dimensional model of drop  separation  has 
been used for  the  purpose of better understanding 
the  process [3]. In this  model, the variables depend on 
the axial coordinate of the  jet and on time. In using such 
a  model, one  assumes  that  the wavelength of perturba- 
tions on the  stream is large compared  to  the radius (see, 
for example, [ 41). 

Lee looked at  the resulting nonlinear equations avoid- 
ing the low amplitude  assumption  made by Rayleigh [ 31. 
Using numerical methods his results  show  the formation 
of satellite droplets as well as  the main drops.  These 
satellite droplets, which are formed  between the main 
drops of the  stream,  are  observed experimentally  but are 
not predicted  by  linear  models. 

The application of the spatially  periodic Rayleigh type 
148 solution to a jet emanating  from  a  nozzle is somewhat 

artificial. In  the spatially  periodic  solution the unstable 
perturbations grow with time all along the  jet.  The nozzle 
problem, however, is a steady  state problem in which 
the  unstable  perturbations grow  with  increasing distance 
from the nozzle.  Keller,  Rubinow, and T u  [5] considered 
this  problem as  one of temporal  periodicity rather than 
of spacial periodicity.  Portig, [ 61 looked at  the problem 
as a  boundary  value  problem, also using the  one-dimen- 
sional model. 

Considering the problem as a  boundary  value  problem 
takes into account  the interaction of the capillary  wave 
velocity  with the velocity of the  jet. Rayleigh’s solution 
becomes the high jet velocity limit of this  boundary  value 
problem when the capillary  velocity  can  be neglected 
with respect  to  the  jet velocity. 

In this paper,  the differential equations  for  the  one- 
dimensional model are  presented first. These  equations 
are then applied to  the spatially perturbed  case  as con- 
sidered  by Rayleigh for  comparison with his work.  The 
differential equations  are  next used to solve the bound- 
ary value  problem. In this  solution, the dispersion con- 
dition is determined  and  solved.  The solutions  per- 
mitted by the dispersion  equation are used to match 
boundary  conditions  resulting in the final solution. 
Finally,  the solution is applied to  the  stream  at  the  drop 
separation point to yield an  equation  for  separation dis- 
tance. Results are  compared with the Rayleigh type 
solution. In the  appendix,  drop formation is considered 
using gross momentum  balance and flow rate  conser- 
vation. 

W T. PIMBLEY IBM J .  RES. DEVE1,OP. 



Differential  equations 
Lee [3] presented the one-dimensional model of drop 
separation. The resulting differential equations  are 

In these  equations, r and u are  the radius of the stream 
and the velocity of the liquid,  respectively. These two 
variables are functions of both z and t ,  the time. The 
coordinate z is the  distance along the  jet.  The density of 
the liquid is p .  

The internal pressure of the  jet, P ,  is also a function 
of z and r. This  pressure, which is caused by surface 
tension, is given by 

P = T  - + - ,  (d, fl) 
where 

( 3 )  

In these  equations, T is the  liquid's surface tension and 
R ,  and R,  are  the principal radii of curvature. 

Rayleigh solution 
The spatially perturbed  linear  solution to  the differential 
equations was also presented by Lee [ 31 for  comparison 
with Rayleigh's work. I f  the initial conditions are 
specified as 

I' = U :  u = v,, cos ( 2 r z / A ) ,  (4 )  

then  this  solution is 

S = ( x u , , / p A )  sin ( 2 r z / A )  sinh pt, 

u = v, cos ( 2 r z / A )  cosh pt. ( 5  

The wavelength of the perturbation is A, and S isgiven by 

r = a ( l  + S ) .  (6 )  

The dispersion  relationship that  determines p is 

Rayleigh obtained the  same solution for  the radius 
versus z and t under cylindrically symmetric  conditions. 
However, his resulting  dispersion  relationship is given by 

where I,, is the  zero-order hyperbolic Bessel function 
and I, '  is its  derivative.  Equation ( 7 )  is an approximation 
of Rayleigh's Eq. (8)  and  can  be  obtained by expanding 
the hyperbolic Bessel functions into Maclaurin's series 
and using the first terms. Lee's Fig. 2 [ 31 shows  values 
of p versus A divided by initial stream  diameter using 
both  Eqs. (7 )  and (8) .  Comparison of these two  equa- 
tions  shows that  the one-dimensional model yields 
results equivalent to  those of Rayleigh's work. 

For values of A,  the wavelength, greater than the 
initial circumference of the  jet, p is real and  the perturb- 
ing disturbance on the  jet grows in an exponential  fashion. 
Drop formation  eventually occurs.  However, if the wave- 
length of the  disturbance is less  than  the initial circum- 
ference of the  jet, p becomes  imaginary, and the  hyper- 
bolic functions in Eq. ( 5 )  become circular functions. In 
other  words,  the  jet is  in the condition of stable oscilla- 
tion with regard to  these  shorter wavelength  pertur- 
bations. 

One can arrive  at  the physical reason for Rayleigh's 
conclusions by considering the saddle  point on the  jet 
surface. When the wavelength of the perturbation equals 
the initial circumference of the  jet, the  two principal radii 
of curvature  at  the saddle  point are equal in magnitude 
but opposite in direction.  For longer  wavelengths  the 
principal radius of curvature tending to pinch off the  jet 
predominates. However, for shorter wavelengths the 
other radius of curvature, which tends  to  restore  the 
initial jet  shape, is larger. 

One may use  Eqs. ( 5 )  and (7) to obtain information 
about an actual jet having a velocity u, and  emanating 
from a nozzle at x equals  zero.  The situation at  a dis- 
tance x from the nozzle can be  discerned by looking at 
the spatially periodic  solution at  a time t = x /  u~,. In  order 
to obtain the time dependence  at this  point on the  jet, 
one should look at  the stationary  solution of Eq. ( 5 )  
while he is moving with a velocity of -uo. I n  addition, 
one must include a  phase difference that  depends upon 
the  distance from the nozzle to the  point under consid- 
eration;  therefore, 

where 

I 
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Boundary  value  problem solution 
Into  Eqs. (1, 2, and 3 ) ,  make  the following substi- 
tutions: 

r = u ( l + 6 ) ,  z = u t ,  

where u is again the initial radius and uo is the  jet velocity. 
If we linearize the  equations by assuming 6 and u to be 
small, we obtain 

where 

E 2 = y .  T 
2puuo 

The  constant E is associated with the capillary velocity 
on the  jet.  This capillary  velocity at which transverse 
waves of small amplitude  travel along the cylinder of 
liquid in a manner analogous to  transverse  waves on a 
string is given by 

u, =J; (14 )  

It  can be seen from this that E is a  function of the ratio of 
the velocity of the  jet  to its  capillary  velocity; thus, 

Assume  the following steady  state solution  for 
Eq. ( 1 2 ) :  

u = u 0 e  I ' ( W T - - K ( )  

6 = 6 P i ( W T - - K 6 )  

0 (16) 

where w is a real constant but K is a constant  that can 
assume complex  values. By substituting Eq. (16) into 
Eq. (12)  one  obtains 

" K U O + i ( W - K )  6 , = 0  

(w-KK)U0-22E2 K ( K Z -  1) 6,=0.  (17) 

In  order  for nontrivial solutions to  occur,  the determi- 
nant of Eq. (17) must  equal zero;  the following disper- 
sion  relationship results: 

E K ( 1  + E 2 ) i 2  + 2WK - W2 0. 2 4 -  
(18)  

The coefficient of the time  variable is normally the 
angular frequency;  however, a  substitution for t ,  the 
time,  was  made. From  the definition of 7, Eq. (1 l ) ,  one 
can  say 

Therefore, 

2 x a  w=-= 
A, Xold 

Thus  one  can  see  that o is the  same  constant  that was 
encountered in Eqs. (7) and ( 8 ) .  Because the problem 
is restricted to positive  values of uo, only  positive  values 
of o are of interest. 

Roots of the  dispersion  equation 
In order  to help examine  the  roots of Eq. ( 18),  the fol- 
lowing polynomial is defined: 

p ( K )  = E' K4 - ( 1 + E2)K2  + 2WK - 0'. (21 )  

This is a fourth-order polynomial with real coefficients. 
It,  therefore,  has  four  roots, in general, and if complex 
roots  exist, they  must occur in conjugate  pairs. 

Two of the roots of Eq. ( 2  1 ) must be real. This can  be 
seen by noting that p becomes positive for large  values 
of K and is negative for K equal to zero or one.  The  curve 
must, therefore,  cross  the p = 0 axis. As it turns  out, 
there  are regions of w and E where  four real roots  exist 
and where  two real roots and two complex roots exist. 

Let us find the boundary between  the regions  where 
four distinct real roots  exist  for  Eq. ( I  8 )  and where  two 
complex roots  occur  (at this boundary, a double real  root 
exists).  Therefore,  the  quadratic  factor  made of this 
double  root must  divide into p (Eq. ( 2  1 ) ) leaving another 
quadratic  factor with no remainder terms;  therefore, 

( K  - Y D )  
= quadratic, 

where yo is the  double  root. 

two remainder terms  equal  to  zero,  one  can  obtain: 
By performing the division of Eq. ( 2 2 )  and setting  the 

y u =  2( 1 + 2 )  
( 3 k r n ) .  

22y3,- ( 1 + E 2 )  y ,+w=o .   (23 )  

These  two  equations  can  also  be obtained by noting that, 
at a double  root, not only must p (Eq. (21) )  equal  zero, 
but  its derivative with respect  to K must  equal  zero 
as well. 

The following boundary relationship can be  obtained 
from  Eq. (23 ) : 

w = ~ [ 1 + 206 - 8~ k ( 1  - S E ~ ) $ .  (24)  
2 1  2 4  

3 2 ~ '  

Figure 1 shows  the boundaries  delineated by the  equa- 
tion as well as the regions where  the various types of 
roots occur. The region where complex roots  exist cor- 
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responds  to  the  case of unstable equilibrium of the cylin- 
drical jet,  where  the  perturbations grow  and drop for- 
mation takes place. The region where only real roots 
occur yields the  case of stable equilibrium where no drop 
formation  takes place. 

The Rayleigh solution  involves the approximation for 
which the  jet velocity is much greater than the capillary 
velocity. This approximation is given by letting E ap- 
proach  zero. If one looks at Fig. 1 along the y axis (E2 
= O ) ,  he will note  the  same conclusions made by Rayleigh. 
If w is less than  one  (see  Eq.  (20) ), drop formation 
occurs.  For w greater  than  one,  stable equilibrium of the 
jet exists. With this figure, however, a  major departure 
from  the Rayleigh  solution is noted.  The regions of drop 
formation are much  larger  than  predicted by Rayleigh 
and,  at lower jet velocities, encompass all wavelengths 
of disturbance. 

Figure 1 also  shows a "forbidden  zone"  delineated by 
a dashed line. This  zone, given by considerations not 
included in this  linear  analysis, is discussed in the 
Appendix. 

Solution of the  dispersion  equation 
Note  that the  cubic term is missing in Eq. ( 18). With 
this, one can express  the four  solutions to this  dispersion 
equation  as 

K ,  = + b ,  

K, = y - b ,  

K 3 = Y + P ,  

K 4 = Y - P '  (25 1 
where y and ,B are real constants. By reforming the  fourth- 
order polynomial from  the  four solutions  and  equating 
terms with those of Eq. ( 18) ,  we have 

The  fourth-order  equation is, therefore, transformed  into 
a cubic  one.  These  equations may be used to  determine 
the  four solutions. 

As stated before, the Rayleigh solution corresponds 
to  the boundary value problem  solution  when E goes  to 
zero  as a limit. Therefore, let us expand y in the Maclaurin 
series  about 2 = 0: 
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Figure 1 Regions  containing  different roots of the  dispersion 
equation, Eq. ( 18).  and  forbidden  zone of drop formation. 

Using  Eq. (27)  to find the derivatives of y at i2 equal 
to  zero,  one  can  determine  the first three coefficients as 

bo= I 

b, = 40' - 2 

b, = 32w4 - 2 4 3  + 3. 

After substituting  this series  into  Eq. (26),  we obtain 

u2 M o2 E2 ( 1 - 0 2 ) ,  

Recapitulating, the first-order  solution of the dispersion 
relationship as e2 goes to  zero is given by 

yo M w ,  

(To M WE w, 

Comparing  these first-order  values with Eqs.  (7)  and 
(9 ) ,  we find that yo  and CT" compare with the Rayleigh 
coefficients as 

In the  present problem y is then  associated with the wave- 
length of the  disturbance on the  jet,  and u is the instability 
factor  that  controls  the  rate  at which drop formation 
occurs.  The  constant is associated with the two solu- 
tions that  do not appear in the Rayleigh solution. 

Figure 2 shows  the instability factor u as a  function 
of the relative  wavelength for a number of jet velocities. 
The values were calculated using Eqs. (26) and (27), 151 
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Figure 2 Normalized  instability  growth factor for the  jet 
velocities  indicated in Table 1. Curve 1 is from Eq. (7) ; other 
curves  are from Eq. (26).  
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in Table 
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Normalized  propagation constant for the  jet velocities 
1. Curves 2  through 5 are from Eq. ( 2 7 ) ,  A, from Eq. 

Table 1 Data used in Fig. 2  through 5.  

Curve no. UOI  uc 

(Rayleigh  type) 
E’ = 0.060 2.89 

= 0.125 2.00 
= 0.175 1.69 
= 0.400 1.12 

- 

and values are  shown only in that region where w is real. 
Note  that  the maximum of the instability factor shifts to 
shorter wavelength disturbances at lower  jet velocities. 

Figures 3 and 4 show y and p relative  to  their first- 
order  values  as  functions of the relative  wavelength for 
the  jet velocities shown in Table 1. Here again the values 
were calculated using Eqs.  (26)  and (27).  The  nonzero 
slope of the propagation constant  curves indicate the 
“propagating  medium” to be  dispersive. The medium is 
normally dispersive in the region where  the  slope of Fig. 
3 is negative; the dispersion is anomalous where  the 
slope is positive. 

Boundary conditions 
At z equals zero,  where  the  jet  emanates from the nozzle, 
the following boundary values  exist: 

r = a ,  

2- 
az - 0,  

0 ,  
az2 

u = uo + vo cos 2Tft .  (33) 

The  second  boundary  equation  exists  because  the 
liquid cannot  make a finite change in  velocity  in an in- 
finitesimal distance without an infinite force applied. (It  
should be  remembered  that with an inviscid  liquid, the 
velocity profile at the nozzle is flat.) The validity of the 
third  equation can be  seen from Eqs. (2)  and (3) ; the 
pressure  must  be  continuous at z = 0 at that point. The 
last  boundary  equation is, of course,  the applied per- 
turbation. 

After substituting the values from  Eq. (1   1)  into  Eq. 
(33),  the  boundary  value  equations  take  the  form: 

(34) 

The solution to this linear problem is the  sum of solu- 
tions of the  type given  by Eqs.  (16) with the coefficients 
chosen  to conform to  the  boundary conditions. There- 
fore, let 

4 
6 = 2 C j ~ j  cos Oj and 

j=l 

4 

u = 2 dj cos Oj, 
j=l 

where: 

ZE U T  - K J . .  (36) 

Upon substituting Eq. (35) into  the continuity equa- 
tion, the first Eq. (12), we  obtain 
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(37) 

This  equation is in the  nature of an identity that must  be 
true  for all T and  for all positive 6. Therefore,  the coef- 
ficient for  each Oj must  add to zero.  Therefore, 

dj = 2Cj(w - K ~ ) .  (38) 

By substituting the first three  boundary  equations  into 
the first of Eq. (35 1, we  have 

(39) 

In a  like  manner,  substituting the  last  boundary  equa- 
tion into  the  second of Eq. (35), we obtain 

VO 

UO 

or 

4 

- COS WT = 2 2 cj ( 0  - K j )  COS W T  (40) 
j=1  

Cj=” 
j - 1  2wu; 

Recapitulating from  Eqs. (39) and (4 1 ) 

Lew [7] pointed out  the possibility of bringing the 
matrix Eq. (42) to its symmetric  form by using the  choice 
of coefficients in Eq. (35). The matrix in the  system of 
equations is a Vandermande matrix [ 81. The analytical 
solution to Eq. (42), which is also  due  to  Lew, is 

(43 

The solution to  the problem, Eqs. (35),  (36),  (38), 
and (43), is in complex  form. However, this  solution 
is real. Because K~ and K~ are real, the third and  fourth 
terms of the solution are real.  Because K ]  and K~ are 
complex conjugates of one  another, C, and C,; 0, and 
0,; and dl  and d2 form conjugate  pairs. The sum of the 
first two  terms of the solution is therefore real. 
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Figure 4 Relative value of the constant p for the jet velocities 
in Table 1 .  Curves are from Eq. (26) .  Because the constant 
p does not occur in the Rayleigh type solution, Curve 1 does 
not exist. 

It can be shown that  the solution approaches  the 
Rayleigh solution, Eqs. ( 9 ) ,  as E approaches zero. Equa- 
tions (25) and (3 l )  give the  asymptotic  expressions  for 
the  four K terms  for this  proof. 

Drop separation 
The point of drop  separation  can  be  discerned by looking 
at  the  envelope of the radial solution of Eq. (35). One 
finds the point at which the envelope becomes equal to 
one, Le., where  the  perturbation  becomes equal to  the 
original radius. ( I t  must be realized that permitting the 
perturbation  to  attain  such a  value  violates the approxi- 
mations that  were  made  to linearize the original dif- 
ferential equations. So, as with Rayleigh’s work,  the 
results obtained from this procedure  must be viewed 
with caution.) 

The radial solution consists of the  exponentially 
growing part  (the first two  terms)  and  the nongrowing 
part  (the last two  terms). By recognizing the assumption 
that  the initial perturbation is very small, the nongrowing 
part of the solution can be ignored at  the break-off point. 
The first two  terms of the radial  solution, Eq. ( 3 5 ) ,  can 
be  written 

6 = ~ C ~ K ~ C T K T  [e“‘ cos (WT - y t  + +1) 

+ e-“‘ cos (07 - y[ - $J] ,  (44) 

where: 

(45) 
153 
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Figure 5 Separation  distance normalized  with respect  to both 
A and E for the  jet velocities in Table 1 .  Ratio v,/ uo equals 
0.01 8. Curve I is from  Eq. (47) ; other  curves  are from Eq. (46). 

Of course,  the second term in this expression can be 
ignored at  the point of drop  separation.  Therefore,  the 
envelope  to  the solution for 6 near  drop  separation is 
given by 

Env = ~ C , K , C , * K , *  eo'. (46) 

In a similar way the  separation  distance as predicted 
by the Rayleigh solution  can  be  obtained by looking at 
the envelope. From Eq. (9) ,  the Rayleigh envelope can 
be given as 

(47) 

where uo is given by Eq. ( 3  I ) .  
Figure 5 shows the  results.  The separation distance 

(normalized by multiplying by E /  A)  is given for a  typical 
value of the initial perturbation. The  data  for  the Rayleigh- 
type  curve, 1, was  obtained from Eq. (47) .  One can see 
that  the resulting  separation distances differ markedly 
from Rayleigh's results  for  the lower jet velocities and, 
of course,  for  those lower  wavelengths where Rayleigh's 
theory predicts no drop formation. 

Conclusions 
The one-dimensional model of drop formation has been 
presented  and  used again to study the formation of drops 
in a  stream  emanating  from an orifice. The problem was 
considered as a boundary  value  problem  wherein  a  time 
varying  perturbation is placed on the axial velocity at  the 
exit of the orifice. Suitable approximations  were  made so 
that  the problem could be made linear. 

In the boundary-value  solution, the Rayleigh solution 
becomes  the  asymptotic solution as  the  jet velocity 
approaches large values  compared to  the capillary ve- 
locity. The  results  at  such large jet velocities agree with 
those of Rayleigh. At lower  velocities, however, sig- 
nificant differences occur. 

The first conclusion that  one  sees  concerns  the region 
of permitted drop formation. At large jet velocities, only 
perturbations  that  have a  wavelength greater than  the 
initial jet  circumference will grow to form drops.  At 
lower jet velocities,  growth of the lower wavelength 
perturbations becomes  possible. At  jet velocities  equal to 
or less  than  twice the capillary  velocity, drop formation is 
predicted at any  perturbing frequency. 

As with Rayleigh's results,  the instability factor  curve 
has a maximum for a h / d  ratio of about 4.5 at  the high 
jet velocity limit. At lower  velocities, the maximum 
moves to lower  wavelengths  and  then disappears entirely. 

Perhaps  the  most important observation is that  the 
medium for  the  wave propagation  becomes  dispersive. 
For large jet velocities,  and  for  perturbing  wavelengths 
greater than the initial circumference of the  jet,  the dis- 
persion of the medium is moderate  and normal. For  the 
lower jet velocities and perturbing  wavelengths, however, 
the dispersion  becomes  more severe and anomalous. 

Two additional solutions appear in this  boundary  value 
problem.  They  are associated  with the two  real roots of 
the dispersion equation.  These  two solutions are non- 
growing traveling waves,  one traveling in each direction, 
with the forward  traveling wave having the higher ve- 
locity. The amplitude of these waves  goes  to  zero as the 
jet velocity  becomes  large. These solutions, which do 
not affect the  drop formation  appreciably in this  linear 
theory, are  caused by the  dispersive  nature of the medium. 

The  drop  separation  distances predicted by the analy- 
sis are markedly different from those predicted by the 
Rayleigh solution at lower jet velocities. For lower  wave- 
length perturbations,  the separation distance is much 
less  than that predicted by Rayleigh. At longer  wave- 
lengths, however,  the separation distance becomes 
greater than  the Rayleigh prediction. 

It is essential to review the  results of the analysis in 
the light of the approximations  made.  The one-dimen- 
sional model assumes  that  the  wave length is significantly 
greater than  the jet radius. To linearize  the equations, 
the amplitude of the radial and  velocity  oscillations  were 
assumed to be small compared  to  the radius and  to  the 
capillary  and jet velocities. Therefore, in the range of 
small wavelengths and small jet velocities, the  results 
should  be  viewed with some caution.  As an example, 
the  gross momentum liquid flow considerations dis- 
cussed in the  Appendix, which do not suffer many of 
the  approximations of the analysis, show a  forbidden 
zone in this region where  drops  cannot be  formed. 
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Whereas this analysis of the  drop formation  problem 
shows a  number of properties not indicated by other 
approximate considerations,  some known properties of 
such  drop formation are not predicted.  The linear treat- 
ment does not predict  the formation of satellite droplets. 
And again, the alteration of the  average  stream velocity 
and  the forbidden zone of drop formation, as discussed 
in the  Appendix,  are not  predicted by this  linear  theory. 

The formation of satellite droplets is shown in Lee’s 
work [ 31 in which he used the one-dimensional  analysis 
with a spatially periodic perturbation. He dealt nu- 
merically with the nonlinear differential equations.  His 
work, however,  always  predicts the formation of satellite 
droplets. Experimentally, it  is known that  there  are re- 
gions of the  perturbation  where  no satellite  formation 
exists  and  other regions where  such satellite  formation 
is aggravated. The  author believes that  the key to this 
problem  lies in the  dispersive  nature of the medium. The 
nonlinear theory would cause  an initially sinusoidal per- 
turbation  to develop  into  a wave including the harmonic 
frequencies. Unstably growing waves of these different 
frequencies would form a beat frequency envelope  on 
the  stream.  The  exact  shape  and form of drop formation 
would depend on how the beat frequency  envelope 
matches the traveling waves at  the  drop  separation point. 
The formation of satellite droplets would be either sup- 
pressed or enhanced by this  interaction.  A  nonlinear 
treatment of the boundary  value  analysis would show  the 
plausibility of this  hypothesis. 
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Appendix: Forbidden drop formation zone 
As  drops  are formed, the  average velocity of the liquid 
decreases. This phenomenon, which is not predicted by 
the linear  analysis that is the  subject of this paper, is most 
important at  the lower jet velocities. Thus we include 
this Appendix, which is a  digression from the  subject 
of the  paper,  for  the purpose of investigating  this effect. 

The considerations  used in this  section  involve the 
gross momentum  balance and liquid flow rate  conserva- 
tion of the  jet.  The many assumptions and  approxima- 
tions  made in the analysis in the main body of this paper, 
therefore, do not  apply to this  section. The only assump- 
tions made  are  that  the  jet  starts with a flat velocity pro- 
file and ends  as independent drops.  The liquid at both 
ends is relaxed,  and effects of air interaction and gravity 
are ignored. 

Schnieder,  Lindblad,  Hendricks, and Crowley [ 91 
looked at this  effect, in which the liquid velocity changes. 
The  author,  however, disagrees with their analysis  and 
results,  hence the necessity to  consider  the effect again. 
This  paper considered the situation by analyzing the 
momentum  relationships that exist in this  steady state 
phenomenon.  For this consideration,  construct an 
imaginary box around  the whole drop formation  zone, so 
that only the unperturbed stream  enters  the box on  one 
side with a flat plug-type  velocity  profile, and spherical 
drops  emanate from the  other side.  It matters  not  whether 
viscous forces  exist within the box or  whether satellite 
drops  are  formed,  as long as they  recombine to make 
spherical drops inside the box, because all such  forces 
would be  internal to  the momentum system.  The mo- 
mentum flow into the box  minus the momentum flow 
from the box would equal the external forces  that  exist 
at  the boundaries of this imaginary box. 

Schneider,  et al. [ 91, presented  the  analysis. However, 
in the calculation of the external forces  on  the boundaries 
of the imaginary  box,  they  considered  only the  surface 
tension forces.  They neglected to include the internal 
pressure of the  stream, i.e., the  pressure  that is a  result 
of surface tension. When both forces are included in the 
analysis, we obtain 

where u,, is the original stream velocity, uD is the final 
drop velocity, u, is the capillary  velocity as defined in 
Eq. (14), and E’ is defined by Eq. (13).  

For values of the  jet velocity equal to  or less  than the 
capillary  velocity (E2 1 O S ) ,  the  drop velocity  perishes. 
In  other  words,  there is no drop  formation; also there is 
no  stream.  The momentum flow from a  nozzle  must  be 
great enough to  overcome  the negative  force on the 
ejected  stream,  otherwise  the  stream  cannot be ejected 
as a steady  stream. 

Smith and Moss [ 101 and  others [ 1 I ,  121 long ago 
noted that a certain  pressure was  necessary  before  a 
steady  stream could  be  emitted from a  nozzle. They 
spoke of a  “critical  velocity” that was given by an equa- 
tion almost identical with the expression for capillary 
velocity. 

A  second effect must  be addressed before the for- 
bidden drop formation zone  can be delineated:  There 
has  to be  enough room in the  stream  for  the formed drops. 
If the wavelength is very short compared to the stream 
diameter, a  segment of the original stream, which would 
eventually  become an individual drop, would have a 
pillbox shape with  its diameter being much greater than 
its  thickness (the  wavelength).  The  diameter of the  drop 
that would contain the  same volume would be larger 
than  the pillbox thickness;  therefore,  steady  state  drop 155 
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formation would be impossible. The wavelength  for 
which the  drop  diameter would just equal the wavelength 
is given by 

( i2 > 0.5) ,  the nozzle would drip profusely if placed in 
a  gravitational field. For E’ < 0.5, presumably the  stream 
would break up into  drops  as a stream  that  was not pur- 
posefully perturbed;  that  is, a jet  that was  subject to only 
“white  noise”  vibration. 

which yields 

I= V?T= 1.2247; 
d 

or, from Eq. (20) ,  

w’ = 6.5819. 

Therefore,  drop formation for wavelengths  less  than 
1.2247 diameters of the  stream is impossible. 

The wavelength that is of importance in this considera- 
tion is the  wavelength at  drop formation.  Because of the 
decrease in liquid velocity, Eq. ( A l ) ,  the wavelength of 
the original stream is larger;  from  Eq. (A  1 ) , we get 

d2X” x; 
4 6  

- 

or 
2 

w =- ( I  - 2 2 ) 3 .  2 T  

1.5 (A61 

The  dotted line in Fig. 1 shows  the line given by Eq. 
(A6) .  For  the region above and to  the right of this line, 
there is not  enough  room for  the  drops to form. 

One might ask:  What  happens  to a jet in this  forbidden 
zone? If the momentum flow rate is not great  enough 
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