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W. T. Pimbley

Drop Formation from a Liquid Jet: A Linear
One-dimensional Analysis Considered as a

Boundary Value Problem

Abstract: Using a one-dimensional model, the author studied drop formation using a boundary value perturbation, rather than a
spatially periodic one as considered by Rayleigh. The Rayleigh solution becomes the high jet velocity approximation to this linear
analysis. At lower velocities the analysis shows that the medium becomes dispersive, and drop formation characteristics are quite
different from that predicted by Rayleigh. In an appendix, the gross momentum balance and flow rate conservation are used to consider

drop formation from a stream.

Introduction

In 1878 Lord Rayleigh considered the breakup of an
inviscid cylindrical jet into drops [1, 2]. He used a ref-
erence system wherein the cylinder of liquid was initially
at rest and the perturbation applied was spatially periodic.
Under appropriate circumstances, surface tension forces
broke the liquid into equally spaced drops. Rayleigh
then applied the conclusions to a moving jet of liquid
emanating from a nozzle.

In his work on drop formation Rayleigh linearized his
equations by assuming the variation of the jet radius to
be very small compared to the radius itself. This assump-
tion becomes invalid, of course, as drop separation
occurs. Nonetheless, Rayleigh’s work has given much
insight into the phenomenon of liquid jet breakup.

A one-dimensional model of drop separation has
been used for the purpose of better understanding
the process [3]. In this model, the variables depend on
the axial coordinate of the jet and on time. In using such
a model, one assumes that the wavelength of perturba-
tions on the stream is large compared to the radius (see,
for example, [4]).

Lee looked at the resulting nonlinear equations avoid-
ing the low amplitude assumption made by Rayleigh [3].
Using numerical methods his results show the formation
of satellite droplets as well as the main drops. These
satellite droplets, which are formed between the main
drops of the stream, are observed experimentally but are
not predicted by linear models.

The application of the spatially periodic Rayleigh type
solution to a jet emanating from a nozzle is somewhat
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artificial. In the spatially periodic solution the unstable
perturbations grow with time all along the jet. The nozzle
problem, however, is a steady state problem in which
the unstable perturbations grow with increasing distance
from the nozzle. Keller, Rubinow, and Tu [ 5] considered
this problem as one of temporal periodicity rather than
of spacial periodicity. Portig, [6] looked at the problem
as a boundary value problem, also using the one-dimen-
sional model.

Considering the problem as a boundary value problem
takes into account the interaction of the capillary wave
velocity with the velocity of the jet. Rayleigh’s solution
becomes the high jet velocity limit of this boundary value
problem when the capillary velocity can be neglected
with respect to the jet velocity.

In this paper, the differential equations for the one-
dimensional model are presented first. These equations
are then applied to the spatially perturbed case as con-
sidered by Rayleigh for comparison with his work. The
differential equations are next used to solve the bound-
ary value problem. In this solution, the dispersion con-
dition is determined and solved. The solutions per-
mitted by the dispersion equation are used to match
boundary conditions resulting in the final solution.
Finally, the solution is applied to the stream at the drop
separation point to yield an equation for separation dis-
tance. Results are compared with the Rayleigh type
solution. In the appendix, drop formation is considered
using gross momentum balance and flow rate conser-
vation.
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Differential equations
Lee [3] presented the one-dimensional model of drop
separation. The resulting differential equations are

P, (Uﬂ+ﬂ>,
dz ot

w10k (1)
at 9z p 0z
In these equations, r and v are the radius of the stream
and the velocity of the liquid, respectively. These two
variables are functions of both z and ¢, the time. The
coordinate z is the distance along the jet. The density of
the liquid is p.

The internal pressure of the jet, P, is also a function
of z and 1. This pressure, which is caused by surface
tension, is given by

P=T<—+—>, (2)

where

1
R, 1+ (ar/az)z]%

1__—@r/ed) (3)
R, [1+ (ar/02)°]2 ‘

2

In these equations, T is the liquid’s surface tension and
R, and R, are the principal radii of curvature.

Rayleigh solution

The spatially perturbed linear solution to the differential
equations was also presented by Lee [ 3] for comparison
with Rayleigh’s work. If the initial conditions are
specified as

r=a;v=y,cos (2mz/A}, (4)
then this solution is

8 = (mwv,/puA) sin (27z/A) sinh uf,

v=v, cos (2mz/\) cosh ut. (5)
The wavelength of the perturbation is A, and 8 is given by
r=a{l+9). (6)

The dispersion relationship that determines u is

IR

Rayleigh obtained the same solution for the radius
versus z and ¢ under cylindrically symmetric conditions.
However, his resulting dispersion relationship is given by
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where [ is the zero-order hyperbolic Bessel function
and /' is its derivative. Equation (7) is an approximation
of Rayleigh’s Eq. (8) and can be obtained by expanding
the hyperbolic Bessel functions into Maclaurin’s series
and using the first terms. Lee’s Fig. 2 [3] shows values
of w versus A divided by initial stream diameter using
both Eqgs. (7) and (8). Comparison of these two equa-
tions shows that the one-dimensional model vyields
results equivalent to those of Rayleigh’s work,

For values of A, the wavelength, greater than the
initial circumference of the jet, p is real and the perturb-
ing disturbance on the jet grows in an exponential fashion.
Drop formation eventually occurs. However, if the wave-
length of the disturbance is less than the initial circum-
ference of the jet, u becomes imaginary, and the hyper-
bolic functions in Eq. (5) become circular functions. In
other words, the jet is in the condition of stable oscilla-
tion with regard to these shorter wavelength pertur-

bations.
One can arrive at the physical reason for Rayleigh’s

conclusions by considering the saddle point on the jet
surface. When the wavelength of the perturbation equals
the initial circumference of the jet, the two principal radii
of curvature at the saddle point are equal in magnitude
but opposite in direction. For longer wavelengths the
principal radius of curvature tending to pinch off the jet
predominates. However, for shorter wavelengths the
other radius of curvature, which tends to restore the
initial jet shape, is larger.

One may use Egs. (5) and (7) to obtain information
about an actual jet having a velocity v, and emanating
from a nozzle at x equals zero. The situation at a dis-
tance x from the nozzle can be discerned by looking at
the spatially periodic solution at a time t = x/ v,. In order
to obtain the time dependence at this point on the jet,
one should look at the stationary solution of Eq. (35)
while he is moving with a velocity of —uv,. In addition,
one must include a phase difference that depends upon
the distance from the nozzle to the point under consid-
eration; therefore,

k% X 2
8=——"sinh L sin (27Tft’ —ﬂ)

MA v, A

2
v =y, cosh BX o8 (277_/?’ —"—W—'f), (9
U, A
where
U()

fZK,XZUOI. (10)
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Boundary value problem solution
Into Eqgs. (I, 2, and 3), make the following substi-
tutions:

r=a(l+8), z=daé€,

=41, (11)

Y%

v=1uv,(1+ u),

where a is again the initial radius and v, is the jet velocity.
If we linearize the equations by assuming & and u to be
small, we obtain

w2, 0)

aE o ot/

ou | u 2( 38 638>

—+==2 (— +—,

or o \ag ag’ (1)

where

e=—1_ (13)
2pav,

The constant € is associated with the capillary velocity
on the jet. This capillary velocity at which transverse
waves of small amplitude travel along the cylinder of
liquid in a manner analogous to transverse waves on a
string is given by

vcz\/;T;. (14)

It can be seen from this that e is a function of the ratio of
the velocity of the jet to its capillary velocity; thus,

2 __
€ =

(15)

naj—
SRS
o Nl

Assume the following steady state solution for
Eq. (12):

_ Hwr—ké)
U=u,e

- i(wT—Kk€)
8=23, ¢ S (16)
where w is a real constant but x is a constant that can

assume complex values. By substituting Eq. (16) into
Eq. (12) one obtains

_KMO‘F.Z(LU-K) 8,=0
(0 —K)u,— 26 k(x* — 1) §,= 0. (17)

In order for nontrivial solutions to occur, the determi-
nant of Eq. (17) must equal zero; the following disper-
sion relationship results:

Ex'— (1 + )’ + 2wk — * = 0. (18)

The coefficient of the time variable is normally the
angular frequency; however, a substitution for ¢, the
time, was made. From the definition of 7, Eq. (11), one
can say
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27y,

U
daf=-2" =
f a N (19)
Therefore,
_ 2ma __m
® —)\0 N/ d (20)

Thus one can see that w is the same constant that was
encountered in Egs. (7) and (8). Because the problem
is restricted to positive values of v , only positive values
of w are of interest.

Roots of the dispersion equation
In order to help examine the roots of Eq. (18), the fol-
lowing polynomial is defined:

k) =€ k' — (1 + ) + 20k — o’ 21

This is a fourth-order polynomial with real coefficients.
It, therefore, has four roots, in general, and if complex
roots exist, they must occur in conjugate pairs.

Two of the roots of Eq. (21) must be real. This can be
seen by noting that p becomes positive for large values
of « and is negative for « equal to zero or one. The curve
must, therefore, cross the p = 0 axis. As it turns out,
there are regions of w and € where four real roots exist
and where two real roots and two complex roots exist.

Let us find the boundary between the regions where
four distinct real roots exist for Eq. (18) and where two
complex roots occur (at this boundary, a double real root
exists). Therefore,‘ the quadratic factor made of this
double root must divide into p (Eq. (21)) leaving another
quadratic factor with no remainder terms; therefore,

('Tp_(';)—)z = quadratic, (22)
D

where v, is the double root.
By performing the division of Eq. (22) and setting the
two remainder terms equal to zero, one can obtain:

w N
=—— (3xV]—8¢),
& 2(1+ &)

26y, — (1+€) y,+w=0. (23)

These two equations can also be obtained by noting that,
at a double root, not only must p (Eq. (21)) equal zero,
but its derivative with respect to « must equal zero
as well.

The following boundary relationship can be obtained
from Eq. (23):

2 1

w =

[1+ 206 — 8¢ + (1 — 86)7]. (24)

2
€

Figure 1 shows the boundaries delineated by the equa-
tion as well as the regions where the various types of
roots occur. The region where complex roots exist cor-
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responds to the case of unstable equilibrium of the cylin-
drical jet, where the perturbations grow and drop for-
mation takes place. The region where only real roots
occur yields the case of stable equilibrium where no drop
formation takes place.

The Rayleigh solution involves the approximation for
which the jet velocity is much greater than the capillary
velocity. This approximation is given by letting € ap-
proach zero. If one looks at Fig. 1 along the y axis (€
=0), he will note the same conclusions made by Rayleigh.
If w is less than one (see Eq. (20)), drop formation
occurs. For w greater than one, stable equilibrium of the
jet exists. With this figure, however, a major departure
from the Rayleigh solution is noted. The regions of drop
formation are much larger than predicted by Rayleigh
and, at lower jet velocities, encompass all wavelengths
of disturbance.

Figure 1 also shows a “forbidden zone’ delineated by
a dashed line. This zone, given by considerations not
included in this linear analysis, is discussed in the
Appendix.

Solution of the dispersion equation

Note that the cubic term is missing in Eq. (18). With
this, one can express the four solutions to this dispersion
equation as

kK, =vy+io,
K,=vy —io,
Ky ==y + B,
Ky="v— B, (25)

where y and 8 are real constants. By reforming the fourth-
order polynomial from the four solutions and equating
terms with those of Eq. (18), we have

2 © 2 (14 62):'
o= -+ [ —_——
2'yez Y 26
1+ ¢€)
2y€ 4 26 (26)

4€' ° — 26 (1+ )y’

2
TR+ + o] 72—%=0. (27)

The fourth-order equation is, therefore, transformed into
a cubic one. These equations may be used to determine
the four solutions.

As stated before, the Rayleigh solution corresponds
to the boundary value problem solution when € goes to
zero as a limit. Therefore, let us expand vy in the Maclaurin
series about € = (:

Y=o be. (28)
j=0
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Figure 1 Regions containing different roots of the dispersion
equation, Eq. (18), and forbidden zone of drop formation.

Using Eq. (27) to find the derivatives of y at € equal
to zero, one can determine the first three coefficients as

by=1
b, = 40" —2
b,= 320" — 240" + 3. (29)

After substituting this series into Eq. (26), we obtain
IR € (1~ o),
B (1/) [1+ (1 —2a°) €]. (30)

Recapitulating, the first-order solution of the dispersion
relationship as € goes to zero is given by

Yo N @,
o, we Vv 1 — o,
~ 1
BON;. (31

Comparing these first-order values with Eqgs. (7) and
(9), we find that y, and o, compare with the Rayleigh
coeflicients as

_ 2na
0 A ’
o,= 5—;L. (32)

In the present problem v is then associated with the wave-
length of the disturbance on the jet, and o is the instability
factor that controls the rate at which drop formation
occurs. The constant 8 is associated with the two solu-
tions that do not appear in the Rayleigh solution.

Figure 2 shows the instability factor o as a function
of the relative wavelength for a number of jet velocities.
The values were calculated using Eqs. (26) and (27),
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Figure 2 Normalized instability growth factor for the jet
velocities indicated in Table 1. Curve 1 is from Eq. {7); other
curves are from Eq. (26).

Y/

0 25 « 5.0 7.5 10.0

Aid
Figure 3 Normalized propagation constant for the jet velocities

in Table 1. Curves 2 through 5 are from Eq. (27), A, from Eq.
(32).

Table 1 Data used in Fig. 2 through 5.

Curve no. o/ U,
1 (Rayleigh type) -
2 € = 0.060 2.89
3 =0.125 2.00
4 =0.175 1.69
5 = 0.400 1.12
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and values are shown only in that region where o is real.
Note that the maximum of the instability factor shifts to
shorter wavelength disturbances at lower jet velocities.

Figures 3 and 4 show vy and B relative to their first-
order values as functions of the relative wavelength for
the jet velocities shown in Table 1. Here again the values
were calculated using Eqs. (26) and (27). The nonzero
slope of the propagation constant curves indicate the
“propagating medium” to be dispersive. The medium is
normally dispersive in the region where the slope of Fig.
3 is negative; the dispersion is anomalous where the
slope is positive.

Boundary conditions
At z equals zero, where the jet emanates from the nozzle,
the following boundary values exist:

r=a,
r_o,
9z
2
3_§= 0,
92
v =y, + v, cos 27ft. (33)

The second boundary equation exists because the
liquid cannot make a finite change in velocity in an in-
finitesimal distance without an infinite force applied. (It
should be remembered that with an inviscid liquid, the
velocity profile at the nozzle is flat.) The validity of the
third equation can be seen from Egs. (2) and (3); the
pressure must be continuous at z = 0 at that point. The
last boundary equation is, of course, the applied per-
turbation.

After substituting the values from Eq. (11) into Eq.
(33), the boundary value equations take the form:

2
5=90-88_o =" cosur (34)

13 - aL® v,

The solution to this linear problem is the sum of solu-
tions of the type given by Eqgs. (16) with the coefficients
chosen to conform to the boundary conditions. There-
fore, let

4
d= E Cjk; cos ©; and
j=1
4
U= 2 d; cos ®j, (35)
j=1
where:
0= oT — KE. (36)

Upon substituting Eq. (35) into the continuity equa-
tion, the first Eq. (12), we obtain
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=1

4 4
[E d; k; sin Gj] + [2 > ¢ Kj sin ®j]
=1

4
— [2 2 wC; ; sin @1] =0. (37)
j=1

j=

This equation is in the nature of an identity that must be
true for all 7 and for all positive ¢. Therefore, the coef-
ficient for each Gj must add to zero. Therefore,

d; = 2C;(w — &;). (38)

By substituting the first three boundary equations into
the first of Eq. (35), we have

4

]ZC].KJ.=O,

4

j_ZleKJZ=O,

4

> Cr=0 (39)

1

.
1l

In a like manner, substituting the last boundary equa-
tion into the second of Eq. (35), we obtain

4

Yo
T, oS wr = 2; C; (@ —k;) cos wr (40)
or
4
14
C,=—2.
2 6= 500, (41)

Recapitulating from Egs. (39) and (41):

1 1 1 1 1

K Ky Ky K, Gyl vy (O

2 2 2 2 " 2wy ’ (42)
L K, K K, C, 010

3 3 3 3

K K, Ky K, C, 0

Lew [7] pointed out the possibility of bringing the
matrix Eq. (42) to its symmetric form by using the choice
of coefficients in Eq. (35). The matrix in the system of
equations is a Vandermande matrix [8]. The analytical
solution to Eq. (42), which is also due to Lew, is

v,w/ 4v,

C. = . 43
I (]+€2)Kj"3ij+2w2 (43)

The solution to the problem, Eqs. (35), (36), (38),
and (43), is in complex form. However, this solution
is real. Because x, and «, are real, the third and fourth
terms of the solution are real. Because x, and «, are
complex conjugates of one another, C, and C,; ©, and
0,; and d, and d, form conjugate pairs. The sum of the
first two terms of the solution is therefore real.
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Figure 4 Relative value of the constant 8 for the jet velocities
in Table 1. Curves are from Eq. (26). Because the constant
B does not occur in the Rayleigh type solution, Curve 1 does
not exist.

It can be shown that the solution approaches the
Rayleigh solution, Eqgs. (9), as € approaches zero. Equa-
tions (25) and (31) give the asymptotic expressions for
the four « terms for this proof.

Drop separation

The point of drop separation can be discerned by looking
at the envelope of the radial solution of Eq. (35). One
finds the point at which the envelope becomes equal to
one, i.e., where the perturbation becomes equal to the
original radius. (It must be realized that permitting the
perturbation to attain such a value violates the approxi-
mations that were made to linearize the original dif-
ferential equations. So, as with Rayleigh’s work, the
results obtained from this procedure must be viewed
with caution.)

The radial solution consists of the exponentially
growing part (the first two terms) and the nongrowing
part (the last two terms). By recognizing the assumption
that the initial perturbation is very small, the nongrowing
part of the solution can be ignored at the break-off point.
The first two terms of the radial solution, Eq. (35), can
be written

8=V Ck,Crc} [” cos (o1 — &+ b))

+e % cos (ar—yE—)],  (44)
where:
_ (CIKI)Im
¢, = arc tan [_(Clkl)Re]' (45)
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Figure 5 Separation distance normalized with respect to both
A and e for the jet velocities in Table 1. Ratio v,/ v, equals
0.018. Curve 1 is from Eq. (47) ; other curves are from Eq. (46).

Of course, the second term in this expression can be
ignored at the point of drop separation. Therefore, the
envelope to the solution for & near drop separation is
given by

Env =V C,k,CixF . (46)

In a similar way the separation distance as predicted
by the Rayleigh solution can be obtained by looking at
the envelope. From Eq. (9), the Rayleigh envelope can
be given as

wy oot
4u a e (47)

070

Env,=

where a is given by Eq. (31).

Figure 5 shows the results. The separation distance
(normalized by multiplying by €/ \) is given for a typical
value of the initial perturbation. The data for the Rayleigh-
type curve, 1, was obtained from Eq. (47). One can see
that the resulting separation distances differ markedly
from Rayleigh’s results for the lower jet velocities and,
of course, for those lower wavelengths where Rayleigh’s
theory predicts no drop formation.

Conclusions

The one-dimensional model of drop formation has been
presented and used again to study the formation of drops
in a stream emanating from an orifice. The problem was
considered as a boundary value problem wherein a time
varying perturbation is placed on the axial velocity at the
exit of the orifice. Suitable approximations were made so
that the problem could be made linear.
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In the boundary-value solution, the Rayleigh solution
becomes the asymptotic solution as the jet velocity
approaches large values compared to the capillary ve-
locity. The results at such large jet velocities agree with
those of Rayleigh. At lower velocities, however, sig-
nificant differences occur.

The first conclusion that one sees concerns the region
of permitted drop formation. At large jet velocities, only
perturbations that have a wavelength greater than the
initial jet circumference will grow to form drops. At
lower jet velocities, growth of the lower wavelength
perturbations becomes possible. At jet velocities equal to
or less than twice the capillary velocity, drop formation is
predicted at any perturbing frequency.

As with Rayleigh’s results, the instability factor curve
has a maximum for a A/d ratio of about 4.5 at the high
jet velocity limit. At lower velocities, the maximum
moves to lower wavelengths and then disappears entirely.

Perhaps the most important observation is that the
medium for the wave propagation becomes dispersive.
For large jet velocities, and for perturbing wavelengths
greater than the initial circumference of the jet, the dis-
persion of the medium is moderate and normal. For the
lower jet velocities and perturbing wavelengths, however,
the dispersion becomes more severe and anomalous.

Two additional solutions appear in this boundary value
problem. They are associated with the two real roots of
the dispersion equation. These two solutions are non-
growing traveling waves, one traveling in each direction,
with the forward traveling wave having the higher ve-
locity. The amplitude of these waves goes to zero as the
jet velocity becomes large. These solutions, which do
not affect the drop formation appreciably in this linear
theory, are caused by the dispersive nature of the medium.

The drop separation distances predicted by the analy-
sis are markedly different from those predicted by the
Rayleigh solution at lower jet velocities. For lower wave-
length perturbations, the separation distance is much
less than that predicted by Rayleigh. At longer wave-
lengths, however, the separation distance becomes
greater than the Rayleigh prediction.

It is essential to review the results of the analysis in
the light of the approximations made. The one-dimen-
sional model assumes that the wave length is significantly
greater than the jet radius. To linearize the equations,
the amplitude of the radial and velocity oscillations were
assumed to be small compared to the radius and to the
capillary and jet velocities. Therefore, in the range of
small wavelengths and small jet velocities, the results
should be viewed with some caution. As an example,
the gross momentum liquid flow considerations dis-
cussed in the Appendix, which do not suffer many of
the approximations of the analysis, show a forbidden
zone in this region where drops cannot be formed.
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Whereas this analysis of the drop formation problem
shows a number of properties not indicated by other
approximate considerations, some known properties of
such drop formation are not predicted. The linear treat-
ment does not predict the formation of satellite droplets.
And again, the alteration of the average stream velocity
and the forbidden zone of drop formation, as discussed
in the Appendix, are not predicted by this linear theory.

The formation of satellite droplets is shown in Lee’s
work [3] in which he used the one-dimensional analysis
with a spatially periodic perturbation. He dealt nu-
merically with the nonlinear differential equations. His
work, however, always predicts the formation of satellite
droplets. Experimentally, it is known that there are re-
gions of the perturbation where no satellite formation
exists and other regions where such satellite formation
is aggravated. The author believes that the key to this
problem lies in the dispersive nature of the medium. The
nonlinear theory would cause an initially sinusoidal per-
turbation to develop into a wave including the harmonic
frequencies. Unstably growing waves of these different
frequencies would form a beat frequency envelope on
the stream. The exact shape and form of drop formation
would depend on how the beat frequency envelope
matches the traveling waves at the drop separation point.
The formation of satellite droplets would be either sup-
pressed or enhanced by this interaction. A nonlinear
treatment of the boundary value analysis would show the
plausibility of this hypothesis.
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Appendix: Forbidden drop formation zone
As drops are formed, the average velocity of the liquid
decreases. This phenomenon, which is not predicted by
the linear analysis that is the subject of this paper, is most
important at the lower jet velocities. Thus we include
this Appendix, which is a digression from the subject
of the paper, for the purpose of investigating this effect.
The considerations used in this section involve the
gross momentum balance and liquid flow rate conserva-
tion of the jet. The many assumptions and approxima-
tions made in the analysis in the main body of this paper,
therefore, do not apply to this section. The only assump-
tions made are that the jet starts with a flat velocity pro-
file and ends as independent drops. The liquid at both
ends is relaxed, and effects of air interaction and gravity
are ignored.
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Schnieder, Lindblad, Hendricks, and Crowley [9]
looked at this effect, in which the liquid velocity changes.
The author, however, disagrees with their analysis and
results, hence the necessity to consider the effect again.
This paper considered the situation by analyzing the
momentum relationships that exist in this steady state
phenomenon. For this consideration, construct an
imaginary box around the whole drop formation zone, so
that only the unperturbed stream enters the box on one
side with a flat plug-type velocity profile, and spherical
drops emanate from the other side. It matters not whether
viscous forces exist within the box or whether satellite
drops are formed, as long as they recombine to make
spherical drops inside the box, because all such forces
would be internal to the momentum system. The mo-
mentum flow into the box minus the momentum flow
from the box would equal the external forces that exist
at the boundaries of this imaginary box.

Schneider, et al. [9], presented the analysis. However,
in the calculation of the external forces on the boundaries
of the imaginary box, they considered only the surface
tension forces. They neglected to include the internal
pressure of the stream, i.e., the pressure that is a result
of surface tension. When both forces are included in the
analysis, we obtain

2

%:<1—Z—%>=(l—262), (A1)

where v, is the original stream velocity, v, is the final
drop velocity, v, is the capillary velocity as defined in
Eq. (14), and € is defined by Eq. (13).

For values of the jet velocity equal to or less than the
capillary velocity (&® = 0.5), the drop velocity perishes.
In other words, there is no drop formation; also there is
no stream. The momentum flow from a nozzle must be
great enough to overcome the negative force on the
ejected stream, otherwise the stream cannot be ejected
as a steady stream.

Smith and Moss [10] and others [11, 12] long ago
noted that a certain pressure was necessary before a
steady stream could be emitted from a nozzle. They
spoke of a “critical velocity” that was given by an equa-
tion almost identical with the expression for capillary
velocity.

A second effect must be addressed before the for-
bidden drop formation zone can be delineated: There
has to be enough room in the stream for the formed drops.
If the wavelength is very short compared to the stream
diameter, a segment of the original stream, which would
eventually become an individual drop, would have a
pillbox shape with its diameter being much greater than
its thickness (the wavelength). The diameter of the drop
that would contain the same volume would be larger
than the pillbox thickness; therefore, steady state drop
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formation would be impossible. The wavelength for
which the drop diameter would just equal the wavelength
is given by

ad’\ _ 7w

el A (A2

which yields

%: V1.5 = 1.2247; (A3)
or, from Eq. (20), (A4)
o’ = 6.5819.

Therefore, drop formation for wavelengths less than
1.2247 diameters of the stream is impossible.

The wavelength that is of importance in this considera-
tion is the wavelength at drop formation. Because of the
decrease in liquid velocity, Eq. (A1), the wavelength of
the original stream is larger; from Eq. (A1), we get

2 )\3
d4)\°:€n (AS)
or
71_2
w2=~1—§ (1—26H% (A6)

The dotted line in Fig. 1 shows the line given by Eq.
(A6). For the region above and to the right of this line,
there is not enough room for the drops to form.

One might ask: What happens to a jet in this forbidden
zone? If the momentum flow rate is not great enough
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(€ > 0.5), the nozzle would drip profusely if placed in
a gravitational field. For € < 0.5, presumably the stream
would break up into drops as a stream that was not pur-
posefully perturbed; that is, a jet that was subject to only
“white noise” vibration.
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