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Effects of Abrupt Changes in Film Thickness on

Magnetic Bubble Forces

Abstract: Forces on a magnetic bubble due to abrupt asymmetric changes in the surface configuration of the magnetic film are investi-
gated theoretically and experimentally. A model is derived for calculating the forces on a bubble as it is being moved by conductor
propagation through a thickness gradient in the film. An experiment is described in which the forces necessary to move a bubble through
this transition region are measured and compared with predicted values computed from the model. Results are presented for a 20°
gradient with a cut 0.62 um deep in a garnet film, nominally 3.8 um thick, prepared by liquid phase epitaxy.

Introduction

In a study of the stability of a magnetic bubble when it
interacts with topological elements such as dams,
grooves, and gradient transitions from thick to thin re-
gions, it is essential to calculate the forces on the bubble
due to these barriers and transition regions.

Thiele et al. [1] calculated the general translation
forces on a bubble due to various gradients in film thick-
ness, material composition, and temperature. Their
analysis, however, may be considered a small-signal
variational approach in that all variables were assumed
to be independent and all variations were small. This
eliminates the case where, for example, the film thickness
changes abruptly over the bubble diameter, and this

Figure 1 Section of magnetic bubble film, showing thickness
gradient.
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abrupt variation creates a gradient in the internal mag-
netic field that must be accounted for.

In a recent publication, Druyvesteyn [2] rigorously
analyzed the problem for abrupt changes in thickness,
in which the variations were symmetrical about the center
of the material. In the case discussed here, however, the
thickness changes occur only on the upper surface of
the bubble material. The results presented in this paper,
nevertheless, are in qualitative agreement with those of
Druyvesteyn.

Analysis
The system that is analyzed is illustrated in Fig. 1. It
consists of a uniformly magnetized garnet film with a
gradient transition region separating the portions of dif-
ferent thickness, a cylindrical bubble domain, and a pair
of current conductors on the surface of the film on each
side of the slope. The current in the pair of conductors
applies a force to the bubble that moves it down the slope
from the thicker region to the thinner one and vice versa.
The existence of the gradient itself and the fact that the
bubble is changing its effective height and diameter exert
translational forces on the bubble in addition to the ap-
plied force. Because determining the force due to the
applied current in the pair of conductors is a straightfor-
ward procedure, we concentrate on those additional
forces that arise.

We begin by viewing the system in Fig. 1 as a super-
position of a sloped platelet with uniform magnetization
M_ in the z direction and a cylindrical domain with

s

magnetization of 2M_ in the —z direction. The total energy
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of the system consists of the demagnetizing energy E,_,
the domain wall energy E, and the external bias field
energy E,. The value £ can be derived by using the
method of Cape and Lehman [3]. The total demagnetiz-
ing energy is given as

E.= [ pMHAv+ [ 2uM H dv—3] uMHdV,,
(1

where H_ is the z component of the demagnetizing field
of the bubble,  is the z component of the platelet field,
v is the volume of the bubble domain, and V is the vol-
ume of the platelet.

The last term in (1) is just the saturation energy of the
platelet itself. Because we are interested in the change in
E_, with respect to the saturated platelet, we write

AE, = JuMH dv+ [2u M H dv. (2)

Equation (2) is in a convenient form for this particular
problem. It separates out the platelet field term A which,
in this case, is not independent of position, as it is in the
case of a platelet of constant thickness, and must be com-
puted separately as a function of position. The quantity
E,, is simply given as

E,= [2uM H dv, (3)

where H, is the applied bias field, plus any other ex-
ternally applied field such as the field due to the current
in the conductor overlay. Finally, E is given as

Ew = fo-wdAw’ (4)

where o is the domain wall energy per unit area and
A, is the area of the domain wall.
Adding (2), (3), and (4), we have

AE, = [uM H dv+ [2u M H dv+ [2uMH dv
+ fo dA,,. (5)
The translational force F, can then be found from (5) as

F,=-V(AE,). (6)

Because the platelet is not of uniform thickness, the
variables H_, H, v, and 4, are all functions of position
of the center of the bubble domain. In addition, AE, must
be minimized at each position to maintain equilibrium of
the radial forces [4]. Therefore, to avoid the complexity
of a three-dimensional potential and a minimization prob-
lem, we make the following assumptions:

1. The base of the bubble domain remains circular.

2. For gentle slopes, the demagnetizing energy for the
segmented cylinder (Fig. 1) can be found from a right
circular cylinder whose height gives the same volume
as the segmented cylinder.

Averaging the fields over the volume of the bubble, we
express (6) as
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Table 1. Film parameters used for the model based on Figure 1.

Svmbol Definition Value
4mM Saturation magnetization 13.85 kA/m
1 Characteristic length 0.62 um
hy Thickness of thick region 3.77 um
h, Thickness of thin region 3.15 pm
(€) Gradient angle 20°

TT"MOMqu Y s y 20-w ]

F=——"—"|H +2(H +H)+—|Ah
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——“—;——“[AH‘, + 2(AH, + AH.‘I)]h, (7)

where the AH quantities and Al represent differences
taken across the bubble, and r is the bubble domain radius
obtained by minimizing the total energy at the given po-
sition of the bubble. Note that, if //_ is constant, i.e., the
platelet is of uniform thickness, Eq. (7) reduces to Eq.
(11) of Ref. 1.

Equation (7) indicates that there are two components
of the force —one due to the thickness gradient, V 4, and
the other due to the field gradient, VH. As pointed out by
Thiele et al. [1], in the range of stable bubble operation
the sign of the coefficient of Ak in (7) is such that the
force due to the thickness change is in the direction of the
thickness gradient. However, for abrupt changes in thick-
ness over a distance comparable to the bubble diameter, it
is shown here that the increment, Ah, creates a change
in platelet field, AH , which generates a force that is
directed opposite to the thickness gradient. The net force
may, therefore, be in either direction, depending on which
component of (7) is dominant. This fact was also pointed
out by Druyvesteyn [2].

Results for small-angle gradient
Although we have obtained results for a number of geo-
metric configurations, we concentrate on the one shown
in Fig. 1. Because the purpose of this configuration is to
transport a bubble from the thick region to the thinner
one, we present data for small angles only. Large-angle
slopes tend to be efficient barriers and it is very difficult
to transport bubbles across them. Unless otherwise
stated, the material parameters are those given in Table 1.
The first step in the analysis is to compute the fields
created by the change in thickness. Figure 2 displays
H, and H, averaged through the material for the profile
shown. The 20° slope generates a change in H, of about
8.8 X 10°A/m (12 Oe) from the top of the slope to the
bottom and about 8.4 X 10° A/m in-plane field H . The
quantity H, is identically equal to H, in Fig. 2. H is
equal to —M_ at x = % % and varies somewhat above
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Figure 2 Computation of in-plane field /. and the field normal to the surface H, as a function of film thickness for a 20° gradient. The

saturation magnetization M, = 13.85 kA/m.

and below this value near the slope. When a change in
thickness occurs, the magnitude of the z-averaged H
can be greater than M_ at some position.

The main features of Fig. 2 are that the gradient of H |
is such as to repel a bubble coming from x = — « and to
attract a bubble from x = + % to the bottom of the slope.
On the slope, the gradient of H is in the direction to
move the bubble down the slope to the right. This, how-
ever, is only one component of the force, and the total
picture may change when the other components are in-
cluded.

Using the computational methods discussed in Ap-
pendixes A and B, we compute the force on the bubble
as it passes through the gradient region for the case of
the isolated bubble. A bias field of 4.94 X 10° A/ m, con-
sistent with bubble stability in both the thick and thin
regions, was applied. Figure 3 shows the results of such
a calculation.

The three parameters (force, energy, and diameter)
are shown as functions of the position x of the center of
the bubble. The top of the slope is arbitrarily set at x =
10 um. A negative force translates the bubble in the —x
direction and a positive force in the +x direction. At each
point x, the bubble energy is minimized to obtain the
stable diameter. We assume that the bubble is being
driven by an external force in the +x direction.

As the bubble approaches the slope from left to right,
it experiences an increasing repulsive force that peaks
at about 2.4 X 10°A/m. Therefore, the bubble must be
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forced over the barrier by an external force until the in-
ternal force recedes to zero near the top of the slope. This
is a point of unstable equilibrium, as shown by the peak of
the energy curve. At this point, the slightest amount of
force will move the bubble down the slope, aided this
time by the positive internal force. The bubble will then
come to rest at the bottom of the slope, a point of stable
equilibrium.

Proceeding farther to the right, we see that the external
force must overcome the “pull-off”’ force to push the
bubble farther up the energy curve, far to the right. If
we had moved the bubble from right to left, all internal
forces would have the opposite effect. The bubble would
be attracted to the bottom of the slope, and would have
to be pushed up the slope and then pulled away to the
left. The general result would be that the thinner region
would always be at a higher energy than the thicker one,
with a metastable state in between. From the Figure it is
clear that, when the bubble is on the slope, the two com-
ponents of Eq. (7) have opposite sign, the net force
being the differences between the two and in the direction
to push the bubble down the slope opposite the thickness
gradient. Although the thicker region is the lowest energy
state, for abrupt changes in thickness the bubble must be
pushed up the slope.

Note the appreciable change in bubble diameter as
the bubble goes through the slope. This fact cannot be
neglected because erroneocus results are obtained if the
diameter is calculated as a fixed quantity.
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Figure 3 Computation of force energy and diameter as a function of film thickness for a 20° gradient. The force is given as an effective
field difference over the bubble diameter. The bias field H, = 4.94 X 10* A/m and Ah = 0.62 um. The reduced force is F,/ wrhu M.

To complete the model, the gradient field resulting from
the current flow in the conductors is computed and is
included in the energy calculations. Using these results
for various values of conductor current permits the pre-
diction of the external force necessary to overcome the
internal force at any position.

To verify the model, a laboratory experiment was
performed on ion-milled bubble material with the con-
figuration shown in Fig. 4. Short pulses of current in the
conductor overlay position the bubble at points A, B, C,
and D. The experiment consists in measuring the mini-
mum drive field required to move the bubble to the vari-
ous positions. The internal forces can then be deduced
from the measurements of the minimum drive necessary
for translation. Table 2 compares the experimental re-
sults with predicted results in Fig. 3. Points A and D are
taken at least 15 wm away from the slope, and points B
and C are located at the top and bottom of the slope,
respectively. The predicted results are adjusted to in-
clude the coercivity H,, which is not included in the
model. A value of (8/m) H,= 79.6 A/m is used to fit
the experimental data,
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Appendix A: Magnetic field computations for piece-
wise linear platelet geometry
For purposes of field calculations, the platelet geometry
is considered as indicated in Fig. 1. The platelet is in-
fintely long in its y dimension and consists of prescribed
plane strips fitted together in a “broken line” arrange-
ment. When the platelet is magnetized with strength M
in the +z direction, the resulting negative magnetic
charges on the bottom of the platelet and on the strips
comprising its top surface. Note that the magnetic charge
on an inclined portion of the platelet surface depends on
the angle of inclination, ®, as well as on the strength of
magnetization M and is given as M cos 0.

The field due to an infinitely long, charged strip may
be calculated directly from first principles by integration.
Let the charge on the strip be §, its half-width be «, and

Table 2 Test results on ion-milled garnet film, Fig, 4

Positions  Measured force (A/m)  Predicted force (A/m)
A—B 318 334
B—~C 79.6 79.6
- D 270 263
D—-C 239 0
C—>B 350 414
— A 127 79.6
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Figure 4 Experimental configuration, showing (a) an expand-
ed sketch of the sample area between the conductors, sectioned
through the center of the bubble, and (b) a plan-view sketch of
the conductor and bubble positions on the garnet film, scaled to
(c) a photograph of the film with the thickness gradient centered
between the conductors.

its inclination angle with respect to the x axis be ©®. The
x and z components of field are H, = S[T sin ® + L cos
O] and H,= S[—T cos ® + L sin ®] = H, where

»?

_1 2a{x sin ® — z cos O)

2 2 2
X+ —a

T = tan

»

T. W. COLLINS AND R. W. COLE

_2a({xcos O+ 2 sin ©)

A
L+2+ 4

and x, y are components of distance from the center line
of the strip to the field point.

Conducting strips deposited on the platelet surface
can provide a current-induced field, which again may be
calculated from first principles.

For the purpose of computing the effects of near-
neighbor bubbles on the one whose transverse force is
under study, the field of a cylindrical bubble (or its dipole
approximation) must be calculated. Such field com-
ponents can again be derived from first principles, re-
sulting in elliptic integrals of the first, second, and third
kinds [5]. Reference 6 includes efficient algorithms for
calculating such integrals as part of a computer program.

Appendix B: Computation of bubble energy

The internal magnetizing field of the bubble, H,, can be
expressed as H_ = 2MN (d/h), where N (d/h) is
the volume-averaged demagnetizing factor for a cylinder
of diameter d and height %, and is

N =1+ <34—731-){1 —%[(1 — YK (k)

+ (2K — I)E(k)]}
and tabulated by Brown [7], where

— d/h
[(d/h)* + 172

and K (k) and E(k) are complete elliptic integrals of the
first and second kinds.

In a flat portion of the platelet the bubble volume and
area may be calculated directly from the proper formulas.
When all or part of the bubble intersects a part of the
gradient on the top surface, the volume and area may be
calculated as the sum of contributions from cylindrical
fragments with sloping plane tops. Given the volume of
the composite bubble, the height of a standard cylindrical
bubble of the same volume can be used to calculate an
equivalent demagnetizing value N . The energy AE may
then be minimized as a function of bubble diameter d.
Given bubble energy as a function of position in the
platelet, transverse forces may be calculated by appropri-
ate central differences.
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