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Effects of Abrupt  Changes in Film  Thickness  on 
Magnetic  Bubble  Forces 

Abstract: Forces  on a magnetic  bubble  due  to  abrupt  asymmetric  changes in the  surface  configuration of the  magnetic film are  investi- 
gated  theoretically  and  experimentally. A model is derived  for  calculating  the  forces  on a bubble  as it is being moved by conductor 
propagation  through  a  thickness  gradient in the film. An  experiment is described in which  the  forces  necessary  to  move  a  bubble  through 
this  transition region are  measured and compared with predicted  values  computed  from  the  model.  Results are  presented  for a 20" 
gradient with a cut  0.62  pm  deep in a garnet film, nominally 3.8 pm thick,  prepared by liquid phase  epitaxy. 

Introduction 
In a  study of the  stability of a  magnetic  bubble when it 
interacts with topological elements such as  dams, 
grooves,  and gradient  transitions  from  thick to thin re- 
gions, it is essential to calculate the  forces on the bubble 
due  to  these  barriers  and transition  regions. 

Thiele  et al. [ I ]  calculated  the general translation 
forces on a  bubble due  to various  gradients in  film thick- 
ness, material  composition,  and temperature.  Their 
analysis, however, may be  considered  a small-signal 
variational approach in that all variables  were assumed 
to be  independent and all variations were small. This 
eliminates the  case  where,  for  example,  the film thickness 
changes  abruptly over  the bubble diameter, and  this 

Figure 1 Section of magnetic  bubble film, showing  thickness 
gradient. 
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abrupt variation creates a  gradient in the internal mag- 
netic field that  must be accounted  for. 

In a recent publication, Druyvesteyn [2]  rigorously 
analyzed the problem for  abrupt  changes in thickness, 
in which the variations  were  symmetrical about  the  center 
of the material. In  the  case  discussed  here,  however, the 
thickness changes occur only on the  upper  surface of 
the bubble  material. The  results  presented in this  paper, 
nevertheless,  are in qualitative  agreement with those of 
Druyvesteyn. 

Analysis 
The system that is analyzed is illustrated in Fig. 1 .  It 
consists of a uniformly magnetized garnet film with a 
gradient  transition region separating the  portions of dif- 
ferent  thickness, a  cylindrical  bubble  domain, and a  pair 
of current  conductors  on  the surface of the film on each 
side of the slope. The  current in the pair of conductors 
applies  a  force to  the bubble that moves it down  the slope 
from the  thicker region to  the  thinner  one  and vice versa. 
The  existence of the gradient itself and the  fact  that the 
bubble is changing its effective height and diameter  exert 
translational forces  on  the bubble in addition to  the ap- 
plied force.  Because  determining the  force  due  to  the 
applied current in the pair of conductors is a  straightfor- 
ward procedure, we concentrate on those additional 
forces  that arise. 

We begin by viewing the system in Fig. 1 as a super- 
position of a sloped  platelet  with uniform magnetization 
M s  in the z direction  and  a  cylindrical  domain with 
magnetization of 2 M s  in the -z direction. The total  energy 
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of the  system  consists of the demagnetizing  energy E,, 
the domain wall energy E,,, and the external bias field 
energy E,. The value E ,  can be  derived by using the 
method of Cape and Lehman [3]. The total  demagnetiz- 
ing energy is given as 

E ,  = s p , M s H , d ~  + s 2p,M,H, ,d~ - 4s p,M,H,,dV,,, 
( 1) 

where H ,  is the z component of the demagnetizing fielci 
of the  bubble, H I ,  is the z component of the platelet field, 
u is the  volume of the  bubble domain, and VI, is the vol- 
ume of the platelet. 

The last term in ( 1)  is just  the  saturation energy of the 
platelet itself. Because we are  interested in the change in 
E ,  with respect  to  the  saturated platelet, we write 

AE,,= Sp,M,H,du + J2p.,,MsH,,du. ( 2 )  

Equation ( 2 )  is  in a convenient form for this  particular 
problem. It  separates  out the  platelet field term H,, which, 
in this case, is not independent of position, as it is in the 
case of a platelet of constant  thickness, and  must be com- 
puted  separately as a  function of position. The quantity 
E ,  is simply given as 

E ,  = S2poMSH,du, (3)  

where H ,  is the applied  bias field, plus any  other ex- 
ternally  applied field such as the field due  to  the  current 
in the  conductor  overlay. Finally, E ,  is given as 

E,. = Su,dA,,, (4) 

where u, is the domain wall energy per unit area  and 
A ,  is the  area of the domain wall. 

Adding ( 2 ) ,  ( 3 ) ,  and (4). we  have 

AE, = JpoM,H,.du + S2poMsH, jdu  + J 2 p o M s H , d u  

+ Ju,,.dA,. ( 5 )  

The translational force F ,  can then  be found  from (5) as 

F, = -V( A E T ) .  (6) 

Because the platelet is not of uniform thickness, the 
variables H , ,  H I , ,  v, and A ,  are all functions of position 
of the  center of the bubble  domain. In addition, AE, must 
be minimized at each  position to maintain equilibrium of 
the radial forces [ 41. Therefore,  to avoid the complexity 
of a three-dimensional  potential and a minimization prob- 
lem, we make the following assumptions: 

1. The  base of the  bubble domain  remains  circular. 
2 .  For gentle slopes,  the demagnetizing  energy for  the 

segmented  cylinder (Fig. 1 ) can be  found  from a right 
circular  cylinder  whose height gives the  same volume 
as  the segmented  cylinder. 

Averaging the fields over  the volume of the  bubble, we 
express (6) as 
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Table 1. Film parameters used for  the model based on Figure 1. 

Symbol DcJiniiiotz Vulue 
__ 

4nM, Saturation magnetization  13.85 kA/m 
~ ~~~~ ~ _ _ _ ~  ~ _ _  _ _ . ~ ~  

I Characteristic length 0.62 pm 
hl  Thickness of thick region 
1% Thickness of thin region 
0 Gradient angle 20" 

3.77 p m  
3.15 p m  

-*[AH, + 2(  AH,, + A H , ) ] h ,  ( 7 )  2 

where  the AH quantities  and Ah represent differences 
taken  across  the bubble, and r is the  bubble  domain  radius 
obtained  by minimizing the  total energy at  the given po- 
sition of the bubble. Note  that, if H ,  is constant, i.e., the 
platelet is  of uniform thickness,  Eq. ( 7 )  reduces  to  Eq. 
( 1 1 )  of Ref. 1. 

Equation ( 7 )  indicates that  there  are  two  components 
of the  force - one  due  to  the thickness gradient, C h, and 
the  other  due  to  the field gradient, V H .  As pointed out by 
Thiele  et al. [ 11, in the range of stable  bubble operation 
the sign of the coefficient of Ah in ( 7 )  is such  that  the 
force  due  to  the  thickness  change is in the direction of the 
thickness gradient. However,  for  abrupt  changes in thick- 
ness  over a distance  comparable  to  the bubble diameter, it 
is shown here  that  the  increment, Ah, creates a change 
in platelet field, AH,,,  which generates a force  that is 
directed  opposite  to  the  thickness gradient. The  net  force 
may, therefore, be in either direction,  depending on which 
component of ( 7 )  is dominant. This  fact was also pointed 
out  by Druyvesteyn [ 2 ] .  

Results for small-angle  gradient 
Although we  have obtained results  for a number of geo- 
metric  configurations, we concentrate on the  one shown 
in Fig. 1 .  Because the  purpose of this configuration is to 
transport a bubble from  the thick region to  the thinner 
one, we present  data  for small angles  only.  Large-angle 
slopes tend to be efficient barriers  and it is very difficult 
to  transport  bubbles  across them. Unless  otherwise 
stated,  the material parameters  are  those given in Table 1 .  

The first step in the analysis is to  compute  the fields 
created by the  change in thickness.  Figure 2 displays 
H z  and H z  averaged  through the material for  the profile 
shown.  The 20" slope generates a change in H z  of about 
8.8 X 10'A/m ( 1 2  Oe)  from  the  top of the slope to  the 
bottom  and about 8.4 X 10' A / m  in-plane field H,. The 
quantity H I ,  is identically equal to H z  in Fig. 2.  H I ,  is 
equal to 44, at x = k 00 and varies somewhat  above 133 
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Figure 2 Computation of in-plane field Hz and the field normal to the surface HZ as a  function of film thickness for  a 20" gradient. The 
saturation  magnetization Mq = 13.85 kA/m. 

and below  this  value near  the slope.  When  a change in 
thickness occurs,  the magnitude of the z-averaged H, 
can  be greater than Ms at some  position. 

The main features of Fig. 2 are  that  the gradient of H ,  
is such  as  to repel  a  bubble coming from x = - m and  to 
attract a  bubble  from x = + to  the  bottom of the slope. 
On  the  slope,  the  gradient of H, is in the direction to 
move the bubble down  the slope to the right. This, how- 
ever, is only one  component of the  force, and the total 
picture may change  when the  other  components  are in- 
cluded. 

Using the  computational  methods discussed in Ap- 
pendixes  A  and B, we compute  the  force  on  the bubble 
as it passes through the gradient region for  the  case of 
the isolated  bubble.  A  bias field of 4.94 X lo3 A/m,  con- 
sistent with bubble stability in both  the thick and thin 
regions,  was  applied. Figure 3 shows  the  results of such 
a  calculation. 

The  three  parameters  (force,  energy,  and  diameter) 
are  shown  as  functions of the position x of the  center of 
the bubble. The  top of the  slope is arbitrarily set  at x = 

10 pm. A negative force  translates  the bubble in the -x 
direction and a  positive force in the +x direction. At  each 
point x, the  bubble energy is minimized to obtain the 
stable diameter.  We assume  that  the bubble is being 
driven by an  external  force in the +x direction. 

As the bubble approaches  the slope from left to right, 
it experiences  an increasing  repulsive force  that  peaks 

134 at  about 2.4 X 10'A/m.  Therefore,  the bubble  must be 

forced over  the  barrier by an  external  force until the in- 
ternal force  recedes  to  zero  near  the  top of the slope. This 
is a  point of unstable  equilibrium, as  shown by the  peak of 
the energy  curve. At this  point, the slightest amount of 
force will move the bubble down  the slope,  aided  this 
time by the positive  internal  force. The bubble will then 
come  to  rest  at  the  bottom of the slope,  a  point of stable 
equilibrium. 

Proceeding farther  to  the right, we see  that  the  external 
force must overcome  the "pull-off' force  to push the 
bubble farther up the energy curve,  far  to  the right. If 
we had moved the bubble  from right to left, all internal 
forces would have  the  opposite effect. The bubble would 
be attracted  to  the  bottom of the  slope,  and would have 
to be  pushed  up the  slope  and  then pulled away  to  the 
left. The general  result would be that  the  thinner region 
would always be at a higher energy than  the  thicker  one, 
with  a metastable  state in between. From  the  Figure it is 
clear  that, when the bubble is on  the slope, the  two com- 
ponents of Eq. ( 7 )  have  opposite sign, the  net force 
being the differences between  the  two  and in the direction 
to push the bubble down  the slope opposite  the  thickness 
gradient.  Although the  thicker region is the  lowest energy 
state,  for  abrupt  changes in thickness  the  bubble  must  be 
pushed  up the slope. 

Note  the appreciable change in bubble diameter  as 
the bubble  goes  through the slope. This  fact  cannot be 
neglected because  erroneous  results  are obtained if the 
diameter is calculated as a fixed quantity. 
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To complete  the model, the gradient field resulting  from 
the  current flow in the  conductors is computed  and is 
included in the energy calculations.  Using these  results 
for various  values of conductor  current permits the pre- 
diction of the  external  force  necessary  to  overcome the 
internal force  at  any position. 

To verify the model,  a  laboratory experiment was 
performed on ion-milled bubble material with the  con- 
figuration shown in Fig. 4. Short pulses of current in the 
conductor overlay  position the bubble at points A,  B, C, 
and D. The experiment consists in measuring the mini- 
mum drive field required to move the bubble to  the vari- 
ous positions. The internal forces can  then be deduced 
from the  measurements of the minimum drive necessary 
for translation. Table 2 compares  the experimental  re- 
sults with predicted results in Fig. 3 .  Points A and D are 
taken at least 15 p m  away from the slope,  and  points B 
and C are located at  the top and bottom of the slope, 
respectively. The predicted results  are adjusted to in- 
clude the coercivity H , ,  which is not included in the 
model. A value of (8/  T) H,. = 79.6 A/ m is used to fit 
the experimental data. 
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Appendix A: Magnetic field  computations for piece- 
wise linear  platelet geometry 
For purposes of field calculations, the platelet  geometry 
is considered as indicated in Fig. 1 .  The platelet is in- 
fintely long in its y dimension  and consists of prescribed 
plane strips fitted together in a “broken line”  arrange- 
ment. When the platelet is magnetized with strength M 
in the +z direction,  the resulting  negative  magnetic 
charges on the  bottom of the platelet and on the  strips 
comprising  its top  surface.  Note  that  the magnetic  charge 
on an inclined portion of the platelet surface  depends on 
the angle of inclination, 0, as well as on the strength of 
magnetization M and is given as M cos 0. 

The field due  to  an infinitely long. charged  strip may 
be calculated  directly  from first principles by integration. 
Let  the charge on the  strip be S ,  its half-width be a, and 

Table 2 Test results on  ion-milled  garnet film, Fig. 4 

Positions  Measured force ( A  / m )  Predicted ,force ( A  / m )  

A + B  318 
B + C  79.6 
C + D  270 
D + C  23.9 
C + B  350 
B - A  127 

~~ 

334 
79.6 

263 
0 

414 
79.6 
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Experimental  configuration,  showing (a)  an  expand- 
edsketch of the sample area between  the conductors, sectioned 
through  the center of the  bubble, and (b) a  plan-view sketch of 
the  conductor and bubble  positions on the garnet film, scaled to 
(c)  a  photograph of the film with the  thickness gradient centered 
between the  conductors. 

its inclination angle with respect  to  the x axis  be 0. The 
x and z components of field are H ,  = S[ T sin 0 + L cos 
01 and H, = S[--T cos 0 + I, sin 01 = H,,, where 

T = tan“ - 2u(x sin 0 - z cos 0) 
x’ + zz - a’ 

A =  2 u ( x  cos 0 + z sin 01 
x2 + z2 + u2 

and x, y are  components of distance from the  center line 
of the strip to  the field point. 

Conducting  strips deposited on  the platelet  surface 
can  provide  a  current-induced field, which again may be 
calculated from first principles. 

For the purpose of computing the effects of near- 
neighbor  bubbles on the  one  whose  transverse  force is 
under  study,  the field of a  cylindrical  bubble (or  its dipole 
approximation)  must  be calculated. Such field com- 
ponents can again be derived from first principles, re- 
sulting in elliptic integrals of the first, second, and  third 
kinds [ 5 ] .  Reference 6 includes efficient algorithms for 
calculating such integrals as part of a computer program. 

Appendix B: Computation of bubble  energy 
The internal magnetizing field  of the bubble, H , ,  can be 
expressed  as H,. = 2 M , N , ( d / h ) ,  where N,(d /  h) is 
the volume-averaged  demagnetizing factor  for a cylinder 
of diameter d and height h, and is 

+ (2k2 - l ) E ( k ) ] }  

and  tabulated by Brown [ 71, where 

and K ( k )  and E ( k )  are  complete elliptic integrals of the 
first and second  kinds. 

In a flat portion of the platelet the bubble  volume  and 
area may be calculated  directly  from the  proper formulas. 
When all or part of the bubble intersects a part of the 
gradient  on  the  top  surface,  the volume  and area may be 
calculated as  the sum of contributions from  cylindrical 
fragments with sloping plane  tops. Given  the volume of 
the composite  bubble, the height of a standard cylindrical 
bubble of the  same volume can be  used to calculate an 
equivalent  demagnetizing  value N,. The energy AET may 
then  be minimized as a  function of bubble diameter d. 
Given  bubble energy as a  function of position in the 
platelet, transverse  forces may be  calculated by appropri- 
ate  central differences. 
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