T. C. Chen
C. Tung

Storage Management Operations in Linked Uniform

Shift-Register Loops

Abstract: A new storage structure, called a uniform ladder, consists of a linear array of equal shift-register loops, each holding one
record and linked by flow-steering switches. Data exchange across a loop boundary is mandatory if the controlling switch is on and
forbidden if off. For MRU (Most Recently Used) storage management, the most important operation is the climbing of data to the top
of the ladder from a depth of D loops, which takes only (D + 1) /2 record periods in the uniform ladder. Program switching is en-
hanced by efficient schemes for partial environmental exchanges and also by internal block transfers. A pushdown stack can be efficiently

implemented by a change in the record storing technique.

Introduction

Although a computer program and its data may occupy a
large storage space, it has been observed that, at any
given time during execution, only a small subset of the
total (commonly referred to as the working set) has a
high probability of being needed in the near future. Fur-
thermore, the size and make-up of the working set
change only slowly with time [1-3]. This locality of
reference can be exploited to reduce average access time
by dynamically positioning the members of the working
set close to the access mechanism.

Dynamic positioning has been used with great success
in the data reassignment between a fast, small cache
and a large but slow random access memory. Within each
unit, all storage positions are equally accessible.

However, in storage based on shift-registers (such as
those using magnetic bubbles and charge-coupled
devices) access is governed by simple geometry. Within
the same unit there is now a uniform spectrum of access
times, capable of spanning two or more orders of magni-
tude. Dynamic positioning of working sets for access
efficiency is feasible, and the resultant multilevel storage
can lead to substantial improvement of cost perfor-
mance.

Recently Beausoleil, Brown, and Phelps [4], and also
Bonyhard and Nelson [5], have discussed management
schemes in magnetic bubble technology, using ingenious
bubble track designs to permit stoppage and reversal of
the moving bits by means of stoppage and reversal of the
rotating drive field.

Tung, Chen, and Chang [6] discussed a different
scheme requiring neither bit movement stoppage nor
reversal, using an arrangement with multiple shift-regis-

MARCH 1976

ter loops linked by special flow-steering switches. Al-
though the switch design is given in terms of magnetic
bubbles, the principle applies to all uniformly driven
shift-register storage designs.

We discuss here a new multiloop design using the
same switches, having equal-sized loops and being under
a more sophisticated switch control. The device is called
a uniform ladder, and is shown to be very effective in
storage management and related applications.

The uniform ladder
A diagram of the steering switch is given in Fig. 1(a). It
is a memoryless and practically delayless device with
two inputs, A, C, and two outputs, B, D. It has two elec-
tronically controlled states. In the avoidance (off) state,
inputs A, C are connected respectively to outputs B, D,
and the two data streams avoid each other. In the alter-
native crossover (on) state, A, C are connected respec-
tively to D, B, resulting in crossover of the two streams.
Unless stated otherwise, a switch is assumed to be off.

The uniform ladder shown in 1(b) consists of a linear
sequence of N shift-register loops {L;}, i= 0,1,
(N — 1), each with a capacity of 2m bits. Adjacent loops,
say L, and L, ,, are linked by an internal steering switch
S,, 1> a top switch S is then used to link the ladder to the
outside environment. The collection of switches lies in a
straight line, which subdivides the ladder symmetrically
into two equal parts.

Any two adjacent loops have opposite flow directions.
With no loss of generality, we assume the top loop L to
have counterclockwise flow.

UNIFORM LADDER STORE

123

124

A B A

\/ B A B
/'0 ><:
C \ D C D C D

Switch Avoidance Crossover
state (off) state (on)

(b)

Figure 1 The uniform ladder, consisting of a linear sequence
of shift-register loops. (a) Flow-steering switch. Under external
electronic control, information streams entering A, C are
steered in either of two ways. (b) Configuration of the uniform
ladder. Equal sized loops {L; are linked by switches {S,}.
Switch S, serves as input/ output control.

The N-loop ladder will be used to hold N records.
Each such record consists of a linear sequence of bits,
subdivided into two halves; FR, (front of R) consists of
bits r, through r, ,, and BR, (back of R}, with r,
through r,,, .. The bits r, r ., and r, . are called the
head, waist, and tail, respectively.

We consider the behavior of the uniform ladder in the
following dynamic shifting mode. In one “bit interval,” a
given data bit will shift from one bit position to an adja-
cent bit position; if a switch S, is part of the shift path,
the destination position will depend on its setting. If the
setting is “‘off,” the data bit will remain in the loop; turn-
ing it on will cause the bit to cross the loop boundary.
We reiterate the fact that S, is delayless; its preserice in
a path does not add to the shift delay. The time for a bit

U. C. CHEN AND C. TUNG

to circulate within a loop is called a period; it equals 2m
bit intervals and is a convenient unit for subsequent dis-
cussions,

The detailed positioning of the records within the lad-
der (or subladder) is called an arrangement. It depends
on three factors: (a) the starting condition at some refer-
ence time ¢, (b) the elapsed time Ar since ¢,, and (c) the
dynamic setting (on or off) of all the switches {S,}.

In discussing the behavior of a single ladder, it should
be clear that many (say M) such ladders can operate in
unison, and what is called one ladder record here may
actually be 1/ M of a user’s data item. The well-known
“major-minor loop” bubble storage access scheme, for
example, can be invoked, with a ladder serving as a
minor loop, so that one bit from each ladder contributes
towards an M-bit record, accessible by the major loop.

ldling and neighbor exchange

An “off” setting for S, effectively partitions the ladder
into two uncoupled subladders; an “off”” setting for S,
serves to insulate the entire ladder from its environment.

Regardless of the initial arrangement, if we turn off all
switches, the information within each loop will circulate
in “holding patterns,” hence the same arrangement will
recur at the end of each period. This is the analog of
“no-operation” for the continuously shifting records,
because the information is stationary in the sense that
loop contents remain unchanged. The setting with all
switches off is called the idle setting even though the
duration may not equal an integral number of periods.

Starting from an arrangement with one record per
loop, if we turn on exactly one internal switch, say §,,
while all other switches remain off, then the contents of
loops L, |, L, will flow into each other. After one peri-
od, the exchange will be complete; if S, is then turned off
again, the exchanged arrangement will remain. Note that
this exchange requires no buffering whatever.

It is clear that any particular assignment of records to
loops can be obtained from another by a sequence of
exchanges. However, the reordering may be more efli-
cient using alternative schemes, as will be shown subse-
quently.

Climbing and topping operations

We define the (vertical) distance between loops L, and
L, to be |i —j|. The depth of L, is the distance between L,
and L; it is simply equal to i.

Starting at time t,, the movement of a record, say R,
from L, to L;, j </, can be done in (i —j) periods, via a
series of neighbor exchanges, using the following set-
tings for k=0, 1, (j—i—1):

S, , is on during (¢, + &k — 1, 1, + k], off otherwise.

(BM J. RES. DEVELOP.

A similar formula results for i > j.

As the record R moves towards L.;. at each loop it in-
terchanges positions with a different neighbor. Conse-
quently, after it has reached the destination, all interven-
ing records initially at L, j = k& < i, will have been dis-
placed towards L, by a distance of one loop.

Such data movement is important in storage manage-
ment, and is called climbing over the distance (i—j). The
special case, j = 0, of climbing to the top is called top-
ping: it has also been termed dynamic ordering [4], or
dynamic reallocation [5].

The climbing of a record over distance D, i.e., from L,
to L,_,. can be done in D periods using repeated ex-
changes. However, an analysis of the data movement
requirements shows that the climbing time can almost be
halved. Using the following settings for £ = 0, 1, -,
(D — 1), exactly (D + 1)/2 periods are needed to ac-
complish the climbing:

S, . is on during (£, + k/2,t,+ k/2 + 1], off otherwise.

The slower exchange technique and the fast climbing
technique are contrasted for the special case of topping
in Fig. 2, where we note that a path to the top involves
only one side of each of the intervening loops. The trick
in Fig. 2(b) is to fire S,_,_, half a period before S, . is
reset to “off;” time is saved by overlapping two cross-
over settings. The climbing speed is two loops per peri-
od, with an extra half-period to complete the action.
This is true because the leading bit originally in loop L,
needs only D/ 2 periods to reach the topmost position of
L,_,. but at that time only half of the record is in loop
L, p: the remaining half is still in the loop below, taking
another half-period to complete the ascent.

For a ladder of N loops, the access of any single rec-
ord can be done by using topping, the access time rang-
ing from a minimum of zero (i = 0) to a maximum of
N/2 periods (i=N — 1). If accesses are equally proba-
ble, the average time would be N/4. If the accessed
item is to return to the ““home” loop, the total time would
be N/2 periods, equal to the worst-case topping time.
As we shall see later the section entitled ““Storage man-
agement,” topping without return is much more desir-
able,

Loading and unloading

As switch S, controls the flow into and out of the sublad-
der below it, so does the top switch S, control the com-
munication of the ladder with other system components.
In order for an external record, say R]., to reach loop L,
it must pass successively S, -+, S, The minimum re-
quirement is for these switches to be fired in succession
at half-period intervals, each individual firing lasting one

MARCH 1976

2
o
3
2
Elapsed time (periods)
(b)
Overhead
/ time
Sy
S,
2
g
.]

Elapsed time (periods)

Figure 2 Topping schemes. (a) To top a record at depth D
requires D periods by neighbor exchange. (b) Topping the rec-
ord requires only (D + 1) /2 periods when redundant paths are
avoided.

full period. This is exactly analogous to the fast climbing
case, but is a descent from a (hypothetical) environment
loop L_,

When R reaches §;, |, and if the latter is set to “off”,
the record will “bounce and become filed in L; a half
period later; if S; is turned off, then the record will bounce

125

UNIFORM LADDER STORE

126

Loops

Elapsed time (periods)

Figure 3 Switch setting during loading or unloading. Loading
into the lower subladder of M loops requires turning its top
switch on for M periods. All loading is accompanied by simulta-
neous unloading of the previous contents.

again, and will remain filed as long as both S; and S;,, re-

j+1
main off. The total time consumed by this filing procjedure
is (j+ 1) /2 periods.

If R]._1 also needs to be filed in L; . the same path will
be needed, except that S, should be off when the record
reaches it, and S; | should be turned off at the opportune
time. Rather than wait for the R, loading to complete,
R;_, can enter the ladder immediately after the last bit of
R; has entered. S, S, S, having been turned on
for R;, can remain on for an extra period to allow the
passage of R;_,. When S, has been turned off just before
R, , reaches it, the latter will be denied access to L, and
will file in L,_,a half period later; this filed condition will
persist if S, is turned off immediately afterwards.

This procedure can be extended to fill the entire lad-
der with a continuous stream of N records, R, ,,- -~ R,.
This is like filling a test tube, the loaded contents serving
to reduce the effective length of travel for the new
input. The scheme is summarized below for k=0, 1,- -,

(N—1):
S, is on during (f,+ k/2, t,+ N — k/ 2], off otherwise.

The total time is therefore exactly N periods.

Figure 3 shows the setting sequences to load a four-
loop ladder. The diagram is completely symmetric in
time; it turns out that the same settings can also unload
the entire ladder correctly. The record at the topmost
ladder loops is unloaded first; a lower switch need be
turned on only at the proper instant for the subladder
below it to unload. After N periods, the unloading will
be complete.

Both load and unload operations are thus identical, the
difference lying merely in user emphasis. As an outside

T. C. CHEN AND C. TUNG

record is being loaded, a ladder record is simultaneously
being unloaded in exchange. Exchange is thus funda-
mental to the uniform ladder, not merely in internal data
movement, but also in dealing with the environment of
other system components.

If a true exchange of records with the environment is
to be effected, it is not necessary to unload the ladder
first and then reload with new contents. The loading
process can simply be done concurrently with unloading,
and the total environmental exchange is done in N, rath-
er than 2N periods.

We observe that the first record to be loaded sinks to
the ladder bottom and is the last record to be unloaded.
On the other hand, the last-entered record is the first to
come out. Thus the ladder follows the LIFO (last-in-
first-out) discipline typical for stacks, without neces-
sarily being a stack itself.

Subladders bordering on the top switch S, are called
upper-subladders. “Partial 1/0,” namely the environ-
ment exchange involving an upper-subladder, follows
exactly the same rule as full input/output for a shorter
ladder. With S, turned off to seal off the subladder be-
low, the upper subladder behaves as a full ladder. For
most storage applications the most useful partial 1/ 0O
involves the topmost loop only; the system updates the
topmost record by writing into it, incidentally obtaining
the old version which can be useful for possible error
control. With due care the updating can even be done on
part of a record in less than one full period.

The contents of an internal loop must first rise to the
top before replacement by external data; this is easily
done using the topping operation described in the pre-
vious section. We now generalize to the case of moving
a contiguous block of p records, not necessarily to the
top.

Contents of a subladder consisting of L, L, ,, ",
L;,, , can be elevated tooccupy L, . L., _p Ly, 5y
by a sequence of p separate climbing operations, each
over a distance of D. The gth operation, for example,
allows the contents of LHq_1 to do the climbing. Such a
sequence would cost (D + 1)p/2 periods.

This cost can be reduced to (D + p)/2 periods, by
starting the (g + 1)st climb exactly half a period after
the gth. The switch settings for this block climbing of p
records is, for k= (1 —D), (2—D), -~ (p~—1):

S, isonduring (¢,+|k|/2,t,+min (p—k/2.D+k/2)],
off otherwise;

and as the block of p records ascends by D loops, simul-
taneously a block of D recordsin L, ,,- -, L, descends
by p loop positions.

The input/output of subladders not bordering on S,
can now be achieved by block climbing, followed by a

IBM J. RES. DEVELOP.

partial I/0O. An even more efficient method is to use the
block climbing algorithm with D = i, ignoring the nonex-
istent switch settings; the subladder of p records will
simply climb out of the ladder top. Indeed, the in-
put/output algorithm can be viewed as a special case of
block climbing, with p=D =N, i=0.

Record integrity
It is important that data manipulations in the ladder do
not mutilate (i.e., do not break up into disjointed pieces)
any of the records that should eventually be read out in
the correct bit sequence.

A record is intact, i.e., not mutilated, if it is filed inside
a loop. An arrangement in a subladder with only filed
records is designated to be a filed arrangement. In order
for a record to move across loop boundaries, it must
leave the filed state by creating a break, not necessarily
at the logical record boundary. If, after the break, bit r,
leads the rest of the record, the resultant sequence

r.r MR ¢ r,, r

n® " n+1? 2m-1" "0’ R

1 n-1
is said to be modulo-serial with offset n. Its apparent
head and tail are r,, r,_,, respecively. The special case
with offset 0 is called strictly serial, or just serial.

Starting at time 7, N records can be loaded serially
into the uniform ladder in exactly N periods. Upon
completion time ¢, =, + N, the ladder becomes orga-
nized as shown in Fig. 4. We note that all records are
filed with the front half occupying the right side of the
ladder; further, the head bits of all occupants of the odd-
subscripted loops are at the bottom, poised for move-
ment downward, and the head bit of all occupants of the
even-subscripted loops are on top, ready for movement
upward. In particular, the record in the top loop is
poised for serial exit. This condition at the top loop re-
curs at full period intervals, for r=1r, + 4, where k is an in-
teger, regardless of the switch settings in the interim.

Thus, the act of loading also serves to initialize the
arrangement of all the records in a special, synchronized
manner. The integrity of the records can then be pre-
served by operations that tend to map one such orga-
nized arrangement into another. It turns out that any of
the non-idling operations, applied one at a time, cause all
loop-crossing records to be modulo-serial with the same
offset. This has far-reaching implications regarding the
global integrity of the ladder file. Further, a ladder so
loaded can be subdivided into subladders, each to be
handled independently, if due care is exercised in pre-
serving the integrity of the records when the subladders
are merged.

The following assertions are provided without proof.
Some of the proofs are obvious; the rest will be found in
the Appendix.

MARCH 1976

T (r Head
|

FR

|
L

|
H
i A Tail

4- Waist

Representation of
a record

Figure 4 Arrangement of filed records poised for output. The
head bit of the record is posed to cross the top switch.

1. The operations defined as

idle for any duration,

exchange between adjacent loops (Ar=1),
climbing over distance D(including topping) (Ar
(D+1)/2),

block climbing of p records over distance D (At
(D+p)/2),

I

will map filed arrangements into filed arrangements
and can start at any instant after ¢, one operation at a
time and as many times as needed, as long as the ini-
tial arrangement is known to be filed.

2. The load operation for a full ladder can start at any
instant, the latter defining a new ¢, for subsequent
operations. The completion time will also define ¢,.

3. A readout operation will yield serial records for a
ladder with intact records if the starting time is 7, =
t, + k. On the other hand, if the readout starts at time
t,=t, + k -+ (n/2m), the record movement will be
modulo-serial with offset n. In particular, if n = m, the
movement will be waist-first.

4. The topping operation for D = odd (even), starting
at full (half) periods after input, will occur with the
designated record climbing waist-first. The instant of
topping completion will be at a full period boundary,
and serial readout can start at once. On the other
hand, D = even (odd) will lead to serial (head-first)
“percolation,” and the completion instant will not be
opportune for serial readout. The latter obtains by
idling for an extra half-period, or better, by starting

127

UNIFORM LADDER STORE

Ry FR} Q
S, fired S| on

R3
Ro
S, fired S, on
@
@

=t +1

t—=1, 4+3/2

Figure 5 Detail of the topping operation with even D(=2).
The record is selected when the head bit is poised to climb. All
intermediate steps show head-first movement. Completion time
is unfavorable for head-first output, which, however, can be
done half a period earlier.

the output half a period sooner (Fig. 5). See Table 1
for details.

5. If these operations are done one at a time within a
subladder, the record movements will all be modulo-
serial, with no record mutilation. Each operation
will result in a filed arrangement. At any time, how-
ever, an ongoing operation can be interrupted by the
insertion of an idle interval for an integral number of
periods, during which time data movement may not
be modulo-serial; the interrupted operation can be
resumed after an integral number of periods with no
visible effect except for the time delay.

6. The setting of some switches to “off” throughout a
given time interval effectively subdivides the ladder
into uncoupled subladders bounded by these switches
and the original ladder boundaries. Operations in-
volving these subladders can be completely indepen-
dent, except that (partial) 1/ O can start only an inte-
gral number of periods after r,. Merger of adjacent
subladders will be safe if both contain only filed rec-
ords.

Storage management
Storage access costs can be reduced if data items are
arranged dynamically in linear order, based on the rela-

T. C. CHEN AND C. TUNG

So fired

(a) (b)

Figure 6 The uniform ladder as a pushdown stack. The lower
half of the stack content is shown in dotted lines. (a) Ready for
pushdown. ¢t = ¢, + j. (b) Ready for pop-up. t =, +j+ 1/2.
Note the waist-leading exit.

tive probability of immediate usage. During execution
time, the access pattern reflects changes in these proba-
bilities, and automatic storage management consists in
rearranging the records into an order that also reflects
these changes.

As mentioned at the beginning of this paper, locality
in referencing is a common phenomenon in computing.
Hence, in the absence of detailed knowledge of program
execution, it is reasonable to expect that the access of a
data item should automatically raise its probability for
immediate (re)usage; in contrast, the data items pre-
viously accorded a higher probability should now have
downgraded probabilities. In the arrangement by proba-
bility, the accessed data item should move upward and
some other data items, previously ranked higher, should
drop down.

A very reasonable assumption is that the more re-
cently accessed data item has a higher probability for
immediate reuse. Whenever a data item is newly ac-
cessed, it acquires the highest probability for immediate
reuse, thus should reach the top, while all intervening
data items should drop down by one position; in other
words, access is always associated with topping. This
scheme is called the MRU (Most Recently Used) up-
grading algorithm.

IBM J. RES. DEVELOP.

Table 1 Fast topping from depth D

Starting time t, =1, + k

Starting time t,=1, +k +3%

Parity of D even odd even odd
Movement serial, modulo-serial, modulo-serial, serial,
head-first waist-first waist-first head-first
Completion (+H(D+1)/2 t+{(D+1)/2 t+(D+1)/2 t,+(D+1)/2
time ¢,
Time for first t 6, —% ,—3 t

f
serial output

f £

Incidentally, the same algorithm has been used widely
within the context of a two-level hierarchy, each level
with equal-access data items. The emphasis there is on
purging the least-recently used (LRU) data item from
the higher level, and the scheme is called the LRU re-
placement algorithm, or more precisely, the LRU purg-
ing algorithm. In our multilevel case, the top storage slot
is unique and is the bone of contention, and the purging
is not confined to a single record, but to all intervening
data items. The use of “LRU purging” is therefore inap-
propriate,

The uniform ladder, with a record identified with a
data item, is very efficient in topping; it should be an
effective device in MRU storage management. ‘‘Read
from the ladder” should be interpreted as “‘top and
copy,” without the need to return the topped record to
the “home” loop. Also, ““write into the ladder” should
mean ‘‘top and replace.” Replacement is just a partial
I/O operation involving one record; copying can be
done by attaching a sensing or replicating device at the
top loop.

The MRU upgrading algorithm handles only one rec-
ord at a time and is only moderately efficient during
switching between programs involving many records.
Here the much more efficient internal block climbing can
be invoked, the block in question being the entire new
program.

The behavior of a dynamically managed storage using
MRU upgrading (LRU purging) is often likened to a
pushdown stack [7], but there are major differences.
Although the MRU storage, like the pushdown stack,
follows the LIFO discipline, there is no real need to do
the pushdown and pop-up operations in storage manage-
ment. On the other hand, topping is the most important
operation in MRU management, yet is not even part of
the normal pushdown stack repertoire, though included
in some hardware implementations as an added feature.

We recall, however, that the use of the uniform ladder
discussed thus far is based on the filing of records into
individual loops. In this way selected records often can
be moved along only one-half of the traversed loops,
covering a distance of two loops in one period. Although
this scheme, well suited for storage management, can be

MARCH 1976

used to implement the pushdown operation, efficiency
cannot be expected. It is easily seen that a pushdown
operation on a ladder with the top k loops occupied will
take at least (k + 1)/2 periods, because this involves
the topping of the contents of loop L,, in order to ex-
change with the environment, and the topping operation
already takes (k+ 1) /2 periods.

More satisfactory is a new scheme based on a storage
viewpoint distinct from the one-record-per-loop philoso-
phy. In this alternative storage scheme, the entire ladder
is treated as a giant, twisted loop. Two adjacent loops,
L, and L, ,, with 0 = k < N/2, are used to represent
pushdown levels P, and P,_,_,, such that their respec-
tive occupants each straddle both loops evenly, with a
half record in each loop. If the ladder has an odd number
of loops, the bottom loop will represent the middle push-
down level P,_,,,. When ready for pushing, the contents
of P,_,_, will be pointing down, and the contents of P,
will be pointing up, including the middle level. When
geared for popping up, the direction of the pointing will
be reversed.

The pushdown stack operations are as follows:

% Pushdown (loading): Turn on all switches S, through
S,_, for one period, starting at 1 = ¢, + j, where j is a
nonnegative integer.

% Idle: Turn off all switches S, through S, |, a given
arrangement will recur at full period intervals.

% Pop-up (unloading): Turn on all switches S, through
Sy_, for one period, starting at t = ¢, + j + (1/2),
where j is a nonnegative integer.

Figure 6 illustrates these operations on a pushdown
stack made of a five-loop ladder. Each pushdown or
pop-up for a record takes exactly one period, but the
transition from pushdown mode to pop-up mode takes a
half-period. It is curious that pop-up is done modulo-se-
rially, waist first.

Summary

We have shown that a uniform ladder, constructed by
linking N equal shift-register loops linearly by means of
flow-steering switches, can be used to contain and ma-

129

UNIFORM LADDER STORE

130

g

Switch Horizontal Vertical
flow (off) flow (on)

Figure 7 An alternative flow-steering switch, in which there is
no crossing of information streams in either state.

nipulate records in various arrangements desirable for
computer application. One scheme is particularly attrac-
tive in performing the topping operation to consolidate
working sets during program execution; another is effec-
tive in implementing a pushdown stack.

The block climbing scheme permits the efficient use of
multirecord segments in the same ladder and is impor-
tant in program switching.

Though we have based our discussion on the particu-
lar switch in Fig. 1, the type of flow-steering switch
shown in Fig. 7 can also be designed, relying on two
orthogonal modes of avoidance patterns, with no explicit
crossover. However, the analysis of a uniform ladder
using these orthogonal switches turns out to be exactly
the same as the one above, with only the odd-subscript-
ed loops {L,,,,} rotated by 180° about the ladder axis,
out of the plane of the paper.

The uniform ladder, constructed either way, can prob-
ably be implemented in any shift-register technology,
although the first design uses the magnetic bubble tech-
nology. In any case, the current emphasis on shift regis-
ters is for storage applications, for which the uniform
ladder seems very well suited.

Our study of the counterflow of contents between ad-
jacent ladder loops has further led to schemes for per-
mutation and is to be reported elsewhere,

Appendix: The preservation of record integrity

e [ntegrity of records

The section on record integrity gives some rules that
guarantee the nonmutilation of records within the ladder,
We now discuss their origin.

The prevention of file mutilation lies in the prevention

of the mutilation of any of the records involved. A rec-
ord is mutilated if it is not modulo-serial, either because

1. it is broken up into two or more pieces, or
2. it does not obey the modulo 2m ordering.

Situation (2) never arises with serially loaded records,
and we are mainly concerned with situation (1).

T. C. CHEN AND C. TUNG

e Breaks in a record and their immediate remedy

A properly filed record circulates modulo-serially within
the assigned loop; whether it is strictly serial is a moot
question. Any attempt to move a record across a loop
boundary creates a discontinuity in the storing pattern,
making the flow modulo-serial. One more break will
mean definite mutilation.

Operations that limit the number of breaks in a record
to no more than one are certainly safe. Moreover, all
streaming operations within the ladder are reversible;
and mutilations can be rectified in principle and may not
be disastrous. They do, however, overburden the book-
keeping unless the remedy is applied immediately.

An example of mutilation with immediate recovery is
the idling operation. The following two rules deal with
the most common idling requirements and can be ap-
plied at any bit-time.

Rule | (ldling) The switches in a subladder can all be
turned off for one period. Any arrangement in
the subladder will be guaranteed to recur, Modu-
lo-serial flow on part or all of the subladder will
be reinstated despite possible mutilation in the
interim.

Rule 2 (Straddle-flip) Given a modulo-serially moving
record with the offset s, straddling symmetri-
cally about switch S,. Then S,_,, S, and S;, | can
all be turned off for a half-period, and the record
will remain modulo-serial, but will be moving in
the opposite direction with the offset [(n — m)
mod 2m] at the end of the half-period.

We now give two simple rules to prevent the occur-
rence of either two or more breaks in a filed record, or
one extra break in a flowing record. These are the only
cases that can cause mutilation of modulo-serially flow-
ing records.

Rule 3 (Nontearing) If loop L, contains a filed record,
S, and S,, | should not be fired within the same bit
interval. Otherwise, parts of the record will flow
upward while other parts will flow downward,
creating two breaks.

Rule 4 (Nondiversion) If a record is flowing across a
loop boundary, neither of the two switches along
the flow path should change its value until the
apparent tail has passed it. Otherwise, an extra
break is certain to occur.

Although these rules can be violated if mutilations are
subsequently remedied, it is advisable that rules (3) and
(4) be broken only by the idling rules (1) or (2). This
gives enough latitude for data movement with minimum
bookkeeping effort.

1BM J. RES. DEVELOP.

e Synchronization

The N records in a subladder are said to be synchro-
nized with time lag n, calibrated at the reference time ¢,
if, at t = 1, + (j/2m), the bits r,,; are all poised for
crossover, those in even-subscripted loops for crossing
upward, those in odd-subscripted loops for crossing
downward.

Synchronism is distinct from intactness of the individ-
ual records not only because synchronism is a property
involving all records, but also because records can be
synchronized yet mutilated. In addition, records can be
modulo-serial but unsynchronized. Synchronism is a
constant of the motion in a ladder; once a subladder is
synchronized, it remains so with the same time lag as
long as no input-output action occurs to disturb it.

Two subladders are said to be in tune if both are syn-
chronized, for the same calibration time with equal time
lag. If the subladders also border on the same switch S,
then they can be considered to belong to the same syn-
chronized subladder formed by the union of the two.

All properly loaded subladders are automatically syn-
chronized, with zero time lag, as calibrated at load com-
pletion time . Further, all records are filed and are
modulo-serial. Intactness is preserved, if breakout oc-
curs at time ¢, + k, where k is an integer. The records are
then all modulo-serial with offset 0, adequate for strictly
serial output exit; if breakout occurs at time 1, + £ +
1/2, movement will be modulo-serial with offset m,
(waist-leading).

o Safety in a ladder
We now summarize general statements about the entire
ladder.

1. A subladder file is intact if all records therein are
modulo-serial.

2. A ladder file is intact if all the subladders contain in-
tact files.

MARCH 1976

3. An intact subladder file remains intact during the ap-
plication of Rules (3) and/or (4). It may be mutilat-
ed by application of Rules (1) and (2), but intactness
reappears after the operations.

4. A properly loaded ladder is intact, and synchronized
with zero time lag relative to the loading completion
time. All unloading starting at time 7, + k£ with &£ an
integer, will be strictly serial.

The rules in the section on record integrity are derived
from the statements in the Appendix.

References

1. L. A. Belady, “A Study of Replacement Algorithms for a
Virtual-Storage Computer,” IBM Syst. J. 5,78 (1966).

2. E. G. Coffman, Jr. and P. J. Denning, Operating System
Theory, Prentice-Hall, Inc.. Englewood Cliffs, NJ, 1973,
Ch. 7.

3. R. L. Mattson, J. Gecsei, D. R. Slutz, and 1. L. Traiger,
“Evaluation Techniques for Storage Hierarchies.”” /BM Syst.
J. 9,78 (1970).

4. W. F. Beausoleil, D. T. Brown, and B. E. Phelps, “Magnetic
Bubble Memory Organization,” IBM J. Res. Develop. 16.
587 (1972).

5. P. 1. Bonyhard and T. J. Nelson, “Dynamic Data Realloca-
tion in Bubble Memories,” Bell System Tech. J. 52, 307
(1973).

6. C. Tung, T. C. Chen, and H. Chang, “Bubble Ladder for
Information Processing,” IEEE Trans. Magnetics MAG-11
1163 (1975).

7. For a discussion of the pushdown stack see, for example,
H. Stone, Introduction to Computer Organization und Data
Structures, McGraw-Hill Book Co., Inc., New York, 1972,
Sect. 6.3.

Received February 24, 1975

The authors are located at the IBM Research Division
Laboratory, Monterey and Cottle Roads, San Jose, Cal-
ifornia 95193.

131

UNIFORM LADDER STORE

