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Bubble Lattice Motions Due to Modulated Bias Fields

Abstract: We observe that periodic variations of bias field can couple to a close-packed lattice of magnetic bubbles to produce a steady
rotation of the bubble lattice (RBL ). Pulsed fields excite various other many-body phases as well. The physical motions of such bubble
arrays can be described by “lattice melting,” “evaporation,” and “‘rotating galaxies.” The RBL phase is stable over wide ranges of pulse
width and amplitude when the film is thick and the Jattice is confined either by a circular ion-milled groove or by radially symmetric in-
homogeneous fields from the excitation coil itself. Microsecond pulsed fields of —0.05 X 47 M applied to a lattice of five-um bubbles pro-
duce a net displacement of up to 1.5 wm/pulse at the rim of a lattice 23 bubbles across and 250 uwm in diameter. Sinusoidal bias modula-
tion in the range 1 to 30 MHz produces a spectrum of lattice rotational velocities vs frequency having both signs. At frequencies near
the low end of the spectrum both the magnitude and the sign of the rotation are sensitive to drive amplitude. A tentative theory attributes
lattice rotation to nonlinearities involving the bubble-deflection effect. The mechanism is strong enough to account for the observed

magnitude of rotational frequency and can explain its resonant peaks and sign changes.

Introduction

Bubble domains are cylindrical regions of reversed mag-
netization in a thin film of material that is elsewhere
polarized in a direction normal to the film [ 1]. Because of
the ease with which magnetic bubbles can be manipulated
and because of their microscopic size. circuits and ex-
perimental storage devices have been constructed and
are being considered for possible application in memory
devices.

The conventional means for positioning and translat-
ing bubbles employs local spatial variations of the bias
field on a scale of the order of the bubble size [2]. These
local fields are provided by overlaid current-carrying
conductors or by magnetic Permalloy patterns that are
magnetized by an externally applied rotating in-plane
field. Bubbles as small as 800 A in diameter have been ob-
served with the electron microscope, but the potentially
high storage density cannot be utilized because overlay
patterns of similar dimensions have not been fabricated.

In the recently proposed bubble lattice file (BLF){3],
the positions of bubbles are maintained by interactive
forces among bubbles rather than by overlaid elements,
and bubble translation still relies on overlaid current
conductors [4] of width comparable to bubble size. To
maintain an ordered array, however, the information
must be stored using two different types of bubbles rather
than the presence or absence of bubbles as in the con-
ventional bubble memory.

Two methods are being considered for storing informa-
tion in the bubble. One utilizes two different stable
arrangements of magnetization within the bubble wall
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and these can be discriminated by their dynamic charac-
teristics [5]. Another proposal has been suggested
whereby a conveyor layer maintains a periodic bubble
array while data are represented in an adjacent storage
layer by the presence or absence of bubbles coupled to
the conveyor lattice. The two magnetic layers may be
separated by an intervening layer of nonmagnetic garnet
material [6].

This paper discusses a phenomenon we call bubble
automotion whereby the bubble lattice is propelled by a
time-modulated bias field, which varies smoothly over a
long distance, rather than by locally applied field gra-
dients, thereby eliminating the need for fine scale propa-
gation structures.

The fact that unexpected bubble motions and modes of
collective bubble translation can be excited in a bubble
array by modulated bias fields has been noted previously
in the literature [ 1-4, 7, 8). When pulse modulated bias
fields were used to ‘“‘stain” defects in bubble films with
the bubbles themselves [7], it was noted that local
vibrational- and lattice-translational modes could be
excited, depending upon the field-pulse shapes. Sub-
sequently we found that a bubble lattice contained within
the modulation coil could be caused to rotate coherently
both by pulsed bias-fields (of either sign) and by rf
sinusoidal fields [8]. Microwave fields generated locally
with a pair of short-circuited slot lines have also been
reported to produce rotations within a bubble array [9].
Related observations on isolated bubbles constrained to
move parallel to the edge of a conductor have been made.
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Figure 1 Experimental configuration and garnet specimen for
exciting motjons in bubble arrays. (a) Geometrical arrangement
of film, substrate, and bias-field coil. (b) and (¢) Effects of coil
on lattice confinement. The lattice is confined either by a field-
well shaped by the spiral modulation coil itself, asin (b) and (¢),
or by the circular etched groove depicted in Figure 2. The shape
of /,(r} depends on film-to-coil separation, e.g., 0.15 mm in (b)
and 0.38 t0 0.50 mm in (c). Solid curves are for pulsed currents
producing negative or bubble-expanding central fields, and
dashed curves are for positive pulses. The combination of sign
and film-to-coil separation determines the sign and strength of
the radial gradient force.

Boxall [ 10] used pulsed gradients directed perpendicular
to the allowed direction, while Hubbel [ 11] used pulsed-
modulated ac currents in the constraining conductor
itself to propagate the domains. Bias modulation applied
to materials that can support hard bubbles is known to
cause rotations [5, 12] of stripped-out hard bubbles
(called propellers or dumbells) about an axis centered
in their body. When hard bubbles are present as a minor-
ity in a lattice being transiated by bias modulation they
are carried along by the lattice, and when local-mode
vibrations are excited within the bubble lattice, a visual
display shows the hard bubble as being quiescent against
the blurred background of normal bubble motion [13].

The present investigation characterizes the modes of
motion induced in arrays of normal bubbles by both
pulsed and rf-modulated bias fields. Under pulsed field
excitations the motions observed can be classified ac-
cording to specific ranges of the independent parameters,
e.g., pulse duration and amplitude, where they occur.
We name these mode-phases by analogy to chemical
equilibrium phase diagrams, e.g., “liquid melt,” “sta-
tionary lattice,” ‘“‘rotating lattice,” “local mode vibra-
tions,” etc. Transition boundaries delineating these
regions in the phase diagram depend upon steady state
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parameters such as external fields, bubble film properties
and, of course, the shape of the confining boundary po-
tential. Our primary emphasis here is placed on the ro-
tating bubble lattice (RBL) phase. The conventional
single-layer material as well as the magnetostatically
coupled layers of Lin, et al. [6] are investigated. The
compositions are nominally R,Y, GaFe 0, R
being either Eu or Gd, x~ 0.7, and y &~ 1.1.

In our initial approach to a theory, the rotation of the
bubble array is ascribed to nonlinear dynamics connected
with skewed translation of bubbles in a gradient field
(5, 14]. In the case of pulsed-drive conditions, the steady
term in the rotation is due to the inequivalence of the
deflection angle for the two directions of bubble motion
involved. In the case of sinusoidal excitation A,=
h,(x, y) sin oz, where h, is the peak value of field, the
phenomenon is ascribed to a nonlinear coupling of the
radial oscillations and the deflected translations. Both
models neglect possible effects of in-plane, pulse-driven
propagation [15] of unichiral bubbles and pulse-bias-
driven spiral translations of bubbles containing clustered
Bloch lines [16]. We observe separately the radial re-
sponse and translational response, i.e., the RBL. The
radial response is studied by Faraday photomagneto-
optic detection of wall displacements while the transla-
tional response is simultaneously monitored, e.g., as a
spectrum of rotational (RBL) velocities vs rf frequency.

The next section describes the various experimental
situations and procedures. The third section gives results
for the case of a lattice weakly confined by the time-
averaged field-potential well from pulsed currents in a
spiral pancake coil, and the section following describes
detailed measurements on bubble lattices tightly confined
by a circular groove etched into the garnet films. The
fifth section demonstrates the rotating bubble lattice as
well as dual bubble conversions in the composite layer of
Lin, et al. [6], followed by some preliminary theoretical
models for the RBL effect. The last section offers some
additional interpretive discussion.

Experimental arrangement

Our experiments were carried out in a polarizing micro-
scope. The arrangement includes bias-field and in-plane
field coils. Static magnetic fields are read out digitally.
Time dependent fields, produced by means of the flat
spiral pancake coil shown in Fig. 1, have either pulsed,
sinusoidal rf, or pulse-modulated rf form. Typically, the
coil is constructed of #42 copper wire glued to cover
glass 0.15 mm thick, and has one-ohm dc¢ resistance and
dimensions 1.5 mm [.D. and 3.5 mm O.D. Measured with
a time domain reflectometer using 50-ohm termination,
this coil has a fall time of about 2 ns and has an inductance
of about 200 nH. The calibrated central field perpendicu-
lar to the plane of the film is nominally 4 x 10° or
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2 x 10° A/m (50 or 25 Oe), respectively, per ampere
flowing in the coil, depending on whether the specimen is
mounted with film side against the cover glass as in
Fig. 1(a), or turned over to provide separation by the
substrate thickness (about 0.38 to 0.51 mm). The profiles
of field component /,(r) for these two cases are sketched
in Figs. 1(b) and I{c).

Pulsed currents with about 20 ns rise time were sup-
plied to the coil by a pulse generator, or rf currents were
supplied by a variable frequency generator and an rf
amplifier. Pulse modulated rf currents are obtained using
a double balanced mixer gated by a second pulse gen-
erator. The rf amplitudes can be maintained constant
by means of an automatic gain control amplifier and diode
detector.

Radial bubble wall amplitude response was detected
using Faraday photomagneto-optic detection. These
signals were processed by an amplitude response ana-
lyzer described previously [17]. The analyzer uses a
sine-modulated carrier to measure the slope dx/dh, of
the wall displacement induced by the carrier frequency
v, at amplitude h,. When the analyzer is applied to
bubble radial oscillations R(f), the slope response
dR/dh, (proportional to peak response R, within a
linear region) is plotted automatically vs sinusoidal
frequency v, in a swept frequency mode with h, fixed.

Angular velocity of the rotating bubble lattice is deter-
mined and plotted vs rf frequency. Pulse modulation of
the rf is used to slow the RBL rotation so that the time
of one complete revolution can be visually observed. A
dc voltage proportional to frequency is supplied by the
variable frequency generator to the x axis of an xy
recorder. The y axis monitors time sensed by a ramp
generator voltage to allow the rotation period to be re-
corded by means of a “pen-down” signal initiated at a
control box by the observer, the start of the ramp voltage
having been previously initiated at the start of the ro-
tation. The rotation period as a function of rf frequency
has a spectrum that depends upon external parameters,
e.g., bias field, in-plane dc field, size of lattice confine-
ment, etc., as well as on amplitude of the rf drive. Pulsed
field rotations are measured similarly, and the rotation
per pulse found by dividing net rotation A# by the num-
ber of applied pulses monitored by a digital counter
operated in the totalizing mode.

s Lattice confinement

Two successful means of confining the bubble lattice
include (1) the weak field-well of the spiral coil itself
[Figs. 1(b), (c)], and (2) the strong, sharp barrier of a
thin circular groove [ 18] etched or ion milled into the
surface of the epitaxial film as shown in Fig. 2. In regard
to (1) it could be useful to have two coils, one for confine-
ment and one for modulated bias. We have used only a
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Figure 2 Example of lattice confinement by circular etched
groove. A dc current applied to the circular conductor reduces
“friction™ forces of magnetostatic interaction with domains lying
outside the groove.

single coil because the effect on the bubbles of the time
average of unipolar pulsed field trains is suitable for
confinement. In experiments involving etched groove
confinement we also utilize the modulation fields supplied
by the spiral coil. The circular confinement groove is,
of course, smaller in diameter than the pancake coil.
Field wells generated by the spiral coil illustrated in
Figs. 1(b) and 1(c)} are for two sample-to-coil spacings
(exaggerated). The (solid, dashed) lines result from
currents producing (negative, positive) central fields.
In the case of Fig. 1(b) bubbles would be (attracted,
repelled) to the center for currents producing (positive,
negative) central fields. However, the reverse situation
occurs when the increased film-to-coil spacing in Fig.
1(c) is used. In addition to the opposite signs for cur-
rents to produce an attractive central force potential,
other important differences in Figs. 1(b) and I(c)
include (1) the different ranges of confinement as de-
lineated by the rim of the field-well, where 8h,/ar — 0,
and (2) the difference in strength of the confinement
force, which for bubbles is proportional to ahz/ar. A
practical advantage of the negative central field well in
Fig. 1(c) is that in the outlying region (» > #') beyond the
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Figure 3 Chart analogous to chemical equilibrium phase dia-
gram. (a) “Phase diagram” for modes of bubble motions ob-
served and plotted in space of pulse amplitude vs duration for
Eu,,.Y,,,Ga Fe0, bubble film 12.6 wm thick. Confinement and
isolation is achieved by means of weak field-well (solid line) in
Figure 1(c). (b) Streak photograph of rotating bubble lattice
[RBL phase in {a)].

crossover circle defined by 4,(+') = 0, i.e., the region
where h, > 0, bubbles can be erased (i.e., collapsed).
Thus, lattice isolation is accompiished coincidentally
with lattice confinement.
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Observed responses of bubbles to pulsed currents
indicate that a profile like that of Fig. 2(a) occurs when
the coil plane is separated from the film by the thickness
of a 0.15 mm coverglass, as shown in Fig. 1(a). The field
well in Fig. 1(¢) results when the separation is increased
by an additional 0.38 to 0.50 mm, i.e., the substrate
thickness with the sample turned over.

To investigate the RBL phase in detail requires sup-
pressing other phases and preventing the bubble escape
that can occur in the weak field-well confinement. Be-
cause of the resulting discontinuity in the domain wall
energy, a strong, steep boundary potential is provided
by the etched groove with steep sides [ 18], illustrated in
Fig. 2. To avoid bubble interactions with defects at the
imperfect groove, it is also desirable to repel the bubbles
from the edge. This can be done by adjusting the width
of the groove to accommodate the width of a stripe
domain, thus allowing a trapped stripe to repel the
bubbles from the groove. Alternatively, a dc current may
be applied to the conductor loop of Fig. 2 to collapse do-
mains inside the groove and shrink bubbles near the rim
of the rotating lattice, thus reducing magnetic-dipole
interactions with domains outside the lattice.

Pulsed-field modes with weak field-well confinement
Using the weak field wells of Fig. 1 we observed various
modes of bubble motion, which were dependent on pulse
width and amplitude and, to a lesser extent, on the
strength of the uniform bias field and on the repetition
rate. Figure 3(a) characterizes these modes in terms of a
mode-phase diagram (analogous to an equilibrium phase
diagram) with measured boundaries separating the
phases, e.g., “liquid,” ‘‘stationary lattice,” ‘‘rotating
lattice,” and “‘turbulence.” The rotating lattice is streak-
photographed in Fig. 3(b), and names ascribed to the
other motions are appropriately descriptive. For ex-
ample, the “liquid” phase occurs when local mode vibra-
tional translations of the bubbles attain amplitudes
sufficient to destroy the hexagonal lattice. In the “turbu-
lence” phase, large velocity translations of bubbles and
collections of bubbles occur in seemingly random di-
rections, thereby breaking up the lattice characteris-
tically. In an unmarked region near the middle of the RBL
in Fig. 3, phase changes in density and lattice spacing
occurred because some bubbles escaped or collapsed in
the region under the coil.

A result found by investigating a variety of garnet films
is that mode stability and phase boundary reproducibility
are greater in thicker films and films with smaller tilt of
the [ 111] crystal axis from the film normal. The film used
for Fig. 3 is relatively thick (12.6 um compared to the
value of the material length parameter, / = 0.66 um), has
a tilt of 0.3°, and has composition Eu, .Y, ,,Ga, Fe 0,
and 4rM,= 175 X 107 T (175 G).
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The procedure for taking data consists of placing the
sample, usually with film side away from the coil to pro-
vide the field well in Fig. 1(c): adjusting the bias in the
range of bubble stability; and ‘“chopping” stripe domains
using pulsed fields to produce a bubble lattice [ 19]. The
types of collective bubble motion induced by negative
pulse trains are then observed, and the transitions be-
tween ‘‘phases” are noted while adjusting pulse duration
and amplitude and are plotted in the space of independent
parameters as in Fig. 3(a).

Pulse duration, amplitude, and sign are the most sig-
nificant parameters, the latter affecting the sign of the
radial gradient force (proportional to 8k, /dr) as indicated
in Fig. 1. The bias field, although expected to have some
effect on the radial spring constant R/ 94, of the bubble,
has rather slight effect on the phase boundary positions.
Pulse repetition rate affects primarily the velocity of
motion and not very much the positions of the phase
boundaries. However, high repetition rate in combination
with large pulse durations can shift the effective dc¢ bias
field. The phase diagram in Fig. 3(a) was obtained by
using relatively low repetition rates of about 500 pps, and
bias adjustments were not required.

The “turbulence” region in the phase diagram has its
own interesting characteristics. This region is broader in
width for thinner samples, thereby encroaching on the
RBL phase in Fig 3(a). Also, within this turbulence
region other modes have been observed. These modes
include contra-rotating lattice (‘‘eddys”), and some-
times a second coherent RBL phase with sense of ro-
tation opposite to that observed in the rotating bubble
lattice area in Fig. 3(a). The types of mode observed
within the turbulence region also depend very sensitively
on pulse amplitude.

The RBL effect has been observed in most of many
films studied which, like the sample in Figs. 2 and 3, have
low damping, « being approximately 0.1. Extra thin
samples (h/l = 2) did not exhibit this RBL phase.
Gradient pulse propagation measurements on bubbles
exhibiting the RBL effect in Fig. 3 show that these
bubbles have small winding numbers [11, 26]

(§ = 0, = 1), high mobility (& = 800 cm/sec-Oe), and
high saturation velocity (= 800 c¢m/s} occurring when
the drive force VH, = daH ,/ dr equals 23 to 30 A/m (3 to
4 Qe). It has not yet been determined which ranges of
these quantities are necessary and/or sufficient for the
film to exhibit the RBL phase. We are certain, however,
that in lattices of very hard bubbles the RBL response is
absent. Although it is known that a striped-out hard bub-
ble can respond to puised bias by rotating around an axis
through its body [5], we have observed that lateral trans-
lation is generally absent.

To examine effects of changing the shape of the field
well, the field well in Fig. 1(b) is obtained by turning
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the sample over so that the film plane is placed adjacent
to the coil. With positive field pulses now applied, new
modes that might be called ‘“‘rotating galaxies” and
“evaporation’ are observed. The field well, now having a
smaller rim radius, contains fewer bubbles, and, having
weaker central forces because a4,/ ar is smaller, allows
larger equilibrium bubble-to-bubble spacings. Con-
sequently, long-range order within the bubble array is
relaxed and is disturbed by coercive forces. Because of
the visual appearance, the result can be termed a
“galaxy.” Nonetheless, the galaxy can be rotated. The
concept of phase boundary is no longer applicable in this
configuration because increased pulse heights greatly
alter the number of bubbles by collapse. Borrowing the
term ‘“‘evaporation’” seems appropriate, since bubble
collapse occurs at the extremities of the galaxy near the
range of pulse heights sufficient to rotate the galaxy and
is accompanied by little apparent “melting”.

Rotating lattice confined by circular etched groove
To make a detailed study of the RBL phase we have
suppressed other phases and prevented bubble escape
using the circular etched groove. The groove configura-
tion provides confinement with a sharp potential dis-
continuity. In this study we (1) measured the angular
rotation velocity in response to pulsed fields, (2) ob-
tained its velocity spectrum in response to rf sinusoidal
excitation, (3) investigated the effect on the results in
(2) of applying an in-plane dc field, and (4) determined
the bubble radial breathing mode response averaged over
the lattice both when the lattice rotates freely and when
it is “clamped” between a pair of long parallel grooves.
The sample with the circular confinement groove in
Fig. 2 has composition Eu, Y, ,Ga, ,Fe, ,0,,, a thickness
of 3.6 um, a 47wM, value of 1.75 X 10 T(177 G), and a
parameter ! of 0.56 um. The response to pulsed bias
given in Fig. 4(a) is a plot of angular rotation rate versus
pulse amplitude. Data were taken up to the point at which
lattice distortions, e.g., shearing, take place. The bubble
size and lattice spacing are nominally 7 um and 11 pm,
respectively. The bias field (about 3.26 X 10° A/m, or
41 Qe), and pulse width (about 0.46 us) where chosen
optimally, i.e., for maximum rotation rate and minimum
hesitation and lattice distortion. Interaction with outlying
domains was eliminated by using 100 mA dc current in
the concentric conductor strip line shown in Fig. 2 so as
to collapse domains lying in the groove and shrink the
circular layer of peripheral bubbles that accommodates
the angular boundary of the hexagonal lattice to the
circular shape of the confinement groove. The maximum
bubble velocity, 1.5 wm per pulse [right-hand ordinates
in Fig. 4(a)], observed at a rim having a radius of
125 pum, appeared limited by lattice shearing. Although
this distortion might have been avoided by a more
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Figure 4 Pulse and sinusoidally driven response of lattice con-
fined by circular groove 250 um in diameter, shown in Figure 2.
(a) Angular velocity vs pulse amplitude obtained using pulse
width of 0.46 us. Right-hand scale gives velocity per pulse for
bubbles at the rim of the lattice. Circular conductor with 100 mA
dc current reduce magnetoedynamic “friction” (see text). Bias
field applied is 1.43 X 10* A/m. (b) Sinusoidally driven lattice
rotational velocity vs drive frequency with fixed rf peak drive
h,=1.03 X 10° A /m and in-plane field of zero (-}, 239 (A), and
478 (+) A/m, respectively. Applied bias is 5.71 x 10" A/m.
Bubble film of (Y, Eu), (Fe, Ga),0, has 47M = 177 X
1077, # = 0.56 wm, thickness, 3.6 pm, and field where isolated
bubble collapse, 6.17 x 10* A/m.
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suitable choice of field-well, it is possible that the
threshold for nonlinear velocity response had been
exceeded.

Bursts of pulses 715 A/m X 0.46 us with fixed sepa-
ration produced rotational rates that depended linearly
on the pulse rate up to the point that separation ap-
proached the pulse duration. At a pulse separation
smaller than about 1.0 to 1.5 us the motion became
erratic and stopped. The corresponding threshold
velocity for the outlying bubbles is given by the average
1.5 wm/pulse + 1.5 wus/pulse, or about 100 cm/s,
deduced by assuming that outlying bubbles maintain the
average velocity per pulse in the repeated single pulse
data of Fig. 4(a). The corresponding rotational velocity
at this threshold is about 1300 revolutions per second.

The RBL spectrum obtained for this sample in re-
sponse to sinusoidal drive is given in Fig. 4(b) and was
produced with the pancake coil in Fig. 1 in a fixed dc bias
field of 5.73 x 10° A/m. The amplitude of rf field is
1.08 X 10° A /m peak, measured at the center of the pan-
cake coil. The 250 um circle diameter is small compared
with the pancake coil I.D. of about 1.5 mm. The ordinates
in Fig. 4(b) are adjusted for a 10 percent duty cycle of
pulse-modulated rf used to slow the RBL rate to a
measurable value. In the absence of in-plane dc field,
four sharp peaks in lattice rotation rate occur: two
counterclockwise (ccw) rotations at 4.3 MHz and 6.2
MHz and two clockwise (¢cw) rotations at 16.8 MHz and
23.5 MHz. The maximum rotation rate, 15 rev/s at 4.3
MHz, corresponds to 1.2 cm/s bubble velocity at the
rim. This magnitude is small in comparison with isolated
bubble velocities up to 1600 cm/s observed by pulsed
gradient propagation in this film and is also small com-
pared with 1.5 um/ pulse observed in Fig. 4(b).

It is known that in-plane fields play a significant role
in the behavior of domain wall structure and dynamic
response [19-22]. Applying small, constant in-plane
fields (H,,=3 and 477 A/m in Fig. 4(b)) suppresses the
rotation peaks driven at 4.3, 6.2, and 16.8 MHz and en-
hances and broadens the peak at 23.5 MHz. Beyond an
H;, value of about 800 A/m the rotation stops or be-
comes incoherent,

A 3/4 mm diameter groove was milled into another
garnet film 11.5um thick, having composition Gd, ;Yb, ,
Y,.Ga,FeO,,, and values of [ = 0.62 um, 47M = 1.3
x 10° T, and Q =4. The RBL spectrum given in Fig. 5(a)
was obtained using h, = 1.59 X 10° A/m and H,, = 0.
The rim bubbles attained a velocity of at least 25 rev/s.
Application of 560 A/m of in-plane field increased this
to about 30 cm/s. Vertical arrows indicate other shifts
induced in the spectrum by this in-plane field. For exam-
ple. we observed enhancement and sharpening of the
peaks at frequencies near 16 MHz and beyond 20 MHz.
Below about 10 MHz the RBL structure was unstable,
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normal. Bias field applied is 5.49 X 10° A/m. The lattice contains bubbles about 9 uwm in diameter, with 30 wm spacing.

i.e., the frequency position and sign of the rotation peaks
shifted nonmonotonically and sometimes discontinuously
with both H,, and drive #,,.

Wall radial response In absence of in-plane fields, if all
bubbles in an infinite lattice consisted of one kind of wall
structure, their dynamic radial wall response to a uniform
modulated bias would have a common phase and exhibit
cooperatively a single resonance [23, 24] (or relaxa-
tion) whose position in frequency would depend upon
the radial restoring force, therefore on dR/9H ,, and on
the mass of the wall (or the damping). In all materials
studied the damping is small and nonlinear wall response
can be expected [ 17, 19-22]. The Déring mass frequency
of about 1 to 40 MHz is well below the expected relaxa-
tion frequency because of damping. For multiple types of
bubble walls [5, 12, 14, 23, 26], e.g., bubbles with and
without vertical Bloch lines, one would expect spectra
with multiple peaks reflecting these various wall struc-
tures. Other peaks allowable because of finite boundaries
may occur as well,

Measurements of mean dynamic radial amplitude re-
sponse dR/dh, of bubbles in a free rotating lattice are
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presented in Fig. 5(b), which also shows the response
when the lattice is ‘‘clamped’ between a pair of parallel
grooves. The physical meaning of dr/dh, measurements
can be understood as in previous work on straight wall
response [17]. In response to a modulated rf field

h, (1) = hy[l + m sin o t] sin 27w, (1)
the radial wall response may be written
R{t) =R sin Qavd + ¢)

where, for small modulation (m << 1) the envelope is
given by

aR

R=R,+ m mh, sin 27yt
18R Wi 2,
+ 3 (mh, sin 27y )" +- - -, (2)
P

The displacement amplitude R, corresponds to the peak
field h,, dr/dh, is the slope of the radial wall displace-
ment vs peak drive h, evaluated at the frequency v and
the peak /i, and v, is the low frequency modulation, e.g.,
| kHz. The measuring system processes the PMT sig-

115

BUBBLE LATTICE MOTIONS




116

nals (proportional to Faraday contrast and wall displace-
ment) and synchronously detects the second termin (1),
producing a dc signal proportional to dR / dh,. Therefore,
while a frequency spectrum observed to be independent
of h, would indicate linear oscillator behavior, this sys-
tem monitors nonlinear behavior as well.

The swept frequency data in Fig. 5(b) were obtained
using 15 percent modulation for m and several fixed
values of #,. The RBL effects observed simultaneously
with dR / dh,, are indicated by solid bars above and below
the axes to show at which frequencies the positive and
negative rotations occur. The multiple-peaked structure
as a function of frequency suggests the presence of more
than one type of bubble wall. Nonlinearities in radial re-
sponse, i.e., deviations from a linear relationship of
R vs hy, are indicated by variations in sign and magnitude
of dR /dh, with changes in drive peak h,. According to
Fig. 5(b) the average bubble in the lattice exhibits (1)
decreased slope dR/dh, with increased drive h,, and
(2) negative slopes (dR/dH, < 0) occurring at high
frequencies, i.e., about 20 MHz when £, is more than
715 A/m and higher than 30 MHz when f, is greater
than about 950 A/m.

Previous measurements of high-frequency-driven par-
allel wall displacements have shown that even for small
displacements the peak envelope response x, varies non-
linearly with drive #,, and depends on the in-plane
field H,,. The range of linear dependency on 4, increases
as frequency increases. At higher drive fields negative
dx/dh, occurs, showing that x vs k), is a peaked response.
Interpretation in terms of a threshold velocity V, deter-
mined by using V= 27v  was suggested by the observed
decrease in threshold x, of departure from linearity with
increase in frequency v,,. Velocity thresholds, observed
in garnet films with low damping, are similar to predic-
tions [5] for nucleation and annihilation of horizontal
Bloch lines, ie., an energy dissipation mechanism ac-
companied by loss in momentum. Applying an in-plane
field raises this threshold velocity and decreases the wall
mass [19-21].

Wall motion response in bubbles, Fig. 5(b). is even
more complex than in parallel stripe domains, presuma-
bly because of multiple wall states in bubbles. [ndividual
bubble wall states can be characterized by experiments
measuring propagation deflections [S5, 14] in a pulsed
gradient field. We have propagated bubbles taken individ-
ually from the rotating lattice and find the types are lim-
ited usually to winding numbers § = +1, as for unichiral
bubbles, and § =0, as when two Bloch lines of like sense
are present. An in-plane field, e.g., a field due to tilt of the
crystal (111) axis from the film normal, or just an applied
in-plane field, may further subdivide these states and
perhaps account for the observed multiplicity of response
to modulated bias.
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The preliminary results in Fig. 5(b) suggest the pres-
ence of perhaps five or six peaks in the dR / dh, data and
six peaks of lattice rotation appear in the RBL spectra
of Fig. 5(a). The sample tilt is 0.6° and we may estimate
an internal in-plane field of about 3.18 X 10° A/m for
this sample.

Where the difference between radial amplitude re-
sponse for a clamped and for a freely rotating lattice is
large, i.e., near 25 to 30 MHz in Fig. 5(b), the RBL rota-
tion velocity is also large. Moreover, the radial amplitude
response in the free lattice is strongly nonlinear, e.g.,
dR /dh, is even negative at drives beyond h,=715 A/m
and frequencies beyond the point where v, is about 28
MHz. These results suggest that, for these higher fre-
quencies at least, nonlinear coupling between the radial
and translation degrees of freedom of bubbles is respon-
sible for a large share of the force driving the RBL
motion.

Effects of pulsed bias on bubbles in magnetostatic-
ally coupled films

The bubble lattice file thus far encodes information with
different wall states for bubbles, i.e., different numbers of
Bloch lines [3]. An alternative scheme involves bistable,
dual-size bubbles that can coexist in a common bias field
but possess different sizes. Bistable bubbles have indeed
been observed in films with gradients in composition
[27, 28], in bilayer films [28, 29], in trilayer films with a
nonmagnetic middle layer [6], and in multiple-layered
films with compensation wall boundaries [30]. Since the
energy barrier separating the two states of a dual-sized
bubble includes wall surface energy rather than Bloch-
line or Bloch-point energy, information stored in this
way may be more stable than in the case of wall-state
storage. The requirement of a uniform lattice periodicity
for practical devices is optimized in one of these lay-
ered structures. In most cases the size and/or height
difference in the two types of bubble causes difference in
bubble-to-bubble spacings. The exception occurs in one
of the trilayered films of Lin, etal. [6] shown in Fig. 6(a)
and 6 (b), the so called “intermediate coupling case.” The
thick bottom layer in one of their ““‘composite ¢”” samples
[6] supports a lattice of large bubbles, and the binary in-
formation storage occurs according to the presence or
absence of a small bubble in the top layer magnetostati-
cally coupled to the bottom layer bubbles. The lattice
spacing is largely unaffected by the absence or presence
of bubbles in the top layer. Uniform lattice spacing
is demonstrated in the Faraday-effect photograph, Fig.
6(a), exhibiting a random distribution of such bistable
states within an equilibrium lattice configuration. The
analyzer and polarizer have been set at an offset angle
suitable to produce black and white bubbles against a
gray background.
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To write information into such a lattice, after first
nucleating the lattice of large bubbles in the bottom layer,
requires controllable nucleation of small bubbles in the
top layer at the positions where ““ones” instead of “‘zeros”
are to be stored. We have discovered that this kind of
switching of an entire lattice is produced by means of
pulsed bias fields of negative sign with respect to the uni-
form dc bias field having suitable width and amplitude.
To switch a single bubble in the presence of others, how-
ever, has not been attempted. Random switching, as in
Fig. 6(a), can be produced at the switching threshold
[Fig. 6(c)]. The locus of points (pulse amplitude versus
width) specifying the threshold where the transition
(uncoupled bubble — coupled bubble) occurs is pre-
sented in Fig. 6(c), in the curve marked “1 — 3.”
Similarly, positive pulsed fields cause conversions 3 — 1
at amplitudes and widths beyond a somewhat different
threshold curve. The uniform bias was held fixed at
6.127 X 10° A/m, which is convenient for maintaining a
stable, equilibrium bubble lattice in the bottom layer.

Bubble lattice automotion carrying these dual bubble
states can also take place in this composite film; it occurs
within the rather broad region of negative pulsed fields
indicated in Fig. 6(c).

It is remarkable that automotion and bistable-bubble
state transitions can occur at different pulsed bias condi-
tions, because this implies that in this memory scheme
the three functions of read-in, read-out, and lattice trans-
lations can be performed independently of each other. In
particular, pulses producing lattice automotion will not
disturb the stored information if chosen with suitable
amplitude and width as indicated in Fig. 6(c).

Mechanism of lattice rotation
The problem of explaining the rotation of a bubble lattice
may be posed thus: Inhomogeneity of the field compo-
nent (normal to the film) produced by the drive coil im-
plies the presence of a gradient VH , necessary to displace
bubbles. VH, is directed radially from the axis of rota-
tional symmetry common to the coil, the center of the
bubble array. and its confining structure if such is present.
There are two parts to the problem. First, if VA has a
radial direction, how can it produce a velocity in the
orthogonal direction corresponding to rotation of the
lattice? This question is naturally answered in terms of
the well-known gyrotropic force F, which causes the
bubble-deflection effect [5, 31]. It is given by

F=4aMy™' S 2%V, (3)

where Z is a unit vector normal to the film plane and V is
the instantaneous velocity of the domain. Here § is the
state, or winding. number of the domain wall. It is given
by the number of complete rotations executed by the
in-plane component of the magnetic vector within the
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Figure 6 Lattice automation and state switching in composite
magnetostatically coupled film of Lin, Grundy, and Giess {6].
(a) Faraday contrast photograph of bistable bubbles, (b) desig-
nated states of coupled and uncoupled bubbles, (¢) thresholds
for conversions among bubble states in (b) and phase region
(gray area) for bubble lattice automotion. Conversion by (col-
lapse, nucleation) of top bubble at site of permanent bottom
bubble are induced at solid lines (3 — 1, 1 — 3) or beyond.
Dashed-line threshold (3 — 1 + 2) indicates where top bubble
is decoupled from bottom bubble.

domain wall in one circuit of the domain. It is also re-
lated to the net vertical-Bloch-line number 1 by

S=1+ (n/2). {(4)

In case Bloch lines of more than one sense are present,
n(=n_—n_) is the net of n, positive and n_ negative lines
present in the domain wall. The winding number § = 1,
and corresponding defiecting force, occur in the absence
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Figure 7 Asymmetric drive condition: (a) Applied asym-
metric radial field gradient vs time ¢ for pulsed drive. (b) Net
radial force on bubble vs ¢. (c) Lattice rotation mechanism for
asymmetric drive shown in (a). Bubble positions at equal time
intervals are shown. The forward and reverse deflection angles
differ because the corresponding net forces differ, providing a
net displacement X, per cycle. (d) Lattice-rotation mechanism
for symmetric sinusoidal drive. The bubble responds to simulta-
neous uniform gradient and sinusoidal z fields. The effect of the
gyrotropic force is greater when the bubble diameter is smaller,
providing a net X -displacement per cycle. Both radial and trans-
lational amplitudes are greatly exaggerated.

of Bloch lines because of the natural twist of the wall
moment, which is tangent to the wall surface in a simple
Bloch wall [16, 32].

The pulsed and alternating field strengths used in the
present experiments are known from previous experi-
ments to be sufficient to cause changes in S [5]. Since
the bubbie energy increases with n, + n_, it is reasonable
that the average value of n is zero. Therefore, the average
S is 1 and we assume this value throughout.

The second part of the problem is this: Granted that
transient or alternating lattice rotations arise from the
deflection effect, how does a steady rotation arise? This
can come about only from some nonlinearity in the sys-
tem and must be discussed separately for the two cases
of asymmetric and symmetric drive considered below.
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e Asvmmetric drive

Here we consider that the drive coil carries a train of
identical current pulses of one sign. producing a similar
radial gradient dH,/dp as shown in Fig. 7(a). Since a
steady component of radial motion is not possible, the
net force F, acting radially with respect to the coil axis,
including the effect of interbubble interactions and re-
straining barriers, must have both signs. as indicated in
Fig. 7(b). Indeed, under simple assumptions the time
average of F, would vanish.

If the pulse width is not equal to one-half of the cycle
time, then a steady component of velocity Ve orthogonal
to £ arises from the velocity dependence of the bubble-
deflection angles & arising from coercivity and other non-
linear effects. For velocities below the critical instability
value v, =24 A/hK”2, & is given by the expression

(for §=1) [5]:
cot 8= (aR/2A) + 2yH R/7V). (5)

This expression varies from 8 =0 at V' — 0 to a maximum
value

8 e = arctan 2A/aR {(6)

at large V. Here R is the bubble radius, A= V.4 /K is the
wall-thickness parameter and H,. is the coercivity. Al-
though the V dependence of 8 has not been tested experi-
mentally for such a small value of §, the corresponding
expression for large S is well established in hard bubbles
(large X) for velocities below that required for Bloch-
line annihilation [33]. However Eq. (5) cannot be relied
on at drives exceeding that required to reach V. In any
case, it is clear that 8 does depend significantly on drive
and that Eq. (6) represents its maximum value, This fact
combines with the asymmetry in F, to provide a net dis-
placement per pulse orthogonal to F R because of the dif-
ference in & values for the two signs of F . as indicated
schematically in Fig. 7(c).

The sign of the gyrotropic force is such that in a deflec-
tion experiment the sign of S H,;,, - F X V is always posi-
tive. If the pulse duration in our lattice rotation experi-
ment is less than the time between pulses, then the
average of IFpl is greater during the pulse than otherwise.
Equation (5) shows that |3] is then also greater during
the pulse, if V < V holds. Under this restriction, the
condition F, > 0 would imply a right-hand screw relation
of lattice rotation to Hy,;,,. Actually /efr-hand lattice ro-
tation is observed in the weak-field-well experiment with
the negative pulsed field configuration of Fig. 1(c), at the
threshold for uniform rotation. This result is consistent
with our model, for dh,/dp > 0 implies F <0, although
it must be remembered that the superimposed bubble-
expanding tendency of 4, < 0 favors the opposite di-
rection.
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We estimate the maximum possible bubble displace-
ment D per pulse from the inequality

D < V,T Sy (7)

where T is the pulse width, and where we have assumed
V, <V, Taking ¥, =10’ cm/s, = 0.03, R/V = 100,
and 7 = 0.5 us. we find D < 3 um/pulse consistent with
the experimental maximum of about 2 um/pulse ob-
served.

o Symmetric drive
The foregoing model cannot easily explain those obser-
vations of lattice rotation in which sinusoidal ac drive is
used. We consider in this case the component of dc lattice
rotation arising from the bilinear mixing of radial bubble
oscillation and the oscillatory component of the gyro-
tropic force due to bubble translation.

With this object in mind we incorporate the expression
(3) into a dynamical equation

—2aM R*VH = 2aM R(mV + u'V)
—47SMy 2 XV (8)

for translational velocity V. Here VH, is the two-com-
ponent gradient of the net normal-field component,
with respect to displacement in the film plane, 2Mm is
the effective mass per unit wall surface, and w = Ay/«
is the conventional mobility. The dynamical equation for
R will now be considered.

The equation (8) balances the total magnetostatic
force, appearing on the left, with the dynamic reaction
appearing on the right. The latter consists of three terms:
the reaction due to effective mass, the linear drag, and
the gyrotropic deflection force, in the order shown. This
equation is considered to apply to any one of the bubbles
in an interacting lattice. Thus H,(x, y, z, 1) is considered
to include the instantaneous stray field due to the pres-
ence of ali the other bubbles. In this consideration, co-
ercivity is neglected because it does not play an essential
role. However, it is essential to consider oscillations of
the radius R because of their nonlinear coupling to the
translation V. Thus we write each time dependent vari-
able as a sum of constant and sinusoidal terms

F=VH,=G,+ReGpe" (9)
V=X=V,+ReioX_e", and (10)
R=R,+ Re R, (11)

where G, X, and R are complex amplitudes of sinus-
oidal oscillation, and Re means ‘‘real part of.”

In order to minimize the algebra leading to an ex-
pression for V, the constant term in V(z), it is helpful to
factor R from Eq. (8). Removing other common factors
as well and neglecting H . one finds the expression
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RV H,=-mV—u'V+QS/yR)ZX V. (12)

We approximate R™' with R, (1 — R;‘ReR(Uc)i“”) and
substitute this and Egs. (9), (10),and (11) in Eq. (12).
Balancing the time-independent terms in the expanded
equation, one finds the relation

R,G,+3(ReR *G,) — (Sw/yR,) Im R_* 2 X X

w

=—u 'V, + 25/yR)2 XV (13)

0’

where Im means “‘imaginary part of.” We have arranged
the terms here in such a way that the total effective zero-
frequency drive stands on the left of the equal sign and
the steady velocity V, on the right.

Now consider the geometry of a rotating lattice. De-
note vector components which are radial and aximuthal
with respect to the rotating lattice center with the sub-
scripts p and ¢, respectively. Obviously we have
Vo = 0,G6,,=0, and =V, =V, = pLl,
where Q is the circular rotational frequency. Also, by
symmetry the contribution to G, from the apptlied drive
field must vanish, so that only a static term G, due to
interbubble interactions remains. In component form
Eq. (13) reads:

RG, +4(ReR*G ) + (Sw/y Ry) Im R X

wd
=—(28/YR)Vy: (14)
pQ = (Sou/yR;) Im REX, — puR, G, . (15)

Equation (14) expresses the fact that, in the steady state,
the radial position of a bubble is established by a balance
of certain effective radial forces including those caused
by mixing of radial and translational oscillations. Equa-
tion (15) attributes the rotation to an effective drive
force originating from the nonlinear coupling of the
assumed bubble-radius oscillation R, to the lattice-radial
component of translational oscillation X, through the
gyrotropic effect.

The term G, (p) obviously cannot by itself accom-
plish the rotation, by conservation of energy. To be ex-
plicit, consider the domains to be distributed continuous-
ly and uniformly. Then the torque on the bubble array.
which must vanish, is proportional to f‘fszdﬂmdp, where
% is the radius of the lattice. Applying this condition to
Eq. (15) we have

R
Q= (4Swp/vRS) f p’ Im R¥X, dp. (16)
0

The mechanism represented by Eq. (16) is explained
with the help of Fig. 7(d). Suppose there is a 90° phase
lag between X and R so that R is 2 maximum or mini-
mum whenever X is at a node. Because the drag on the
domain is proportional to R, the gyrotropic deflection
force is more effective when R is small and Xp is positive
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than when R is large and X is negative. Thus dX,/dX,
is a bit greater when X' R is positive and a net increase in
X, occurs in every cycle.

The problem remains to calculate R, and X, for sub-
stitution into Eq. (16). These quantities may be written
as linear combinations,

X,=Re Y Au, R=R,+Re > B,u, (17)
k k
of the normal modes of bubble-lattice vibration «,. Here

A, and B, are real constants. The normal modes u, satis-
fy equations of motion having the usual form:

i, + B, i, + o u, = kaeiw', (18)

where B, is a damping coefficient, w, is the circular reso-
nant frequency, and F,  the amplitude of the effective
driving force. The F, may be assumed to be real because
they are in phase with the drive current. The steady state
solution is

u, = F, "/ (0} — o +iog,). (19)
The effective mean bubble drive, appearing in the inte-

grand of Eq. (16) and which gives rise to the lattice ro-
tation, is proportional to

olm R}X, =

" (4,B,— BA)F, F, B0 — o)
(o — ") + "B (] — ) + B

(20)

From the form of this result we infer that the rotational
drive has a biresonant character. Since terms in Eq. (20)
with k = [ vanish, only pairs of distinct normal modes
contribute to the rotation. This circumstance arises from
the fact that the in-phase components of R, and X, con-
tribute nothing to the effect. A phase difference other
than 0 or 180° occurs only if k # [, that is, if two distinct
modes mix.

The spectrum (20) consists of a series of resonant
peaks of either sign which are skewed, but only weakly
so if 8, << w,. Thus it is qualitatively consistent with the
observations shown in Fig. 4(b). In the case of an ideal
lattice consisting of identical bubbles, only modes of
small wave vector should be excited because the ac drive
field varies slowly over the lattice distance. Thus one
expects large rotations at small @, where the “acoustic”
modes lie, and near one large frequency where the
“optic”” mode of vanishing wave vector lies [34].

The fact that the observed spectrum has more struc-
ture than one could interpret in this way suggests that the
lattice is effectively disordered by the presence of a mix-
ture of different bubble states having varying positions
and numbers of vertical or horizontal Bloch lines, and
therefore varying values of S. If this is the case, then even
a slow spatial variation of drive field excites modes from
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all parts of the spectrum. Our observation of many peaks
in rotation and absorption is evidence of considerable
disorder in the lattice.

Although we cannot estimate directly the frequency v
of rotation, an upper bound is established by the known
experimental fact that wall-velocity is limited to a value
of the order of 10° cm/sec for V, in uniaxial garnet films
[17, 35]. We may therefore substitute |or, | = Vv, and
|wa¢] =V, into Eq. (16) to find

0 = 4SuV:/3yRoo. (21)

Wetake S=1, u= 10’ cmsec™ Oe™',y=1.5x 10 sec”
Oe ™', R,=2 um, w =2 X 10’ radians/s. Thus we find
the bubble velocity at the rim limited by = 100 cm/s.
In our ac experiment, % = 107 c¢m so that rotation fre-
quency should be bound by Q/27 = 2000 rev/s. We
interpret the fact that the observed rotations do not ex-
ceed 30 rev/s as indicating that the oscillating radial and
translational velocities of bubbles do not generally at-
tain V, simultaneously.

With respect to our interpretation, one may legiti-
mately doubt whether the ratio six between the inner
diameter of the drive coil and the diameter of the confin-
ing circle is small enough for the requisite drive gradient
dH ,/dp to be significant. On the other hand it must be
remembered that the breathing oscillations of bubbles in
a finite lattice will themselves give rise to inhomogeneous
magnetic dipole fields depending on p, and effectively
providing a gradient drive. Nonetheless, our models of
rotation under asymmetric and symmetric excitations are
tentative, pending more conclusive study.

Discussion

Most of the bubble motions investigated in the past have
required application of a field gradient with a component
parallel to the direction of motion. In devices, moreover,
this is the main component and has been required to have
a wavelength not greater than the bubble diameter or dis-
tance between neighboring bubbles. This paper investi-
gates collective bubble motions that occur in low-damp-
ing garnet films by excitation involving homogeneous or
nearly homogeneous fields, e.g., bias-field modulations.
Their gradients, if significant, are in any case orthogonal
to the motion studied. These various motions belong to
a new phenomenon we call bubble automotion because
the self-propulsion results from coupling of the principal
translational degree of freedom of the bubble either with
the internal degrees or with the orthogonal component of
translation.

In this study we have focused attention on the coherent
bubble lattice rotation mode, not only because it is co-
herent and therefore easiest to characterize, but also be-
cause it may provide a means of translating the bubble
lattice within the store area of bubble lattice devices.
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Further studies are now in progress on automotion ef-
fects in dilute arrays of bubbles and in isolated bubbles.

The mode of coherent lattice translation, rectilinear or
rotational, is determined by the geometry of the lattice
isolation structure, e.g., a small (ten percent) edge or step
in film thickness that does not impose constraints on the
resolution of the fabrication process. In applying the ef-
fect to the bubble lattice file, the purpose of the isolation
structure is to separate the active storage lattice from
surrounding domains so as to provide for “frictionless”
lattice translation. Lattice rotation by automotion de-
scribed in the fourth section has also been observed
within annular as well as circular confinements. Rectilin-
ear translation has similarly been observed and recorded
along paraliel confinements. Again, the nature of the re-
sponse is sensitive to the bias modulation conditions.
Nevertheless, it is evident that both speed and direc-
tionality of lattice automotion are controllable, e.g., by
means similar to those demonstrated in the third and
fourth sections of this paper.

What remains to be investigated in the case of lattices
in a single layer film and containing bubbles with different
wall states is the question of whether the drive modula-
tion conditions necessary for lattice automotion will
disturb the wall states. In the case of the (bistable) dual
size bubble states as in the composite layer structure of
Lin, et al., we have demonstrated that the storage bubble
is not thereby collapsed or modulated. However, we have
thus far obtained only preliminary information about the
characteristics of lattice rotation in this layered film, e.g.,
Fig. 6(c), and have not yet demonstrated the high speed
rotation that was produced in a single layer film, i.e.,
Fig. 4(a), using a suitable confinement structure.
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