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Abstract: A technique is presented for constructing a mathematical model of an Earth resources remote sensor. The technique com-
bines established models of electronic and optical components with formulated models of scan and vibration effects, and it includes a
model of the radiation effects of the Earth’s atmosphere. The resulting composite model is useful for predicting in-flight sensor perfor-
mance, and a descriptive set of performance parameters is derived in terms of the model. A method is outlined for validating the model
for each sensor of interest. The validation for one airborne infrared scanning system is accomplished in part by a satisfactory comparison

of predicted response with laboratory data for that sensor.

Introduction

Multispectral scanning systems are used to gather re-
motely sensed radiometric data for a wide variety of ap-
plications, e.g., pollution monitoring, geological and urban
surveying, and crop classification [ 1-3]. The measure of
performance of such a system can be expressed in terms
of its image-resolving capability and its radiometric ac-
curacy. The former measures the system’s capability
to discern a scene from imposed noise, and the latter
expresses the accuracy to which the system measures
the radiant power from the scene. These performance
parameters are critical in assessing the usefulness of a
particular system for a particular remote sensing program,
and they are instrumental in determining the design re-
quirements of an advanced sensor system.

The desired performance parameters are generally
not measured directly, and they must be inferred by
mathematical analysis from more direct laboratory mea-
surements and manufacturer’s specifications. Such a per-
formance evaluation of existing systems or the develop-
ment of design requirements for an advanced system can
be carried out in a systematic way by constructing a
mathematical mode! of the sensor system, component
by component, where each component model is param-
etrized by performance values obtainable from labora-
tory measurements or design specifications. The purpose
of this paper is to develop a linear systems approach to
mathematically model a typical remote sensor configura-
tion and to predict system performance characteristics.
This approach, which treats the remote sensor as a com-
munication system, has been used extensively to model
electronic systems, as described by Papoulis [4]. The
theory has been extended to optical imaging systems by
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Goodman [5]. Thus, this paper applies the combined
optical and electronic systems theories to provide an
end-to-end model of the sensor system. In addition to
the sensor component characteristics, atmospheric ef-
fects are considered.

The discussion is opened with a description of the
sensor configuration to be modeled. Next, the mathe-
matical models of the atmosphere and individual system
components are developed, and these models are com-
bined to provide the total system model. The components
are assumed to be linear, invariant systems, and their
models are expressed in terms of transfer functions. The
prediction of overall system capability is derived in terms
of the transfer functions and system noise characteristics.
Finally, the procedure for validating the model with test
data is outlined and applied to available laboratory tests
for an infrared sensor used in the NASA Earth resources
aircraft program.

Typical sensor system

The sensor system considered measures, in a number
of spectral bands, the solar radiation reflected from or
the thermal radiation emitted by the ground. The general
spectral characteristics of the received radiation are il-
lustrated in Fig. 1 for an orbital sensor viewing 300-K
ground with 20 percent reflectivity [6]. These character-
istics are representative of airborne sensors as well.
Typically, a number of narrow spectral bands are utilized
in the 0.4 um to 2 um wavelength region (from ultra-
violet, through visible, to near infrared, respectively),
and one or two bands are defined for the thermal infrared
region from 8 um to 14 um, as shown in Fig. 1.
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Figure 1 Representative spectrum of ground radiance at sensor
incidence for a ground temperature of 300 K and reflectance of
20 percent [6].

The remote sensing system is illustrated by the block
diagram in Fig. 2. Light from the ground scene is at-
tenuated and supplemented by the atmosphere before
entering the sensor system. A rotating mirror scans the
ground perpendicular to the line of flight. The light is
reflected by the rotating mirror through the optics and
focused on the detector where it is converted to an elec-
trical signal. As the mirror rotates past the calibration
sources, their radiation replaces the ground radiation.
The detector output is processed electronically and re-
corded for later image reconstruction. Each of the system
elements is described briefly in the following paragraphs.

* Ground scene

The ground scene is characterized by the spatial variation
of the reflectance, the temperature, or the emissivity; and
the departing sensor-bound radiation is dependent upon
those quantities. It is the ultimate purpose of remote
sensing to reconstruct the ground scene characteristics,
and a measure of the system quality is the degree to which
the reconstructed image matches the ground scene.
Typical scenes of interest include rectangular fields in an
agricultural area, thermal variations in a river or bay, and
emissivity variations in the ocean.

e Atmosphere

The radiant energy received by the optical system of the
sensor is the sum of 1) radiant energy from the viewed
ground scene transmitted through the atmosphere, 2)
radiant energy reflected or emitted by the background
and scattered by the atmosphere (Rayleigh scattering
and scattering by aerosols, dust and clouds), and 3) radi-
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ant solar energy scattered or absorbed by the atmosphere
before it reaches the ground. The atmospheric model
must account for these three contributions based upon
the radiative transfer between the radiation source (the
ground scene) and the sensor aperture. Another aspect
of atmospheric behavior is the effect of turbulence, which
produces a blurring effect in the image, as is well known
for images of starlight obtained with telescopes.

» Scanning mechanism

A small segment of the ground is viewed at any instant,
and the total scene is viewed by scanning by one of sev-
eral options. A rotating mirror may be situated in front
of the primary optics, causing the ground image to sweep
along the image plane where the detector is fixed. Or,
the detector may be swept along the image plane to scan
the scene. The action of the scanning mechanism, in *
conjunction with the detector, is to convert the spatially
varying scene radiance into a temporally varying electrical
signal. For airborne sensors, the ground may be scanned
a considerable angular displacement to either side of the
nadir, and the resulting scene foreshortening is significant
in degrading the resolution. Airborne sensors typically
use rotating mirrors; spaceborne sensors use other meth-
ods because of the high scanning rates required. For
example, the Landsat uses an oscillating mirror. Varia-
tions in the angular rate of the mirror distort the image
and degrade the scene resolution.

e Optical system

The optical system essentially amplifies the radiant sig-
nal by its light gathering power and produces an image
upon the detector. Characteristically, reflection optics
are used to maximize the transmitted radiance. Even
if the system is aberration free, the limited resolving
power (characterized by the optical transfer function
discussed subsequently) results in a slightly degraded
image definition, and the additional degradation of focus
error also merits consideration.

e Calibration system

In-flight calibration sources are used as standard ref-
erences to eliminate the effects of variable sensor gain
and bias. The scene radiance is determined directly by
comparing the sensor electronic scene response to the
corresponding response to the standard sources. In some
sensor systems this comparison is provided in flight by
use of an automatic gain control keyed to the calibration
source response; other sensors leave this task to ground-
based processing software.

e Detector system
A small detector in the image plane canverts the focused
radiance into an electrical signal. The portion of the
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scene image viewed at any instant by the detector defines
the instantaneous field of view (IFOV). The detector
is incapable of resolving the image into elements any
smaller than its own size, and the resulting spatial averag-
ing over the IFOV causes an additional degradation in
resolution. As an electronic system, the detector exhibits
certain temporal response characteristics. An effective
“shot” noise is created at the detector by the energy
fluctuations caused by photon quantization. This noise
source is significant in non-thermal spectral bands. Ther-
mal noise is also generated by the detector and is the
dominating noise source in the thermal bands. Some
detectors that are typically used in the different bands
are as follows [7]:

Band Detector
0.4 — 1.0 pm Photomultiplier tube

Si photodiode

1.0 — 3.5 um InAs photodiode, photovoltaic

1.0 — 5.5 um InSb photodiode, photovoltaic,
photoconductive

40— 15 um HgCdTe photovoltaic.

photoconductive

s Electronics

The electronics may consist of preamplifiers, filters, am-
plifiers, and analog-to-digital converters, as applicable.
Each component exhibits a temporal response, charac-
terized by its frequency response function, which further
degrades the image definition, now in the form of a time
signal. The frequency responses of the preamplifier and
filters are generally chosen to minimize detector noise,
somewhat at the expense of resolution.

Sensor mathematical model

Linear systems theory is used to characterize the system
model. The assumed scene models are expressed in terms
of their Fourier components. Each component is modeled
by a transfer function (the Fourier transform of the im-
pulse response function for temporal components or of
the point spread function for spatial components). The
scene signal is passed through the system by multiplying
each Fourier component by the transfer function at the
corresponding spatial or temporal frequency. The system
response is then synthesized from the resulting Fourier
components. For the sake of clarity, the system response
to a uniform scene (i.e., gain and offset effects only) is
handled separately, and the transfer functions are normal-
ized to unity at some frequency (usually zero). The as-
sumption of a linear invariant system is not strictly valid,
as shown in later sections of this discussion; the impulse
response function is dependent upon the scan angle from
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Figure 2 Block diagram of a typical remote Earth resources
sensor system.

nadir and thus is not spatially or temporally invariant.
This problem is circumvented by assuming that the
changes in the scan angle are small; therefore the re-
sponse function is approximately invariant. The individ-
ual models are treated in the following paragraphs.

s Ground scene models

Models for the ground reflectivity or emissivity have
been selected to represent realistic conditions, yet be
amenable to Fourier analysis. Thus, the reflectance/
emittance models chosen are 1) a set of sinusoidal varia-
tions of different frequencies, 2) a square wave, and 3) a
step change approximated as a segment of a very long
period square wave. The ground temperature is not varied
in the same way, because ground radiance is not linearly
related to temperature and Fourier techniques are not
applicable in that case. Thus, a constant reference tem-
perature is selected and the desired temperature varia-
tions are approximated by emissivity variations, a method
sufficiently accurate for the temperature ranges generally
of interest. Emissivity is assumed to be zero for the ultra-
violet, visible, and near infrared spectral regions, and
reflectivity is assumed to be zero for the thermal bands.

s Atmosphere models
The atmospheric scattering, absorption, and emission
of radiation are described by the integro-differential
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Figure 3 Empirical form integral used in the atmosphere trans-
fer function (determined from data reported by Hufnagel and
Stanley [13]).
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Figure 4 Atmosphere transfer function for nadir view from
orbital altitude (from Hufnagel and Stanley [13]).

equation of diffusion, as discussed in a series of papers
by Plass and Katawar [8]. Although a numerical solution
is developed in those papers to a high degree of accuracy,
computer time limitations dictate the use of approximate
solutions, such as provided by Malila et al. [9] for the
ultraviolet, visible and near infrared regions and by
Boudreau [10] for the thermal infrared. An approximate
atmospheric radiation model is sufficient for sensor sys-
tem performance calculations because it is used only to
estimate the magnitude of sensor incident radiance for
signal-to-noise ratio calculations. The model of Malila
et al. assumes a ground target located on a uniform diffuse
background. Their model is used by equating the ground
target to the IFOV, and the portion of test scene outside
the IFOV is assumed to approximate their uniform back-
ground of reflectance equal to the average scene reflec-
tance. This latter approximation is satisfactory for
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sinusoidal and square wave scenes in the range of periods
of interest, but it will not hold for the step change scene;
therefore, atmospheric effects are excluded in the latter
case. Boudreau’s thermal model assumes any one of
seven models representing the temperature, pressure,
and water vapor distributions. The seven models char-
acterize a range of seasonal and local weather variations
presumably encountered in remote scanning.

The polarizing effects of ground reflection and atmo-
spheric scattering have been neglected. Their exclusion
is predicated on the assumption that either a) the polari-
zation effect is constant over the scene of interest, or b)
there is no instrument polarization to interact with the
incident polarized light. The former assumption is ap-
plicable to an orbital sensor whose scene of interest
subtends a relatively small angle. Such is not true in the
case of an airborne scanner, and the incident radiation
surely exhibits variable polarization. Coulson et al. [11]
have found the maximum polarization of the incident
radiation to be about 20 percent, while laboratory mea-
surements [12] of one airborne scanner have indicated
an instrument polarization of about 20 percent as well.
Therefore, the maximum fluctuation in sensor response
created by polarization effects is about four percent and,
by ignoring polarization, the present model has imposed
at most that much error in the predicted response of an
airborne scanner. Polarization effects merit consideration
in future refinements of the model.

The scene degradation caused by atmospheric turbu-
lence has been represented in the form of a transfer
function by Hufnagel and Stanley {13]. Their normalized
transfer function is

T, (f,) = exp[—5.827° N5 £,3 S(H) /cos 6], (1)

where A is the spectral wavelength (of band center), f,
is the spatial frequency expressed in cycles/radian,
is the nadir angle of the ground region investigated, and
S (H) is an empirical form integral whose numerical value
versus sensor altitude H is represented in Fig. 3. The
resulting transfer function for orbital altitude (H = 50
km) and nadir (8 = 0) is shown in Fig. 4. The function
is similar to a Gaussian curve, and the point spread func-
tion exhibits a similar shape. The atmosphere transfer
function is real; therefore the phase shift is zero.

e Optics model
The resolution properties of a diffraction-limited aberra-
tion-free lens are expressed [14] as a transfer function,

% [arccos a —a(1 — a®)i] for 0< a=< 1
T, (f)=
0 fora > 1, (2)
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where
a=f\/D, (3)

and D is the lens diameter. For a concave mirror, the
transfer function should be modified to account for a
hole or obscuration in the mirror center, a refinement not
found in the present model.

The degrading effects of a focus error can be accounted
for by modifying the transfer function of Eq. (2).
Goodman [15] has derived a closed form expression
for a square lens, and application of his technique to a
circular lens yields the transfer function in integral form,

IU sin U+ cos U — 1
(C cos y)*

T, (f) =%f di, (4)
0

where
U=C[(1—d sin® $)? — a cos ¢] cos ¥,
C=u (D/F)Y ae/h\

a is defined by Eq. (3), F is the focal length, and e is the
displacement of the detector from the focal plane. Ex-
amples of the transfer function computed by Eq. (4) are
illustrated in Fig. 5. The optical transfer function of either
Eq. (2) or Eq. (4) is real, but the latter may be negative
for certain spatial frequencies. If its sign is retained,
rather than using the modulus, there is no additional
phase shift function.

The primary optical element (mirror or lens) applies
a geometric gain, equal to the collector area, to the inci-
dent radiance to yield the irradiance falling upon the de-
tector in the image plane.

* Model of the scanner-aperture interaction

The geometry of the scanning and imaging system is
described in Fig. 6. The coordinates x and y along the
ground are projected normal to the line of sight, and re-
scaled by the ratio of focal length to altitude when pro-
jected upon the image plane. In addition, the image is
rotated relative to the detector as the scanning mirror
rotates or, equivalently, the detector rotates relative
to the image. The image coordinates £ and 7, measured
from the detector center, are related to their ground
counterparts by

E=(x'—x) Fcos’ 9/H; (5)
n=("—y) Fcos8/H, (6)

where (x' — x) and (¥’ — y) are displacements from the
point (x, y) marking the projection of the detector center
onto the ground, and H is the altitude. The above trans-
formation is valid because the displacements to be con-
sidered need not exceed the dimensions of the detector
(i.e., the IFOV), which are very small in general, and 6 is
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Figure 5 Optical transfer function for a circular lens with a
focusing error.

essentially constant over these dimensions. The detector,
assumed rectangular in this analysis, is rotated by 6 from
the image coordinates ¢ and 7).

The detector sums all radiation falling upon it; it
therefore responds as the integral of the image radiation
profile over its area in ¢, n coordinates. This integral
can be written equivalently as

b= j j s(&.m) wié, m) dedn, (7)

where s(£, m) is the radiance profile in the image plane,
and

w(€, m)
1 for |¢cos 6 — ysin 6] = W, /2 and

= |&sin @ + mcos 8| = W, /2

0 elsewhere

forces the integrand to zero outside the area of the detec-
tor dimensions W and W, Application of Eqs. (5) and
(6) to Eq. (7) vields an integral over the ground coor-
dinates,

v(x, y) =f f s(x, v wix', x, ¥, y) de'dy’, (8)
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where
w(x', x, y', y)
1 for |(x — x') cos®0 — (y— y') cos@sin | < D_/2
=< and|(x—x') cos’@sinf + (y—y') cos’ 6] < D,/2
0 elsewhere;
s(x',y')=s(& ) H/F cos’d

to account for the scale change in area,and D, =W _H/F
and D, = w, H / F are the dimensions in the x and y
directions, respectively, of the projection of the detector
area upon the ground at the nadir. The integral in Eq. (8)
is a convolution of the signal s(x, y) with an invariant
point spread function w (assuming 6 constant over the
region of interest); a normalized transfer function may
therefore be found, namely,

T,,(f, f,) =sinc [D_(f, sec 6 — f, tan 0)]
X sinc [D, (f, tan 6 sec 6+ f,)],

where f, and f, are the ground spatial frequencies in the
x and y directions, respectively, and

sinc x = sinmwx/mx.

This investigation concentrates on ground test scenes
that are spatially invariant in the downtrack (y) direction.
Then, the transfer function need be considered only for
fy =0, and

T,, (f,) =sinc (D_f, sec @) sinc (Dyfz tanfsecd). (9)
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The other spatial transfer functions are expressed in
terms of the spatial frequency f, measured in cycles per
radian in the direction away from the line of sight. From
Fig. 6, a small angular displacement « from the line of
sight shown corresponds to a small linear displacement
(x' — x), (y — y) along the ground according to

L
a =% [(x' —x)¥cos* 0+ (y' — y)® cos’ 0]2.
The corresponding spatial frequencies are related ac-
cording to

fo=HIf, sec* 6+, sec” 01z,
and a correspondence between the transfer functions of
Eqgs. (1), (2),and (9),and (11) and (12) (defined later)

is established by this relation. Equation (9) may also be
written

Tap (fa) = sinc (fa 8, cos 8) sinc (f, 3, sin 6), (10)

where 8, =D, /H=W_/Fand 8,=D, [H=W,/F are
the angular dimensions of the IFOV.

As in the case of the optical transfer function, there
is no additional phase shift function if the sign is retained
in Eq. (9) or (10). The detector applies a geometric
gain, equal to its area W _W , to the incident irradiance
to yield the total radiant power falling upon it.

» Temporal frequency

The scanning mechanism converts the spatial radiance
function into a temporal function of radiance received
by the detector. According to Fig. 6 the spatial coordinate
x is related to the scan angle 6 by x = H tan 8; therefore
dx/dt = H sec’ 0d6/dt. Thus, assuming a constant an-
gular rate @, the temporal frequency f is obtained from
the spatial frequency f, by

f=fH b sec’ 6.

The temporal response characteristics of the detector
and electronics are described by a transfer function.
Typically used functions with normalized moduli are [ 16]

exp [ tan™ (f/£)]
[+ (/)%

f/f, exp [—jtan™" (f./ )]
High RC: T(f) = 1 ;
igh pass RC: T() 1+ (/LB

exp [ ()]
[1+ (f/f)™E

Integrate: T(f) = sinc (fr);

Low pass RC: T(f) =

Butterworth: T(f) =

where f, is the high or low pass cutoff frequency, n is
the order, ¢ (f) is the phase function dependent upon the
implementation of the circuit, j = V—1, and 7 is the in-
tegration time. The integrate transfer function is the
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temporal analog of the spatial transfer function obtained
earlier for an aperture.

The phase information of these transfer functions is
important if the phase is not proportional to the frequency.
When the phase is proportional to the frequency, there
is no distortion of the signal but merely a time shift of
the signal. It is to be noted that the phase function of the
integrate filter is a discontinuous function of frequency,
jumping from O to 7 at the zeros of the sinc function.
However, if the sign is retained in the sinc function, the
discontinuous phase function is accounted for automati-
cally.

s Nonuniform scanning rates

The scanning rate was assumed to be a constant for the
development of the relationship between the ground
scene frequency and the temporal frequency. In actuality
there are variations in this scanning rate. When an inte-
grating filter is used, a transfer function can be developed
to account for random variations in the motion and for
high frequency periodic variations (high relative to the
reciprocal of the integration time). These two effective
transfer functions (derived in the Appendix) are

Periodic: T(f,) = J,2maf,); (11)
Random: T(f,) = exp[—2(waf,)’], (12)

where a is the amplitude of the motion in radians, J,
is the zero-order Bessel function and o is the standard
deviation for the random angular motion in radians.

Noise contributions

Ideally, a remote sensing device detects a signal, pro-
cesses it, and produces a corresponding output signal. In
reality, the system receives an input information signal
contaminated with noise. Each subsequent physical op-
eration performed on the input signal introduces an
additional component of noise.

A simplified model of the sensor system is defined for
computing the output error as a function of the different
error sources. The sensor system is assumed to have a
detector, a preamplifier, and an amplifier, all operating in
series. The noise generated by each unit of the system
aggregate is added to the output signal of the preceding
unit,

Each of the three components of the sensor system is
assumed to be a linear system in itself. The input signal
x(2) and all the noise signals are assumed to be stationary
processes in the wide sense (weakly stationary), which
are also statistically independent of each other.

For a linear system, the output spectral density is the
product of the input density with the square of the modu-
lus transfer function [17]. A three-fold application of
this relation to the three component system yields the
output noise spectral density
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N (f) = T (O PUT, (O PUTL (N, (F)
+N()+ N NI+ NN}

where T, , .(f) are the transfer functions for the detector,
preamplifier, and amplifier, respectively, N,(f) is the
spectral density of the input noise, N, . (f) are the spec-
tral densities of the detector, preamplifier, and amplifier
produced noises, respectively, and N (f) is the spectral
density of the output noise.

The noise sources, which are added by the components
of the sensor, are generally the result of internally-gen-
erated thermal (Johnson) noise, as described by Papoulis
[18]. The spectral characteristics for these errors are
often provided in the form of a noise figure, which is
the ratio of the spectral density to a thermal noise (flat
spectrum) at a specified temperature and resistance. In
practice, the significant error is either the detector noise
(for infrared and near infrared channels) or the input
noise (photon fluctuations in the visual channels); often
the other noise sources can be neglected.

The input noise results from the statistical fluctuation
of photons arriving at the detector and the fluctuation
of electrons generated by the detector. The photon flux
is modeled as a sequence of Poisson impulses. Thus, if
the mean flux of photons is ®, the variance is also ®, and
the spectral density for the photon fluctuation is flat [ 19].

The output current of the detector resulting from the
input photon flux has the spectral density [20]

5,(f) =n|T,()+ (gi)*8(f), i=TL, L = khv®,

where 7 is the average number of electrons emitted by
the detector per unit time interval, L is the radiance, &
is Planck’s constant, » is the optical frequency of the
radiation, I is the photoelectric efficiency of the detector,
g is the electronic charge, « is a constant accounting for
the optical system characteristics, and 8(f) is the Dirac
delta function. The second term of this equation is the
average current: ] = ga. For frequencies low compared
to the reciprocal of the electron transit time, the spectral
density is approximated by

5,(f) = AlT,(0) [ + T8(f) = ql + T'8(f),

where T4(0) = [= h,(#)dt = q is noted, h,(#) being the
impulse response function of the detector. The spectral
density of the input noise out of the detector is thus
given by E(f) = ql.

Some detectors, such as photomultiplier tubes, have
an internal gain which has statistical variations. Ex-
perimental results are available to express the spectral
density including this effect as [7]

E(f) = IgMP,,
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where M is the internal gain and P_ is an excess noise
factor. This model can also be used for other detectors
such as photodiodes.

For performance calculations, the noise due to the
photon fluctuation is based upon the root-mean-square
value for the ground scene radiance. For example, if the
ground scene radiance is a sine function, .= A + B sin wx,
where 4 and B are radiance values, x is the spatial co-
ordinate, and w is the frequency of the sine wave, then
the photon fluctuation is based upon the root-mean-
square value L, = (4" + %BZ)%. The total noise in the
output signal to be used for computing performance pa-
rameters is obtained by integrating the output noise
spectral density:

af,:f: N,(f) df.

Performance calculations

The system model developed in the previous paragraphs
is now used with the ground scene models described ear-
lier to formulate both quantitative and qualitative mea-
sures of performance for the sensor system. The basic
performance parameter of an imaging system is the sys-
tem resolution, defined herein to be the period of a sinus-
oidal ground scene that corresponds to 0.5 for the modu-
lus of the normalized overall system transfer function. A
second performance parameter is the signal-to-noise ratio
computed for a sinusoidal ground scene. For this calcula-
tion the signal is defined as the peak-to-peak response of
the system to a sinusoidal input, and the noise is the stan-
dard deviation of the total noise out of the system. For a
linear system the response to a sinusoidal input is also
sinusoidal, and the peak-to-peak response is twice the
response amplitude. In terms of previously defined pa-
rameters, the signal-to-noise ratio is then

S/N=24|T (/o

where 4 is the atmosphere-attenuated amplitude of the
sinusoidal ground scene of frequency f. For this compu-
tation, the background radiance level must be as large
as the sinusoidal component because the total radiance
must be positive. Therefore, the signal-to-noise ratio is
dependent upon both the background level and the sinus-
oidal term because the noise is a function of the root-
mean-square value of the radiance. A quantitative param-
eter for describing the signal-to-noise ratio (which is a
function of spatial frequency) is the noise-equivalent
period. This parameter is the period of the sinusoidal
ground scene that provides a signal-to-noise ratio of one.

The response of a system to a square wave ground
scene is used as a qualitative performance measure. In
this case the background level of the scene is not im-
portant because the measure of performance is how well
the system responds to the alternating high and low levels
of the scene.
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A quantitative measure of the high frequency response
of a system is given by the rise distance. This quantity
is defined as the spatial distance over which the response
signal rises from ten to 90 percent of its maximum ampli-
tude for a step change in the ground scene.

Qualifying models with test data

In the preceding sections a model has been developed
and performance parameters defined for a sensor system.
The next step is the validation of the model using labora-
tory or flight measurement data. Flight measurements
are very important in verifying the modeling of error
sources for the system. Quite often additional sources
of error are discovered, which arise from such items as
power supplies, cooling pumps, and recording systems.
These error sources are strictly periodic, or at least nar-
row band, and can be removed from the data, improving
the appearance of a reconstructed scene. Care must be
taken when removing such a noise to preserve the desired
scene. Except for error sources, however, flight measure-
ments cannot generally support detailed model verifica-
tion because of the difficulty in obtaining precise “ground
truth” for test targets and in eliminating atmospheric
effects from the measurement data.

Laboratory measurements can be performed relatively
easily to verify the system model. This is particularly
true for some of the components, e.g., the response func-
tions of the electronics and the transmission of the optical
system. Additionally, the spectral density of the noise
in the system can be obtained both on a component and
a system basis. The total system transfer function cannot
be directly obtained with laboratory measurements be-
cause of the difficulty of constructing a test target char-
acterized by sinusoidal variation. The test target most of-
ten used is an alternating light and dark bar pattern, i.e., a
square wave of finite length. For application to analyzing
this type of test data, it is convenient to develop a so-
called square wave transfer function by ignoring the non-
linear portion of the phase information of the system
transfer function. The square wave transfer function is
defined as the peak-to-peak response of the system to a
square wave target normalized to zero frequency. If the
argument of the system sinusoidal transfer function is
proportional to the spatial frequency, an analytic expres-
sion for the square wave transfer function is obtained as
follows.

The Fourier spectrum (the sequence of Fourier coef-
ficients) of the ground square wave scene is multiplied
by the system transfer function to obtain the spectrum
of the system output. Because the square wave spectrum
is discrete, the output spectrum is also discrete, and its
Fourier transform for the system output is a Fourier
series. By a judicious choice of origin, that series can be
made to contain only cosine terms. Only the peak-to-
peak response is desired; therefore the series is to be
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evaluated only at its minimum and maximum values,
viz., the two arguments at which all the cosines are *1,
respectively. If the resulting series for the minimum and
for the maximum are divided by their difference for in-
finite period, the result is

where f is the number of alternating light and dark bar
pairs per unit distance, i.e., the reciprocal of the square
wave period; T, (f) is the square wave transfer function,
and T, (f) is the system transfer function with a phase
function proportional to frequency. In practice, T, (f)
vanishes at some cut-off frequency, and the series de-
scribed above can be truncated without loss of accuracy.
The square wave transfer function derived above is
used to compare the formulated sensor model to the
RS-18B infrared radiometric scanner [21] used in the
NASA Earth resources aircraft program. The assumed
model includes the detector aperture, an optical system
(approximated by an aberration-free lens), and an ampli-
fier (approximated by a low-pass RC filter with linear
phase shift). The transfer functions for these components
were evaluated from the equations given earlier, into
which the manufacturer’s specifications from [21] were
substituted. The resulting 7 (f) is compared in Fig. 10
with laboratory measurements [22] of the peak-to-peak
response to several three-bar targets of different sizes
used to approximate square wave scenes. Curves are
given in Fig. 7 for successive incorporation of the three
system components. Note the improving agreement as
additional components are included in the model.

Summary

A mathematical model of a remote sensor system has
been constructed by combining models of electronic
and optical imaging systems with a model for radiative
transfer in the Earth’s atmosphere. In addition, the
effects of certain scanning and sensor motions were
included as component models. It was assumed that the
sensor is a linear, invariant system and that a rather
simple model of the atmosphere is adequate for system
performance prediction.

Some results of the model were compared to available
laboratory data for one remote sensor, and the agreement
is reasonably good. That comparison is more illustrative
of the technique than a validation of the model. In fact,
the model must be validated for each sensor system
before attempting to predict performance characteristics
for that sensor. In addition to the illustrated comparison
using the square wave peak-to-peak response, response
profiles for square waves and step change targets can be
used for validating the system response model, and the
noise models can be compared with measured noise
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Figure 7 Normalized system response of the RS-18B infrared
scanner to a three-bar target. The predicted curves are com-
pared to laboratory measurements [22].

power spectral densities. After validation, the sensor
model can be used with confidence to predict sensor res-
olution, signal-to-noise ratio, the noise equivalent ground
period and radiance, the rise distance, and the square
wave response of the sensor while in flight.
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Appendix: Image motion transfer functions
Vibration and random motion of the detector and optical
assemblies cause the image to move relative to the de-
tector surface. This motion adds to the uniform motion
created by the scanning mechanism. The latter motion
is assumed to be much slower than the former. The
scanning and the physical extent of the detector cause
a point on the image to “‘dwell” on the detector for an
effective exposure time 7. If all motions are assumed to be
in the scan direction only, the detector response to the
image at the nominal scan angle 6, is

r(8,) =f s[6(r) ]dr.

where s is the image profile, and 6(¢) is the actual angle
caused by the motion. If an angular velocity y(#) is in-
troduced such that 0(¢) = 6, -+ y(¢), the response be-
comes

r(ey) = f s[0,+ y(t)]dr.
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The Fourier transform of this equation is
RU) = [ ()5 a
)

where R and § are the transforms of r and s, respectively,
£, is the angular frequency, and the exponential is a phase
shift caused by the displacement y(z); S(f,) can be re-
moved from the integral, and the latter assumes the role
of a transfer function,

T(f,) = f £ Oy, (A1)
0

Two types of motion are considered for evaluating y(t),

and hence T(f,).

¢ Vibration
The vibration is assumed to be simple harmonic motion,
and

v(1) = a sin QaKt+ ¢),

where « is the angular amplitude, K is the vibration fre-
quency and ¢ is an arbitrary phase. Substitution into
Eq. (A1) yields

2KT+d

T(f) = (1/27K) s g (A2)

é

where ¢ = 27Kt + ¢ has been introduced for simplicity.
The exponential is rewritten in terms of the correspond-
ing sine and cosine, and the relations expressing them in
Bessel functions, viz.,

cos (zsiné) =J,+2 Y J,,(2) cos2n;
n=1

sin (zsing) =2 3 J,, 1 (2) sin(2n — Dé,

are used to convert Eq. (A2) into

2TKT+¢

T(f) = (1/217K)f {J,(2maf,)

¢
+2 2 [J,,(2maf,)cos2n¢
n=1

+ o, Cmaf,)sin(2n — 1) €] }dE.
Integration yields
T(f,) =+J,Q2maf,)

sin 2nw KT

+2 i {J,,2maf,) cos 2n(mKr + ¢)

For K7>> 1 (i.e., a vibrational period 1 / K<< 1), all terms
vanish but the first, and

T(f,) =1J,Q2maf,).

This form is normalized to unity at zero frequency to
obtain

T(f,) =J,2maf,),
which is Eq. (11).

e Random motion

It is assumed that during the exposure time 7 the image
undergoes many small motions, each of a normally dis-
tributed velocity y(t). Then, the effective transfer func-
tion is the expected value of the instantaneous transfer
function,

T(f,) = EUT e27fjfav(t)dt}

_[ 1 2202 UJ 27 jfav () ]
= — et ldy,
J_m V2w o-e 0 Y

where the factor outside the brackets is the velocity
probability distribution for zero mean and standard devi-
ation o. Since vy is stationary, the integrals above can be
interchanged, or

! ® 1 —v2j2o2 27§ fay
T =f dtf — 7 Ha¥dy,
(f) . Ve e e y

These integrals are readily evaluated to yield
T(f,) = re 2™/a"

a b
or, after normalization to unity at zero frequency,

T(f,) = "
a s
which is Eq. (12).
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