
R. H. Kidd 
R. H. Wolfe 

Performance  Modeling of Earth  Resources 
Remote  Sensors 

Abstract: A technique i s  presented  for  constructing  a  mathematical  model of an  Earth  resources  remote sensor. The  technique com- 
bines established  models of electronic and optical components with  formulated  models of scan  and vibration  effects, and it  includes  a 
model of the radiation  effects of the  Earth’s atmosphere.  The resulting composite model is useful for predicting in-flight sensor perfor- 
mance, and a descriptive  set of performance parameters is derived in terms of the model. A method is outlined for validating the model 
for  each  sensor of interest.  The validation for  one  airborne infrared  scanning system is accomplished in part by a satisfactory  comparison 
of predicted response with laboratory data  for  that  sensor. 

Introduction 
Multispectral  scanning systems  are used to  gather re- 
motely sensed radiometric  data for  a  wide  variety of ap- 
plications,  e.g., pollution monitoring, geological and  urban 
surveying, and  crop classification [ 1 - 31. The  measure of 
performance of such a system  can  be  expressed in terms 
of its image-resolving capability and its  radiometric  ac- 
curacy.  The  former  measures  the system’s  capability 
to  discern a scene  from imposed noise,  and the  latter 
expresses  the  accuracy  to which the  system  measures 
the radiant power  from  the  scene.  These performance 
parameters  are critical in assessing the usefulness of a 
particular system  for a particular remote sensing  program, 
and  they are instrumental in determining the design  re- 
quirements of an  advanced  sensor  system. 

The desired performance  parameters  are generally 
not measured  directly, and  they must  be  inferred by 
mathematical  analysis from more direct laboratory mea- 
surements  and manufacturer’s  specifications. Such a per- 
formance evaluation of existing systems  or  the develop- 
ment of design requirements  for  an  advanced  system  can 
be carried  out in a systematic way  by  constructing  a 
mathematical model of the  sensor  system,  component 
by component,  where  each  component model is param- 
etrized  by  performance  values  obtainable  from  labora- 
tory  measurements  or design specifications. The  purpose 
of this paper is to  develop a linear systems  approach  to 
mathematically model a  typical remote  sensor configura- 
tion and  to predict system Performance  characteristics. 
This  approach, which treats  the  remote  sensor  as a com- 
munication system,  has been  used  extensively to model 
electronic systems,  as  described by Papoulis [4]. The 
theory  has been extended  to optical imaging systems by 

Goodman [ 5 ] .  Thus, this paper applies the combined 
optical and electronic systems theories to  provide  an 
end-to-end  model of the  sensor system. In addition to 
the  sensor  component  characteristics,  atmospheric ef- 
fects  are considered. 

The discussion is opened with  a  description of the 
sensor configuration to be  modeled. Next,  the mathe- 
matical  models of the  atmosphere and  individual system 
components  are developed, and  these models are  com- 
bined to provide the total system model. The  components 
are assumed to be  linear,  invariant systems,  and  their 
models are  expressed in terms of transfer functions. The 
prediction of overall system capability is derived in terms 
of the  transfer  functions  and  system noise characteristics. 
Finally, the  procedure  for validating the model with test 
data is outlined  and  applied to available laboratory  tests 
for  an infrared sensor used in the NASA Earth  resources 
aircraft  program. 

Typical  sensor  system 
The  sensor  system considered measures, in a  number 
of spectral  bands,  the  solar radiation reflected from  or 
the thermal  radiation  emitted  by the ground. The general 
spectral  characteristics of the received  radiation are il- 
lustrated in Fig. l for  an orbital sensor viewing 300-K 
ground with 20 percent reflectivity [6]. These  character- 
istics are  representative of airborne  sensors  as well. 
Typically, a number of narrow  spectral  bands  are utilized 
in the 0.4 pm  to 2 pm wavelength region (from ultra- 
violet,  through visible, to  near infrared, respectively), 
and  one  or  two bands are defined for  the thermal  infrared 
region from 8 pm  to 14 pm, as  shown in Fig. 1 .  29 

JANUARY 1976 REMOTE SENSOR MODELING 



1 x 10-2 

5 X 10-3 

2 2  x lo-! 
v1 

5 

~ 5 x 1 0 "  

p! 1 x10" 
3 

8 
8 
3 
2 
32x10-4  

L 
1 x 10-4 

- 

Figure 1 

\ 

.2  0.5 1.0  2 5 10 20 

Wavelength (micrometers) 

Representative spectrum of around  radiance  at sensor 
incidence for a ground  temperature of 300 K and reflectance of 
20 percent [ 61. 

The  remote sensing system is illustrated by the block 
diagram in Fig. 2 .  Light from  the ground scene  is  at- 
tenuated  and supplemented  by the  atmosphere before 
entering the  sensor  system. A rotating  mirror scans  the 
ground  perpendicular to  the line of flight. The light is 
reflected by the rotating  mirror  through the  optics and 
focused on  the  detector  where it is converted  to  an elec- 
trical signal. As  the  mirror  rotates  past  the calibration 
sources,  their radiation  replaces the ground  radiation. 
The  detector  output is processed electronically and  re- 
corded  for  later image reconstruction.  Each of the  system 
elements is described briefly in the following paragraphs. 

Ground  scene 
The ground scene is characterized by the spatial  variation 
of the reflectance, the  temperature,  or  the emissivity; and 
the departing  sensor-bound  radiation is dependent upon 
those quantities. It is the ultimate purpose of remote 
sensing to  reconstruct  the ground scene  characteristics, 
and a measure of the  system quality is the  degree  to which 
the  reconstructed image matches  the ground scene. 
Typical  scenes of interest include  rectangular fields in an 
agricultural area,  thermal variations  in  a  river or  bay,  and 
emissivity  variations in the  ocean. 

Atmosphere 
The  radiant energy  received  by the optical system of the 
sensor is the sum of 1) radiant energy from  the viewed 
ground scene  transmitted through the  atmosphere, 2) 
radiant  energy reflected or emitted by the background 
and  scattered by the  atmosphere  (Rayleigh scattering 

30 and scattering by aerosols,  dust and clouds),  and 3 ) radi- 

ant  solar energy scattered  or  absorbed by the  atmosphere 
before it reaches  the ground. The  atmospheric model 
must  account  for  these  three  contributions  based upon 
the radiative transfer  between  the radiation source  (the 
ground scene) and the  sensor  aperture.  Another  aspect 
of atmospheric  behavior is the effect of turbulence, which 
produces a blurring effect in the image, as is well known 
for images of starlight  obtained  with  telescopes. 

Scanning  mechanism 
A small segment of the ground is viewed at  any  instant, 
and  the  total  scene is viewed by  scanning  by one of sev- 
eral  options.  A  rotating  mirror may be  situated in front 
of the primary optics, causing the ground image to  sweep 
along the image plane where  the  detector is fixed. Or, 
the  detector may be swept along the image plane to  scan 
the  scene.  The  action of the scanning  mechanism, in 
conjunction with the  detector, is to  convert  the spatially 
varying scene  radiance into  a  temporally varying electrical 
signal. For  airborne  sensors,  the ground may be scanned 
a considerable  angular  displacement to  either side of the 
nadir, and  the resulting scene foreshortening is significant 
in degrading the resolution. Airborne  sensors typically 
use rotating mirrors;  spaceborne  sensors  use  other meth- 
ods  because of the high scanning rates required. For 
example, the  Landsat  uses  an oscillating mirror.  Varia- 
tions in the angular rate of the mirror distort  the image 
and  degrade  the  scene resolution. 

Optical system 
The  optical  system essentially amplifies the  radiant sig- 
nal by its light gathering power  and  produces  an image 
upon  the  detector.  Characteristically, reflection optics 
are used to maximize the  transmitted radiance. Even 
if the system is aberration  free,  the limited resolving 
power  (characterized by the optical transfer function 
discussed subsequently)  results in a slightly degraded 
image definition, and  the additional  degradation of focus 
error also  merits  consideration. 

Calibration system 
In-flight calibration sources  are used as  standard ref- 
erences  to eliminate the effects of variable sensor gain 
and bias. The  scene  radiance is determined  directly by 
comparing the  sensor electronic scene  response  to  the 
corresponding  response  to  the  standard  sources.  In  some 
sensor  systems this comparison is provided in flight by 
use of an  automatic gain control  keyed  to  the calibration 
source  response;  other  sensors  leave this  task to ground- 
based  processing software. 

Detector  system 
A small .detector in the image plane converts  the focused 
radiance  into  an electrical signal. The portion of the 
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scene image viewed at  any  instant by the  detector defines 
the  instantaneous field of view (IFOV).  The  detector 
is incapable of resolving the image into  elements any 
smaller than its  own  size, and  the resulting  spatial  averag- 
ing over  the  IFOV  causes  an additional  degradation in 
resolution. As an electronic  system,  the  detector exhibits 
certain temporal  response  characteristics.  An effective 
"shot" noise is created  at  the  detector by the energy 
fluctuations caused by  photon quantization.  This noise 
source  is significant in non-thermal spectral  bands.  Ther- 
mal noise is also  generated by the  detector  and is the 
dominating  noise source in the thermal  bands. Some 
detectors  that  are typically used in the different bands 
are  as follows [ 71 : 

Band Detector 
0.4 - 1.0 pm Photomultiplier  tube 

Si photodiode 

1.0 - 3.5 pm  InAs  photodiode, photovoltaic 

1.0 - 5.5 pm  InSb photodiode,  photovoltaic, 
photoconductive 

4.0 - 15 pm  HgCdTe photovoltaic. 
photoconductive 

Electronics 
The  electronics may consist of preamplifiers, filters, am- 
plifiers, and analog-to-digital converters,  as applicable. 
Each  component exhibits  a  temporal response,  charac- 
terized  by its frequency response function,  which further 
degrades  the image definition, now in the form of a time 
signal. The  frequency  responses of the preamplifier and 
filters are generally chosen  to minimize detector noise, 
somewhat  at  the  expense of resolution. 

Sensor mathematical model 
Linear  systems  theory is used to  characterize  the  system 
model. The  assumed  scene models are  expressed in terms 
of their Fourier  components.  Each  component is modeled 
by a transfer function (the  Fourier transform of the im- 
pulse response function for temporal components  or of 
the point spread function for spatial components).  The 
scene signal is passed through the system by multiplying 
each  Fourier  component by the  transfer function at  the 
corresponding  spatial or temporal frequency.  The  system 
response is then synthesized  from  the resulting Fourier 
components.  For  the  sake of clarity, the system response 
to a uniform scene (i.e., gain and offset effects only) is 
handled separately,  and  the  transfer functions are normal- 
ized to unity at  some frequency (usually  zero).  The  as- 
sumption of a linear  invariant system is not strictly  valid, 
as  shown in later  sections of this discussion;  the impulse 
response function is dependent upon the  scan angle from 
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Figure 2 Block diagram of a typical  remote  Earth  resources 
sensor  system. 

nadir and thus is not spatially or temporally  invariant. 
This problem is circumvented by assuming that  the 
changes in the  scan angle are small; therefore  the re- 
sponse function is approximately  invariant. The individ- 
ual models are  treated in the following paragraphs. 

Ground scene models 
Models for the  ground reflectivity or emissivity have 
been selected  to  represent realistic  conditions, yet be 
amenable to  Fourier analysis. Thus,  the  reflectance/ 
emittance models chosen  are 1 ) a set of sinusoidal  varia- 
tions of different frequencies, 2 )  a square  wave, and 3 )  a 
step  change  approximated  as a segment of a  very long 
period square  wave.  The ground temperature is not varied 
in the  same way, because ground radiance is not linearly 
related to  temperature and Fourier  techniques  are not 
applicable in that  case.  Thus, a constant  reference tem- 
perature is selected and  the desired temperature varia- 
tions  are approximated by emissivity  variations, a method 
sufficiently accurate  for  the  temperature ranges  generally 
of interest. Emissivity is assumed  to be zero  for  the ultra- 
violet,  visible, and  near infrared spectral regions, and 
reflectivity is assumed to be zero  for  the thermal  bands. 

Atmosphere models 
The  atmospheric  scattering,  absorption,  and emission 
of radiation are  described by the integro-differential 31 
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I Altitude H (km) 

Figure 3 Empirical form integral used in the atmosphere trans- 
fer function (determined from data  reported by Hufnagel and 
Stanley [ 131 ) . 

I Spatial  frequency  (cycles/arc-second) 

Figure 4 Atmosphere  transfer  function  for nadir  view from 
orbital altitude  (from Hufnagel and Stanley [ 131 ) . 

equation of diffusion, as discussed in a series of papers 
by Plass  and  Katawar [ 81. Although  a  numerical  solution 
is developed in those  papers  to a high degree of accuracy, 
computer time  limitations dictate  the  use of approximate 
solutions, such  as provided by Malila et al. [9]  for  the 
ultraviolet, visible and  near infrared  regions and by 
Boudreau [ 101 for  the thermal  infrared. An  approximate 
atmospheric radiation model is sufficient for  sensor sys- 
tem performance  calculations because it is used  only to 
estimate  the magnitude of sensor incident radiance  for 
signal-to-noise ratio  calculations. The model of Malila 
et al. assumes a ground  target located  on a uniform diffuse 
background. Their model is used  by  equating the ground 
target  to  the  IFOV,  and  the portion of test  scene  outside 
the  IFOV  is assumed to  approximate  their uniform back- 
ground of reflectance equal  to  the  average  scene reflec- 

32 tance.  This  latter approximation is satisfactory  for 
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sinusoidal and  square  wave  scenes in the  range of periods 
of interest, but it will not hold for  the  step  change  scene; 
therefore,  atmospheric effects are  excluded in the  latter 
case. Boudreau's  thermal  model assumes  any  one of 
seven models  representing the  temperature,  pressure, 
and  water  vapor distributions. The  seven models char- 
acterize a range of seasonal  and local weather variations 
presumably encountered in remote scanning. 

The polarizing  effects of ground reflection and atmo- 
spheric scattering have been  neglected. Their exclusion 
is predicated on  the  assumption  that either a )  the polari- 
zation effect is constant  over  the  scene of interest, o r b )  
there is no  instrument polarization to  interact with the 
incident  polarized light. The  former  assumption is ap- 
plicable to  an orbital sensor  whose  scene of interest 
subtends a  relatively small angle. Such is not  true in the 
case of an  airborne  scanner,  and  the incident  radiation 
surely exhibits  variable  polarization. Coulson  et al. [ 111 
have found the maximum polarization of the incident 
radiation to be about 20 percent, while laboratory mea- 
surements [ 121 of one  airborne  scanner  have indicated 
an  instrument polarization of about  20  percent  as well. 
Therefore,  the maximum  fluctuation in sensor  response 
created by polarization  effects is about  four  percent  and, 
by ignoring polarization, the  present model has imposed 
at  most  that much error in the predicted response of an 
airborne  scanner. Polarization  effects  merit  consideration 
in future refinements of the model. 

The  scene degradation caused by atmospheric turbu- 
lence  has been represented in the form of a transfer 
function  by  Hufnagel and Stanley [ 131. Their normalized 
transfer function is 

where h is the  spectral wavelength  (of  band center), fa 

is  the spatial frequency  expressed in cycleslradian, 6 
is  the nadir  angle of the ground region investigated, and 
S (H) is an empirical form integral whose numerical  value 
versus  sensor  altitude H is represented in Fig. 3. The 
resulting transfer function for orbital altitude ( H  = 50 
km)  and nadir ( 6  = 0) is  shown in Fig. 4. The function 
is similar to a Gaussian  curve,  and  the point spread func- 
tion  exhibits  a similar shape. The  atmosphere  transfer 
function is  real;  therefore  the  phase shift is zero. 

Optics model 
The resolution properties of a diffraction-limited aberra- 
tion-free lens  are  expressed [ 141 as a transfer function, 

10 for a > 1 ,  (2) 
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where 

a = @ I D ,  (3  1 

and D is  the  lens diameter. For a concave mirror, the 
transfer function  should  be modified to  account  for a 
hole or  obscuration in the mirror center, a  refinement not 
found in the  present model. 

The degrading  effects of a focus  error  can be accounted 
for by modifying the  transfer function of Eq. ( 2 ) .  
Goodman [ 151 has derived  a  closed  form expression 
for a square lens, and application of his technique  to a 
circular lens yields the  transfer function in integral form, 

where 

u = C [  ( 1  - a2 sin2 $14 - a cos $1 cos +, 

C = n ( D / F ) ’  a e / h ,  

a is defined by Eq. ( 3 ) ,  F is the focal  length, and e is the 
displacement of the  detector from the focal plane.  Ex- 
amples of the  transfer function computed by Eq. (4) are 
illustrated in Fig. 5. The optical transfer function of either 
Eq. ( 2 )  or  Eq. (4)  is real,  but the  latter may be  negative 
for certain  spatial  frequencies. If its sign is retained, 
rather than using the modulus, there is no additional 
phase shift  function. 

The primary optical element (mirror  or  lens) applies 
a  geometric gain, equal to the  collector  area,  to  the inci- 
dent  radiance  to yield the irradiance falling upon  the de- 
tector in the image plane. 

Model of the  scanner-aperture  interaction 
The geometry of the scanning  and imaging system is 
described in Fig. 6. The  coordinates x and y along the 
ground are projected  normal to  the line of sight, and re- 
scaled by the ratio of focal  length to altitude  when pro- 
jected upon the image plane. In  addition,  the image is 
rotated relative to  the  detector  as  the scanning  mirror 
rotates  or, equivalently, the  detector  rotates relative 
to the image. The image coordinates [ and 77, measured 
from the  detector  center,  are related to their  ground 
counterparts by 

[ = (X’ - X) F COS‘ O/H; ( 5 )  

77 = (y’ - y )  F COS O / H ,  ( 6 )  

where (x’ - x) and (y’ - y )  are displacements  from  the 
point (x, y )  marking the projection of the  detector  center 
onto  the  ground,  and H is the  altitude.  The  above  trans- 
formation is valid because  the  displacements  to be con- 
sidered  need  not exceed  the dimensions of the  detector 
(Le., the IFOV),  which are very small in general, and 8 is 

) 0.2 0.4 0.6 0.8 1 

Spatial frequency/cut-off  frequency 

Figure 5 Optical transfer function for a circular lens with a 
focusing error. 

essentially constant  over  these dimensions. The  detector, 
assumed rectangular in this analysis, is rotated by 8 from 
the image coordinates [ and 0. 

The  detector  sums all radiation falling upon it; it 
therefore  responds  as  the integral of the image radiation 
profile over its area in [, 7 coordinates.  This integral 
can be  written  equivalently as 

u =  I_: I:, s(5,  77) w ( 4 ,  77) dtdr), ( 7 )  

where s([, 77) is the radiance profile in the image plane, 
and 

.,(e, 77) 

1 for  COS 8 - Vsin 81 5 W,/2 and 

Itsin 8 + TCOS 81 5 W , / 2  =[ 0 elsewhere 

forces  the integrand to  zero  outside  the  area of the  detec- 
tor dimensions W ,  and W,. Application of Eqs. ( 5 )  and 
(6)  to  Eq. ( 7 )  yields an integral over  the ground  coor- 
dinates, 

u(x, Y) = s(x’, Y ’ )  w ( x ’ ,  x, Y‘, Y) dx’du’, ( 8 )  
33 
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Figure 6 Geometry of the scanning and  imaging system. 

where 

w ( x ' ,   x ,  Y ' ,  Y )  

1 f o r I ( x - x ' ) c o s 3 0 - ( y - y ' ) c o s 0 s i n 0 1 i  D , / 2  

=-I  

and I (x - x ' )  cos2 0 sin0 + ( y  - y ' )  cos2 0 )  f D , / 2  

0 elsewhere; 

s ( x ' ,  y ' )  = s((, q )  H / F  c0s30 

to  account for  the  scale  change in area, and DX=  W,H/  F 
and D ,  = W ,   H /  F are  the dimensions in the x and y 
directions,  respectively, of the projection of the  detector 
area upon the ground at  the nadir. The integral in Eq. ( 8 )  
is a convolution of the signal s ( x ,  y )  with an invariant 
point  spread  function w (assuming 8 constant  over the 
region of interest) ; a normalized transfer function may 
therefore be found,  namely, 

Ta,(f,,fy) = sine [ D , ( f ,  sec 6 -f, tan 011 

X sinc [ D ,  (f, tan 0 sec 0 + f , ) ]  , 

where f ,  and f ,  are the  ground spatial frequencies in the 
x and y directions,  respectively, and 

sinc x = sinrrx/.rrx. 

This investigation concentrates on ground test  scenes 
that  are spatially invariant in the downtrack ( y )  direction. 
Then,  the transfer  function  need be considered only for 
f ,  = 0, and 

T,, ( f , )  = sinc (D, f ,  sec 0) sinc ( D ,  f ,  tan 0 sec 13). (9) 34 
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The  other spatial  transfer  functions are  expressed in 
terms of the spatial  frequency fa measured in cycles per 
radian in the direction  away  from  the line of sight. From 
Fig. 6, a small angular  displacement a from the line of 
sight shown corresponds  to a small linear  displacement 
(x '  - x),  ( y '  - y )  along the  ground  according to 

= - (x '  - x)' cos4 e + (y'  - y)' COS' e . 
H ' [  I' 

The corresponding spatial frequencies are related  ac- 
cording to 

fa = ~ [ f , '  sec4 e +fi sec2 e]+, 
and  a correspondence between the  transfer functions of 
Eqs. (l),   (2),and  (9),and  (1l)and  (12)  (definedlater) 
is  established by this  relation.  Equation (9) may also be 
written 

T a p  (fa) = sinc (fa 6, cos 0)  sinc (fa 6, sin e), (10) 

where 6, = D , / H  = W , / F  and S1, = D y / H  = W , / F  are 
the angular  dimensions of the IFOV. 

As in the  case of the optical  transfer  function, there 
is no additional phase shift function if the sign is retained 
in Eq. (9)  or  (10).  The  detector applies a geometric 
gain, equal to its area W,W,, to the  incident  irradiance 
to yield the  total  radiant  power falling upon it. 

Temporal  frequency 
The scanning mechanism converts  the spatial  radiance 
function  into a temporal  function of radiance received 
by the  detector. According to Fig. 6 the spatial coordinate 
x is related to the  scan angle 0 by x = H tan 0; therefore 
d x l d t  = H sec2 0dOldt .  Thus, assuming a constant an- 
gular rate d, the  temporal  frequency f is obtained  from 
the spatial frequency f ,  by 

f = fxH 6 sec' 0. 

The temporal response characteristics of the  detector 
and  electronics are described by a  transfer  function. 
Typically used  functions with normalized moduli are [ 161 

Low pass RC: T ( f )  = 
exp [-j tan" ( f l f , )  I . 

[1 + ( f / f , ) " +  ' 

Integrate: T ( f )  = sinc (f~); 

where f, is the high or low pass cutoff frequency, n is 
the  order, +( f )  is the phase  function dependent upon  the 
implementation of the circuit, j = V?, and T is the in- 
tegration time. The integrate transfer function is the 
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temporal analog of the spatial transfer function  obtained 
earlier for  an  aperture. 

The  phase information of these  transfer  functions  is 
important if the  phase  is  not proportional to  the  frequency. 
When the  phase is proportional to  the  frequency,  there 
is no distortion of the signal but merely a  time  shift of 
the signal. It is to be  noted that  the  phase function of the 
integrate filter is a discontinuous function of frequency, 
jumping  from 0 to T at  the  zeros of the sinc  function. 
However, if the sign is retained in the sinc  function, the 
discontinuous  phase function is  accounted  for automati- 
cally. 

Nonunijorm  scanning  rates 
The scanning rate was  assumed to  be a constant  for  the 
development of the relationship between  the ground 
scene  frequency and the temporal frequency.  In actuality 
there  are variations in this  scanning  rate. When  an inte- 
grating filter is used, a transfer function  can  be  developed 
to  account  for  random variations in the motion  and  for 
high frequency periodic  variations  (high  relative to  the 
reciprocal of the integration time).  These  two effective 
transfer functions (derived in the  Appendix)  are 

Periodic: T(fa) = J,(2rafa) ; (11) 

Random: T(fa) = exp["2(~uf~) ' ] ,   (12)  

where a is the amplitude of the motion in radians, J ,  
is the  zero-order Bessel  function and u is  the  standard 
deviation for  the  random angular  motion in radians. 

Noise contributions 
Ideally,  a remote sensing device  detects a signal, pro- 
cesses it, and  produces a  corresponding output signal. In 
reality, the system receives  an  input information signal 
contaminated  with  noise. Each  subsequent physical  op- 
eration performed on  the  input signal introduces  an 
additional component of noise. 

A simplified model of the  sensor system is defined for 
computing the  output  error  as a function of the different 
error  sources.  The  sensor system is assumed to  have a 
detector, a preamplifier, and  an amplifier, all operating in 
series. The noise generated by each unit of the  system 
aggregate is  added  to  the  output signal of the preceding 
unit. 

Each of the  three  components of the  sensor  system is 
assumed  to be a linear system in itself. The  input signal 
x( t )  and all the noise  signals are  assumed  to  be  stationary 
processes in the wide sense (weakly stationary), which 
are  also statistically  independent of each  other. 

For a linear system,  the  output spectral  density is the 
product of the input  density with the  square of the modu- 
lus transfer function [ 171. A  three-fold  application of 
this  relation to  the  three  component  system yields the 
output noise spectral density 
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where Td,p,a(f) are  the  transfer  functions  for  the  detector, 
preamplifier, and amplifier, respectively, N i ( f )  is the 
spectral density of the  input noise, Nd,p,a(f) are  the  spec- 
tral densities of the  detector, preamplifier, and amplifier 
produced  noises,  respectively, and N , ( f )  is the  spectral 
density of the  output noise. 

The noise sources, which are added  by the  components 
of the  sensor,  are generally the  result of internally-gen- 
erated thermal (Johnson)  noise,  as  described by  Papoulis 
[ 181. The  spectral  characteristics  for  these  errors  are 
often  provided in the  form of a  noise figure, which is 
the  ratio of the  spectral  density  to a thermal  noise (flat 
spectrum)  at a specified temperature  and  resistance.  In 
practice, the significant error  is  either  the  detector  noise 
(for infrared and  near infrared channels)  or  the  input 
noise (photon fluctuations in the visual channels) ; often 
the  other noise sources  can be  neglected. 

The  input  noise  results  from  the statistical  fluctuation 
of photons arriving at  the  detector  and  the fluctuation 
of electrons  generated by the  detector.  The  photon flux 
is modeled as a sequence of Poisson impulses. Thus, if 
the mean flux of photons is @, the  variance is also 0, and 
the spectral  density for  the photon  fluctuation is flat [ 191. 

The  output  current of the  detector resulting  from the 
input photon flux has  the  spectral density [20] 

where is the  average  number of electrons  emitted by 
the  detector  per unit  time  interval, L is the  radiance, h 
is Planck's constant, v is  the optical frequency of the 
radiation, r is the photoelectric efficiency of the  detector, 
q is the  electronic charge, K is a constant accounting for 
the optical system  characteristics,  and S ( j )  is the  Dirac 
delta function. The second term of this equation is the 
average  current: 7 = qn. For  frequencies low compared 
to  the reciprocal of the  electron  transit time, the  spectral 
density is approximated by 

s , ( f )  = nlT,(0)12 + B ( f )  = qi + 7 ' S ( f ) ,  

where T,(O) = J_",h,(t)dt = q is noted, h,(t) being the 
impulse response function of the  detector.  The  spectral 
density of the input  noise out of the  detector  is  thus 
given by E ( f )  = q j .  

Some  detectors,  such  as photomultiplier tubes,  have 
an internal gain which has statistical  variations.  Ex- 
perimental results  are available to  express  the  spectral 
density including this effect as  [7] 
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where M is the internal gain and P, is an  excess noise 
factor.  This model can also be used for  other  detectors 
such  as photodiodes. 

For performance calculations,  the noise due  to  the 
photon  fluctuation is based upon  the  root-mean-square 
value for  the ground scene radiance. For  example, if the 
ground scene radiance is a sine function, L = A + B sin ox, 
where A and B are  radiance values, x is the spatial  co- 
ordinate, and o is the  frequency of the  sine wave,  then 
the photon  fluctuation is based  upon the root-mean- 
square value L,,,s = ( A ‘  + 4B‘) i .  The total noise in the 
output signal to be  used for computing performance pa- 
rameters is obtained by integrating the  output noise 
spectral density: 

cr: = N ” ( f )  df. 
-z 

Performance  calculations 
The system model developed in the  previous paragraphs 
is now used  with the ground scene models described  ear- 
lier to formulate both quantitative  and  qualitative mea- 
sures of performance for  the  sensor  system.  The basic 
performance parameter of an imaging system is the sys- 
tem  resolution, defined herein to be the period of a  sinus- 
oidal ground scene  that  corresponds  to 0.5 for the  modu- 
lus of the normalized  overall  system transfer function.  A 
second performance  parameter is the signal-to-noise ratio 
computed  for a  sinusoidal  ground scene.  For this  calcula- 
tion the signal is defined as  the peak-to-peak response of 
the  system  to a  sinusoidal  input,  and the noise is the  stan- 
dard deviation of the  total noise out of the  system.  For a 
linear  system the  response  to a  sinusoidal input is also 
sinusoidal, and  the  peak-to-peak  response is twice the 
response amplitude. In  terms of previously defined pa- 
rameters,  the signal-to-noise  ratio is then 

S I N  = 2A I Tsys (f) I lug, 
where A is the  atmosphere-attenuated amplitude of the 
sinusoidal  ground scene of frequency f. For this  compu- 
tation,  the background radiance level must  be as large 
as the sinusoidal component  because  the total radiance 
must  be  positive. Therefore,  the signal-to-noise ratio is 
dependent upon both the background level and the sinus- 
oidal term because  the noise is a function of the root- 
mean-square  value of the radiance. A quantitative  param- 
eter  for describing the signal-to-noise ratio  (which is a 
function of spatial frequency) is the noise-equivalent 
period. This  parameter is the period of the sinusoidal 
ground scene  that provides a signal-to-noise ratio of one. 

The  response of a system  to a square  wave ground 
scene is used as a  qualitative  performance  measure. In 

A  quantitative measure of the high frequency response 
of a system is given by the rise  distance. This quantity 
is defined as the spatial distance  over which the  response 
signal rises  from ten  to 90 percent of its  maximum ampli- 
tude  for a  step change in the ground  scene. 

Qualifying  models with test data 
In  the preceding sections a  model  has  been  developed 
and performance  parameters defined for a sensor system. 
The  next  step is the validation of the model using labora- 
tory  or flight measurement  data. Flight measurements 
are very important in verifying the modeling of error 
sources  for  the  system.  Quite often  additional sources 
of error  are  discovered, which arise from  such  items as 
power supplies, cooling pumps, and  recording  systems. 
These  error  sources  are strictly  periodic, or  at  least nar- 
row  band, and can  be removed  from the  data, improving 
the  appearance of a reconstructed  scene.  Care must  be 
taken when removing such a  noise to  preserve  the desired 
scene.  Except  for  error  sources,  however, flight measure- 
ments  cannot generally support detailed model verifica- 
tion because of the difficulty in obtaining  precise  “ground 
truth”  for  test  targets  and in eliminating atmospheric 
effects  from the  measurement  data. 

Laboratory  measurements  can  be performed  relatively 
easily to verify the system model. This  is particularly 
true  for  some of the  components, e.g., the response func- 
tions of the electronics and  the transmission of the optical 
system. Additionally, the  spectral density of the noise 
in the system can  be obtained both  on a component and 
a system basis. The total  system transfer function cannot 
be  directly  obtained  with laboratory  measurements be- 
cause of the difficulty of constructing  a test target char- 
acterized by  sinusoidal  variation. The  test  target most of- 
ten used is an alternating light and  dark bar pattern, Le., a 
square  wave of finite length. For application to analyzing 
this type of test  data,  it is convenient  to  develop a so- 
called square  wave  transfer function by ignoring the non- 
linear  portion of the  phase information of the system 
transfer function. The  square  wave  transfer function is 
defined as the peak-to-peak response of the  system  to a 
square  wave  target normalized to  zero  frequency. If the 
argument of the system  sinusoidal transfer function is 
proportional to  the spatial frequency,  an analytic expres- 
sion for  the  square  wave  transfer function is obtained as 
follows. 

The  Fourier  spectrum  (the  sequence of Fourier coef- 
ficients) of the ground square  wave  scene is multiplied 
by the system transfer function to obtain the  spectrum 
of the system  output. Because  the  square wave spectrum 
is discrete,  the  output  spectrum  is also discrete,  and its 

this case  the background  level of the  scene is not im- Fourier transform for  the  system  output is a Fourier 
portant  because  the  measure of performance is how well series. By a judicious choice of origin, that  series can  be 

36 the system responds  to  the alternating high and  low  levels made  to contain  only cosine  terms. Only the  peak-to- 
of the  scene. peak response is desired;  therefore  the series is to be 

K. H. KIDD AND R. H. WOLFE IBM J. RES. DEVELOP. I 



evaluated only at its minimum and  maximum values, 
viz., the  two arguments at which all the  cosines  are 21, 
respectively. If the resulting series  for  the minimum and 
for  the maximum are divided by their difference for in- 
finite period, the result is 

where ,f is the number of alternating light and dark  bar 
pairs  per  unit distance, i.e., the reciprocal of the  square 
wave period; T,,  (f) is the  square  wave  transfer  function, 
and T s Y s ( f )  is the  system transfer  function with a  phase 
function  proportional to  frequency. In practice, T,, ,( f)  
vanishes at some cut-off frequency,  and  the series  de- 
scribed above can be truncated without loss of accuracy. 

The  square  wave  transfer function  derived above is 
used to  compare  the formulated sensor model to  the 
RS-18B infrared radiometric scanner [ 2 11 used in the 
NASA  Earth  resources aircraft  program. The assumed 
model includes the  detector  aperture, an optical  system 
(approximated by an  aberration-free  lens),  and  an ampli- 
fier (approximated by a  low-pass RC filter with  linear 
phase  shift).  The  transfer functions for  these  components 
were evaluated from  the  equations given earlier, into 
which the manufacturer’s  specifications  from [ 2 I ]  were 
substituted.  The resulting T,,,.(f) is compared in Fig. 10 
with laboratory measurements [ 221 of the peak-to-peak 
response  to several three-bar  targets of different sizes 
used to  approximate  square  wave scenes. Curves  are 
given in Fig. 7 for  successive incorporation of the  three 
system components.  Note  the improving agreement  as 
additional components  are included in the model. 

Summary 
A mathematical model of a remote  sensor  system  has 
been constructed by combining models of electronic 
and  optical imaging systems with a model for radiative 
transfer in the  Earth’s  atmosphere. In  addition, the 
effects of certain  scanning and  sensor motions  were 
included as  component models. It  was assumed that  the 
sensor is a  linear,  invariant  system and that a rather 
simple model of the  atmosphere is adequate  for system 
performance prediction. 

Some  results of the model were compared  to available 
laboratory data  for  one  remote  sensor, and the  agreement 
is reasonably  good. That comparison is more  illustrative 
of the  technique than  a  validation of the model. In  fact, 
the model must  be  validated for each sensor system 
before  attempting to predict  performance characteristics 
for  that  sensor. In addition to the illustrated  comparison 
using the  square  wave peak-to-peak response,  response 
profiles for  square waves and step  change  targets can be 
used for validating the  system response model, and the 
noise  models can be  compared with measured  noise 

Aperture 
and  optic 

0 Expcrimental 
Model 

and amplifier 
- 

I I I I I I I 
9 8 7 6 5 4 3 2 1  

Bar target spacing (milliradians) 

7 Normalized  system response of the RS- 18B infrared 
scanner to a  three-bar target. The predicted curves  are  com- 
pared to laboratory measurements [22]. 

power  spectral  densities. After validation, the  sensor 
model can be used with confidence to predict sensor res- 
olution,  signal-to-noise  ratio, the noise  equivalent  ground 
period and radiance,  the rise distance, and the  square 
wave response of the  sensor while in flight. 
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Appendix: Image motion transfer functions 
Vibration  and  random motion of the detector and  optical 
assemblies cause  the image to move  relative to  the de- 
tector surface. This motion adds  to  the uniform motion 
created by the scanning  mechanism. The  latter motion 
is assumed to be much slower  than the former. The 
scanning  and the physical extent of the  detector  cause 
a  point on  the image to “dwell” on the  detector  for  an 
effective exposure time T. If all motions are assumed to be 
in the  scan direction only,  the  detector  response  to  the 
image at  the nominal scan angle 8, is 

r(8,) = s [ O ( t , ] d t .  1: 
where s is the image profile, and O ( t )  is the actual  angle 
caused by the motion. If an angular  velocity y ( t )  is in- 
troduced  such  that @ ( t )  = ON + y ( t ) ,  the  response be- 
comes 
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The  Fourier transform of this equation is 

R (fa) = I' S(fa)  e2"jfa"(')dt, 

where R and S are  the  transforms of r and s, respectively, 
fa is the angular frequency,  and  the exponential is a phase 
shift caused by the displacement y ( t )  ; S (fa) can  be re- 
moved from  the integral, and  the  latter  assumes  the role 
of a transfer function, 

T(fa) = 1' e2ajfav<t) dt. ( A I )  

Two  types of motion are considered for evaluating y (  t )  , 
and  hence T ( f a ) .  

Vibration 
The vibration is assumed  to  be simple harmonic motion, 
and 

y ( t )  = a  sin (27rKt + +), 

where a is  the angular amplitude, K is the vibration fre- 
quency  and C#I is  an  arbitrary phase.  Substitution into 
Eq. ( A l )  yields 

U f , )  = ( 1 / 27rK) e2"jfaasin' &3 ('42) 

where [ = 27rKt + + has  been introduced for simplicity. 
The exponential is  rewritten in terms of the  correspond- 
ing sine and  cosine,  and  the relations  expressing  them in 
Bessel functions, viz., 

cos ( z  sin[) = J o  + 2 JZn(z) cos2n[; 

0 

0 

r + +  

m 

n=1 

m 

sin ( z  sin[) = 2 J2n-l(z) sin(2n - I)[, 
n=1 

are used to  convert  Eq. ( A 2 )  into 

T(fa) = (1/27rK) 

I 38 X sin [ (2n - 1 )  (7rK1- + $ ) I ) .  
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For KT >> 1 (i.e., a vibrational  period 1 / K << I - ) ,  all terms 
vanish but  the first, and 

T ( f J  = I-J0(27rafa). 

This  form is normalized to unity at  zero  frequency  to 
obtain 

Ufa) = J0(27rafa) 9 

which is Eq. ( 1 1 ) .  

Random  motion 
It  is assumed  that during the  exposure time T the image 
undergoes  many small motions, each of a normally dis- 
tributed  velocity y (  t )  . Then,  the effective transfer func- 
tion is  the  expected  value of the  instantaneous  transfer 
function, 

where  the  factor  outside  the  brackets is the velocity 
probability  distribution for  zero  mean and standard devi- 
ation u. Since y is stationary,  the integrals above  can be 
interchanged,  or 

These integrals are readily evaluated  to yield 

T (fa = I-e-2 ("ufa12 

or, after normalization to unity at  zero  frequency, 

T ( f J  = e 

which is Eq. ( 12) .  

-2 <"Ufa)2 
9 
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