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On  Some  Relations  between  the  Laplace and 
Mellin  Transforms 

Abstract: Several  earlier papers  have applied some identities  relating the  Laplace  and Mellin transforms; this  note develops  certain 
such  identities,  achieving  greater  generality and rigor. Specifically each of these  transforms  is  expressed  as a contour integral involving 
the  other, and an expansion of the  Laplace transform is derived in terms of the  functions (s . d /  ds) "( 1 + s) " with coefficients defined 
by the Mellin transform. 

1. Introduction 
Given a complex-valued locally integrable  function f on 
[ 0, +m), we define its  Laplace transform by 

~ f ( s )  = lom exp(-st) f ( t )  dt  ( 1 . 1 )  

and  its Mellin transform by 

M [ f ;  21 = lom t"- t f ( t )d t  (1.2) 

and proved as  stated by Handelsman  and  Lew [ 9, lo]. 
For functions with suitable expansions  near +w, further 
results of this type can be obtained by analytic  continu- 
ation,  even though the integral for  the Mellin transform 
may converge in no strip [ 231. 

Theorem 1 If M [ f ;  z] is absolutely convergent  on a < 
Re(z) < b with a < 1 ,  then 

M [ ~ ; Z I  = M [ L ~ ;  I - z I / ~ ( I  - 2 )  (2.1) 
whenever  and  wherever  these integrals  exist.  Typically 
M [ f ;  23 is absolutely convergent  on some strip a < 
Re(z) < b, and L f ( s )  is absolutely convergent  on some 
half-plane Re(s) > c [ 11. However, both integral trans- 

on a < Re(z) < b, and 

L f ( s )  = ( 2 4 "  ~ [ f ;  z ] r ( ~  - Z)Sr - ldz  ( 2 . 2 )  

forms may admit analytic continuations  beyond these 
convergence  domains. 

on Re(s) > 0, for  any c with a < c < min( 1, b ) .  

Certain relations between  these  transforms  have been 
found useful in approximating  density  functions for  sums 
and products of random  variables [ 2 - 61,  and in gener- 
ating asymptotic  series  for  these  and  other integral trans- 
forms [ 7 - 113. Several such relations  from the  former 
context  are proved here with greater generality  and  rigor, 
from more  explicit assumptions  on f. These  results  are 
summarized in three  theorems.  Various  authors  have 
discussed similar applications, either without  transform 
results [ 12- 151 or only for special densities [ 16-20]. 
We  hope that  more careful proofs of these relations will 
facilitate  their  application in such contexts. 

Proof If a < Re(z) < min( I ,  b)  and if 

g ( u )  = u"'e-', h ( u )  = u-zf(u- ' )  on (0, +w), (2.3) 

then u - l g ( u )  and u"h(u) are in L'(0,  +a). By hypothe- 
sis Lf( s) exists  for  Re(s) > 0; by the Mellin convolution 
theorem [ 241 

M [  Lfi 1 - 21 = [ s-'ds lom e-sEf( t )  dt 

= jom s"ds jom g ( s / u ) h ( u ) d u / u  

= M [  g ;  01 M [  h;  01 
2. Integral relations = r ( l - z ) M [ f ; z ] ;  (2.4) 
In this  section we consider a locally integrable  function 
f as  before,  and  extend some integral relations between and by analytic continuation,  (2.4) holds for a < Re(z) < 
its two transforms. Our first  theorem  reviews two  con- b. If z = c + iy and if y + k m ,  then M [ L f ;  23 decreases 
nected  identities, the  former noted implicitly by Handels- exponentially by a  gamma function  estimate  [25, 261, 
man and  Lew [ 2 11 and derived explicitly by Prasad [ 221, so that  (2.2) follows  immediately by the Mellin inversion 

582 and the  latter gradually refined by Prasad [ 2,  4, 51 theorem  [27]. 
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Our  next  theorem  has  been obtained previously by 
Prasad [ 2, 4,5] but  is  derived  here  from  sharper  assump- 
tions. I t  is proved first on  Re(z) > 1 for  quite  generalf, 
and is extended then to a  larger domain  for  more  re- 
stricted f A preliminary  lemma  provides an  important 
estimate  for  the  latter part. This  result,  together with ad- 
ditional hypotheses, yields an expansion of M [ f ;  z ]  in 
powers  and logarithms. 

Lemma I For all positive t ,  any real y ,  and any positive 
c, P ,  q ,  x, let 

g ( t )  = tz-'e-ct with z = x + iy, 
g ( p ,   q ;  t )  = ( 2 ~ i ) - * r ( z )  (c + s)-*eStds. ( 2 . 5 )  

Then  for all positive t ,  

iq I-, 
2vtlg(p, q ;  t )  - g ( t )  I 5 r(x)e"iYi(p-" + q-"). ( 2 . 6 )  

Proof By a simple deformation,  the inversion integral for 
the  Laplace transform [ 281 yields 

for all positive t ,  where  the  contour C runs from --oo to -ip 
to iq to --oo. If we define 

l ( r )  = (c + s)-zestds 

for  any  nonzero  real r, then  we  obtain 

ir 

( 2 . 8 )  
ir-m 

2ni t [g(p ,   4 ;  t )  - d l ) ]  = t T ( z ) [ l ( q )  - I ( - p ) l  ( 2 . 9 )  

by subtraction.  We now make  direct  estimates of these 
two remainder  integrals,  though we might express them 
both  as incomplete  gamma  functions. 

Indeed if --oo < s 4 0 and if 4 = arg(s + c + ir) then 
141 4 n-, so that 

1 ( s  + c + ir)-zI = 1s + c + irl-Ee-mu 5 ~ r ( - ~ e * ' ~ '  . (2 .10)  

The  result now  follows by substitution  from Ir( x) 1 5 
r ( x )  [ 291, and 

l l ( r ) l =  1 f' (s  + c + ir)-zestt+"'dsI 
-m 

5 I r l  -ze"lyJ = t - l ( r (  - "er lY l  ( 2 . 1 1 )  I:= 
Theorem 2 If L f ( s )  converges absolutely on  Re(s) 1 -c 
for  some c > 0, then M [ f ;  23 converges absolutely on 
Re(z) > a for  some a 5 1, and 

~ [ f ;  = (2n- i ) -1r(z )  J ( -3)  -"Lf( s) ds, 
-c+im 

-c-im 

at  least  on  Re(z) > 1 .  This identity extends  to any  larger 
half-plane Re(z) > b for which the integral converges 
uniformly in z on  compact  subsets. I t  extends in particu- 

lar at least  to  Re(z) > 0 whenever f ( t )  has bounded  var- 
iation on some  neighborhood of the origin. 

Proof For any  complex z, let 

g ( t )  = e t , h ( t )  = e""ft)  on ( 0 ,  +m). (2 .13)  

Then h is in L'(0 ,  + w )  by hypothesis, so that 

-Cf z-1 

t"(t) = tx-le-cth( t )  (2 .14)  

is in L' ( 0 ,  +m), at  least  for  Re( z)  2 1 .  For any real w,  let 

g (w)  = lom exp(iwt)g(t)df = r ( z )  ( c  - iwl-2, 

h ( w )  =lom e x p ( i w r ) h ( t ) d t = L f ( - c - i w ) .  (2 .15)  

Then d is in L'(--oo, +m) for  Re(z) > 1 ,  so that 

M [ f ;  21 = loW g ( t ) h ( t ) d t  

= (27.r)" '@(-w)h(w)dw (2.16) 
-m 

by the  Parseval  theorem [ 3 0 ] ,  which is the desired re- 
lation. 

If the integral converges uniformly in z on some  open 
set, then it defines a holomorphic  function of z on  that 
set [ 3 1 1 ,  so that  the result extends by analytic continua- 
tion to  any half plane with the  stated  property.  In par- 
ticular iff  has bounded  variation on [0, to) and  is  zero 
on [ t o ,  + m )  then 

~ f ( s )  = JR e-sy( t )d t  = [-s-le-stf( t)]? 

+ s-' e-"df(t) = O(s") as 1st + m (2 .17)  

through  Riemann-Stieltjes  integration by parts [ 321, so 
that (2 .12)  holds  for  Re(z) > 0 by this remark.  Thus, 
in proving the  last  statement, we may suppose  that f 
vanishes  on [0, t o ) ,  in which case M [ f ;  z] converges 
absolutely for all z. 

If z = x + iy with x positive and y real,  then g and h are 
in L'(0,  +m) , so that g and h are bounded. If g ( p ,  q ;  f )  is 
given by (2 .5)  with p and q positive, then 

( 2 ~ ) "  g ( - w ) h ( w ) d w =  g ( p ,  q; t ) h ( t ) d t  (2 .18)  

by Fubini's theorem. As p and q approach +w separately, 
g ( p ,  q ;  t )  approaches g (  t )  uniformly on [to,  +m) by 
Lemma 1, so that (2 .12)  holds for x > 0 in the  sense of 
this  improper  integral. 

3. Convergent expansion 
For  certain transforms M [  f; 23 analytic  at z = 1 ,  and the 
and the  expansion coefficients cn( f) defined by 

-P 1: 
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m 

MM Z I / ~ ( Z )  = x C , ( f ) ( Z -  o n ,  (3.1) 
n=O 

Prasad [5] has introduced and applied the identity 
W 

L f ( s )  = c , ( j )  (s . d / d s ) " ( l  + s)". (3.2) 
n=O 

However,  he  obtains this  result rather formally, under 
analyticity assumptions on M [  Ji 23, whereas  we now re- 
cover this  identity  more  rigorously for  an explicit class 
of functions. The  functions f of interest in this  develop- 
ment are essentially the  Laplace  transforms of certain 
distributions [ 331 with compact  support. To simplify the 
final proof we establish two preliminary lemmas. 

Lemma 2 For any s # -1 there  exists R(  s) 2 (log(s( I 
such that 

P ( s ,  t )  = I / [  1 + s . exp(t)]  (3.3) 

is analytic in the  disc I tl < R (s) and 

(3.4) 
n=O 

Proof For any  complex s, the  points 

t = ( 2 n  + 1) iv - log 1st - i . arg(s) with n 

= 0 , 2 1 , 2 2 , .  . + (3.5) 

are  the singularities of P ( s ,  t ) ,  and  their  distances  from 
the origin are not  less  than 1 log Is( I. For s # "1, none of 
these points is the origin, so that P ( s ,  t )  has  some ex- 
pansion 

m 

P ( s ,  t )  = x p n ( s ) t R / n !  (3.6) 
n=o 

The  stated  form of these p,( s) follows by induction  from 

P O ( S )  = P ( s ,  0) = 1 / ( 1  + s), 
P , + ~ ( S )  = (s . d / d s ) p , ( s )  for n = 0, 1 ,  2;..; (3.7) 

and  the  latter of relations (3.7) follows by equating  co- 
efficients in 

( a / a t ) P ( s ,  t )  = (s . a/as)P(s, t ) .  (3.8) 

Lemma 3 Given 0 < a < b < +a, let g be a complex- 
valued continuous function on [0, +..) with support in 
[ a ,  b] and let gim' be its mth derivative, a distribution 
with support in [ a ,  b] . Then  the integrals 

f (s) = Lg(mJ  (s) = e - s o p (  t )  dt ,  

M [ g ' m ' ;  - = t-5-' ,R, (mJ ( t ) d t  (3.9) 

I 
are analytic for all complex s, while the integral 

G (s) = IoW g (  t )  (-a/ at)  mt-l (s + log t )  -'dt (3.10) 

is analytic for s = a, and all complex s, except  perhaps 
-log b 5 s 5 -log a.  Moreover 

~ [ g ' ~ ) ;  -31 = ~ [ f ;  I + $ ] / r ( ~  + s), I 
G ( s )  = n!c,(f)s-n-', 

ro 

n=O 
(3.11) 

where  the c,(f) are defined by (3.1). 

Proof Integrating by parts, we obtain [ 341 

Lg'm'(s) = srnLg(s) = sm lom e-"g(t)dt, 

M[g'mJ; - s] = (s + m)  ' .  . (s + l ) M [ g ;  - s - m ] ,  

(3.12) 

both of which are  entire,  since  the  support of g is com- 
pact. If 

K (s, t )  = t-' ( s  + log t )  -' (3.13) 

and if a 5 t 5 b, then K ( s ,  t )  is analytic for s = a and all I 
complex s, except  perhaps "log b 5 
holds for (-a/ at) mK (s, t )  and  thus 
by (2.1) and (3.12), 

s 5  -log a.  The  same 
for G(s) . However, 

Hence by (3.1)  and  Taylor's theorem 

n !  c,(f) = ( d / d s ) n M [ g ( m ) ;  -SI,=,. (3.15) 

Moreover, if 1 log tl < 1 si, then 
OE 

K ( s ,  t )  = s-n-'t-'(-log t )  
n=O 

(3.16) 

Indeed, if I log a / ,  /log bl < 1 S I ,  then the  series  (3.16), and 
all its t-derivatives, converge uniformly on  a 5 t 5  b. By 
the continuity of g(m' as a  linear  functional on test func- 
tions [ 35, 361 we can integrate  term by term  to  conclude 

r m  

m 

(3.17) 
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=lom g ( t ) [ ( - a / a r ) m ( a / a z ) “ t - “ ” ~ ~ = , d t  

= [ ( d / d z ) n  g ( t )  . (-a/at)”t-”-:dtI,,, 

= ( d /  dz) nM[ gfrn); - z] z=o. (3.18) 

n 

To complete the proof we compare (3.15) and (3.18). 
To state  our final result  we recall some  further defini- 

tions. An  entire  function f is said to  have order u if 

f ( t )  = o[exp(ltl‘+‘)] as It( -+ 00 (3.19) 

for all E > 0. A function of order a is said to have t y p e  
b if 

f ( t )  = O[exp( ( b  + eltl”)]  as It1 + w (3.20) 

for all E > 0. Functions of this sort have been studied 
elsewhere in great detail [ 37, 381. 

Theorem 3 Let .f be an entire  function which is bounded 
by some polynomial on the imaginary axis,  has order 1 
and type b for  some positive b, and satisfies 

f(t) = O[exp(-at)]  as t + + 00 (3.21) 

for some positive a. Then M [  f; 23 / r ( 2 )  is an entire  func- 
tion of z, and (3.2) holds for [si  > max (a, b, a-‘, b-’), 
where the infinite sum is absolutely  convergent. 

Proof  By our first two  assumptions and a  result of distri- 
bution theory [ 391, f is the bilateral Laplace  transform 
of some generalized function g with support in  [-b,  b] . 
By the assumption (3.21) and the inversion integral for 
such  transforms [ 401, the  support of g lies in [a ,  b] . For 
some finite n and any e > 0, 

n 

d l )  = (d/dt)”g,( t )  (3.22) 
rrL=O 

by a  standard  decomposition  theorem [4 1 1, for some con- 
tinuous  functions g, with support in ( a  - E, 6 + e ) .  Thus 
we may le t f= Lg‘*’ without loss of generality,  where s 
is a  continuous  function with suppor 

If Jlog uI 5 max(1log ( a - e ) I ,  [log 
< Jlog Is11 then 

(s + u)” 

= ( 2 4 - l  f d u / u ( u  +log u ) (  
lul=R 

’t 

1 

in ( a  - E, b + E ) .  

b + e ) ( )  < R = l u (  

+ se’)). (3.23) 

Thus by Lemmas  2 and 3, partial integration, and Fubini’s 
theorem, 

x $  ( - a / a u ) m K ( u ,  u ) P ( s ,  u)du 
u/ = R  

= (2& $ P ( s ,  U)G(U)dU. (3.24) 
Iu(=R 

If log 1st > R,  then (3.4) and (3.11)  are  both absolutely 
convergent,  whence 

m 

n!c,(J’) (s . d /ds ) ” (  1 + s ) - ” / r z !  (3.25) 
n=n 

is also  absolutely  convergent. However  the sum in (3.25) 
is obtained from the  last integral in (3.24) through evalu- 
ation by residues. 
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