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On Some Relations between the Laplace and

Mellin Transforms

Abstract: Several earlier papers have applied some identities relating the Laplace and Mellin transforms; this note develops certain
such identities, achieving greater generality and rigor. Specifically each of these transforms is expressed as a contour integral involving
the other, and an expansion of the Laplace transform is derived in terms of the functions (s - d/ds)"(1 + s) ™" with coefficients defined

by the Mellin transform.

1. Introduction
Given a complex-valued locally integrable function f on
[0, +x), we define its Laplace transform by

Lf(s) =f exp(—st) f(5)dt (1.1)

and its Mellin transform by

MLf: 2] = f £ () d (1.2)

whenever and wherever these integrals exist. Typically
M f. 2] is absolutely convergent on some strip a <
Re(z) < b, and Lf(s) is absolutely convergent on some
half-plane Re(s) > ¢ [1]. However, both integral trans-
forms may admit analytic continuations beyond these
convergence domains.

Certain relations between these transforms have been
found useful in approximating density functions for sums
and products of random variables [2-6], and in gener-
ating asymptotic series for these and other integral trans-
forms [7-11]. Several such relations from the former
context are proved here with greater generality and rigor,
from more explicit assumptions on f. These results are
summarized in three theorems. Various authors have
discussed similar applications, either without transform
results [ 12-15]) or only for special densities [ 16-20].
We hope that more careful proofs of these relations will
facilitate their application in such contexts.

2. Integral relations

In this section we consider a locally integrable function
f as before, and extend some integral relations between
its two transforms. Our first theorem reviews two con-
nected identities, the former noted implicitly by Handels-
man and Lew [21] and derived explicitly by Prasad [22],
and the latter gradually refined by Prasad [2, 4, 5]

and proved as stated by Handelsman and Lew [9, 10].
For functions with suitable expansions near +o, further
results of this type can be obtained by analytic continu-
ation, even though the integral for the Mellin transform
may converge in no strip [23].

Theorem 1 1f M[ £, 2] is absolutely convergent on a <
Re(z) < b with a < 1, then

M(fiz] = MILfi 1 —2]/T'(1 —2) (2.1

on a < Re(z) < b, and

€ +ioo
Lf(s) = Qumi)™" f - MIf (1 - 2)s"dz (2.2)
on Re(s) > 0, for any ¢ with a < ¢ < min(1, b).
Proof If a < Re(z) < min(1, ») and if
glu) =u'" ™, h(u) = u*f(u") on (0, +), (2.3)

then «'¢(u) and u *h(u) are in L' (0, +). By hypothe-
sis Lf(s) exists for Re(s) > 0; by the Mellin convolution
theorem [ 24]

MILE 1 - 2] =f: s~ds fw (1) dt

=f° s [ g5/ h(w dufu

= Mlg; 0JM[h; 0]
=T(1—2)M[Ff z]; (2.4)

and by analytic continuation, (2.4) holds for a < Re(z) <
b. If z=c + iy and if y = *+, then M[Lf; z] decreases
exponentially by a gamma function estimate [25, 26],
so that (2.2) follows immediately by the Mellin inversion
theorem [27].
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Our next theorem has been obtained previously by
Prasad {2, 4, 5] but is derived here from sharper assump-
tions. It is proved first on Re(z) > 1 for quite general f,
and is extended then to a larger domain for more re-
stricted f. A preliminary lemma provides an important
estimate for the latter part. This result, together with ad-
ditional hypotheses, yields an expansion of M[f; z] in
powers and logarithms.

Lemma 1 For all positive ¢, any real y, and any positive
¢, p, q, X let

—Ci

g(t) = "¢ with z=x+ iy,

g(p, q; ) = (2mi) 'T'(2) f (c + 5) *e’ds. (2.5)

—ip

Then for all positive ¢,
2rtlg(p, g3 1) — g(D| = Tx) ™ (p™ + ¢7%). (2.6)

Proof By a simple deformation, the inversion integral for
the Laplace transform [28] yields

2mwig(1) =T (2) f (c + 5) "e"ds (2.7)

for all positive ¢, where the contour C runs from —« to —ip
to iq to —. If we define

1(r) = -[" (c +5) %e"ds (2.8)

r—w

for any nonzero real r, then we obtain

2nitlgp, ¢ ) — g1 =T ) [I(q) —I(=p)] (2.9)

by subtraction. We now make direct estimates of these
two remainder integrals, though we might express them
both as incomplete gamma functions.

Indeed if — < s = 0 and if ¢ = arg(s + ¢ -+ ir) then
|¢| = =, so that

[(s+c+inT|=[s+c+if ™= (2.10)

The result now follows by substitution from |T(x)| =
I'(x) [29], and

[ (r)| = | f (s + ¢+ ir) " " ds|

0
= |r|"e"’”’ f e“ds =t || 2l (2.11)
Theorem 2 If Lf(s) converges absolutely on Re(s) = —c
for some ¢ > 0, then M[f; 2] converges absolutely on
Re(z) > a for some a = 1, and

MU = ) T@) [ () LAs)ds,

at least on Re(2) > 1. This identity extends to any larger
half-plane Re(z) > b for which the integral converges
uniformly in z on compact subsets, It extends in particu-
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lar at least to Re(z) > 0 whenever £(1) has bounded var-
iation on some neighborhood of the origin.

Proof For any complex z, let

g(0 = e “F 7, (1) = €F(1) on (0, +). (2.13)
Then h is in L' (0, +%) by hypothesis, so that
£ = e h() (2.14)

is in L'(0, +), at least for Re(z) = 1. For any real w, let

g(w) =r exp(iwn)g(ndt =T (2) (c — iw) 7,
0

h(w) =f exp(iwt) h(t)dt = Lf(—c — iw). (2.15)
0
Then ¢ is in L' (—», +) for Re(z) > 1, so that

Mif A= [ s

= (2m) ! f (=) h(w) dw (2.16)
by the Parseval theorem [30], which is the desired re-
lation.

If the integral converges uniformly in z on some open
set, then it defines a holomorphic function of z on that
set [31], so that the result extends by analytic continua-
tion to any half plane with the stated property. In par-
ticular if f"has bounded variation on [0, #)) and is zero
on [¢,, +) then

L) = [ = [=s"e (01,0

+ 571 fo edf(n) =0(s") as|s] > (2.17)

through Riemann-Stieltjes integration by parts [32], so
that (2.12) holds for Re(z) > 0 by this remark. Thus,
in proving the last statement, we may suppose that f
vanishes on [0, ¢}, in which case M[ f; z] converges
absolutely for all z.

If z = x + iy with x positive and y real, then g and h are
in L'(0, +), so that ¢ and / are bounded. If g(p, q: ¢) is
given by (2.5) with p and g positive, then

q o
@™ [ sembondw=[ ¢p, g Dh0d 219)
_1) to
by Fubini’s theorem. As p and q approach +« separately,
g(p, q; t) approaches g(¢) uniformly on [#,, +%) by
Lemma 1, so that (2.12) holds for x > 0 in the sense of
this improper integral.

3. Convergent expansion
For certain transforms M[ f; z] analytic at z= 1, and the
and the expansion coefficients c,(f) defined by
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MIF 2T =S e,(f) (z— 1),

Prasad [ 5] has introduced and applied the identity

@

Lf(s) =Y ¢, (N (s- d/ds)"(1+s)7",

n=0

(3.2)

However, he obtains this result rather formally, under
analyticity assumptions on M| f; z], whereas we now re-
cover this identity more rigorously for an explicit class
of functions. The functions f of interest in this develop-
ment are essentially the Laplace transforms of certain
distributions [33] with compact support. To simplify the
final proof we establish two preliminary lemmas.

Lemma 2 For any s # —1 there exists R(s) = |log|s]]
such that

P(s,) =1/[1+s - exp(s)] (3.3)
is analytic in the disc |7] < R(s) and
P(s,) = (*/n)(s-d/ds)" (1 +s)7". (3.4)
n=0
Proof For any complex s, the points
t=(2n+ D)ir —log|s| —i - arg(s) with n
=0,%1,=%2, - (3.5)

are the singularities of P(s, 1), and their distances from
the origin are not less than [ log |s| |. For s # —1, none of
these points is the origin, so that P(s, ) has some ex-
pansion

P(s,) =S po(s)f'/n! (3.6)

The stated form of these p, () follows by induction from
p,(s) =P(s,0) =1/(1+s),

Poii(8) = (s - d/ds)p,(s) forn=10,1,2,--+ (3.7)

and the latter of relations (3.7) follows by equating co-
efficients in

(8/at)P(s, 1) = (s - 8/3s)P(s, 1). (3.8)

Lemma 3 Given 0 < a < b < 4+, [et g be a complex-
valued continuous function on [0, 4+) with support in
[a, b] and let g™ be its mth derivative, a distribution
with support in [ a, b]. Then the integrals

5 = Lg™(s) = [ g™

0

M[g(m); . S] Zf tas—1’g$m)(t) dt (39)
Q
are analytic for all complex s, while the integral
G(s) =f 2() (—a/ )™ (s + log 1) 'dt (3.10)
0

(3.1)

is analytic for s = o, and all complex s, except perhaps
—log b = s = —log a. Moreover

Mig™;— sl =M[fi1+5s]/T(1+s),

G(s) =3 nle,(f)s™, (3.11)

where the c,(f) are defined by (3.1).
Proof Integrating by parts, we obtain [34]

Lg™(s) = s"Lg(s) = s™ f e Ma(t)dr,
[}]

M[g™;~s)=(s+m) - (s+ )M[g:— s~ m],
(3.12)

both of which are entire, since the support of g is com-

pact. If

K(s,) =t (s+1logn™ (3.13)

and if a = ¢ = b, then K (s, t) is analytic for s = o and all
complex s, except perhaps —log b < s= —log a. The same
holds for (—a/at) K (s, 1) and thus for G (s). However,
by (2.1) and (3.12),

Mg™;—s]=(s+m)-(s+ D)M[Lg: 1 + 5+ m]
=T(l+s+m)

sz FLe()dt/T(1 + 5)

=M[fi1+s)/T(1+5). (3.14)
Hence by (3.1) and Taylor’s theorem
nt e, (f) = (d/ds)"M[g"™; — s],_, (3.15)
Moreover, if |log 7| < |s|, then
K(s,) =Y st (~log n)". (3.16)

n=0

Indeed, if |log af, |log b| < |s|, then the series (3.16), and
all its r-derivatives, converge uniformly on a = t < b. By
the continuity of ¢™ as a linear functional on test func-
tions [35, 36] we can integrate term by term to conclude

G(s) =fe K(s, )g™ () dt
0

= i M, (g)s ", (3.17)

where

M0 = [ ™0 - (~log 0"

- f g™ (0 [(8/ 82"
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= [ s@toran o/ 8",

= L/aa” " eln) - (=a/ o)™ i),

= (d/dz)"M[g('");—z]z:O. (3.18)

To complete the proof we compare (3.15) and (3.18).
To state our final result we recall some further defini-
tions. An entire function f is said to have order a if

F(r)=O[exp(Jt)"*)] as |¢| = (3.19)

for all £ > 0. A function of order «a is said to have rype
bif
f() =0[exp((b+elt|")] as [t = = (3.20)

for all £ > 0. Functions of this sort have been studied
elsewhere in great detail {37, 38].

Theorem 3 Let f be an entire function which is bounded
by some polynomial on the imaginary axis, has order 1
and type b for some positive b, and satisfies

f() =Olexp(—at)] ast > + (3.21)

for some positive a. Then M[ f; z] /T'(z) is an entire func-
tion of z, and (3.2) holds for |s| > max (a, b, a™', b™"),
where the infinite sum is absolutely convergent.

Proof By our first two assumptions and a result of distri-
bution theory [39], fis the bilateral Laplace transform
of some generalized function g with support in [—b, b].
By the assumption (3.21) and the inversion integral for
such transforms {40], the support of g lies in [ 4, b]. For
some finite » and any £ > 0,

g() =3 (d/d)™g, (1) (3.22)
m=ag

by a standard decomposition theorem [41], for some con-

tinuous functions g, with support in (a — g, b+ €). Thus

we may let f= Lg™ without loss of generality, where g

is a continuous function with support in (a — €, b + €).
If |log 4] = max(|log (a —¢)|, [log (b+¢)|) < R=1v|

< |log |s|] then

(s+u™

= (2mi)™ §

|vl=R

dv/u(v +log u) (1 + se’). (3.23)

Thus by Lemmas 2 and 3, partial integration, and Fubini’s
theorem,

Lf(s) =f e#“tmdtf e gu)du
0 0

=f g(u) (—a/ ow)™ (s + u) "du

NOVEMBER 1975

- (Qmi) F 2(u)du
ng (—a/au)"K (u, v) P(s, v)dv
lol=R
= (2mi) ™ jé P(s. v) G () dv. (3.24)
{ol=R

If log |s) > R, then (3.4) and (3.11) are both absolutely
convergent, whence

©

S onle,(f) (s - d/ds)"(1+5)" /! (3.25)

n=0

is also absolutely convergent. However the sum in (3.25)
is obtained from the last integral in (3.24) through evalu-
ation by residues.
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