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Mathematical  Construct  for  Program Reorganization t 

Abstract: A mathematical  formalism is described  through  which  a  program is given  a  symbolic representation  and, with the appliha- 
tion of several  basic  formulas, may be transformed into an  equivalent representation giving rise to a  reorganized  program. Examples re 
given in which programs are simplified (e.g., code  is  reduced) or reorganized into a structured  form. In effect a mathematics is  descrijed 
that applies to programs in much  the same  manner  as Boolean algebra  applies to switching circuits. 

Introduction 
Structured programming is a  style  whereby proper pro- 
grams  (programs with one input  and one  output)  are 
composed  of, and only  of, the following components: 

1 .  Sequential  coding  blocks 
2. IF-THEN-ELSE decisions 
3. DOWHILE (DOUNTIL) iteration  blocks. 

I t  is widely known [ 11 that all proper programs can  be 
written as  structured programs. Adherence  to  the struc- 
tured programming style leads  to  the elimination of GOTO 

statements, which  undoubtedly poses  the most difficulty 
to programmers  attempting to  structure  their programs. 

This problem  posed by structured programming is 
compounded  by other  concerns.  One wants to avoid 
needless duplication of code.  Use of a subroutine may 
provide  an  answer, possibly at a cost  to clarity.  A slight 
redesign of the program may solve this  problem just  as 
well. However, redesign  may not be apparent.  Other 
problems concern how to combine  decisions (possibly 
making two DOWHILES into  one)  and seeing  how  deci- 
sions  influence each  other so that  some  decisions may be 
transposed  for clarity or  dropped  altogether for simplicity. 

A  formal  method of analysis is described in this paper 
that is intended to  make  these problems  more transparent 
and their solutions more accessible. The method  strongly 
conforms  to  the  structured programming approach.  How- 
ever, unlike other  approaches  to program  transformation 
[2], this  method uses  an algebraic structure  rather  than a 
set of transformation  rules. 

The  next section presents  the  fundamentals of the 
method in terms bearing a strong resemblance to Boolean 
algebra.  Increasingly difficult situations  (specifically, the 
DOWHILE and the DOUNTIL) are examined in the follow- 
ing two sections so that all programs fall within the  range 
of the technique. We then present  an  elementary  theorem 
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whose corollary  provides  a rather powerful programmmg 
technique, which is  then  demonstrated.  The final section 
attempts  to put the method in perspective  as a tool for 
programming analysis. 

Fundamentals 
Proper programs are composed of two  elements, namely 
processing  blocks and decisions. The term  processing 
block refers to a  self-contained  segment of code with one 
input  and  one  output. By the variable nature of this term, 
whole  programs, subroutines,  or pages of code may be 
called processing  blocks, as may any assembler language 
instruction having one input and  one  output.  For exam- 
ple,  a  subprogram that  computes  the discriminant of a 
quadratic equation in a  program that  computes  the solu- 
tions of the equation may be called a  processing bloek. 
In this paper, processing  blocks are  represented by the 
capital letters of the  alphabet.  The  class of processkg 
blocks is denoted by n. An equivalence  relation, =, d y  
be  induced on n. Two processing  blocks,  A and B, have 
A = B if and  only if when  A and B operate on some  de- 
fined set of input states they produce  the  same  settof 
output  states. 

The  essence of a  decision is a  truth-valued statement 
or predicate. Any  such  statement  has two logical valuks: 
T, meaning that  the  statement is true in its context, a  d 
F, meaning that  the  statement is false in its context. T s 1s 
value determines various paths in a program. In this 
paper, all predicates  are  represented by the lower case 
letters of the  alphabet. If s is a  predicate, S represents  the 
negation of s. For  predicates s and t ,  sVt represents s OR 

t in the nonexclusive sense  and sAt represents s AND t .  
The  class of predicates is denoted by r. The  truth  tabies 
for  these  conventions  are given in Table 1 .  

Suppose  A, B E rI and a E r. The  statement A +a B 
represents  the  statement IF a, THEN A, ELSE B [Fig. 
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Figure 1 Basic  conventions. 

(a) (b) 

Figure 2 Associative law. 

(a)  

Figure 3 Distributive law, 

1 (a)]. By convention in any expression using +a, the 
block  processed  when the value of a is true is placed to 
the left of +a. An at most  intuitive  motivation behind this 
use of + lies in its OR connotation  found in Boolean al- 
gebra. 

Similarly, the  expression AB where A, B E II repre- 
sents  the sequential  processing of A then  B (Fig. 1 (b)) .  
The convention is to write  the  blocks  from left to right in 
the order in which they are being processed.  Again, the 
intuitive motivation for this multiplicative notation can 
be  found in Boolean algebra. With these conventions es- 

576 tablished,  elementary  relationships can now be derived. 
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Consider  the expression A +a B, where A, B E n and 
a E r. Precisely the same  processing would be achieved 
if B  were  processed  when ii is true and if A were pro- 
cessed when ii is false. In short,  for A, B € n and a E r, 
A +a B = B +, A. ( 1 )  

The  next expression  considered  is (A f a  B ) +b C, 
where A, B, C E II and a, b E r. This  expression, which 
represents  the situation in Fig. 2 (a) ,  is an IF within an 
IF. Note  that A is processed  when a and b are true. How- 
ever, given that a is  false or b is  false, then B would be 
processed if b were  true  and C would be processed if b 
were false. This  restatement is symbolically represented 
by A (B +, C) .  Figure 2(b) illustrates  this  expres- 
sion. Thus, it  may be stated  that  for A, B, C E n and a, 
b E r, 
(A +a B) +b C = A +anb (B +b C ) .  (2a) 

A similar argument  provides the following analogous re- 
sult. For A, B,  C € II and a, b € r, 
A +a (B +, C )  = (A +, B )  fuVb C.  (2b) 

This expression is  stated more for reference as a useful 
relationship than  as an  elementary  relationship in that 
it  is  readily  derived  from ( 1) and (2a) in the following 
manner. 

A f a  (B +b C )  = (B +b C )  +a A 

= (C +;B) +o A 

= C +;,,a (B +a A)  

= C (A B)  

= (A +a B) C. 

The next  elementary  relationship is derived from the 
rather interesting expression A +a A, where A E n and 
a E r. For  either  truth value of a block A is processed. 
Thus, a rule of idempotency  is  introduced. For A E rI, 
a E r, 
A f a  A = A. ( 3 )  

The rules given unfortunately do  not all have equiva- 
lent counterparts  for block multiplication. For example, 
for A, B E II, AB  does not  necessarily equal BA. A quick 
check of the program having A = “VAR = 1 ”  and  B = 

T A R  = 2” bears  out this  fact. Furthermore, AA and A 
need  not be  equal,  as  seen by taking A = T A R  = 

VAR + 1 . ”  
One may allow in n the  existence of a block that con- 

sists of null processing. In flowchart language, this could 
be  represented  as a flowline. This block is given the 
symbol 1. The appropriateness of this  convention is 
shown in the following elementary expression whose 
verification is  immediate. For A E n, 
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A1 = 1 A = A .  (4) 

By proceeding along the lines of an algebraic  develop- 
ment,  the relationships between  our fundamental opera- 
tions are now studied in terms of a  distributive law. It is 
therefore  natural  to  consider  the  expression (A +a B)C 
with A, B,  C E n and a E r. This simple  program is il- 
lustrated in Fig. 3 (a).  If a is true, AC will be  processed. 
Otherwise,  BC is processed. This analysis is summarized 
by the  expression AC +a BC  (Fig. 3 ( b ) ) .  This yields the 
first distributive law. For  A, B,  C E n and a E I', 

(A  B)  C = AC +a BC. ( 5 )  

Interestingly  enough such a general statement  for dis- 
tribution from  the left does  not hold, i.e., C (A +a B) # 
CA +a CB.  The  fact  that C could alter  the  truth value of 
a destroys  any  hope  for  such a distributive law, and  ex- 
amples are easily generated.  However, if C and a are 
said to be independent when  the processing of C leaves 
the  truth  value of a unaltered,  then  the following distribu- 
tive law holds. For  A, B,  C E n and a E r, 
C (A +a B) = CA +a CB, (6)  

provided C and a are independent. 
These rules  complete the fundamentals.  We  now  pre- 

sent  two  examples to illustrate  how these  elementary 
relationships can simplify and  structure  code. 

The first example  concerns  the program  illustrated in 
Fig. 4 (a). The symbolic representation  for this  program 
is C +a ( C  +, B).  In  accordance with the  fundamentals 
presented,  the following reduction proceeds 

C +a (C +, B) = (C +a C )  B 

= C tuVb B 

This new expression, illustrated by Fig. 4 (b) ,  reflects 
the removal of a redundant processing  block. 

A somewhat  more complex  example is  shown in Fig. 
5 (a). In writing the  equation  for this or any program, 
we  proceed in a top-down  fashion,  symbolizing  decisions 
and blocks on  every  path until all decisions  and  blocks 
are  represented  and  the  end flow line is reached.  Thus, 
the  equation  for this example and  its  reduction are now 
given. 

( ( C + , B ) + , B ) + , A B = ( C + , , , ( B + , B ) ) + , A B  

= (C tcAb B)  AB 

= C +a,,bnr (B +a AB) 

= C ( 1 B +a AB) 

= C SaAbAr ( 1  +a A )  B. 

The new representation  for  the program is shown in 
Fig. 5 (b).  Note  that  the program is now in structured 
form with as many unique  processing  blocks as before 
and  with no block duplications. 
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Figure 4 Example of code reduction. 

(a)  

Figure 5 Example of code structuring. 

Table 1 Truth table. 

S S s t svt sAt 

T F T T  T T 
F T T F T F 

F T T F 
F F F F 

~ ~~ 

Trivial decisions and program breakup 
Although the  elementary relationships appear  to be  a 
good foundation for program simplification and structur- 
ing, they  are incomplete  by  themselves. For  example, 
consider  the program represented by AB +a BC.  Unless 
certain conditions, such  as A = 1 with  B and a indepen- 
dent  or C = 1 ,  are known to hold, the  fundamental  for- 
mulas appear useless in combining the  two B  blocks into 
one B  block. The  purpose of this  section is to provide a 
method to achieve this  combination. 

Consider  the program represented by AB +a C D  (Fig. 
6 (a) ) . If the processing of blocks  A or C did not affect 577 
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(a)  (b)  

Figure 6 Program breakup by the  use of bit settings. 

(a)  (b) 

Figure 7 Program breakup with trivial decisions  to  achieve 
code reduction. 

t 

(a )  (b) 

Figure 8 Two basic looping techniques used in structured 
programming. 

the  truth  value of a, then this  program  could be  broken 
up so as  to  have  the  representation  (A +, C)   (B  +, Dl .  
If,  however,  the  truth  value of a could be affected  by 
processing  A or  C,  the  same effect could  be  achieved  in 
the following manner. One may, if a is true,  process A 
and  set a bit, b = 1 .  Otherwise,  process C and  set b = 0. 
Then place  a check  on b and  process B if b = 1 and D if 
b = 0 (Fig. 6(b)) .  

This bit  setting and testing  provides a method of pro- 
578 gram breakup  that is rather effective  in  program simpli- 
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fication. To describe this process  on a more formal  level, 
a dichotomic  variable is introduced  into  the program. 
Ideally this  variable  should be  independent of the  entire 
program so as  to avoid  confusion and to avoid accidental 
setting (more  relevant in the  next  section).  Correspond- 
ing to  the  two settings of this  variable are the  representa- 
tions T and T, respectively.  We call T the positive  trivial 
block and T the negative  trivial block. Code may  now be 
introduced  that  depends  upon  whether T or T has  been 
most  recently executed.  Thus,  the decision  t is intro- 
duced, which, when  true, indicates that T has been most 
recently executed  and  which,  when false,  indicates that 
T has been  most  recently executed.  Decision t is called 
the trivial  decision  with respect  to T(T). Programming 
situations may introduce  several trivial devices.  Thus, 
in such  cases, it would be  advisable to standardize  the 
notation by subscripting  t, T ,  and  A  notion similar 
to this is used  in [ 21. 

In line with these  thoughts  and  conventions,  the an- 
alysis of the situation  posed  earlier, where a  bit  was set, 
yields the following relationship. For  A, B, C,  D E II and 
u E r, 
AB +, C D  = (AT +, CT)  (B +, D )  . (7) 

It  is  not difficult to  see  that  (7)  can be  generalized for  an 
arbitrary  number of blocks in the following manner. For 
Ai, B, E n ( i =  l; . . ,  n) and a E r, 
A,.  . . A, +, B, . . . B, = (A, T +, B, T) (A, +, B,) 

. . . (A, +, B,), (8) 

where T(T) is independent of Ai (Bi)  for 1 5 i 5 n. 

Note  that by having T(T) an independent  variable, 
for 1 5 i 5  n, A, T = TA,  (B,T = TB,).  In  short, indepen- 
dence gives  commutativity. 

Equation (8), as it is stated,  tends  to be a bit misleading 
for  A, and B, may be null. Bekause of this, (8) is now 
rewritten in the following form. 

A , . . . A , + , B , . . . B , = ( T + , ~ )   ( A , + t B , )   ( A , + , B , )  

" 

... (A,+, B,). 

Recognizing the  fact  that T +, r is actually  a device 
for storing the  truth value of a in an  independent location, 
we  adopt  the following notation to  restate (8) in a more 
convenient form. Let $ ( a )  stand  for  the storage of the 
truth value of a, Le., T +,T. Let a' be the decision  "Was 
the value of a true when last stored?" Now  for  Ai, B, 
E II ( i =  1; . . ,  n) and a E r, (8)  becomes 

A,. . . A, +, B, . . . B, = $ ( a )  (A, +,, B,)  (A, +,, B,) 

. . . (A, fa, BJ. (9) 

For  an  example of the usage of the  concept of trivial 
decisions,  consider  the program in Fig. 7(a) .   I t  might 
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be desirable  to  attempt  to eliminate the  one  occurrence 
of B. The following conversions of the program  succeed 
in doing just that. 

A ( l + , B ) + , C B = ( A T + , C ~ )   ( ( l + , B ) + , B )  

= (AT +, CT)  ( 1  taA, (B f, B))  

= (AT +, CT) ( 1 +“,, B).  

The equivalent  program is illustrated in Fig. 7 (b) .  
As  for  the program  posed in the beginning of this 

section, namely to eliminate one of the B  blocks in AB 
+, BC,  the following calculations  illustrate the procedure. 

AB +a BC 

= (ABT +a BT) (1 +, C )  

= (ATB +a T B )  ( 1 +t C )  (independence of T(T) ) 

= (AT+,T) B ( 1  +, c). 
For a  more  general  and dramatic application of these 

principles, (9) is now applied to  the program  whose 
representation is ACDFG +, BCEFH. 

ACDFG f, BCEFH 

= d ~ ( a ) . ( A  +,, B) (C f u n  C )  (D  +,, E)  

X (F  F) (G +a, HI  

= $ ( a )  (A +,, B) C (D  +,, E)  F ( G  +,, H) .  

Thus, it can be seen  that trivial decisions  are instru- 
mental in program breakup for  program simplification. 

Symbolic representation of loops, the DOWHILE 
and  the DOUNTIL 
Many  programs represent iterative processes.  This is 
achieved  through  program  control via jumps  to earlier 
sections of the program.  A statement commonly used to 
produce this effect is the GOTO. However, in line with 
structured programming, these effects are  to be  produced 
only by the DOWHILE and DOUNTIL statements.  In  their 
most  elemental  forms, each  consists of a predicate a and 
a  processing block A. The precise logic of these state- 
ments is conveyed by the illustrations in Fig. 8 (a)  
and (b).  

An algebraic approach  to the DOWHILE, the DOUNTIL, 

and loops in general may be  found in the following con- 
siderations. First, if the point where  the logic flows back 
into the program were given an identity such  as  that of 
a  processing  block,  then that point would be  preserved 
and reidentified after  any equation  reduction to a new 
representation. Second, if the  jumps  themselves could 
be  given a similar identity,  then the  loops would be 
broken  and there should be no problem in symbolically 
representing the program. That  approach is developed 

J T 

(a) (b) 

Figure 9 Basic looping techniques are broken apart so as to 
admit  a  symbolic  representation. J blocks and R blocks in each 
diagram  pair up to form  a  loop. 

q 
Figure 10 General program configuration,  which generates 
two reorganization  laws that lend themselves to  the basic looping 
configurations of structured programming. 

Figure 11 Program  reorganization resulting in structured code. 

in this  section. Thus,  for  each  loop, a  “virtual” block R 
is placed at the  point where  the logic flows back, and a 
block J ,  associated with R (via indexing if necessary  to 
avoid confusion) is placed at  the  jump. Block R is called 
a reception block and J is called a jump  block. Blocks 
R  and J are considered to be members of H. 

Consider again the DOWHILE and the DOUNTIL. 

Figures 9 (a) and (b) give alternate illustrations for these 
logics, which yield the logical expressions R (AJ f a  1 )  
and RA ( 1  +a J )  for  the  two  statements, respectively. 5791 
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I AR+, C = (AT+, CT) R ( 1  +, 1) 

(a)  (b) 

Figure 12 Program  reorganization resulting in new structured 
code  that  has become somewhat complicated by trivial decisions. 

In line with these established conventions and in 
line with structured programming, the symbolic  repre- 
sentation of any program involving loops  should be re- 
duced so as  to conform to  the symbolic forms of the 
DOWHILE and  the DOUNTIL just  presented. In order  to 
achieve  these forms,  several  additional  rules are now 
introduced. The first two  rules, which are readily verified, 
concern  the logic illustrated in Fig. 10. Both of these 
rules involve the easily recognized trivial decisions. 

In  the  case of the DOWHILE, for A, B, C E II and a E r, 

= (A +a C)  R, 

because  as t vanishes, so do T and T. Consequently, J 
is not  replaced by TJ. 

The first of the two examples  to which these  concepts 
are applied concerns  the flowchart  shown in Fig. 1 1 (a).  
By placing a  reception block R  and  a jump block J in 
the  appropriate  places,  the loop is broken,  and an equa- 
tion is readily written for  the program. The equation  re- 
duction follows 

R (A(C +b ( 1  +, J ) )  +a B ( 1  +, J ) )  

= R (AT+,  BT)  ((C +b ( I  +c J ) )  +, ( 1  +, J ) )  

= R ( A T + , B T )   ( C + , , , ( ( I + , J ) + , ( I + , J ) )  

= R (AT +, BT)  (C + bAr ( 1  +c J ) )  

= R (AT +a BT) ((c + b , , t 1 )  +,“(bAt) J ) .  

The final equation, a structured  representation of the 
program, is shown in Fig. 1 1 (b).  

The second example is particularly good,  because  as 
it provides an application of the rules just given, it also 
illustrates the problems presented by trivial decisions. 
Indeed, although the program  represented by Fig. 12(a) 
is structured,  the reformed  program has  the  drawback of 
giving trivial decisions  more  than a trivial amount of 
attention. To proceed,  the loop is broken via reception 
and jump blocks to give 

RA  (BJ +a C )  = TR ( (T+, B) AJ C)  
(RB +, 1 )  C (J +b 1) 

In  the  case of the DOUNTIL, for A, B, C E II and a E r, 
RA  (BJ t, C )  = T R   ( B  +, T) A (C +, J )  ( 1 1 )  

One additional rule is now introduced that  enhances 
the applicability of the two  rules just given. The objective 
of this  rule is to  relocate  the position of the reception 
blocks to bring them  into the  same logical path of the 

= (T, +aT1) R (B f t l  1) C (TI J +b 1) 

= (T, +,Tl) T2 R ((T, +,2 T,) 

X (B +tl 1) CJ + hvt,1),  

as  shown in Fig. 12(b). 

DOWHILE or DOUNTIL decisions. More precisely,  con- 
sider (ARB +, CD)  (E +b J ) ,  where R is a reception 
block,  J is a jump block, A, B, C ,  D, E E n, and a, b 
E r. Clearly  R is misplaced for a DOUNTIL. If it could be 
taken out of the IF-THEN-ELSE, then  a DOUNTIL would 
be  possible. The following rule, similar to ( 7 ) ,  provides 
a method by which this extraction can  be  achieved. For 
A, B, C, D E II, a E r, and  R  a  reception  block, 

Associativity theorem 
In the second section,  certain associativity  rules  were 
considered. Although  effective in reorganizing a program, 
these rules presented  the following drawbacks: I )  one 
of the decisions increases in complexity,  and 2)  one 
decision  becomes  duplicated. The purpose of this  section 
is to give  a  condition  whereby these  drawbacks  are elimi- 
nated.  Thus, associativity is made pure, Le., parentheses 

ARB Sa C D  = (AT Sa CT) R (B +, D),  ( 12) are moved, but no decisions  change. The following main 

where  each J associated with  R is replaced by TJ. 

rationale behind replacing J by TJ is that on the  jump  Suppose  there  exists c E r such  that b = a V c ;  then 
only block B would be executed,  as demanded by the 
original IF-THEN-ELSE. Second,  consider  the situation 

theorem  generalizes the goals. 

We now give  a few short  notes  on this  rule. First,  the Associativity  theorem Given  A, B, C E II and a ,  b E r. 

(A +a B) +b C = A  +a ( B  +, C ) .  

580 when  B = D = 1. The rule yields Similarly, if there  exists c E r with a = b A c,  then 
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A +a (B +,, C) = ( A  +, B )  +,, C. 

Proof If b = a V c, then 

(A +, B) +b C = (A +, B) C = A  +, (B +, C).  

Similarly, if a = b A c ,  then 

A +,, (B +b C )  = A + hAc(  B +* C )  = (A +tr B)  +b B. 

Now if a implies b, then b = b V a. Thus,  the  associ- 
ativity  theorem  yields the following corollary. 

Corollary I f  a implies b, then 

(A +, B) +b C = A +a ( B  +b C) .  

The  techniques used to prove these  facts  are elemen- 
tary. In fact,  none of the machinery  developed over  the 
past  few sections  has been used at all. However,  the 
theorem  was presented at this  point  for an application to 
an  example involving a  loop. The  fact  that a conversion 
to a DOWHILE is achieved  without altering the  decisions, 
but indeed by a  transposition of decisions, is significant, 
because  at  the  outset this  transformation may not be 
seen as obvious. 

Consider Fig. 13(a).  Assume  that a implies b. An 
application of the corollary  gives 

R [(AJ +, B)  +b I ]  = R [AJ +a (B +,, I ) ] .  

Figure 13 (b) shows the new structured form of the 
program. 

Conclusion 
We have  presented informally a foundation  for  an alge- 
braically motivated  mathematics that  concerns program 
structuring,  reorganization,  and simplification. It  contains 
some rather basic elements intended to  cover a wide 
range of applications. 

The point of view taken in this paper  has been  more 
practical  than  theoretical. We have, in fact, used these 
techniques in a programming environment and found 
them helpful. However,  there  have been  a few negative 
aspects.  First,  the complexity of the equations  can in- 
crease quite rapidly as larger  programs are investigated, 
adding difficulty and  confusion in manipulating them. 
Second,  the method of breaking apart a  program  with 
trivial decisions, when done  repeatedly,  appears to ob- 
scure  the intent of the program  with too many new vari- 
ables. In fact,  the  use of trivial decisions  to break apart 
RA (BJ +a C )  even  seems a distortion of simplicity. 
(Perhaps this form should  be  considered a basic  pro- 
gramming structure.) 

An interesting aspect of this approach is its  algebraic 
organization, in that it gives the  appearance, roughly, of 
a Boolean algebra  superimposed over  the  predicate 

A a  

%- 

r - i  

I IF 

Figure 13 An  example  illustrating  application of the corollary 
to  the associativity theorem.  In this  example, it is assumed that 
a implies b. 

calculus. The associativity theorem and  its  corollary 
seem  to indicate that  the more  information  known about 
the  predicates in their  relationship to the program, the 
more power is invested in the algebra as a whole. It is 
conceivable that substantial development could be 
achieved along these lines. Because of this aspect, along 
with the fact that this  mathematics does provide  a  clean 
method of program  reorganization,  this  mathematics 
is meaningful and deserves  closer study. 
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