
D. P. Pazel

; i

Communication

1

Mathematical Construct for Program Reorganization t

Abstract: A mathematical formalism is described through which a program is given a symbolic representation and, with the appliha-
tion of several basic formulas, may be transformed into an equivalent representation giving rise to a reorganized program. Examples re
given in which programs are simplified (e.g., code is reduced) or reorganized into a structured form. In effect a mathematics is descrijed
that applies to programs in much the same manner as Boolean algebra applies to switching circuits.

Introduction
Structured programming is a style whereby proper pro-
grams (programs with one input and one output) are
composed of, and only of, the following components:

1 . Sequential coding blocks
2. IF-THEN-ELSE decisions
3. DOWHILE (DOUNTIL) iteration blocks.

I t is widely known [11 that all proper programs can be
written as structured programs. Adherence to the struc-
tured programming style leads to the elimination of GOTO

statements, which undoubtedly poses the most difficulty
to programmers attempting to structure their programs.

This problem posed by structured programming is
compounded by other concerns. One wants to avoid
needless duplication of code. Use of a subroutine may
provide an answer, possibly at a cost to clarity. A slight
redesign of the program may solve this problem just as
well. However, redesign may not be apparent. Other
problems concern how to combine decisions (possibly
making two DOWHILES into one) and seeing how deci-
sions influence each other so that some decisions may be
transposed for clarity or dropped altogether for simplicity.

A formal method of analysis is described in this paper
that is intended to make these problems more transparent
and their solutions more accessible. The method strongly
conforms to the structured programming approach. How-
ever, unlike other approaches to program transformation
[2], this method uses an algebraic structure rather than a
set of transformation rules.

The next section presents the fundamentals of the
method in terms bearing a strong resemblance to Boolean
algebra. Increasingly difficult situations (specifically, the
DOWHILE and the DOUNTIL) are examined in the follow-
ing two sections so that all programs fall within the range
of the technique. We then present an elementary theorem

i

whose corollary provides a rather powerful programmmg
technique, which is then demonstrated. The final section
attempts to put the method in perspective as a tool for
programming analysis.

Fundamentals
Proper programs are composed of two elements, namely
processing blocks and decisions. The term processing
block refers to a self-contained segment of code with one
input and one output. By the variable nature of this term,
whole programs, subroutines, or pages of code may be
called processing blocks, as may any assembler language
instruction having one input and one output. For exam-
ple, a subprogram that computes the discriminant of a
quadratic equation in a program that computes the solu-
tions of the equation may be called a processing bloek.
In this paper, processing blocks are represented by the
capital letters of the alphabet. The class of processkg
blocks is denoted by n. An equivalence relation, =, d y
be induced on n. Two processing blocks, A and B, have
A = B if and only if when A and B operate on some de-
fined set of input states they produce the same settof
output states.

The essence of a decision is a truth-valued statement
or predicate. Any such statement has two logical valuks:
T, meaning that the statement is true in its context, a d
F, meaning that the statement is false in its context. T s 1s
value determines various paths in a program. In this
paper, all predicates are represented by the lower case
letters of the alphabet. If s is a predicate, S represents the
negation of s. For predicates s and t , sVt represents s OR

t in the nonexclusive sense and sAt represents s AND t .
The class of predicates is denoted by r. The truth tabies
for these conventions are given in Table 1 .

Suppose A, B E rI and a E r. The statement A +a B
represents the statement IF a, THEN A, ELSE B [Fig.

1

i

NOVEMBER 1975

Q GI w A +,B
AB

(a) (b)

Figure 1 Basic conventions.

(a) (b)

Figure 2 Associative law.

(a)

Figure 3 Distributive law,

1 (a)]. By convention in any expression using +a, the
block processed when the value of a is true is placed to
the left of +a. An at most intuitive motivation behind this
use of + lies in its OR connotation found in Boolean al-
gebra.

Similarly, the expression AB where A, B E II repre-
sents the sequential processing of A then B (Fig. 1 (b)) .
The convention is to write the blocks from left to right in
the order in which they are being processed. Again, the
intuitive motivation for this multiplicative notation can
be found in Boolean algebra. With these conventions es-

576 tablished, elementary relationships can now be derived.

D. P. PAZEL

Consider the expression A +a B, where A, B E n and
a E r. Precisely the same processing would be achieved
if B were processed when ii is true and if A were pro-
cessed when ii is false. In short, for A, B € n and a E r,
A +a B = B +, A. (1)

The next expression considered is (A f a B) +b C,
where A, B, C E II and a, b E r. This expression, which
represents the situation in Fig. 2 (a) , is an IF within an
IF. Note that A is processed when a and b are true. How-
ever, given that a is false or b is false, then B would be
processed if b were true and C would be processed if b
were false. This restatement is symbolically represented
by A (B +, C) . Figure 2(b) illustrates this expres-
sion. Thus, it may be stated that for A, B, C E n and a,
b E r,
(A +a B) +b C = A +anb (B +b C) . (2a)

A similar argument provides the following analogous re-
sult. For A, B, C € II and a, b € r,
A +a (B +, C) = (A +, B) fuVb C. (2b)

This expression is stated more for reference as a useful
relationship than as an elementary relationship in that
it is readily derived from (1) and (2a) in the following
manner.

A f a (B +b C) = (B +b C) +a A

= (C +;B) +o A

= C +;,,a (B +a A)

= C (A B)

= (A +a B) C.

The next elementary relationship is derived from the
rather interesting expression A +a A, where A E n and
a E r. For either truth value of a block A is processed.
Thus, a rule of idempotency is introduced. For A E rI,
a E r,
A f a A = A. (3)

The rules given unfortunately do not all have equiva-
lent counterparts for block multiplication. For example,
for A, B E II, AB does not necessarily equal BA. A quick
check of the program having A = “VAR = 1 ” and B =

T A R = 2” bears out this fact. Furthermore, AA and A
need not be equal, as seen by taking A = T A R =

VAR + 1 . ”
One may allow in n the existence of a block that con-

sists of null processing. In flowchart language, this could
be represented as a flowline. This block is given the
symbol 1. The appropriateness of this convention is
shown in the following elementary expression whose
verification is immediate. For A E n,

1BM I. RES. DEVELOP.

A1 = 1 A = A . (4)

By proceeding along the lines of an algebraic develop-
ment, the relationships between our fundamental opera-
tions are now studied in terms of a distributive law. It is
therefore natural to consider the expression (A +a B)C
with A, B, C E n and a E r. This simple program is il-
lustrated in Fig. 3 (a). If a is true, AC will be processed.
Otherwise, BC is processed. This analysis is summarized
by the expression AC +a BC (Fig. 3 (b)) . This yields the
first distributive law. For A, B, C E n and a E I',

(A B) C = AC +a BC. (5)

Interestingly enough such a general statement for dis-
tribution from the left does not hold, i.e., C (A +a B) #
CA +a CB. The fact that C could alter the truth value of
a destroys any hope for such a distributive law, and ex-
amples are easily generated. However, if C and a are
said to be independent when the processing of C leaves
the truth value of a unaltered, then the following distribu-
tive law holds. For A, B, C E n and a E r,
C (A +a B) = CA +a CB, (6)

provided C and a are independent.
These rules complete the fundamentals. We now pre-

sent two examples to illustrate how these elementary
relationships can simplify and structure code.

The first example concerns the program illustrated in
Fig. 4 (a). The symbolic representation for this program
is C +a (C +, B). In accordance with the fundamentals
presented, the following reduction proceeds

C +a (C +, B) = (C +a C) B

= C tuVb B

This new expression, illustrated by Fig. 4 (b) , reflects
the removal of a redundant processing block.

A somewhat more complex example is shown in Fig.
5 (a). In writing the equation for this or any program,
we proceed in a top-down fashion, symbolizing decisions
and blocks on every path until all decisions and blocks
are represented and the end flow line is reached. Thus,
the equation for this example and its reduction are now
given.

((C + , B) + , B) + , A B = (C + , , , (B + , B)) + , A B

= (C tcAb B) AB

= C +a,,bnr (B +a AB)

= C (1 B +a AB)

= C SaAbAr (1 +a A) B.

The new representation for the program is shown in
Fig. 5 (b). Note that the program is now in structured
form with as many unique processing blocks as before
and with no block duplications.

NOVEMBER 1975

Figure 4 Example of code reduction.

(a)

Figure 5 Example of code structuring.

Table 1 Truth table.

S S s t svt sAt

T F T T T T
F T T F T F

F T T F
F F F F

~ ~~

Trivial decisions and program breakup
Although the elementary relationships appear to be a
good foundation for program simplification and structur-
ing, they are incomplete by themselves. For example,
consider the program represented by AB +a BC. Unless
certain conditions, such as A = 1 with B and a indepen-
dent or C = 1 , are known to hold, the fundamental for-
mulas appear useless in combining the two B blocks into
one B block. The purpose of this section is to provide a
method to achieve this combination.

Consider the program represented by AB +a C D (Fig.
6 (a)) . If the processing of blocks A or C did not affect 577

PROGRAM REORGANIZATION

(a) (b)

Figure 6 Program breakup by the use of bit settings.

(a) (b)

Figure 7 Program breakup with trivial decisions to achieve
code reduction.

t

(a) (b)

Figure 8 Two basic looping techniques used in structured
programming.

the truth value of a, then this program could be broken
up so as to have the representation (A +, C) (B +, Dl .
If, however, the truth value of a could be affected by
processing A or C, the same effect could be achieved in
the following manner. One may, if a is true, process A
and set a bit, b = 1 . Otherwise, process C and set b = 0.
Then place a check on b and process B if b = 1 and D if
b = 0 (Fig. 6(b)) .

This bit setting and testing provides a method of pro-
578 gram breakup that is rather effective in program simpli-

D. P. PAZEL

fication. To describe this process on a more formal level,
a dichotomic variable is introduced into the program.
Ideally this variable should be independent of the entire
program so as to avoid confusion and to avoid accidental
setting (more relevant in the next section). Correspond-
ing to the two settings of this variable are the representa-
tions T and T, respectively. We call T the positive trivial
block and T the negative trivial block. Code may now be
introduced that depends upon whether T or T has been
most recently executed. Thus, the decision t is intro-
duced, which, when true, indicates that T has been most
recently executed and which, when false, indicates that
T has been most recently executed. Decision t is called
the trivial decision with respect to T(T). Programming
situations may introduce several trivial devices. Thus,
in such cases, it would be advisable to standardize the
notation by subscripting t, T , and A notion similar
to this is used in [21.

In line with these thoughts and conventions, the an-
alysis of the situation posed earlier, where a bit was set,
yields the following relationship. For A, B, C, D E II and
u E r,
AB +, C D = (AT +, CT) (B +, D) . (7)

It is not difficult to see that (7) can be generalized for an
arbitrary number of blocks in the following manner. For
Ai, B, E n (i = l; . . , n) and a E r,
A,. . . A, +, B, . . . B, = (A, T +, B, T) (A, +, B,)

. . . (A, +, B,), (8)

where T(T) is independent of Ai (Bi) for 1 5 i 5 n.

Note that by having T(T) an independent variable,
for 1 5 i 5 n, A, T = TA, (B,T = TB,). In short, indepen-
dence gives commutativity.

Equation (8), as it is stated, tends to be a bit misleading
for A, and B, may be null. Bekause of this, (8) is now
rewritten in the following form.

A , . . . A , + , B , . . . B , = (T + , ~) (A , + t B ,) (A , + , B ,)

"

... (A,+, B,).

Recognizing the fact that T +, r is actually a device
for storing the truth value of a in an independent location,
we adopt the following notation to restate (8) in a more
convenient form. Let $ (a) stand for the storage of the
truth value of a, Le., T +,T. Let a' be the decision "Was
the value of a true when last stored?" Now for Ai, B,
E II (i = 1; . . , n) and a E r, (8) becomes

A,. . . A, +, B, . . . B, = $ (a) (A, +,, B,) (A, +,, B,)

. . . (A, fa, BJ. (9)

For an example of the usage of the concept of trivial
decisions, consider the program in Fig. 7(a) . I t might

IBM J . RES. DEVELOP.

be desirable to attempt to eliminate the one occurrence
of B. The following conversions of the program succeed
in doing just that.

A (l + , B) + , C B = (A T + , C ~) ((l + , B) + , B)

= (AT +, CT) (1 taA, (B f, B))

= (AT +, CT) (1 +“,, B).

The equivalent program is illustrated in Fig. 7 (b) .
As for the program posed in the beginning of this

section, namely to eliminate one of the B blocks in AB
+, BC, the following calculations illustrate the procedure.

AB +a BC

= (ABT +a BT) (1 +, C)

= (ATB +a T B) (1 +t C) (independence of T(T))

= (AT+,T) B (1 +, c).
For a more general and dramatic application of these

principles, (9) is now applied to the program whose
representation is ACDFG +, BCEFH.

ACDFG f, BCEFH

= d ~ (a) . (A +,, B) (C f u n C) (D +,, E)

X (F F) (G +a, HI

= $ (a) (A +,, B) C (D +,, E) F (G +,, H) .

Thus, it can be seen that trivial decisions are instru-
mental in program breakup for program simplification.

Symbolic representation of loops, the DOWHILE
and the DOUNTIL
Many programs represent iterative processes. This is
achieved through program control via jumps to earlier
sections of the program. A statement commonly used to
produce this effect is the GOTO. However, in line with
structured programming, these effects are to be produced
only by the DOWHILE and DOUNTIL statements. In their
most elemental forms, each consists of a predicate a and
a processing block A. The precise logic of these state-
ments is conveyed by the illustrations in Fig. 8 (a)
and (b).

An algebraic approach to the DOWHILE, the DOUNTIL,

and loops in general may be found in the following con-
siderations. First, if the point where the logic flows back
into the program were given an identity such as that of
a processing block, then that point would be preserved
and reidentified after any equation reduction to a new
representation. Second, if the jumps themselves could
be given a similar identity, then the loops would be
broken and there should be no problem in symbolically
representing the program. That approach is developed

J T

(a) (b)

Figure 9 Basic looping techniques are broken apart so as to
admit a symbolic representation. J blocks and R blocks in each
diagram pair up to form a loop.

q
Figure 10 General program configuration, which generates
two reorganization laws that lend themselves to the basic looping
configurations of structured programming.

Figure 11 Program reorganization resulting in structured code.

in this section. Thus, for each loop, a “virtual” block R
is placed at the point where the logic flows back, and a
block J , associated with R (via indexing if necessary to
avoid confusion) is placed at the jump. Block R is called
a reception block and J is called a jump block. Blocks
R and J are considered to be members of H.

Consider again the DOWHILE and the DOUNTIL.

Figures 9 (a) and (b) give alternate illustrations for these
logics, which yield the logical expressions R (AJ f a 1)
and RA (1 +a J) for the two statements, respectively. 5791

PROGRAM REORGANIZATION NOVEMBER 1975

I AR+, C = (AT+, CT) R (1 +, 1)

(a) (b)

Figure 12 Program reorganization resulting in new structured
code that has become somewhat complicated by trivial decisions.

In line with these established conventions and in
line with structured programming, the symbolic repre-
sentation of any program involving loops should be re-
duced so as to conform to the symbolic forms of the
DOWHILE and the DOUNTIL just presented. In order to
achieve these forms, several additional rules are now
introduced. The first two rules, which are readily verified,
concern the logic illustrated in Fig. 10. Both of these
rules involve the easily recognized trivial decisions.

In the case of the DOWHILE, for A, B, C E II and a E r,

= (A +a C) R,

because as t vanishes, so do T and T. Consequently, J
is not replaced by TJ.

The first of the two examples to which these concepts
are applied concerns the flowchart shown in Fig. 1 1 (a).
By placing a reception block R and a jump block J in
the appropriate places, the loop is broken, and an equa-
tion is readily written for the program. The equation re-
duction follows

R (A(C +b (1 +, J)) +a B (1 +, J))

= R (AT+, BT) ((C +b (I +c J)) +, (1 +, J))

= R (A T + , B T) (C + , , , ((I + , J) + , (I + , J))

= R (AT +, BT) (C + bAr (1 +c J))

= R (AT +a BT) ((c + b , , t 1) +,“(bAt) J) .

The final equation, a structured representation of the
program, is shown in Fig. 1 1 (b).

The second example is particularly good, because as
it provides an application of the rules just given, it also
illustrates the problems presented by trivial decisions.
Indeed, although the program represented by Fig. 12(a)
is structured, the reformed program has the drawback of
giving trivial decisions more than a trivial amount of
attention. To proceed, the loop is broken via reception
and jump blocks to give

RA (BJ +a C) = TR ((T+, B) AJ C)
(RB +, 1) C (J +b 1)

In the case of the DOUNTIL, for A, B, C E II and a E r,
RA (BJ t, C) = T R (B +, T) A (C +, J) (1 1)

One additional rule is now introduced that enhances
the applicability of the two rules just given. The objective
of this rule is to relocate the position of the reception
blocks to bring them into the same logical path of the

= (T, +aT1) R (B f t l 1) C (TI J +b 1)

= (T, +,Tl) T2 R ((T, +,2 T,)

X (B +tl 1) CJ + hvt,1),

as shown in Fig. 12(b).

DOWHILE or DOUNTIL decisions. More precisely, con-
sider (ARB +, CD) (E +b J) , where R is a reception
block, J is a jump block, A, B, C , D, E E n, and a, b
E r. Clearly R is misplaced for a DOUNTIL. If it could be
taken out of the IF-THEN-ELSE, then a DOUNTIL would
be possible. The following rule, similar to (7) , provides
a method by which this extraction can be achieved. For
A, B, C, D E II, a E r, and R a reception block,

Associativity theorem
In the second section, certain associativity rules were
considered. Although effective in reorganizing a program,
these rules presented the following drawbacks: I) one
of the decisions increases in complexity, and 2) one
decision becomes duplicated. The purpose of this section
is to give a condition whereby these drawbacks are elimi-
nated. Thus, associativity is made pure, Le., parentheses

ARB Sa C D = (AT Sa CT) R (B +, D), (12) are moved, but no decisions change. The following main

where each J associated with R is replaced by TJ.

rationale behind replacing J by TJ is that on the jump Suppose there exists c E r such that b = a V c ; then
only block B would be executed, as demanded by the
original IF-THEN-ELSE. Second, consider the situation

theorem generalizes the goals.

We now give a few short notes on this rule. First, the Associativity theorem Given A, B, C E II and a , b E r.

(A +a B) +b C = A +a (B +, C) .

580 when B = D = 1. The rule yields Similarly, if there exists c E r with a = b A c, then

D. P. PAZEL IBM J. RES. DEVELOP.

A +a (B +,, C) = (A +, B) +,, C.

Proof If b = a V c, then

(A +, B) +b C = (A +, B) C = A +, (B +, C).

Similarly, if a = b A c , then

A +,, (B +b C) = A + hAc(B +* C) = (A +tr B) +b B.

Now if a implies b, then b = b V a. Thus, the associ-
ativity theorem yields the following corollary.

Corollary I f a implies b, then

(A +, B) +b C = A +a (B +b C) .

The techniques used to prove these facts are elemen-
tary. In fact, none of the machinery developed over the
past few sections has been used at all. However, the
theorem was presented at this point for an application to
an example involving a loop. The fact that a conversion
to a DOWHILE is achieved without altering the decisions,
but indeed by a transposition of decisions, is significant,
because at the outset this transformation may not be
seen as obvious.

Consider Fig. 13(a). Assume that a implies b. An
application of the corollary gives

R [(AJ +, B) +b I] = R [AJ +a (B +,, I)] .

Figure 13 (b) shows the new structured form of the
program.

Conclusion
We have presented informally a foundation for an alge-
braically motivated mathematics that concerns program
structuring, reorganization, and simplification. It contains
some rather basic elements intended to cover a wide
range of applications.

The point of view taken in this paper has been more
practical than theoretical. We have, in fact, used these
techniques in a programming environment and found
them helpful. However, there have been a few negative
aspects. First, the complexity of the equations can in-
crease quite rapidly as larger programs are investigated,
adding difficulty and confusion in manipulating them.
Second, the method of breaking apart a program with
trivial decisions, when done repeatedly, appears to ob-
scure the intent of the program with too many new vari-
ables. In fact, the use of trivial decisions to break apart
RA (BJ +a C) even seems a distortion of simplicity.
(Perhaps this form should be considered a basic pro-
gramming structure.)

An interesting aspect of this approach is its algebraic
organization, in that it gives the appearance, roughly, of
a Boolean algebra superimposed over the predicate

A a

%-

r - i

I IF

Figure 13 An example illustrating application of the corollary
to the associativity theorem. In this example, it is assumed that
a implies b.

calculus. The associativity theorem and its corollary
seem to indicate that the more information known about
the predicates in their relationship to the program, the
more power is invested in the algebra as a whole. It is
conceivable that substantial development could be
achieved along these lines. Because of this aspect, along
with the fact that this mathematics does provide a clean
method of program reorganization, this mathematics
is meaningful and deserves closer study.

Acknowledgment
1 especially thank Barry Harding, Terrance Hammond,
and John Nilson, whose remarks, interest, and encour-
agement have been appreciated.

Cited and general references
1. H. D. Mills, “The New Math of Computer Programming,”

Comm. A C M 18, 43 (January 1975).
2. C. Bohm and G. Jacopini, “Flow-Diagrams, Turing Ma-

chines, and Languages with only two Formation Rules,’’
Comm. A C M 9, 366 (May 1966).

3. D. C. Cooper, “Bohm and Jacopini’s Reduction of Flow
Charts,” Comm. A C M 10, 463 (1967).

4. 0. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured
Programming, Academic Press, New York, 1973.

5. E. W. Dijkstra, “GOTO Statements Considered Harmful,”
Comm. A C M 11, 147 (1968).

6. D. E. Knuth and R. W. Floyd, “Notes on Avoiding GOTO
Statements,” Information Processing Letters 1 (197 1).

7. D. E. Knuth, “Structured Programming with GOTO State-
ments,” Computing Surveys 6, 26 I (1974).

Received July 29, 1974; revised February 26, 1975

The author is located at the IBM Thomas J . Watson
Research Center, Yorktown Heights, New York 10598.

NOVEMBER 1975

581

PROGRAM REORGANIZATION

