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Modified  Nodal  Approach  to DC Network  Sensitivity 
Computation 

Abstract: Programming techniques  are presented for computing dc sensitivity vectors of nonlinear  electronic  circuits. The modified 
nodal approach is used as the method of formulation for  the circuit equations, in which multiple performance objectives can  be  accom- 
modated.  Numerical examples illustrate some of the techniques discussed. 

NOVEMBER 1975 

1. Introduction 
Recently, interest in numerical  computation of circuit 
sensitivity  with respect  to design parameters  has  cen- 
tered on  the adjoint approach [ 1-4, 171, because it is 
general, fast, and efficient. Computation of the sensitivi- 
ties relies mainly on generating  and solving a set of equa- 
tions  that is adjoint to  the original set. A  simple  and 
efficient programming method is then desirable  for solv- 
ing the adjoint  equations. 

Although the adjoint approach  has  aroused a great 
deal of interest among designers using computer-aided 
methods, it  has  yet  to live up to  its initial promise. It 
has not  established itself as an indispensible  fixture 
among  modern network  analysis  and design  programs 
[ 5  -81 to  the  extent of such  methods  as  sparse matrix 
or implicit integration. 

We  believe that  part of the problem is  due  to  the gen- 
eral difficulty of converting  a  practical  circuit design 
problem, in a  straightforward  mathematical manner,  into 
a single performance measure  or  objective  function, 
because a balanced  circuit design usually requires com- 
promises  among  several,  often conflicting, constraints. 
Another problem is related to program  implementation. 
Although  successful  solutions to practical  problems have 
been reported [ 9 -  121 using the  adjoint  method, in most 
cases  the  computer programs were developed for a 
specific class of problems  only, and it is relatively  dif- 
ficult to  adapt them for  other applications. 

This  paper  focuses  on  dc  network sensitivity  formula- 
tion and  computation, taking cognizance of both the 
multiple performance  objective  and the implementation 
problem. 

It  is generally a nontrivial programming problem to 
generate  the various terms of partial derivatives needed 
for computing the  desired sensitivity vector in a simple 
and  straightforward  manner. To  show this,  let us start 
with  a single performance  function and  consider  the net- 

work  equation f in a  general form [ 12 - 131 for  the  dc 
case. We use x to  denote  the unknown vector of voltages 
and  currents and p to  denote  the design parameter  vector, 
so that 

f (x ,  p)  = 0. (1)  

Typically the  network  elements  (resistors,  capacitors, 
etc.)  are used in the  equations  as design parameters  or 
functions of design parameters,  and  the sensitivity vector 
is the  derivative of a performance characteristic  that  is 
either a network variable or a  function of several  network 
variables. If we  assume  that  the performance character- 
istic of interest is a network variable x,, then  the basic 
sensitivity vector  can be defined as 

dxj 
si = (5) ( 2 )  

where  superscript T denotes  vector  transpose.  The per- 
turbation of Eq. (1)  due  to  vector p is 

" af dx +af = o. 
ax dp ap 

(3) 

We see  that  the sensitivity vector of interest si defined 
in Eq. ( 2 )  is actually the ith row of the sensitivity  matrix 
dxldp  in Eq. (3)  after transposing it into  a  column  vector. 
Alternatively, the  transpose of the sensitivity vector si 
is equal to  the ith row of the sensitivity  matrix dxldp  or 

si = e, T T 6 

where e, is an  elementary column vector  that  contains a 
+1 in the ith position and  zeros  everywhere else. Equa- 
tion (4) implies that 

si = ($IT e,, 

which can  be combined  with Eq.  (3 ) to yield 566 
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The following substitution in Eq. ( 5 ) ,  

y = [(‘)-‘I* e,, 

implies that 

(ET y = e, 

and 

si = - ($T y. 

Therefore in order  to  solve  for  the basic  sensitivity  vec- 
tor si an intermediate vector y is first evaluated by solving 
the adjoint equation (6) whereas  the  elementary  vector 
ei is used as the  vector  on  the right  hand  side. The in- 
termediate  vector y is then  substituted  into  Eq. (7)  for 
the final sensitivity vector,  where  no  matrix inversion 
is required. 

As shown in Eqs. (6)  and (7 ) ,  both  the adjoint equa- 
tion  and the sensitivity equation  are formulation-depen- 
dent,  and  the  corresponding  computation  speed  and 
storage  required to  solve  these  equations may therefore 
vary for different network formulations. Indeed, a new 
network formulation, the modified nodal approach,  was 
recently reported [ 141 and subsequently  implemented in 
a general  purpose  network  analysis  and design  program 
[8]. It  was shown  quantitatively that this approach is 
equal  or  superior  to some of the existing formulations 
in terms of storage requirements  and execution speed. 
Furthermore,  the resulting Jacobian circuit matrix  is 
basically  numerically  well-behaved for pivoting on  the 
diagonal. 

In  the following section,  we briefiy discuss  the modi- 
fied nodal approach  for  network analysis,  which  defines 
the  Jacobian  matrix af/ ax of Eq. (6). (For a more detailed 
discussion of the modified nodal approach,  see [ 141.) 
A table of “element stamps” is given for  each  type of 
element  for constructing the  Jacobian matrix.  A cor- 
responding  sensitivity  table,  which can  be used  straight- 
forwardly to construct  the matrix af/ap of Eq. (7 ) ,  is 
then  presented in Section 4. After obtaining these  two 
matrices,  the basic  sensitivity vector in Eq. (7 )  can  be 
evaluated.  A theorem of dc sensitivity computation  for 
multiple performance objectives is  then proved in Sec- 
tion 4, followed by examples  and  the summary. 

2. Modified nodal analysis 
In using the modified nodal approach  to  develop a gen- 
eral  purpose  network analysis and design  program, the 
programming code  needs to keep  track of only two  classes 

566 of objects with respect  to  the  network being analyzed to 

generate  the  Jacobian matrix: all the nodes and only 
those  network elements whose  currents  are to be in- 
cluded in the solution vector.  The  reason  is  that, in order 
to  be completely general  and  to  keep  the matrix  size to 
a minimum, the modified nodal equations need account 
for only those  elements  whose  currents  have  to  be in- 
cluded in the solution vector. 

Network  elements  whose  currents  are included in the 
solution vector  become  part of the  output if at least  one 
of the following three conditions is met: 

1. The element is either a voltage source, E,  or  an in- 

2. Any  other nonlinear  circuit element  depends  on its 

3. Its  branch  current  is  requested  as  an  output variable 

ductor, L. 

current. 

by the user. 

After identifying all nodes in the  network  and all ele- 
ments  whose  currents  are included in the solution vector 
because of the  above conditions, a labeling process 
begins. A  ground node (usually chosen by the  user) is 
first labeled node 0. All the remaining u nodes in the 
network  are then  arbitrarily  labeled  in  some order, e.g., 
1, 2 ,  3, . . ., u. Subsequently, all of the remaining q ele- 
ments  whose  currents  are identified as  outputs  are labeled 
as u + 1, u + 2, .  . ., u + q. The remaining elements  whose 
branch  currents  are  not needed as  outputs  are  not labeled. 
We now arrange  the  order of the  equations  such  that  the 
first u equations  are  the nodal equations  and  the remain- 
ing q equations  are  branch relations. For  an element 
labeled as u + i ,  we  reserve  the ( u  + i)th  equation in the 
set  as its branch relation,  and its  current  becomes natu- 
rally the ( u  + i)th  member of the solution vector.  The 
size of the’Jacobian  matrix and  hence  the length of the 
solution vector  are  both equal to  the  sum of the  numbers 
of the nodal  voltages u and  branch  currents q, i.e., u + q. 

With the completion of the labeling process,  the con- 
tribution of each  element  to  the  Jacobian  matrix  can  be 
easily  determined. For  example,  consider a voltage 
source E connected  between  nodes labeled i and j .  Its 
branch relation is always included in the  equations as 
required by condition 1. Let  us  assume  that it is labeled 
k. Due  to  Kirchoffs  current  law,  the  contributions of E 
to  the ith and  jth nodal equations  are I ,  and -IE,  respec- 
tively, if we assume,  for  example,  that  the  direction of 
current flowing out of a node  is  considered  to be  positive. 
The  corresponding  contributions to the  Jacobian matrix 
are  therefore a + 1 and a - 1 and  the ( i ,  k)th  and ( j ,  k)th 
positions,  respectively, because I ,  is  the kth unknown 
in the solution  vector. Furthermore,  its  branch relation 
5 - Vi = E becomes  the kth equation  and, in the  Jacobian 
matrix, we  have -1 and 1 in the ( k ,  i )  th  and (k, j )  th 
positions,  respectively. The  constant E appears in the 
right  hand  side of the kth equation. 
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Table 1 Element stamps for the modified  nodal  matrix. 

Element  stamps Element 
type Current  not  output Branch  current  output 

1 

k G "G 
-1 
-1 

G -G G 

I vi 3 RHS 

C 

i +1 
j -1 
k 1 -1 L L 

h 
- _  - _  h 'LP 

L 

+ l  
-1 

k -1 1 E 
E 

l vj RHS 

-J 
+J 

1 
-1 

1 J 
J 

Voltage- 
controlled 
voltage 
source 
E = uVmn 

Current- 
controlled 
voltage 
source 
E = rl ,  

1 
-1 

k -1 1 -r 

Voltage- 
controlled 
current 
source 
J = g,V.,,, 

Current- 
controlled 
current 
source 
J = P I ,  j l  i P 

-P 

567 
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The  contributions  to  the matrix of all the remaining 
element types  can  be similarly determined.  The  results 
are summarized in Table 1 as element stamps, in which 
the element in each  case is assumed  to be connected be- 
tween nodes  i and j. The positions of its branch relation 
in the matrix and its current in the solution vector  are 
both  assumed equal to k. For  dependent elements, the 
controlling element is assumed  to be connected  between 
nodes rn and n; the position of the  current of the con- 
trolling element is equal to r. 

In  actual processing, Table 1 is stored in the  computer. 
After  the labeling process  has been completed,  each 
element in the  network being analyzed is considered 
sequentially.  Only if its current is included as  an  output 
is its contribution to  the matrix extracted from the right 
hand  column in the table. Otherwise  the left hand  column 
is used to  construct  the matrix for  both its zero-nonzero 
pattern  for pivoting and the numerical  values for its 
evaluation. 

Note  that,  for simplicity,  partial derivatives  for non- 
linear elements  are  not included in the table. However, 
their inclusion in the  matrix in actual programming can 
be handled  by  a cross referencing  table  containing  indices 
for  every  dependent element and  its  independent vari- 
ables. Our  experiences  and  those of others [5] indicate 
that partial derivatives  are generally not needed for non- 
linear R ,  G, C ,  L types of elements to achieve effective 
convergence. This is because  the  branch relations of 
these  types of elements  have good numerical results 
compared  to  those of the  Newton-Raphson  method, 
which uses partial  derivatives. The  results  are simplicity 
in programming and  economy in storage. However, par- 
tial derivatives  are needed for E and J type  elements  for 
effective convergence of Newton iterations. 

3. Sensitivity matrix 
In  the  last section, an  approach  was  presented  that  can 
be used to  construct  the  Jacobian matrix af/  ax of Eq. (6 ) .  
In this section, a corresponding  scheme is presented 
that  leads  to  the forming and evaluation of the sensi- 
tivity matrix af/  ap of Eq. (7  1. 

As shown in Section 2 the dimension of the  network 
equation f is the summation of the  number of nodes  and 
those of currents  that  are used as  outputs, i.e., u + q. 
From  Eqs. (6)  and (7 )  it is seen  that  the  number of rows 
in the sensitivity  matrix af /  ap is also equal  to u + q. The 
number of columns is equal to  the  number of design 
parameters in the network. Hence in addition to labeling 
nodes and currents  for formulating the modifying nodal 
equations, a  third labeling process is needed for  the sen- 
sitivity matrix, which  assigns 1, 2 ,  3 , .  . ., n to  the n given 
design parameters. As mentioned  previously,  design 
parameters  are  either circuit elements  themselves  or 

!m functions of circuit  elements. In  either  case, partial  deriva- 

c. w. no 

tives of the  network function f with respect  to circuit 
elements  are needed. As with the  Jacobian matrix  shown 
in the previous  section, construction of the sensitivity 
matrix on  an element-by-element  basis is straightforward. 

Consider a conductor G connected  between  nodes 
labeled  i and j. Further,  assume  that  the  branch  current 
of G is not needed as  an  output.  Its  contributions  to  the 
modified nodal  matrix are  therefore G, "G, -G, and G 
in locations  (i, i) ,  (i, j ) ,   ( j ,  i), and  (j, j ) ,  respectively, 
as shown in Table 1. This is so because  the  element G 
contributes  to  the ith and  thejth nodal equations  the  term 
kc( Vi - V j ) ,  and partial derivatives  are  taken with 
respect  to Vi and 5. Now if G is considered to  be a design 
parameter  and partial derivatives  are  thus  taken with 
respect  to G for  those  equations  to  generate  the sensi- 
tivity  matrix, the  terms %(Vi - V j )  result in the (i, n)th 
and  (j,  n)th positions in the sensitivity  matrix if we  as- 
sume that G is the nth  design parameter.  On  the  other 
hand, if the  current of G is needed as  an  output, then its 
contribution to  the sensitivity  matrix is simply (Vi  - Vj) 
in the ( k ,  n)th position. 

Other  types of elements  can  be similarly considered 
for  the  derivation of their  contributions  to  the sensitivity 
matrix. The resulting  element stamps  for this case  are 
summarized in Table 2.  For  the computation of the  dc 
sensitivity vector,  the  capacitors  and  inductors  have  no 
effect and  hence  are not  included in the table. 

Note  that in Table 2 design parameters  are  network 
elements themselves. For  the  more general case, in which 
several network  elements  are  functions of a single design 
parameter,  the column in the sensitivity matrix  corre- 
sponding to  that design parameter  is obtained as follows. 
The  contribution  to  the sensitivity  matrix for  each net- 
work  element  is first determined by multiplying the ap- 
propriate  terms in Table 2 by the  derivative of that ele- 
ment with respect  to  the design  parameter. Then, by 
addition, the  resultant  vectors  are merged into one. For 
example, if two  resistors, R ,  connected  between  nodes 
1 and 2 and R ,  connected  between  nodes 2 and 3, are 
both  dependent  on a design parameter pl, then  the column 
vector in the sensitivity  matrix corresponding  to p1 is 

0 

0 
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In  computation,  the  network equation ( 1)  is first solved 
by using the modified nodal  matrix to yield the solution 
vector x. It  is used in conjunction with Table 2, stored 
in the  computer,  to  generate  the sensitivity  matrix col- 
umnwise  with respect  to each  design  parameter. Note 
that  the  derivatives of network elements with respect  to 
design parameters  can be  evaluated either analytically 
or by numerical perturbation, depending on  the problem. 

In  the general case in which  a scalar  performance 
characteristic is not simply a network variable but a 
function of several network variables xi ,  xj, x,, etc., 

P = g(x,, xj, Xk, . . .). (9)  

Then  the sensitivity vector of performance  characteristic 
P versus design parameters pl, p z ,  p s , .  . ., p ,  is 

Table 2 Element  stamps for the sensitivity  matrix. 

T Element  stamps 

7 
Current 
output 

Branch  current 
output 

Element 
type 

G 

R 

E 

J 

Voltage- 
controlled 
voltage 
source, 
E = uVmn 

Current- 
controlled 
voltage 
source 
E = rI, 

Voltage- 
controlled 
current, 
source 
J = gmVmmn 

Current- 
controlled 
current 
source 
J = P I ,  

I m 
I 

t I m 

which is clearly a combination of the basic  sensitivity 
vectors defined in Eq. (2) .  Substituting Eq. ( 5 )  for  each 
of the basic  sensitivity vectors into Eq. ( l o ) ,  after  some 
manipulation we  obtain  the sensitivity vector k -1 

f+- -1 

or 

= - (gy [ ( 3 I T  [(E) ei + (Z) ej 

+ (x) ek +.  . .]. k 1 - I ,  

This is similar to  Eq. ( 5 )  except  that  the  elementary 
vector e, in Eq. ( 5 )  is replaced  by a summation of ele- 
mentary  vectors multiplied by the partial derivatives of 
the  performance function with respect  to  each of the 
network variables  upon  which it depends. We use h to 
denote  the summation of vectors so that 

I 111 

and combine it with Eq. ( 1  1)  to yield 

($ Y = A; conditions 1-3 in Section 2 ,  those  branch  currents must 
be  added  to  the solution vector in order  to  compute  the 
sensitivity  vector. I t  should be  emphasized,  however, 
that  for this  general case  the computation cost  for  the 
sensitivity vector is still only one analysis for  the adjoint 
equation ( 13 ) and  one matrix multiplication of Eq. ( 14). 

If  some of the  network variables in Eq. (9) are  branch 
currents  and are not included in the solution vector by 
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Sensitivity for multiple performance functions 
So far  we  have considered the formulation of the sensi- 
tivity vector  for a single dc  performance function. For a 
more general case, a  practical circuit design  problem 
usually involves more  than  one performance  function. 
Furthermore,  those  performance functions, such as power 
dissipation or voltage  levels, often  cannot  be simply 
weighted and  added  together  to form  a single performance 
function  throughout the design process.  The weights for 
different performance functions may not be optimally 
chosen prior to  the design process  and may need constant 
updating. Also, during the design process  the weights 
have to be adjusted  accordingly if the maximal or mini- 
mal permissible values of some of the  performance mea- 
sures  have been  reached. Moreover, in some  design 
parameter regions,  some of the  performance  functions 
may have become  relatively  insensitive to  the design pa- 
rameters. Hence, in a computer aided  design  program, 
the capability of computing the sensitivity vector  for  an 
appropriate  set of weights needs  to  be very flexible. The 
sensitivity vector  for  the given  performance functions 
can  be  either  computed individually or combined in some 
manner. The  user  can  then  use his  own judgement, with 
the help of sensitivity vectors,  to provide  some  direction 
(preferably in an  interactive computing environment) 
to  update his  design to  meet  the design requirements. 

Let us denote  the  network  equations of Eq. ( 1) to be 
fl; the  performance function equations,  each  as given 
by Eq. (9),  to  be f2; and  the  vectors of network variables, 
performance functions, and design parameters to be xl, 3, 
and x3, respectively.  We  now present a mathematical 
theorem concerning the  dc sensitivity computations for 
multiple performance  functions. 

Theorem 
Given is a vector 

where  the dimensions of subvectors x,, $, and x3 are 
denoted  as n,, n2 and n3, respectively. Given  also  are a 
set of nonlinear  algebraic equations 

where c is a  known constant  vector,  and  the following set 
570 of adjoint  equations 

where af/ax is the  Jacobian  matrix of f evaluated  at  the 
solution  point of Eq. (15) ,  which is  assumed  to exist. 
Here Y and Z are  constant  vectors.  We  have 

A proof is given in the Appendix. 

We  now  explain the practical use of the  theorem.  After 
the solution of the nonlinear  algebraic equation ( 15 ), the 
Jacobian matrix af/ax evaluated at  the solution  point is 
obtained. The adjoint equation (16) can easily be solved 
by choosing  “arbitrarily” the  constant  vectors Y and Z. 
Equation (17) indicates that  as  part of the  adjoint solu- 
tion, 4 is the combined  sensitivities of x1 and 3 with 
respect  to x3 subject to weighting vectors Y and Z in a 
straightforward and flexible manner.  For example, if the 
vector Z is set  to  zero in Eq. ( 16), the resulting vector 
% is the sensitivity vector of all the  network variables x1 
with respect  to design parameters x3, either singularly 
or  combined, by changing the value of Y. Specifically, 
if Y is chosen  as 

x3 becomes  the sensitivity vector of the first  nodal volt- 
age  with respect  to all design parameters; if Y is  chosen as 

% becomes  the sensitivity vector of the sum of the first 
two nodal  voltages  with respect to all design parameters, 
etc. Alternatively, by using the  same  Jacobian matrix 
but setting vector Y to zero,  the sensitivity vectors of all 
the  performance  functions % can be computed, singularly 
or combined,  by changing the  value Z. Of course, Y and 
Z can  both  be  chosen  to  be  nonzero  for  any  desired com- 
bination of the various  sensitivity  vectors. 

Although the  theorem  does not  necessarily  provide 
any furthef theoretical insights compared with what  has 
already  been discussed in Sections 2 and 3 ,  it  can  be  used 
in programming development  to avoid a great  deal of 
bookkeeping  work  by lumping multiple performance 
functions  together and yet maintaining their indepen- 
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dence.  As mentioned earlier,  the  use of the theorem is 
especially flexible for sensitivity  computation in an in- 
teractive environment. 

The  theorem  presented is in a  very  general  form. For 
most  applications, the  network function f, in Eq. (15) is 
not dependent on the performance functions 3, and f, 
is not dependent on the design parameters x,. The  func- 
tion for  performance, f,, can be so defined that af,/af, 
is equal  to  an identity  matrix. Therefore,  the evaluation 
of the  Jacobian matrix in Eq. (A1 ) in the  Appendix  is 
actually the evaluation of the modified nodal  matrix 
af,/ ax, discussed in Section 2, the sensitivity  matrix 
af, / a% discussed in Section 3 ,  and the performance ma- 
trix af,/ax,, which can  be obtained either analytically 
or by  numerical  perturbation. 

5. Examples 
This section  provides two illustrative  examples. 

Example 1 
A three-port resistive network is to  be synthesized such 
that its  short-circuit conductance matrix [ 151 

(See [ 161 for related  work.)  Refer to Fig. 1 ,  where  we 
have  assumed  that  between  every pair of nodes in this 
three-port network there lies a 1-R conductor G,,, G,,, 
etc.  The total number of conductors  is 15. At  each  port 
there is also a  voltage source, E,, E,, E,. The  approach 
used here is to  compute  the sensitivity vector of some of 
the performance  functions to be defined later with respect 
to  each of the 15 conductors  such  that  the values of the 
conductors  are changed  by using the sensitivities to 
minimize the difference between  the Y matrix of the net- 
work and  the given Y matrix. 

In  order  to  synthesize  the  three-port  matrix,  we first 
set E ,  = 1 ,  E, = E, = 0 and  evaluate  the  three-port cur- 
rents, I ,  , Z E 2 ,  and IE3.  The  three  currents should  be as 
close  to  the  entries in the first  row of the given Y as pos- 
sible, i.e., 4, 1 ,  and 2. Then  the  process  is  repeated by 
sett ingE,=1,E,=E3=OandthenE,=1,E,=E,=0.  
The  three performance functions  are  thus defined as 

P ,  = (ZE1 - 4), + ( I E p  - 1)'  + ( I E 3  - 2),, 

P, = ( I E l  - 2), + ( I E p  - 3)' + ( Z E 3  - 8) ,  (18) 

P, = ( Z E l  - 1) '  + ( I E 2  - 6)' + (Z,, - 3)', and 

for  the  three different voltage  sources. 
To construct  the modified nodal matrix af,/ ax, of 

Eq. ( A l )  we choose  node 1 as  the ground  node. I t  is 
labeled node 0 in the program. Nodes 2 ,  3,. . ., 6 in Fig. 1 

Figure 1 Three-port resistive  network. 

are then  labeled 1 ,  2 , .  . ., 5. There  are  therefore five nodal 
equations. The  branch relations for voltage sources 
E,,  E, and E, are  then included in the  equation  set.  They 
are labeled 6,  7, and 8. Table 1 is then used  for  each 
network element. Because  branch  currents  for  the con- 
ductors  are not needed,  the corresponding element  stamp 
for G is used. For  the voltage sources,  there is only one 
element stamp, so that  stamp is used. The  resultant ma- 
trix is shown in Table 3. The sensitivity matrix af,/ax, 
in Eq. ( A l )  is similarly formed by using Table 2 as we 
labeled the 15 design parameters 1 through 15. The re- 
sultant matrix is  shown in Table 4, where V, is the nodal 
voltage for node 2, etc. Finally, the performance  matrix 
af,/  ax, is formed by differentiating Eq. ( 18) with respect 
to  the network  variables as shown in Table 5. 

The modified nodal equations  are solved three times 
for  the  three different  voltage source value  combinations 
mentioned above.  The resultant values of V and I are 
used to evaluate  the matrices in Tables 4 and 5. At each 
time  only one of the  three  performance functions in Eq. 
( 18) is pertinent. The  obvious  choices for the Z vector 
in Eq. ( 17) for the  three different cases  are 

and  the  vector Y is always  chosen as zero. Three sensi- 
tivity vectors  are obtained for  the  three  computations. 
They  are summed to form the total  sensitivity vector  for 
updating the design. For  example,  the sensitivity vectors 
S,, S,, and S,, computed when all the  conductors having 
a value of one,  are shown in Table 6. A Fletcher-Powell 
algorithm has been  programmed that  updates  the con- 
ductor values such  that  the  resultant Y matrix  after 15 
iterations is 

3.9999 1 1.9999 
Y = (  1 5.9999 

1.9999  3  7.9999 

which is very close  to  the Y matrix  given. 571 
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Table 3 Elements of matrix af/ ax,. 

-G24 

-G25 

"GZ, 

-1 
0 
0 

-G24 

4 3 3 4  

'41 + G42 + '43 
+ (345 + GM 

4 3 4 5  

4 4 ,  

0 
-1 

0 

4 3 2 5  

-G35 

"G45 

0 
0 
1 

'fil+ G6!2 + 'E3 
+ G4, + G5, 

0 
0 

-1 

-1 

0 

0 

0 

0 

0 
0 
0 

0 

1 

-1 

0 

0 

0 
0 
0 

Table 4 Elements of af,/ ax3. 

V2 
0 
0 
0 
0 
0 

-v3 0 0 0 0 0 v*- v, 0 0 0 v, - v2 0 
- vz v3 - v, 0 0 o v 3  0 v3 - v5 0 0 0 0  
0 -v3 + v4 v,- v5 0 0 0 -v*+ v, 0 v, - V6 0 0 v, 
0 0 -v4- v, -v5 - v, 0 0 0 -v3 + v5 0 v, 0 0 
0 0 0 -v, + v5 v, 0 0 0 -v4+ v, 0 vz- V6 0 
0 0 0 0 0 0  0 0 0 0 0 0  

0 0  0 0 0 0 0  0 0 0 0 0 0  
0 0  0 0 0 0 0  0 0 0 0 0 0  
0 0  0 0 0 0 0  0 0 0 0 0 0  

v2 - v5 0 

-v5 + v5 0 

0 
0 0 

v3 - v, 

0 -v3 + v, 
0 0 
0 0 
0 0 
0 0 

Table 5 Elements of performance  matrix afz/ af,. 

Table 6 Vertical  columns  containing elements of sensitivity 
vectors. 

-2 0 0 
-1 -2 0 

0 -6 0 
0 
0 

-3 
0 

-4 
-10 

-1.5 0 
0 

-3.5 
-1 0 

0 -1 0 
0 0 
0 

-1 
0 -1 

0.5 0 " 1 . 5  
0.5 0 -1.5 

-1 -2 0 
" 1 . 5  0 -3.5 

-3 -4 0 
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Example 2 
A current switch emitter follower  circuit is  shown in Fig. 
2, in which input  to  the circuit is represented by the volt- 
age source Ei,. Two  output voltages are  taken from nodes 
OUT, and OUT,.  The  resistor values are  also shown in 
Fig. 2.  The  transistor  parameters, using an  Ebers  and 
Moll model, are 

I ,  = lo-" mA, 

" kT - 25.8 mV, and 
4 

p = 100. 

The input  voltage source Ei, switches the voltage po- 
tential  from -1.9 to -0.8 V. 
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The sensitivities of the  output voltage at node OUT, 
are  to be computed  as a  function of each of the 15 re- 
sistors  at  both of the  two input voltage levels if the  power 
dissipated in the circuit is less than 0.345 W. However, 
if the  power dissipation is more  than 0.345 W, then  the 
sum of the sensitivities of the voltage at  node  OUT, and 
the  power dissipation as a  function of the  resistors 
should be computed instead. 

For this  problem, the modified nodal matrix can be 
written similarly to  Table 3 and is omitted here. Two per- 
formance functions, the  output voltage  and the  power 
dissipation, are defined by 

P ,  = VR,. 

P ,  = (4.1 X f E E C  + Ei, X f E i n ) ,  

where 4.1 is the value of the power  supply EEc. 
The  matrices af,/ ax, and af,/ax, are  also developed 

similarly to  Example 1. They  have dimensions of 14 X 

15, 15 X 15, and 2 X 15. In  the  computation, a value of 
Ein equal to  4.1 - I .9 = 2.2 V is first used;  the solution 
of the circuit  equation  yields  a power dissipation of 
0.34059 W, which is below the critical  0.345 W. Hence 

a Z vector (A) is  chosen  that leads to  the sensitivities of 

P ,  with respect  to  the  resistors by evaluating  Eq. ( 17). 
In  the  next  pass,  the value of Ein is changed to 4.1 - 

0.8 = 3.3 V. Power dissipation  this  time exceeds 0.345 W 
and  reaches a  value of 0.35152 W. A Z vector of 

chosen, which automatically  gives the sensitivities S, 
of P ,  and P,  with respect  to  the  resistors by evaluating 
Eq. ( 17).  The sensitivities S, and S, are listed in Table 7 
together  with the corresponding resistor names. The 
vector Y is set  to  zero  for  both passes. 

( f ) is 

Summary 
In this paper, we have  presented  the modified nodal 
approach  to  dc sensitivity  computation. i n  formulating 
the  equations  for  the  network sensitivities, two matrices- 
the modified nodal matrix and  the sensitivity  matrix - are 
needed. Simple tables  are provided that  can  be stored in 
the  computer  for  use in a  general purpose program to 
construct  both matrices in a  straightforward  manner. 
Furthermore,  the formulation  permits  multiple  perfor- 
mance functions  for a given  network such  that  both  the 
performance  functions  and the  constraints required by the 
design can  be  considered. Numerical examples  have been 
given to illustrate the  methods  and  techniques  presented 
in the paper.  Finally, the  same basic approach  presented 
in this paper  can be extended  to  frequency domain  com- 
putation. 
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OUT ' E E C  
= 4.1v 

follower switch follower 

Figure 2 Current-switch emitter follower circuit. 

Table 7 Sensitivities are shown with corresponding resistances. 

Resistances 
SI 

Sensitivities 
s2  

-0.017 
-0.778 
-1.16 
-0.0068 
-0.0079 
-0.2 1 
-1.129 
-0.698 
-0.16 
-0.45 
-0.00 16 
-0.24 

-0.32 
-0.0014 
-0.51 
-0.13 1 
-0.0098 
-0.0085 
-0.008 
-1.21 
-0.16 
-0.44 
-0.001 5 
-0.25 

Appendix: Proof of theorem 

Proof; We  first note  that  the  Jacobian matrix J of f(x) 
= 0 is 

\o 0 I / 
If we  make  the following substitutions in matrix J: 

we obtain 

J =(: :). 
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It  can easily be shown that  the  inverse of J is 

where the inverse of A, denoted by A,, is assumed to 
exist. Hence  Eq. ( 16) becomes 

Because the matrix A, has dimensions ( n ,  + n,) X ( n ,  + 
n, ) .  where n, and n2 are  the dimensions of x, and 3, 
respectively, we can partition A , ~  into 

AT = (AT,, AT,), ( A41 

where  the  number of the  columns of the two submatrices 
are, respectively, n, and n2. From Eqs. (A3) and (A4),  
we  obtain 

fi, = -B’~  AT, Y - B ~ A T ,  z. (A51 

Now we return  to  Eq. (15) and  assume  that  the  constant 
vector c is perturbed slightly to c + SC. Then, in order 
for  the  vector equation (15) to hold, x,, x2, and x, are 
also  perturbed accordingly to x, + Sx,, x, + Sx,, and x, 
+ Sx,. Because  from  Eq. (15) 6c and Sx, are  equal, we 
substitute Sx, for Sc, yielding 

f, (x, + SX,, 3 + 8 3 ,  x, + Sx,) 

f, (x, + ax,, 3 + 6 3 ,  x3 + Sx,) 
x,+Sx,-C )=Q 

Expanding the left  hand  side into  Taylor series  and 
using Eq. (15) results in 

which can be rearranged  into 

Sx,. 

Using Eqs. (A2) and (A3) we have 

It  follows that 

574 Sx, = A,, B Sx, and Sx, = A,, B Sx,. 

Hence 

Substituting the  above  equation into Eq. (AS) results 
in Eq. ( 17), which is what  we  set  out  to prove. 
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