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Modified Nodal Approach to DC Network Sensitivity

Computation

Abstract: Programming techniques are presented for computing dc sensitivity vectors of nonlinear electronic circuits. The modified
nodal approach is used as the method of formulation for the circuit equations, in which multiple performance objectives can be accom-
modated. Numerical examples illustrate some of the techniques discussed.

1. Introduction

Recently, interest in numerical computation of circuit
sensitivity with respect to design parameters has cen-
tered on the adjoint approach [1-4, 17], because it is
general, fast, and efficient. Computation of the sensitivi-
ties relies mainly on generating and solving a set of equa-
tions that is adjoint to the original set. A simple and
efficient programming method is then desirable for solv-
ing the adjoint equations.

Although the adjoint approach has aroused a great
deal of interest among designers using computer-aided
methods, it has yet to live up to its initial promise. It
has not established itself as an indispensible fixture
among modern network analysis and design programs
[5-8] to the extent of such methods as sparse matrix
or implicit integration.

We believe that part of the problem is due to the gen-
eral difficulty of converting a practical circuit design
problem, in a straightforward mathematical manner, into
a single performance measure or objective function,
because a balanced circuit design usually requires com-
promises among several, often conflicting, constraints.
Another problem is related to program implementation.
Although successful solutions to practical problems have
been reported [9-12] using the adjoint method, in most
cases the computer programs were developed for a
specific class of problems only, and it is relatively dif-
ficult to adapt them for other applications.

This paper focuses on dc network sensitivity formula-
tion and computation, taking cognizance of both the
multiple performance objective and the implementation
problem.

It is generally a nontrivial programming proklem to
generate the various terms of partial derivatives needed
for computing the desired sensitivity vector in a simple
and straightforward manner. To show this, let us start
with a single performance function and consider the net-
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work equation f in a general form [12-13] for the dc
case. We use x to denote the unknown vector of voltages
and currents and p to denote the design parameter vector,
so that

f(x, p) = 0. (1)

Typically the network elements (resistors, capacitors,
etc.) are used in the equations as design parameters or
functions of design parameters, and the sensitivity vector
is the derivative of a performance characteristic that is
either a network variable or a function of several network
variables. If we assume that the performance character-
istic of interest is a network variable x, then the basic
sensitivity vector can be defined as

dx\"
= (—), 2
o (29 @
where superscript T denotes vector transpose. The per-
turbation of Eq. (1) due to vector p is

ofdx o _ (3)
ox dp ap
We see that the sensitivity vector of interest s, defined
in Eq. (2) is actually the ith row of the sensitivity matrix
dx/dp in Eq. (3) after transposing it into a column vector.
Alternatively, the transpose of the sensitivity vector s;
is equal to the ith row of the sensitivity matrix dx/dp or
T T dx
S =€ g (4)
where e, is an elementary column vector that contains a
+1 in the ith position and zeros everywhere else. Equa-
tion (4) implies that

e (8¢
i dp i

which can be combined with Eq. (3) to yield
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The following substitution in Eq. (5),

SR

implies that

and
s, =— (g—;)T y. (7)

Therefore in order to solve for the basic sensitivity vec-
tor s, an intermediate vector y is first evaluated by solving
the adjoint equation (6) whereas the elementary vector
e; is used as the vector on the right hand side. The in-
termediate vector y is then substituted into Eq. (7) for
the final sensitivity vector, where no matrix inversion
is required.

As shown in Eqgs. (6) and (7), both the adjoint equa-
tion and the sensitivity equation are formulation-depen-
dent, and the corresponding computation speed and
storage required to solve these equations may therefore
vary for different network formulations. Indeed, a new
network formulation, the modified nodal approach, was
recently reported [ 14] and subsequently implemented in
a general purpose network analysis and design program
[8]. It was shown quantitatively that this approach is
equal or superior to some of the existing formulations
in terms of storage requirements and execution speed.
Furthermore, the resulting Jacobian circuit matrix is
basically numerically well-behaved for pivoting on the
diagonal.

In the following section, we briefiy discuss the modi-
fied nodal approach for network analysis, which defines
the Jacobian matrix of/ 8x of Eq. (6). (For a more detailed
discussion of the modified nodal approach, see [14].)
A table of “element stamps” is given for each type of
element for constructing the Jacobian matrix. A cor-
responding sensitivity table, which can be used straight-
forwardly to construct the matrix of/ap of Eq. (7), is
then presented in Section 4. After obtaining these two
matrices, the basic sensitivity vector in Eq. (7) can be
evaluated. A theorem of dc sensitivity computation for
multiple performance objectives is then proved in Sec-
tion 4, followed by examples and the summary.

2. Modified nodal analysis

In using the modified nodal approach to develop a gen-
eral purpose network analysis and design program, the
programming code needs to keep track of only two classes
of objects with respect to the network being analyzed to

generate the Jacobian matrix: all the nodes and only
those network elements whose currents are to be in-
cluded in the solution vector. The reason is that, in order
to be completely general and to keep the matrix size to
a minimum, the modified nodal equations need account
for only those elements whose currents have to be in-
cluded in the solution vector.

Network elements whose currents are included in the
solution vector become part of the output if at least one
of the following three conditions is met:

1. The element is either a voltage source, E, or an in-
ductor, L.

2. Any other nonlinear circuit element depends on its
current.

3. Its branch current is requested as an output variable
by the user.

After identifying all nodes in the network and all ele-
ments whose currents are included in the solution vector
because of the above conditions, a labeling process
begins. A ground node (usually chosen by the user) is
first labeled node 0. All the remaining # nodes in the
network are then arbitrarily labeled in some order, e.g.,
1, 2, 3, -+, u. Subsequently, all of the remaining g ele-
ments whose currents are identified as outputs are labeled
asu+1,u+2, - u+ q. The remaining elements whose
branch currents are not needed as outputs are not labeled.
We now arrange the order of the equations such that the
first # equations are the nodal equations and the remain-
ing g equations are branch relations. For an element
labeled as u + i, we reserve the (u + i)th equation in the
set as its branch relation, and its current becomes natu-
rally the (# + i)th member of the solution vector. The
size of the'Jacobian matrix and hence the length of the
solution vector are both equal to the sum of the numbers
of the nodal voltages « and branch currents g, i.e., u + q.

With the completion of the labeling process, the con-
tribution of each element to the Jacobian matrix can be
easily determined. For example, consider a voltage
source E connected between nodes labeled i and j. Its
branch relation is always included in the equations as
required by condition 1. Let us assume that it is labeled
k. Due to Kirchoff’s current law, the contributions of E
to the ith and jth nodal equations are I, and —I,, respec-
tively, if we assume, for example, that the direction of
current flowing out of a node is considered to be positive.
The corresponding contributions to the Jacobian matrix
are therefore ¢ + 1 and a — 1 and the (i, k)th and (j, k)th
positions, respectively, because I, is the kth unknown
in the solution vector. Furthermore, its branch relation
V,— V,= E becomes the kth equation and, in the Jacobian
matrix, we have —1 and 1 in the (k, i}th and (%, j)th
positions, respectively. The constant E appears in the
right hand side of the kth equation.
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Table 1 Element stamps for the modified nodal matrix.

Element stamps

Element
e
e Current not output Branch current output
V; v, RHS V, v 1, RHS
i G -G i 1
G J -G G J -1
k G -G -1
Vv, Vi RHS Vv, V; I, RHS
: C C c .
1] Z b Z + Z ep 1 +1
< _< —- c
k 7 7 1 W Ve
v, v, 1, RHS
i +1
L J -1
k 1 - -L -L,
Vv, v, I, RHS
i +1
E J -1
k —1 1 E
V, v RHS v, V; I, RHS
i —J i 1
J J +J J -1
k 1 J
Voltage- 1% V. v v I
controlled ! ’ " " £
voltage i
source j _
E=uV,, k —1 1 —u u
Current- V, V; I, I
controlled
voltage i 1
source J -1
E=rl, k -1 1 —r
Voltage- v, V; Vin Va V; V; Viu V., I,
controlled
current i & —Ln i 1
source J —En 8m J —1
I =80V mn k Em & -1
Current- v, V; I v, Vi I, 1,
controlled
current i B i 1
source Jj —B J —1
J=B81 k 1 —B
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The contributions to the matrix of all the remaining
element types can be similarly determined. The results
are summarized in Table 1 as element stamps, in which
the element in each case is assumed to be connected be-
tween nodes i and j. The positions of its branch relation
in the matrix and its current in the solution vector are
both assumed equal to k. For dependent elements, the
controlling element is assumed to be connected between
nodes m and n; the position of the current of the con-
trolling element is equal to r.

In actual processing, Table 1 is stored in the computer.
After the labeling process has been completed, each
element in the network being analyzed is considered
sequentially. Only if its current is included as an output
is its contribution to the matrix extracted from the right
hand column in the table. Otherwise the left hand column
is used to construct the matrix for both its zero-nonzero
pattern for pivoting and the numerical values for its
evaluation.

Note that, for simplicity, partial derivatives for non-
linear elements are not included in the table. However,
their inclusion in the matrix in actual programming can
be handled by a cross referencing table containing indices
for every dependent element and its independent vari-
ables. Our experiences and those of others [5] indicate
that partial derivatives are generally not needed for non-
linear R, G, C, L types of elements to achieve effective
convergence. This is because the branch relations of
these types of elements have good numerical results
compared to those of the Newton-Raphson method,
which uses partial derivatives. The results are simplicity
in programming and economy in storage. However, par-
tial derivatives are needed for E and J type elements for
effective convergence of Newton iterations.

3. Sensitivity matrix

In the last section, an approach was presented that can
be used to construct the Jacobian matrix of/ ax of Eq. (6).
In this section, a corresponding scheme is presented
that leads to the forming and evaluation of the sensi-
tivity matrix of/ap of Eq. (7).

As shown in Section 2 the dimension of the network
equation f is the summation of the number of nodes and
those of currents that are used as outputs, i.e., u + q.
From Eqgs. (6) and (7) it is seen that the number of rows
in the sensitivity matrix af/3p is also equal to # + g. The
number of columns is equal to the number of design
parameters in the network. Hence in addition to labeling
nodes and currents for formulating the modifying nodal
equations, a third labeling process is needed for the sen-
sitivity matrix, which assigns 1, 2, 3, -, n to the n given
design parameters. As mentioned previously, design
parameters are either circuit elements themselves or
functions of circuit elements. In either case, partial deriva-

tives of the network function f with respect to circuit
elements are needed. As with the Jacobian matrix shown
in the previous section, construction of the sensitivity
matrix on an element-by-element basis is straightforward.

Consider a conductor G connected between nodes
labeled i and j. Further, assume that the branch current
of G is not needed as an output. Its contributions to the
modified nodal matrix are therefore G, —G, —G, and G
in locations (i, i), (i, j), (J, i), and (j, j), respectively,
as shown in Table 1. This is so because the element G
contributes to the ith and the jth nodal equations the term
=GV, — Vj), and partial derivatives are taken with
respectto V;and V,. Now if G is considered to be a design
parameter and partial derivatives are thus taken with
respect to G for those equations to generate the sensi-
tivity matrix, the terms =(V, — V;) result in the (i, n)th
and (j, n)th positions in the sensitivity matrix if we as-
sume that G is the nth design parameter. On the other
hand, if the current of G is needed as an output, then its
contribution to the sensitivity matrix is simply (¥, — Vj)
in the (k, n)th position.

Other types of elements can be similarly considered
for the derivation of their contributions to the sensitivity
matrix. The resulting element stamps for this case are
summarized in Table 2. For the computation of the dc
sensitivity vector, the capacitors and inductors have no
effect and hence are not included in the table.

Note that in Table 2 design parameters are network
elements themselves. For the more general case, in which
several network elements are functions of a single design
parameter, the column in the sensitivity matrix corre-
sponding to that design parameter is obtained as follows.
The contribution to the sensitivity matrix for each net-
work element is first determined by multiplying the ap-
propriate terms in Table 2 by the derivative of that ele-
ment with respect to the design parameter. Then, by
addition, the resultant vectors are merged into one. For
example, if two resistors, R, connected between nodes
1 and 2 and R, connected between nodes 2 and 3, are
both dependent on a design parameter p,, then the column
vector in the sensitivity matrix corresponding to p, is

(v, — v, L& ~
( 17 2) R12 dP1
1 dR, 1 dR,
V.- V)——5—(V,—V,) — =5
f v, 2) R12 dP, 2 3 R22 dP,
of = > (8)
(ap>coll 4% —V)—l—&
2 3 Rzz dp,
0

Lo J
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In computation, the network equation (1) is first solved
by using the modified nodal matrix to yield the solution
vector x. It is used in conjunction with Table 2, stored
in the computer, to generate the sensitivity matrix col-
umnwise with respect to each design parameter. Note
that the derivatives of network elements with respect to
design parameters can be evaluated either analytically
or by numerical perturbation, depending on the problem.
In the general case in which a scalar performance
characteristic is not simply a network variable but a
function of several network variables x,, X X €tC.,

P=g(x, x; 7). 9)
Then the sensitivity vector of performance characteristic
P versus design parameters p,, p,, Py, " P, I8

p_dgax agdy  ag oy (10)
op ax;ap Ox; dp  3x, Ip

which is clearly a combination of the basic sensitivity
vectors defined in Eq. (2). Substituting Eq. (5) for each
of the basic sensitivity vectors into Eq. (10), after some
manipulation we obtain the sensitivity vector

- (7~ (T T €2
T
(T

o (2 [T [5) 0 (25

+<§;)ek+~-~]. (11)

This is similar to Eq. (5) except that the elementary
vector e, in Eq. (5) is replaced by a summation of ele-
mentary vectors multiplied by the partial derivatives of
the performance function with respect to each of the
network variables upon which it depends. We use A to
denote the summation of vectors so that

_(% 98 98
A= (axi) &+ (ax) G+ (axk> &t (12)
and combine it with Eq. (11) to yield

af\"

__ (of
S= <6p> y. ‘ (14)

If some of the network variables in Eq. (9) are branch
currents and are not included in the solution vector by
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Table 2 Element stamps for the sensitivity matrix.

Element stamps
Element Current Branch current
type output output
m m
i V,=v) i
G il =wi=v) j
k V=V
m m
i - (— —12) i
"\ R
1 .
R J V,— V) I J
1
k V=V P
m
i
E J
k -1
, m m
i 1 i
J -1 J
J k -1
Voltage- m
controlled
voltage i
source, J
E=uV,, k -v,—-V,)
Current- m
controlled —
voltage i
source J
E=rl, k -1,
Voltage- 1 m m
controlled i
current, i V.=V J
source j —(V,—V,) k —(V,— V)
=8V
Current- m m
controlled _ —
current i 1, i
source b =, Jj
J=8I, k —I,

conditions 1-3 in Section 2, those branch currents must
be added to the solution vector in order to compute the
sensitivity vector. It should be emphasized, however,
that for this general case the computation cost for the
sensitivity vector is still only one analysis for the adjoint
equation (13) and one matrix multiplication of Eq. (14).
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Sensitivity for multiple performance functions
So far we have considered the formulation of the sensi-
tivity vector for a single dc performance function. For a
more general case, a practical circuit design problem
usually involves more than one performance function.
Furthermore, those performance functions, such as power
dissipation or voltage levels, often cannot be simply
weighted and added together to form a single performance
function throughout the design process. The weights for
different performance functions may not be optimally
chosen pridr to the design process and may need constant
updating. Also, during the design process the weights
have to be adjusted accordingly if the maximal or mini-
mal permissible values of some of the performance mea-
sures have been reached. Moreover, in some design
parameter regions, some of the performance functions
may have become relatively insensitive to the design pa-
rameters. Hence, in a computer aided design program,
the capability of computing the sensitivity vector for an
appropriate set of weights needs to be very flexible. The
sensitivity vector for the given performance functions
can be eithér computed individually or combined in some
manner. The user can then use his own judgement, with
the help of sensitivity vectors, to provide some direction
(preferably in an interactive computing environment)
to update his design to meet the design requirements.
Let us denote the network equations of Eq. (1) to be
f,; the performance function equations, each as given
by Eq. (9), to be £,; and the vectors of network variables,
performance functions, and design parameters to be x;, X,,
and x,, respectively. We now present a mathematical
theorem concerning the dc sensitivity computations for
multiple performance functions.

Theorem
Given is a vector

where the dimensions of subvectors x;, x,, and x, are
denoted as n,, n, and n,, respectively. Given also are a
set of nonlinear aigebraic equations

f, (x, %, %;)

f, (x, %, %) [ =0, (15)
X;— ¢

f(x) =

where ¢ is a known constant vector, and the following set
of adjoint equations

P> -

Y
1
T
<3_f(§l) v 1={z | (16)
ox
X, 0

where of/ 9x is the Jacobian matrix of f evaluated at the
solution point of Eq. (15), which is assumed to exist.
Here Y and Z are constant vectors. We have

ax,\ " ax,\ "
ﬁ3=(a—§;> Y+(5’;—§) Z (17)

A proof is given in the Appendix.

We now explain the practical use of the theorem. After
the solution of the nonlinear algebraic equation (15), the
Jacobian matrix af/dx evaluated at the solution point is
obtained. The adjoint equation (16) can easily be solved
by choosing “arbitrarily” the constant vectors Y and Z.
Equation (17) indicates that as part of the adjoint solu-
tion, %, is the combined sensitivities of x, and x, with
respect to x; subject to weighting vectors Y and Z in a
straightforward and flexible manner. For example, if the
vector Z is set to zero in Eq. (16), the resulting vector
%, is the sensitivity vector of all the network variables x,
with respect to design parameters X,, either singularly
or combined, by changing the value of Y. Specifically,
if Y is chosen as

1

0
x, becomes the sensitivity vector of the first nodal volt-
age with respect to all design parameters; if Y is chosen as

0
%, becomes the sensitivity vector of the sum of the first
two nodal voltages with respect to all design parameters,
etc. Alternatively, by using the same Jacobian matrix
but setting vector Y to zero, the sensitivity vectors of all
the performance functions x, can be computed, singularly
or combined, by changing the value Z. Of course, Y and
Z can both be chosen to be nonzero for any desired com-
bination of the various sensitivity vectors.

Although the theorem does not necessarily provide
any further theoretical insights compared with what has
already been discussed in Sections 2 and 3, it can be used
in programming development to avoid a great deal of
bookkeeping work by lumping multiple performance
functions together and yet maintaining their indepen-
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dence. As mentioned earlier, the use of the theorem is
especially flexible for sensitivity computation in an in-
teractive environment.

The theorem presented is in a very general form. For
most applications, the network function f, in Eq. (15) is
not dependent on the performance functions x,, and f,
is not dependent on the design parameters x,. The func-
tion for performance, f,, can be so defined that f,/ o,
is equal to an identity matrix. Therefore, the evaluation
of the Jacobian matrix in Eq. (A1) in the Appendix is
actually the evaluation of the modified nodal matrix
of / ox, discussed in Section 2, the sensitivity matrix
of, / ox, discussed in Section 3, and the performance ma-
trix of,/ax,, which can be obtained either analytically
or by numerical perturbation.

5. Examples
This section provides two illustrative examples.

Example 1
A three-port resistive network is to be synthesized such
that its short-circuit conductance matrix [15]

(See [16] for related work.) Refer to Fig. 1, where we
have assumed that between every pair of nodes in this
three-port network there lies a 1-Q conductor G ,, G ,,
etc. The total number of conductors is 15. At each port
there is also a voltage source, E,, E,, E,. The approach
used here is to compute the sensitivity vector of some of
the performance functions to be defined later with respect
to each of the 15 conductors such that the values of the
conductors are changed by using the sensitivities to
minimize the difference between the Y matrix of the net-
work and the given Y matrix.

In order to synthesize the three-port matrix, we first
set E, = 1, E, = E, = 0 and evaluate the three-port cur-
rents, / Ep IEz, and IEa' The three currents should be as
close to the entries in the first row of the given Y as pos-
sible, i.e., 4, 1, and 2. Then the process is repeated by
setting E,=1, E,=E,=0Oand thenE,=1,E, = E,=0.
The three performance functions are thus defined as

Pi=(Ig — 4"+ Uy — D'+ (I, —2)",
P,=(I; = 1)"+ (I, — 6)"+ (I, —3)*, and
Py=(Iy —=2)"+ (I = 3)" + (I — 8’ (18)

for the three different voltage sources.

To construct the modified nodal matrix of,/ax, of
Eq. (A1) we choose node 1 as the ground node. It is
labeled node O in the program. Nodes 2, 3,- -+, 6 in Fig. 1
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Figure 1 Three-port resistive network.
are then labeled 1, 2,- - -, 5. There are therefore five nodal

equations. The branch relations for voltage sources
E,, E, and E, are then included in the equation set. They
are labeled 6, 7, and 8. Table 1 is then used for each
network element. Because branch currents for the con-
ductors are not needed, the corresponding element stamp
for G is used. For the voltage sources, there is only one
element stamp, so that stamp is used. The resultant ma-
trix is shown in Table 3. The sensitivity matrix of,/ 9x,
in Eq. (A1) is similarly formed by using Table 2 as we
labeled the 15 design parameters 1 through 15. The re-
sultant matrix is shown in Table 4, where V, is the nodal
voltage for node 2, etc. Finally, the performance matrix
of,/ ax, is formed by differentiating Eq. (18) with respect
to the network variables as shown in Table 5.

The modified nodal equations are solved three times
for the three different voltage source value combinations
mentioned above. The resultant values of V' and I are
used to evaluate the matrices in Tables 4 and 5. At each
time only one of the three performance functions in Eq.
(18) is pertinent. The obvious choices for the Z vector
in Eq. (17) for the three different cases are

1 0 0
7= 0), Z=<1),and Z=<0);
0 0 1

and the vector Y is always chosen as zero. Three sensi-
tivity vectors are obtained for the three computations.
They are summed to form the total sensitivity vector for
updating the design. For example, the sensitivity vectors
S, S,, and S,, computed when all the conductors having
a value of one, are shown in Table 6. A Fletcher-Powell
algorithm has been programmed that updates the con-
ductor values such that the resultant Y matrix after 15
iterations is

3.9999 1 1.9999
Y =( 1 5.9999 3 )

1.9999 3 7.9999

which is very close to the Y matrix given.

DC NETWORK SENSITIVITY

571




572

C. W. HO

Table 3 Elements of matrix of/ x,.
Gyt Gyt Gy, —Gyy =Gy, =Gy —Gy -1 0 0
+ G25 + G26
Gy Gy + Gy T Gy, —Gy, Gy ~Gy 0 1 0
+ GSS + GSG
—Gyy T Gyt G+ Gy, —G Gy 0 —1 0
+ G45 + G46
=Gy =G, Yy G, =G, +Gy, =Gy 0 0 1
+ G45 + G46
=Gy —Gye =G =G, Gyt Gt Gy 0 0 =1
+ G46 + 56
-1 0 0 0 0 0
0 1 -1 0 0 0 0 0
0 0 1 —1 0 0 0
Table 4 Elements of af,/ 9x,.
v, V,—V, 0 0 0 0 0 V,—-V, 0 0 0 V,—V, 0 V-V 0
0 V,—V, V,—V, 0 0o 0 v, 0 V,—V, 0 0 0 0 0 V,—V,
0 0 ~V,+V, V,—V, 0 0 0 -V,+V, 0 V,—V, 0 0oV, 0 0
0 0 0 —V,—V, —V,—V,0 0 0 —V,+V, 0 v, 0 0 —V,+V, 0
0 0 0 0 —V,+V, V, 0 0 0 —V,+V, 0 V,—V, 0 0 —V,+ V,
0 [} 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 5 Elements of performance matrix of,/ of,.
0 0 0 0 0 2-(I; —4) 2- (I, — 1) 2 (I —2)
0 0 0 0 0 2-( -1 2- (I, —6) 2- (I, —3)
0 0 0 0 0 2 (g —2) 2 (I —3) 2 (I, —8)
Table 6 Vertical columns containing elements of sensitivity Example 2
vectors. A current switch emitter follower circuit is shown in Fig.
S s S 2, in which input to the circuit is represented by the volt-
! : ° age source E, . Two output voltages are taken from nodes
-2 0 0 OUT, and OUT,. The resistor values are also shown in
_(1) :g 8 Fig. 2. The transistor parameters, using an Ebers and
0 —3 —4 Moll model, are
0 0 -10
—L5 0 —3.5 I.=10"" mA,
0 -1 0 )
0 -1 0 '
0 0 -1 AT _ 558 mV, and
0 0 -1 g
0.5 0 —1.5
0.5 0 -1.5 8= 100.
—1 -2 0
—1.5 0 —3.5 . .
0 -3 a4 The input voltage source E, switches the voltage po-

tential from —1.9 to —0.8 V.
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The sensitivities of the output voltage at node OUT,
are to be computed as a function of each of the 15 re-
sistors at both of the two input voltage levels if the power
dissipated in the circuit is less than 0.345 W. However,
if the power dissipation is more than 0.345 W, then the
sum of the sensitivities of the voltage at node OUT, and
the power dissipation as a function of the resistors
should be computed instead.

For this problem, the modified nodal matrix can be
written similarly to Table 3 and is omitted here. Two per-
formance functions, the output voltage and the power
dissipation, are defined by
P =VR

1 3
P,= (41X I, +E,XI,),

where 4.1 is the value of the power supply E_...

The matrices of,/ ox, and 9f,/ ox, are also developed
similarly to Example 1. They have dimensions of 14 X
15, 15 X 15, and 2 X 15. In the computation, a value of
E,, equal to 4.1 — 1.9 =122 V is first used; the solution
of the circuit equation yields a power dissipation of
0.34059 W, which is below the critical 0.345 W. Hence

a Z vector (é) is chosen that leads to the sensitivities of

P, with respect to the resistors by evaluating Eq. (17).
In the next pass, the value of E, is changed to 4.1 —
0.8 = 3.3 V. Power dissipation this time exceeds 0.345 W

and reaches a value of 0.35152 W. A Z vector of (;) is

chosen, which automatically gives the sensitivities S,
of P, and P, with respect to the resistors by evaluating
Eq. (17). The sensitivities S, and S, are listed in Table 7
together with the corresponding resistor names. The
vector Y is set to zero for both passes.

Summary

In this paper, we have presented the modified nodal
approach to dc sensitivity computation. In formulating
the equations for the network sensitivities, two matrices—
the modified nodal matrix and the sensitivity matrix —are
needed. Simple tables are provided that can be stored in
the computer for use in a general purpose program to
construct both matrices in a straightforward manner.
Furthermore, the formulation permits multiple perfor-
mance functions for a given network such that both the
performance functions and the constraints required by the
design can be considered. Numerical examples have been
given to illustrate the methods and techniques presented
in the paper. Finally, the same basic approach presented
in this paper can be extended to frequency domain com-
putation.
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Rgy
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=41V
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=259 =105 }=100
Emitter Current Emitter Bias
follower switch follower

Figure 2 Current-switch emitter follower circuit.

Table 7 Sensitivities are shown with corresponding resistances.

Resistances Sensitivities

S1 S2
R, —0.017 —0.32
Ry —0.778 —0.0014
R, —1.16 —0.51
Ry —0.0068 —0.131
R, —0.0079 —0.0098
R, —0.21 —0.0085
R, —1.129 —0.008
R, —0.698 —1.21
Ry, —0.16 —0.16
Ry, ~0.45 —0.44
R, —0.0016 —0.0015
R —0.24 —0.25

]
8

Appendix: Proof of theorem

Proof: We first note that the Jacobian matrix J of f(x)
=0is

o, o, of,
X, 0X, 0X,
of(x
== at, ar, or, AD
0x, 9%, 0%,
001

If we make the following substitutions in matrix J:

o, af, af,
ax, 90X, 9%,

A= ! and B= s (Az)
0x, 0x, X,

we obtain

(0 )
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It can easily be shown that the inverse of J is

. A, —AB
o 1 )

where the inverse of A, denoted by A,, is assumed to
exist. Hence Eq. (16) becomes

%, . Y
A, 0 (A3)
. z
= B"'A," I
& 0

3

Because the matrix A, has dimensions (n, + n,) X (n, -+
n,), where n, and n, are the dimensions of x, and x,,
respectively, we can partition AIT into

Al = (A}, A}), (A4)

11°

where the number of the columns of the two submatrices
are, respectively, n, and n,. From Eqs. (A3) and (A4),
we obtain

A T T T
%, =-B" A}, Y—B'A,, Z. (AS)

Now we return to Eq. (15) and assume that the constant
vector ¢ is perturbed slightly to ¢ + 8C. Then, in order
for the vector equation (15) to hold, x,, x,, and x, are
also perturbed accordingly to x, + 8x,, X, + 8x,, and x,
+ 8x,. Because from Eq. (15) 8c and &x, are equal, we
substitute 8x, for de¢, yielding

f, (x, +3x,, x, + 8x,, x, + 8x,) 0
f(x+ dx) =| f, (x, +8x, x, + 8x,, x, + 8x,) | =] 0
x, +0x,— C ox,

Expanding the left hand side into Taylor series and
using Eq. (15) results in

o

of ox, + of
2

'a—xl 1V ox, ox, +

ox,=|0 R
OX.

3

which can be rearranged into

o, o, o,
ax, 9x, | /8x, 0xX,

= Ox,.
o, of, ox, of,
X, 9%, X,

Using Eqs. (A2) and (A3) we have

6x A
( 1 :< N g,
ox, Ap

1t follows that

ox, = A,, B 8x, and 3x, = A, B dx,.

Hence
axlT__ T ,T axz‘T_ T ,T
<ax3> =B A, and (6x3) =B A,

Substituting the above equation into Eq. (A5) results
in Eq. (17), which is what we set out to prove.
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