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HEME: A Self-Improving Computer  Program  for 
Diagnosis-Oriented Analysis of Hematologic  Diseases 

Abstract: HEME, a computer program for diagnosis-oriented  analysis of hematologic diseases,  accepts  as input  information about a 
patient and provides as  output  an  ordered list of suggested  diagnoses, an analysis of the logic behind these diagnoses, and a list of tests 
relevant to  these diagnoses and  not  yet performed. The decision  algorithm is based on Bayes’ Theorem.  Each  disease in the  system is 
individually analyzed,  and  the probability that  the patient has  the  disease vs the probability that  he  does not is calculated.  Bayesian 
methods of statistical inference  are utilized in that  the prior  probabilities of the  diseases  and  the probabilities of findings in given diseases 
were initially estimated from  the  judgment of experienced  hematologists  with  the  intention that they be modified automatically as data 
are accumulated. This program is intended for use in teaching  hematology, as  an aid to diagnosis, and  as a means for studying the diag- 
nostic  process. 
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Introduction 
HEME is a computer program that was  conceived and 
developed to  use Bayes’ Theorem  and Bayesian methods 
of inference  for diagnosis-oriented  analysis of hemato- 
logic diseases. I t  may be used by physicians to suggest 
diagnoses, to remind  them of available test  procedures, 
and  to  check their thinking at  each stage of the diagnos- 
tic process.  HEME is also useful as a teaching  tool to 
train students in hematology and in methods of interact- 
ing with a computer.  The program is a  vehicle for identify- 
ing those  features  that  are vital to  the diagnostic process. 

For more  than twenty  years physicians and  computer 
scientists  have  been  trying to  produce useful computer 
aids  to diagnosis. Our work on  aids  to diagnosis of hema- 
tologic diseases  was initiated in 1952 when  Lipkin and 
Hardy used McBee marginal punched cards  to  match  the 
findings about a patient with a  predetermined set of 
findings thought to  characterize  each of the  27 hemato- 
logic diseases in the system. A hand-operated mechanical 
sorting process selected those  diseases  for which the 
findings best matched those of a patient,  and a score 
was calculated for  the patient’s findings in relation to  each 
of the selected diseases [ 1 - 31. Using these  same prin- 
ciples our  group of investigators  organized  by  Zworykin 
and Lipkin  developed a computer program to  sort  the 
data  and print out information about  the matching of a 
patient’s findings with findings characteristic of diseases. 
The first demonstration of this system  on a computer in 
1957  applied to  20 hematologic diseases  [4-81.  Later, 
the  group developed a larger  system. A thorough  litera- 
ture  search resulted in the tabulation of incidence figures 
for  the  important findings in 75 hematologic diseases [ 91. 
We  used the incidence figures to estimate weights for 

each of 540 findings in each  disease,  and  we developed 
algorithms to utilize these weights to  calculate  scores  for 
a patient’s findings in relation to each  disease [ 10- 1 13. 
The incidence and weight tables from these previous 
studies  were used to help in arriving at the value  judg- 
ments  required for  the Bayesian  program  initiated in 
1967 [ 111 and reported in this  paper. Portions of this 
work have been presented  at meetings [ 12 - 141. 

Many  investigators have used  decision theory in med- 
ical diagnosis.  Ledley and  Lusted in 1959 [ 151 in a 
major  contribution discussed  the logic of medical diag- 
nosis and  the application of symbolic  logic,  probability, 
and value  theory in medical  decision making. They in- 
troduced  the  use of decision trees in diagnosis and sug- 
gested the  use of Bayes’ Theorem in medicine. Their 
paper provided  considerable  stimulus to  us and other 
workers.  Much  subsequent work has been the elaboration 
and  practical  application of their ideas. By 1961 Warner, 
Toronto,  Veasey,  and  Stephenson [ 161 had applied 
Bayes’ Theorem  to  the diagnosis of 33 congenital heart 
diseases using 50 findings [ 17- 181. In addition to  the 
contributions of many other investigators, significant 
ideas in the field  of medical decision making came  from 
Gorry  and  Barnett [ 191, who  applied  sequential  decision 
theory to diagnostic  problems, and from Gustafson [ 201, 
who experimented with subjective judgment in the esti- 
mation of probabilities. 

Description of HEME 

The HEME program performs probabilistic  calculations 
that  relate a  patient’s findings to  the diagnosis of hema- 
tologic diseases. I t  contains  the following elements: 55t  
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Table 1 Hematologic  diseases presently used in HEME program. 

01 AGRANULOCYTOSIS 
02 ANEMIA  OF  MALABSORPTION  SYNDROME 
03 APLASTIC ANEMIA 
04 CHRONIC MYELOGENOUS LEUKEMIA 
05 IRON DEFICIENCY  ANEMIA 
06 MULTIPLE MYELOMA 
07 POLYCYTHEMIA  VERA 
08 PERNICIOUS ANEMIA 
09 MEGALOBLASTIC ANEMIA OF PREGNANCY 
10 INFECTIOUS  MONONUCLEOSIS 
1 1  DRUG INDUCED HEMOLYTIC  ANEMIA 
12 SICKLE CELL  ANEMIA 
13 SICKLE  CELL  TRAIT 
14 HODGKIN’S DISEASE 
15 ACUTE LEUKEMIA 
16 LYMPHOSARCOMA 

18 SECONDARY POLYCYTHEMIA 
19 ANEMIA OF LIVER DISEASE 

17 IDIOPATHIC  THROMBOCYTOPENIC  PURPURA 

20 CHRONIC  LYMPHATIC  LEUKEMIA 
21 RETICULUM  CELL SARCOMA 
22 G A U C H E R ~  DISEASE 
23 FACTOR VIII DEFICIENCY 
24 HEREDITARY  SPHEROCYTOSIS 
25 ERYTHROBLASTOSIS FETALIS 
26 ANEMIA OF INFECTION 

28 LUPUS ERYTHEMATOSUS 
29 THALASSEMIA MAJOR 
30 THALASSEMIA MINOR 

32 GIANT FOLLICULAR LYMPHOMA 

27 HEMOCHROMATOSIS 

3 1 NIEMANN-PICK  DISEASE 

33 CONGENITAL  AFIBRINOGENEMIA 
34 CONGENITAL  SEX-LINKED  AGAMMAGLOBULINEMIA 
35 CONGENITAL  SWISS-TYPE  AGAMMAGLOBULINEMIA 
36 ANEMIA OF HYPOTHYROIDISM 

38 THROMBOTIC THROMBOCYTOPENIC PURPURA 

40 ACQUIRED IDIOPATHIC  REFRACTORY  SIDEROBLASTIC ANEMIA 

37 NONHEMOLYTIC  ANEMIA OF MALIGNANCY 

39 PRIMARY IDIOPATHIC  NON-TROPICAL  HYPERSPLENISM 

that  the  descriptor may assume. These findings must be 
mutually exclusive  and exhaustive, so that  each patient 
may be characterized by one and only one finding for 
each descriptor. The absence of a sign or symptom is 
itself a finding. Findings  corresponding to  the  above 
descriptors  are: 

Descriptor Findings 
Sex Male; female 
Blood pressure Normal; high; low 
Hepatosplenomegaly Neither; liver  only; 

spleen  only;  both 
(enlarged) 

Abdominal pain Absent (-1; present (+) 
Leukocyte  count <3000;  3000-4999; 

5 000-9 999; 10 000- 
49999;  50000-99999; 
1 1  00 000 

In  Table 2, 58 of the 585 findings presently  used are 
listed. 

4. For  each  disease and  for each finding relevant to that 
disease, there are two probabilities, also  known as likeli- 
hoods, defined as follows: 

p i j  is  the probability that a ptaient with disease i has 
finding j at  the time when the  disease is diagnosed. 

qij is the probability that a  patient  who does not have 
disease i, but  for whom the  descriptor corresponding 
to finding j is  observed during the diagnostic  process, 
does  have finding j at the  time of observation. 

Both these probabilities refer to patients  on the hema- 
tology service at  the  New  York Hospital. 

Initally, the p i j  and qij were  estimated from the judg- 
ment of the clinicians responsible for  the program,  based 
on  frequency data  that were  previously  collected [9]. 

1. A  list of diseases  that may be diagnosed along with the  Each estimate has  been recorded as  the ratio of two 
frequency ai with which these  diseases  occur in the pop- integers, parameters of a prior  distribution  from the  beta 
dation under  consideration. The present  list of 40 dis- class, i.e., 
eases  appears in Table 1. The frequencies are  those  that p , ,  = m, ni; 4 , ,  = y .  si. 
are thought to  occur  on  the hematology service of the 
New  York  Hospital; they may be modified through In this scheme  the clinician not only guesses  values 
Bayesian  inference as  data  are accumulated.  for p and q but he  also indicates numerically how sure 

he is of his  guess. The larger the values of the  numerator 
2.  A  list of descriptors considered  relevant to the diag- and denominator the certain is the estimate of or 
nosis of hematologic diseases.  A descriptor is defined as 4,  i.e., the smaller is the variance of the prior distribution. 

13 23 11  11 

a property to be described by the patient (demographic Suppose, for example, the frequency of finding in a 
characteristic or symptom) f Observed by the physician given disease is thought  to be one in  ten. If the physician 
(sign), or measured in the  laboratory  (laboratory  char- 
acteristic).  Typical  descriptors are sex,  blood pressure, 

were  quite  confident of that, he might set mij  at 1000 and 

hepatosplenomegaly,  abdominal pain, and  leukocyte 
ni at 10000. On  the other hand, if he  were  very unsure of 

count. 
his  guess, he might set mij at 1 and n, at 10. It is intended 
that  these estimates be modified automatically from in- 

3. For each descriptor a finite number of findings that formation in the Patient Data File  described in item 6 
558 are thought to  characterize  the clinically significant states below. 
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5. Bayes’ Theorem,  as used in the HEME program,  com- 
putes,  for  each  disease,  the probability that  the  patient 
has  that  disease  vs  the probability that  he  does  not, i.e., 

Prob  (disease  ilfindings) = 

ai Prob  (findings/disease i )  

+ [ai Prob  (findings/disease i )  

+ ( 1 - ai) Prob (findings/ not  disease i )  1. 

Assuming that  the findings are mutually independent, 
we  set 

Prob  (findings/disease i) = n p i j ;  

Prob  (findingslnot  disease i )  = n qij .  

findings 

findings 

The  question of independence  and  our efforts to ap- 
proximate it are  discussed  later  under  the heading “In- 
dependence.” 

We now have  the version of Bayes’ Theorem  that is 
incorporated into the HEME program: 

Prob  (disease  ilfindings) = 
ai n P i j  

ai n p i j  + ( 1 - ai) n q i j .  

Each  product is taken  over all the patient’s findings. 
; Dividing both  numerator  and  denominator in the pre- 
vious expression by ( 1  - ai) n qij we find: 

!Prob (disease  ilfindings) = 

[ai/ ( 1  - Qi)l n ( P i j h i j )  
[ai/ ( 1  - ai)] n ( P i j k i j )  + 1 . 

We can  observe from  this equation  that it is the  quantity 
p i j / q i j ,  the likelihood ratio of disease i in relation to 
finding j ,  that indicates the effect of the  observation of a 
finding on  the diagnosis of a disease.  Thus, if p i j / q i j  is 
p u c h  larger than 1 ,  the  observation of the finding tends 
‘to lead to  the diagnosis of the  disease; if p i j / q i j  is much 
Smaller  than 1, the finding tends  to rule out  the  disease; 
and  if p i j / q i j  is close  to 1, the finding has little  relevance 
.to  the diagnosis of the  disease. 

The version of Bayes’ Theorem  presented  here  was 
used by Nugent  and  co-workers  for  the decision of 
whether  or not a patient had Cushing’s Syndrome [ 2 1 3 .  
Our group has initiated  its use in making simultaneous 
‘decisions about  whether  or not  a  patient has  each of a 
wide range of diseases.  In this  version Bayes’ Theorem 
:is applied  separately for  each  disease,  and  each time it 
:is used it refers to a universe that  consists of only two 
groups,  patients  who  have  the given disease  and  patients 
:who do not have  the disease. The  patients  who  do not 
ihave the  disease belong to  the specified population of 
.patients under  consideration,  and they may have  some 

Table 2 Portion of list of findings presently used in HEME pro- 
gram. 

PERIPHERAL  BLOOD  (PB)  MORPHOLOGY 

268+ 
2691 
270+ 
27 I+ 
272f  
273+ 
274+ 
275+ 
276+ 
277+ 

278+ 
279+ 
280+ 
28 I+ 
282f 
283+ 

RBC INDICES HGB <7 , MCV >94, MCH >30 
RBC INDICES HGB <7 , MCV 80-94, MCH 1 3 0  
RBC INDICES HGB 1 7  , MCV <80, MCH >30 
RBC INDICES HGB <7 , MCV <80, MCB <30 
RBC INDICES  HGB 7-12.9, MCV >94, MCH >30 
RBC INDICES  HGB 7-12.9, MCV 80-94, MCH >30 
RBC INDICES  HGB 7-12.9, MCV <So, MCH >30 
RBC INDICES  HGB 7-12.9, MCV <80, MCH <30 
RBC INDICES HGB 13-17 RBC 3.5-6, PCV 30-55 
RBC INDICES HGB >17 , RBC 1 5 ,  PCV > S O  

LEUKOCYTE  COUNT < 3 000 
LEUKOCYTE  COUNT 3,000-4,999 
LEUKOCYTE COUNT 5,000-9,999 
LEUKOCYTE COUNT 10,000-49,999 
LEUKOCYTE COUNT 50,000-99,999 
LEUKOCYTE  COUNT 1100,000 

284+ LYMPHOCYTES <20% 
285+ LYMPHOCYTES 20-39% 
286+ LYMPHOCYTES 40-59% 
287f LYMPHOCYTES 60-79% 
288f LYMPHOCYTES 280% 

289+ LYMPHOCYTES ATYP  IN  PB-NONE 
290+ LYMPHOCYTES ATYP  IN PB i 10% TOTAL  LYMPHS 
291+ LYMPHOCYTES ATYP  IN PB 1 10% TOTAL  LYMPHS 

292- 293+ MONOCYTES > 5% 
294- 295f EOSINOPHILS > 3% 

296+ 
297+ 
298+ 
299+ 

300- 301+ 
302- 303f 

304f 
305+ 
306+ 
307+ 

GRANULOCYTES  (NEUT,  EOSIN,  BASOPHILS) 
GRANULOCYTES (NEUT,  EOSIN, BASOPHILS) 
GRANULOCYTES (NEUT,  EOSIN, BASOPHILS) 
GRANULOCYTES (NEUT, EOSIN, BASOPHILS) 

NEUTROPHILS  HYPERSEGMENTED 
GRANULOCYTES  IMMATURE  IN PB > 4% 

BLASTS,  PROMYEL.,  PROLYMPH.  IN  PB 
BLASTS,  PROMYEL.,  PROLYMPH.  IN PB 
BLASTS,  PROMYEL.,  PROLYMPH.  IN PB 
BLASTS,  PROMYEL.,  PROLYMPH.  IN PB 

<2% 
2-49% 

50-69% 
170% 

0- 9% 
10-49% 
3 0 %  

NONE 

308- 309+ ANISOCYTOSIS & POIKILOCYTOSIS 
310- 311+ TARGET  CELLS 
312- 313+ NUCLEATED  ERYTHROID  CELLS  IN PB 

3 14+ SPHEROCYTES  IN  PB-ABSENT 
3 15-b SPHEROCYTES  IN  PB-  OCCASIONAL 
3 16+ SPHEROCYTES  IN  PB-FREQUENT 

317+ 
3 18+ 
3 19+ 
3201 

321+ 
322+ 
323f  
324f 
325f 

PLATELET  COUNT < 150,000 
PLATELET COUNT 150,000-399,999 
PLATELET COUNT 400,000-999,999 
PLATELET  COUNT 11,000,000 

RETICULOCYTE  COUNT < 1% 
RETICULOCYTE COUNT I-1.9% 
RETICULOCYTE COUNT 2-4.9% 
RETICULOCYTE  COUNT 5-9.9% 
RETICULOCYTE  COUNT 110% 

. ,  
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other  disease or they may be  normal. Patients  who  have 
the  disease might also  have  one  or  more  other  diseases, 
and allowances for this  possibility are  made in the esti- 
mated  values of p .  In  the usual  version the universe con- 
sists of patients  each of whom has  one  and only one 
disease in the  system, so that  the estimated  probabilities 
of all diseases must  sum to  one.  In  our application, the 
probabilities of all diseases  do not add up to  one.  This 
version  allows for  the  very real possibility that a patient 
has more than  one  disease.  Whereas this may not be 
significant if the  system  is limited to hematologic  diseases, 
it might be very important in a broader diagnostic  scheme. 
Furthermore,  the usual version  requires  that probabilities 
be  estimated for  every finding in every  disease,  whereas 
our program contains  entries only for  those findings con- 
sidered relevant for  each  disease.  Five-hundred eighty- 
five findings in 40  diseases would require  that  23400 
probabilities be  estimated in the usual formulation. Our 
program uses only about  4000 p i j / q i j  ratios. In  the 
following sections  the  importance of the p i j / q i j  quantities 
in the  use of the program are explained. The significance 
of these quantities is unique to this  version of Bayes’ 
Theorem. 

6. It  is planned that a Patient Data File be  maintained in 
the  computer  for  the  purpose of improving the  estimates 
of the probabilities of findings in diseases and the prob- 
abilities of diseases in the population from the feedback 
of information  accumulated  through the  use of the pro- 
gram.  It is intended that,  whenever a final diagnosis for 
a  patient is reached by a consensus of physicians  re- 
sponsible for  the program, an edited  list of all the patient’s 
findings be entered  into  the  computer.  The p i j  tables 
are  updated automatically at regular intervals from this 
file as follows: Suppose  the previous value of p i j  was 
m i j / n i  and yi new patients with disease i are subsequently 
diagnosed, of whom x i j  have finding j .  Then  the new 
value of pij is set  at (mi j  + x i j )  / (ni  + yi). This  procedure 
provides a rational  framework in which to  combine clini- 
cal judgment with data  and is based on  standard  methods 
of Bayesian inference  [22].  As  more  and  more  data  are 
accumulated,  the  facts tend to outweigh the initial clini- 
cal judgment in the  estimated  value of p i j .  Analogous 
methods may be  used to  revise  values of qij  and ai. 

independence of findings 
A  critical step in most  applications of Bayes’ Theorem is 
the  assumption  that findings are  independent of one 
another.  This is equivalent to  expressing  the probability 
of a complex of findings as  the  product  of  the probabilities 
of the individual findings. This  assumption is virtually 
never strictly fulfilled. Dependence  arises in a number 
of different  ways in the medical area. Primarily, it must 

560 be realized that all the findings observed in a single 
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patient  arise from interrelated  mechanisms that de- 
veloped in the  same genetic and environmental  setting. 
It is common for  two or more findings that  are measured 
quite separately to  be controlled by the identical or closely 
linked physiological mechanisms. On  the  one hand,  when 
these mechanisms  function  normally,  many  findings are 
simultaneously  maintained in their normal  ranges, 
whereas a single malfunction can  be reflected in a number 
of apparently  independent  abnormal findings. Pulse rate 
and  body temperature are obvious  examples of-indepen- 
dently  observed  descriptors with  this kind of physio- 
logical dependence. 

A second form of dependence  occurs  when  certain 
descriptors  are  observed only when specified findings 
are  present.  Questions  about pregnancy are  asked only 
of females  over  the age of ten,  and lymph node biopsy 
results  are obtained  only  when other findings lead to  the 
decision to perform a biopsy of the lymph  node. 

Finally, there is a type of dependence  that  arises from 
the man-made  organization of diseases.  Even if findings 
are independent in the  context of one  disease  framework, 
a slight change in the organization of diseases  destroys 
the  independence.  An  example illustrates  this  point. 
Consider  the  disease  acute leukemia and  its  two sub- 
divisions, acute lymphatic  leukemia (ALL) and  acute 
myelogenous  leukemia (AML). Within each of the  two 
subdivisions  considered as  separate  diseases,  it is reason- 
able  to  assume  that  the two findings “Age  <20”  and 
“Bone  Marrow Shift to  Left,  Myeloblasts”  are indepen- 
dent, so that  the probability that a patient  has  both find- 
ings is equal  to  the  product of the probabilities of the 
individual findings. Now  the  patient with ALL is most 
likely younger  than 20, say with probability 0.80, and  is 
unlikely to  have  increased myeloblasts  found, say with 
probability 0.05. The probability that  he is younger  than 
20 and shows  increased myeloblasts is then 0.80 X 0.05 
or 0.04. On  the  other hand, in AML  the patient is likely 
to  be  older  and  almost surely increased myeloblasts are 
found in his bone  marrow, so we  assume  the probability 
of age less than  20 is 0.15 and of increased myeloblasts 
found is 0.95, so that  both  are  present with a probability 
of 0.15 X 0.95 or 0.1425. 

Now  suppose  that, instead of considering ALL  and 
AML  as distinct disease entities, we merge  them and 
consider only the single disease  acute leukemia. We will 
demonstrate  that  the  two findings “Age <20” and  “Bone 
Marrow Shift to  Left, Myeloblasts” are  no longer in- 
dependent in the merged disease.  Let 2 /3  of the  acute 
leukemics have  the lymphatic type  and 1 / 3  have  the 
myelogenous type. We calculate  the probabilities of 
Age <20, increased  myeloblasts, and  both findings in the 
mixed disease by taking  weighted averages of their  prob- 
abilities in the individual diseases, Le., we  add 2 /3  of 
the probability in ALL  to 1 / 3 of the probability in AML. 
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For example,  for age <20 we  add 2/  3 of 0.80 to 1 / 3 of 
0.15 to  obtain 0.5833. In similar fashion we find that  the 
probability of increased  myeloblasts in the mixed popula- 
tion is 0.35 and of both findings is 0.0742. If age and 
myeloblasts  were independent,  the probability of both 
findings would be  equal to  the  product of 0.5833 and 0.35 
or 0.2042, which is 275% of the  true probability. Not 
unexpectedly we find that in a mixed population of people 
with acute leukemia, ALL or  AML, age  and bone mar- 
row  myeloblasts are not  independent. The  older  members 
of the population are  more likely to  have  AML  and  are 
therefore  more likely to  have myeloblasts increased. 

In general,  let us  consider  two  diseases  and  two find- 
ings that  are  independent within each of these  diseases. 
By a generalization of the reasoning  used above  it may 
be  proved  that, if the  two  diseases  are considered as  one, 
the findings are  independent in the merged disease only 
if the  frequency of one of the findings is the  same in both 
diseases [23]. We  must  bear in mind that  the classifica- 
tion of a  population  into diseases is man-made and is 
subject to change. Therefore, in any diagnostic system 
hased on Bayes’ Theorem  an  assumption of independence 
between findings is only an approximation that ordinarily 
yields results of the  correct  order of magnitude. In  our 
version of Bayes’ Theorem, which uses  quantities like 
qij, the probability of finding j in the  absence of disease 
i, the lack of independence  between findings could  be 
particularly troublesome,  because  absence of one  disease 
is a merger of many others.  This problem of lack of in- 
dependence plagues  any  diagnostic scheme, Bayesian 
or not, intended to  relate a large number of diseases  to a 
large number of findings. The problem of investigating 
all possible dependencies  assumes a magnitude well 
beyond  human  understanding or computer capabilities. 

One  approach  to eliminating obvious  dependencies 
is the  construction of separate disease-finding tables for 
different demographic  groups, distinguished by sex,  age, 
ethnic  group,  or geographic  location. The  more nearly 
uniform a  population  with respect  to  these characteristics, 
the fewer problems  arise  due  to  dependency. 

In  the HEME program an  attempt  has been made  to 
eliminate dependencies between findings by coupling 
descriptors  that  are known to  be highly dependent.  For 
example,  instead of considering the liver  and  spleen 
separately, we have  one  descriptor called  hepatosplen- 
omegaly,  with findings of neither, liver  only,  spleen  only, 
and  both  (enlarged).  The various measurements of red 
blood corpuscles  (HGB,  RBC,  and  PCV)  are considered 
together  and divided into  categories considered to  have 
diagnostic significance. An examination of Table 2 shows 
that  we  consider normal blood; macrocytic,  normocytic, 
and microcytic anemias of two degrees of severity;  and 
polycythemia as  the meaningfully different categories 
of these  correlated  measurements. A similar approach  to 
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handling dependencies  was recently  suggested by Norusis 
and  Jacquez [ 24, 251. 

Operation of the program 
The HEME program has been written in FORTRAN to 
operate interactively at a computer terminal.  We present 
a  typical,  though  oversimplified, exchange  between a 
physician or  student  and  the  computer. 

At  the  start of the program the  computer  asks which 
function the physician  wishes to  exercise.  The physician 
indicates by entering  a 1 that  he wishes to  enter a series 
of findings on a patient.  After referring to a code list, he 
enters, by code  number,  those findings that  have already 
been  determined. 

FUNCTION? 
1 
ENTER  SXS 
7, 12, 14, 21, 56, 64,  74,  76,  89, 105, 134, 140, 150, 200, 
220,  275,  280,  284,  289,  292,  298,  304,  309, 3 18, 491, 
495,497,  501, 503 
ENTER  SXS 

If the physician  wishes to  check his input  and  obtain 
a list of the findings he  entered,  he  requests function 4. 
He is given a choice of a complete list or, if he  enters a 1 ,  
a list of demographic and all abnormal findings. In €his 
case  the physician has  asked  for  the  latter. 

FUNCTION? 
4 
ENTER “ 1 ”  FOR  ABNORMAL  HX  FORM 
1 

HIST 
7 AGE 40-49 YRS 

12 SEX  MALE 
14 RACE  WHITE 
56 FATIGUE,  LETHARGY  OR  MALAISE 
74 PALPITATION 
76 PRECORDIAL  PAIN 
89 BOWEL  FUNCTION-DIARRHEA 

P E  
XRAY 
LAB 

275 RBC  INDICES  HGB 7-12.9, MCV <80, 
MCH <30 

284 LYMPHOCYTES <20% 
309 ANISOCYTOSIS & POIKILOCYTOSIS 

The physician then  requests  the listing of differential 
diagnoses and probabilities  by  entering  function 5. The 
computer  calculates  the probability that  the patient  has 
each of the 40 diseases  currently in the  system  and lists 
those with  probability greater than 1%. The physician 
is able  to  compare this  list of probabilities  with his own 5611 
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clinical judgment. At this stage  there is not enough in- 
fofmation to give  a high probability of any disease. 

t 
FUNCTION? 
5 *  
DIFFERENTIAL  DIAGNOSIS 
# 5 IRON  DEFICIENCY ANEMIA 38.7% 
# 1 30 THALASSEMIA  MINOR 9.1% 
# .  2 ANEMIA OF MALABSORPTION 2.8% 
# .  37 ANEMIA OF MALIG.,  NON-HEM. 1.3% 

Because  iron deficiency anemia has a relatively high 
scire in the differential diagnosis, the physician asks  the 
camputer  for  the rationale behind that diagnosis by enter- 
ing function  6  and  the  disease code  number 5 for iron 
deficiency anemia. The computer  prints out a list of the 
findings supporting the diagnosis and those opposing 
the diagnosis, in order of their significance. In this  ex- 
ample there is only one finding in each category. How- 
ever,  the weight of each finding is shown as p / q  for 
mpking the diagnosis or q / p  for ruling out  the diagnosis. 
For convenience, when p /  q is  less  than one,  the inverse, 
q ( p ,  is displayed. If either ratio is greater than  1000,  its 
v ue is hewn as ************  7 

5 1  

FUNCTION? 
6 
ENTER  DISEASE  NUMBER  FOR P/Q RATIOS? 

RPCORDED SYMPTOM P/Q RATIOS  FOR 

P /Q FOR  DIAGNOSIS 
5 IRON  DEFICIENCY ANEMIA 

g2.0 # 275 RBC INDICES  HGB 7-12.9, MCV 
<80, MCH <30 

Qf'P AGAINST  DIAGNOSIS 
t2.5 # 12 SEX MALE 

If the physician thinks there is enough  evidence to 
pGrsue the diagnosis of iron deficiency anemia,  he may 
r uest a list of suggested findings to investigate. He does 
t s by entering  function  9  and  the code number for the 
dvease in question. Unrecorded findings that  support  or 
oppose the  diagnosis are listed in order of p / q  or q l p .  
The physician compares this  list with his  own judgment 

decides on  the priorities for  further examinations. 

t;p 

F  NCTION? 
9 !  
EkTER DISEASE  NUMBER  FOR P /Q RATIOS? 

U RECORDED SYMPTOM P/Q RATIOS  FOR 

P /Q FOR  DIAGNOSIS 

P 

5k 5 IRON  DEFICIENCY ANEMIA 

i 

B. J. FLEHINGER AND R. L. ENGLE, JR  
i 

i i 
i 

980.0 # 345 BM IRON-ABSENT 
80.0 # 427 SERUM  COPPER  HIGH 
33.0 # 395 RESPONSE  TO IRON- 

POSITIVE 
19.8 # 435 SERUM  IRON  BINDING CAP 

(TOTAL)  HIGH 

INCREASED 
17.4 # 340 BM CELLULARITY- 

16.5 # 176 FINGERNAILS-SPOONED 
OR BRITTLE 

10.0 # 311 TARGET CELLS 
10.0 # 321 RETICULOCYTE  COUNT < 1% 
9.3 # 430 SERUM  IRON LOW <70 
8.3 # 197 TONGUE SMOOTH OR SORE 
3.0 # 72 DYSPNEA 
2.7 # 564 ACHLORHYDRIA-PRESENT 

Q/  P AGAINST  DIAGNOSIS 
****** # 433 SERUM  IRON BINDING  CAP 

(TOTAL) LOW 
* * * * * *  # 432 SERUM  IRON HIGH >130 
* * * * * *  # 348 BM IRON-INCREASED 

100.0 # 325 RETICULOCYTE  COUNT 
> = 10% 

97.0 # 394 RESPONSE TO  IRON- 
NEGATIVE 

50.0 # 338 BM CELLULARITY- 
DECREASED 

10.0 # 337 BM MEGALOBLASTIC 
5.0 # 426 SERUM  COPPER  NORMAL 

After  any  or all of the additional tests suggested, or 
any  other  tests  the physician wishes, have been  per- 
formed,  the physician may enter  the additional finding 
codes into  the computer through  function 2. 

FUNCTION? 
2 
ENTER SXS 
435,  175,  311, 321,430 
ENTER SXS 

A revised differential diagnosis may then be requested 
through  function 5. The findings, now including low 
serum iron and high iron binding capacity, have made 
the diagnosis of iron deficiency anemia virtually certain. 
At the  same time  thalassemia minor has appeared on the 
list with relatively high probability. Further studies and 
interaction with the  computer would be required to pur- 
sue this possibility. 

FUNCTION? 
5 

' DIFFERENTIAL  DIAGNOSIS 
# 5 IRON DEFICIENCY  ANEMIA 100.0% 
# 30 THALASSEMIA  MINOR 89.9% 
# 37 ANEMIA OF MALIG.,  NON-HEM. 28.0% 
# 2 ANEMIA OF MALABSORPTION 2.8% 
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From examples such  as  these  we  have concluded that 
HEME is useful in teaching  hematology and  has potential 
as  an aid in diagnosis and as a means of studying the 
diagnostic process itself. 

Testing of program 
Immediately after  the HEME program was  written, it was 
exercised on a series of 3 1 cases of hematologic disease 
selected from the medical record  library of New  York 
Hospital.  After  each  case  was analyzed by the  work 
group  responsible for HEME, a subjective judgment was 
made  about how well the program would have performed 
as  an aid to a  physician in the diagnostic process.  In this 
study, 14 cases  were  rated excellent, seven good, one 
fair, three  poor,  and  six not  evaluable because  the  correct 
diagnoses were  not  yet in the  system. 

Encouraged  by these results, we proceeded  to  seek 
experience with HEME as  an aid to diagnosis and  as a 
teaching  tool. R. Strauss, who was a fourth-year medical 
student  at  the time,  followed 30 hematology patients  at 
the  New  York  Hospital from  time of admission until 
diagnosis  was accepted. Taking  information from  the 
charts  and from conferences with  responsible  physicians, 
he  entered  data  into  the program at  frequent intervals, 
monitored the  output of suggestions of diagnoses and 
findings to  test,  and  compared  these  results with the 
decisions and  procedures specified by the responsible 
physicians. In  the  course of this project,  he found that in 
many instances  there  was a good correlation  between  the 
results coming out of the  computer  and  the thinking of 
the physicians  responsible for  the patients. Other  cases 
exposed  correctable  errors and the  absence of important 
diseases  or findings from  the system. 

Most recently HEME has been  used  experimentally un- 
der  the direction of Dr. R. Friedman  at  the  University of 
Wisconsin  School of Medicine as  an aid in the teaching 
of hematology. Students  have found it instructive  and 
useful, and staff hematologists have been  impressed  with 
its  teaching  potential. They find that it encourages  stu- 
dents  to  take  account of previously unconsidered diag- 
noses  and often leads  to lively teaching  sessions. In  the 
course of this experiment,  the HEME analyses of 44 cases 
were evaluated.  A record  was  made of the diagnoses 
suggested by the program after findings observed in the 
initial study were entered.  This  process  was repeated 
after  the  results of all relevant tests had been reported 
and a “correct” diagnosis  was accepted by the physi- 
cians responsible for  the patient. For each case, we ob- 
served  the ranking of the  “correct” diagnosis by HEME, 

and  these  observations  are summarized in Table 3 .  
In all these  experiments, it was demonstrated  that 

HEME has fine potential as  an aid to diagnosis and  as a 
teaching  device. In  almost  every  case it stimulated 
thought in the right  direction and jogged the memory 

Table 3 Results of trial of HEME as teaching aid at  University 
of Wisconsin School of Medicine. 

Ranking of “correct” 
diugnosis by  H E M E  Initial  study  Final  decision 

1 16 
2 7 
3 8 
4 0 
5 5 

>5 3 
Correct diagnosis  not in HEME 5 
Case not yet  complete 

25 
8 
1 
2 
0 
2 
5 
1 

about diagnoses and  tests  to  consider.  The p /  q ratio  was 
found to be a natural and  intuitively comfortable way to 
think about  the  relevance of a finding to a disease,  both 
in the initial assignment of p and q and in the interpreta- 
tion of the  analysis by users of the program.  Exercising 
the program  revealed  a number of correctable  errors  as 
well as diagnoses and additional findings that need to be 
added  to  the  system.  These  results lead to  the conclusion 
that  more eRort is required and  is definitely justified. 

Discussion 
In this paper  we  have described a Bayesian  program  for 
the diagnosis of hematologic  diseases. It is distinguished 
from  other Bayesian  programs  by the  fact  that  each dis- 
ease  is analyzed individually to  determine  the probability 
that  the patient has  the  disease vs the probability that 
he  does  not  and by the  property of combining initial 
clinical judgment with  accumulating data in a self-improv- 
ing mode. This program provides a framework whereby 
the intensive work of a  few able physicians concentrating 
on a group of medical diagnostic  problems can  produce 
a system of value to many physicians and  the communi- 
ties they serve. The  system  can be used  to train medical 
personnel, assist in diagnostic  decisions, and  record pa- 
tient data in coherent form. 

The version of Bayes’ Theorem used in HEME requires 
far  fewer probabilities of findings in diseases than does 
the usual version.  Since each  disease is analyzed  sep- 
arately,  the p and q need be  entered only for  those find- 
ings relevant to  the diagnosis of that  disease.  Inherent 
in the  system  is  the  capacity  to grow and  improve itself 
in three ways. New  diseases may be added without 
changing the  rest of the  system; new findings relevant 
to  one  or more diseases may be added with  only  minor 
changes;  and  the probabilities  required for Bayes’ The- 
orem may be modified automatically as  data  are ac- 
cumulated. 5613 
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