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Abstract: Multiconic surfaces are a generalization of the type of surface called polyconic in numerical control of machine tools. The
general theory is developed in this paper using a new parametrization. In the original form there was a problem as to whether or not a
point that satisfies surface equations actually belonged to the intended surface. This difficulty is removed by the new technique.

Algorithms for calculation of line and plane intersections with the surface and for calculation of normal vectors, volume, and surface
area are given for classes of defining functions of which it is required only that they have appropriate conditions of continuity and dif-

ferentiability.

Examples are given of surfaces developed using spline functions. Preliminary comparative estimates of design and numerical control

processing times are included.

Introduction

The APT language [1] developed for application to the
control of machine tools includes a type of surface called
“polyconic.” There appears to be no adequate literature
on the definition of such surfaces and their properties.
The purpose of this paper is to provide such an exposition.
The term ‘“multiconic’ is meant to imply that the control
curves used are more general than the pseudopolynomials
which define polyconic surfaces. This does not compli-
cate the definition nor the development of certain proper-
ties of the surface.

Multiconic surfaces are finite connected surfaces for
which a family of parallel planes intersect the surface in
curves that are conic sections, For definiteness, let x, y, z
be a rectangular coordinate system for which the set of
parallel planes is perpendicular to the x axis with the do-
main of x finite (x,, x,). The mathematical definition of
the surface then can be based on various ways of defining
conic sections. Current practice includes at least four
ways of doing this, all being related to a given triangle,
as illustrated in Fig. 1.

All four of these ways assume that the conic passes
through the points Q,, O, and is respectively tangent to
the lines 0,0, and Q,Q,. From this information, a single
conic can be specified by providing the eccentricity. Be-
cause eccentricity is inconvenient for present purposes
another number, ¢, is provided and is called “‘shape fac-
tor,” to be defined later. Alternatively another point Q,
on the conic, interior to the triangle, will complete the
definition. This point is called the “shoulder.”

Since by definition a multiconic is a set of such conics
in parallel planes (perpendicular to the x axis), it follows
that the set of points {Q,} for fixed i is a space curve.
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Each point of the set corresponds to a value of x, i.e., O,
is a function of x, Q,(x). Itis the practice, in defining such
surfaces, to define such space curves in terms of their y
and z coordinates, i.e.,

Q,(x) & (y,(x), z,(x)).

The functions y;(x) and z,(x) are called control curves.
Likewise, the shape factor ¢ is ¢ (x). For notational con-
venience, the argument x is dropped whenever x is held
constant.

Alternatively, the curve Q,(x) may be implicitly de-
fined by a pair of scalar functions S, (x), S,(x) which
represent functions of the angles at @, (x), 0, (x).

Control curves of the form b Vix + 3V ax', where N
is not greater than eight, define polyconics. The reason
for the square root term is to provide an infinite slope as,

Figure 1 Basic triangle defining a conic section.
9
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Figure 2 Vector construction of a conic section Q(y, z).

for example, in the design of nose cones. Various users of
the polyconic have added functions such as ax + b =
Vit 4+ gx +r [2].

Such functions, however, are difficult to use for design
and also are uneconomical for computing. Spline control
curves [3, 4] greatly simplify the design process and also
reduce computing costs.

In the remainder of this paper, line and plane intersec-
tions with the surface and the calculation of normal vec-
tors, volume, and area are discussed and algorithms for
their calculation provided. Line intersection and normal
vectors are essential for numerical control data pro-
cessing; plane intersections, volume, and area are es-
sential for the process of designing surfaces.

It is assumed here that the various functions have any
necessary continuity and differentiability.

Multiconic surface equations

For a fixed value of x, consider in Fig. 2 the points
0y, 2), Q,(y;,2),i=0, 1, 2 determined by the vectors
E=(0,2,§=(p2) Let& =§—§, &/ =¢ &,y =
Y=y, 2 =z—z,s0that £ =(y',2'), &' = (¥, 2).

Then £’ is the vector from O, to Q,, £, from Q,to Q,,
and s &,’ from Q  to Q*. Evidently Q* is on the segment
0,0, if and only if 0= s= 1. Otherwise it is on that seg-
ment extended, to the left if s < 0, and to the right if
s > 1.

The vector ¢," — s &, is the vector from Q* to Q,, and
t(€, — s &,') is on that segment if and only if 0= t= 1;
otherwise it is on that segment extended, and it is below
if t < 0, and above if t > 1. Then

& =58 1§ —s&)) =& s(1 -1 + &1, (1)
E=¢s(1—0) + &+ E(1—9) (1 =), (2)

and certain assertions can be made about various re-
gions of the plane.
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In Fig. 2 the line through Q, and Q, corresponds to
t=0. The point Q, corresponds to = 1. The line through
0,. @, corresponds to s = 0. The line through Q,, O,
corresponds to s = 1.

As for the interiors of domains I, 11, III in Fig. 3:
In L 0<s<1,0<1t<1,

In II: 0<s<1,t<0,

In III: 0<s<l1,t>1.

Consider the function g(s, 1) = — és(1—s) (1 —1)*and
the equation

g(s, 1) =0. (3)
Now, if E=(1/2)(y,'2,' — y,’z,') # 0 then Eq. (1) can
be solved for s, ¢:

§= (zlly/ - yl’Z’)/(zE + Zzly/ — yzrzl),

t=—(2,y —y,2') /2E (4)
for any point y’, 2’, for which 2E + 2,’y’ — y,’2" # 0. This
inequality has the geometrical significance that Q cannot

be on the line through Q, parallel to Q,0,. When these
values are substituted into (3), the equation becomes

(yzrzr _ zzryl)2 — d)(zlfyr - yllz/)
X[2E+ (2 —2)y — (3, —»)2] =0, (5)

which, being of second degree in y and z, is a conic.
If this equation is solved for ¢, the result is

Yo 2 y 2 y 2
b= + v, 2 1 (6)
y’ Z, yll zll yll Zl’ 1

vo 2, 1P |y, 2z Il]y 2z 1
ob=\y, 2, 1| =y z 1|y, 2 1. (7
y z |1 yo oz 1y z 1

Geometrically, this is the square of the area of triangle
0,0,0 divided by the product of the areas O,QQ, and
QQ,0,. The signs of the areas are, of course, important.
Assuming that the vertices of the triangles are traversed
in row order, the signs of the determinants are positive
for counterclockwise traversal and negative for clock-
wise traversal. It follows that ¢ is positive in the interior
of regions I, II, 111, is zero on the line through 0,0, (ex-
cept at Q, and Q,), is not finite on the lines through Q,
and Q,, Q, and Q,, and is negative elsewhere. Obviously,
given Q,, 0,, Q,, O, then ¢ can be computed if the excep-
tions are excluded. This calculation is required when the
shoulder curve is given instead of ¢.
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From elementary theory of conics it can be shown that

the conic is a straight line if ¢ =0,
an ellipse if 0 < ¢ < 4,

a parabola if ¢ = 4,

a hyperbola if ¢ > 4 or ¢ < 0.

bl

However, for the application being considered here,
there is no interest in hyperbolas exterior to the domains
I, II, II1. Therefore the restriction ¢ = 0 is made. Note
that this excludes Q for which 2E + z,'y" — y,'2' =0 ex-
cept at @ = Q,, in which case ¢ is not finite.

In the event that E = 0, Eq. (4) is no longer valid.
Equation (3) then defines a degenerate conic.

Another shape function p = Vé/(2 + V) is also
used. Its principal utility, from the design point of view,
is that £ = p when s = 1/2. Hence if a point Q is on the
conic and on the line from Q, to Q, the bisector of the
base Q,0,, then p is the length of QQ divided by the
length of an. For p =1 the conic is a degenerate hyper-
bola. It is the pair of rays through Q,, @, and Q,, Q..

It is necessary [ 5] to impose further restrictions on the
functions ¢(x) and p(x) of the form

0<¢,=e¢k) <o,
0<p,Zplx)=p, <1, (8)

where ¢,, ¢,, p,, p, are independent of x. For a zero value,
the tangents at Q, and ¢, would no longer be directed
toward Q,, whereas for any ¢ > 0, p > 0, they are di-
rected toward Q,. This leads to a discontinuity in the
surface normal vector for those x such that ¢(x) = 0.
Thus, if a straight line conic is desired, it must be man-
aged by placing Q, on the line segment Q Q,. If the
shoulder curve is used in place of the shape function,
the shoulder must also lie on the segment and ¢ com-
puted by a limiting process.

1t should be noted that region III is involved only in
the case of the hyperbola. Since a continuous surface
cannot involve both branches of a hyperbola, region 111
is excluded by the constraint t < 1 (= 1 only in the case
of a degenerate hyperbola). Another choice for a multi-
conic representation is whether to include the full conics
in regions I and II, or only the segment in I. In the first
instance the conics must be limited to ellipses; other-
wise the surface has infinite extent. The limitation to
region I requires the constraint 0 = ¢ < 1. If the multi-
conic is so restricted, another multiconic of similar type
can be adjoined along Q, or Q, with C, continuity if and
only if Q, is implicitly defined by the functions §; and
S, mentioned in the Introduction.

The equations for the multiconic surface are obtained
by inserting the argument x appropriately in (1), (2),
and (3),

E(x) =s(1 =D& (x) +1£/(x), 9)
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Figure 3 Plane regions determined by conic parameters (s, ).

or £(x) = s(1 — 1)¢,(x) + £, (x)

+ (1= (1 —né&(x), (10)
together with
g, 5,0 =" —s(1=5)(1—0" ¢(x) =0. (11)

It is evident that the form of the representation is in-
variant under translation and also under rotation of co-
ordinates about the x axis.

Line intersections with a multiconic
Let the line equation be n = a + bu, where n= (x, y, 2),
a= (a,, a,, a;), b= (b, b,, b,) and u is a parameter.

For the case t < 1, define the interior of the multiconic
to be the convex region delimited by the complete ellipse
for each slice.

If b, # 0, select a set of argument values {x;}, and
compute the corresponding values {y, z;} from the line
equation. Excluding the exceptional cases noted in the
previous section compute {s, t;} from Eq. (10), hence
{g(x; s t;)} using Eq. (11). Now g(x, 5, 1) < 0 inside
the convex region and g(x, s, ) > 0 outside. If any
g(x, s, ) = 0, then x,, y,, 2, is a point of intersection.
If g changes sign for two consecutive x;, there exists a
point of intersection for some x between the two values.
This value, and hence the point of intersection, can be
easily computed using some form of regula falsi [ 6, 7, 8].
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For the exceptional cases, including the case b, = 0,
special procedures must be devised.

Reasonable choices of the test set {x,} depend to some
extent on the nature of the defining functions, as do tech-
niques for excluding those arguments that are not feasible.
Spline conics, for example, lend themselves to bounding
segments of the surface in such a way that entire seg-
ments can be rapidly excluded.

For the case 0 = ¢ < 1, some intersections may occur
on a part of the conic that is not contained in the defining
triangle. These are false intersections and must be ex-
cluded.

Plane intersection with a multiconic surface
Consider a plane n = A4 + Bv + Cw, where n = (x, y, 2);
A, B, and C are constant vectors for which B, and C, are
not both zero; and v and w are parameters. Again choose
a set {x;}. The plane intersects the plane x = x; for a
specific x; in a line £ = a + bu, where ¢ = (y,z), aand b
are constant vectors. In translated coordinates, &'
=a' + bu.

The problem now is to determine its intersections with
the conic, i.e., to solve simultaneously

&'s(I—t) +&'t=a' + bu,

£ —¢s(1—s)(1—-0H*=0. (12)
When u« is eliminated, the system becomes

ps(l1—1t) +qt=r,

f—¢s(l—s)(1—0°=0, (13)
r=a/'b,—a,b,

where

pP=Y,'b,—2'b,

q=y,'b,—z/'b,,

r=a'b,—a,b,. (14)
Let

w2=¢s(1 —s), t=w/{1+w).

Define

PP=¢(r—q)°+ar(p—1r), (15)

where P represents the positive square root if P° > 0;
also

R=p"+¢(r—q"

F=¢(r—q)(p—2r) +ep Vo P,
G=2p"+¢(r—q)(p—2q) +ep Vo P,
H=2pr+¢(r—q)* +e(r—q) V¢ P, (16)

where e ==+ 1.
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Certainly R = 0. Assume for the moment that R > 0,
P> = 0 and note that G = 2R + F, so that G > F. Let
s=H/2R,w=F/2Rand,if F+2R #0,t=F/(F+2R)
= F/G. With these values, Eqgs. (13) are satisfied.

It can be shown that 0= H =< 2R, whence 0= s= 1,
as is evident geometrically. The point corresponding to
(s, t) is in region I if and only if 0 =< ¢ < 1 and is in regions
I and II if and only if ¢+ < 1. For region I the condition
becomes 0= F/G < 1,or0=F < GifG > 0. For G
< 0 it becomes 0 = F > G, which is not possible. Hence
the condition for region I is 0 = F < (. By a similar
argument the condition for regions I and Il is F < G,
G > 0.

Now consider the case R = 0. Only two possibilities
arise. One of these is p =0, ¢ = 0, which is excluded; the
other is p=0,r=gq. Inbothcases R=F=G=H=0
and P* = — 47, Unless r = 0 no solutions exist. If p =g
= r = 0 then the pair of equations reduce to 0 =0, I —
és(1—s)(1—1® =0, whose solutions are

t=w/{(1+w),w==xVes(l —ys)

Points in region I are obtained for w=+ Vs(1 —s),
in region II for w=— V¢s(1 — s).

In summary (17) solves the problem for R = r =0,
and no solutions exist if R =0, r # 0. For numerical cal-
culation, the criterion for the existence of this case is
R = g, |r| = € for a preassigned small number ¢.

The algorithm leads to 0, 1, or 2 solutions for each
value of x;. Proceeding through successive values of the
x; produces at most two strings of points belonging to
the intersection. Whenever there are two strings, mem-
bership in one string or the other is determined by the
value of e in the preceding algorithm. More information
concerning the organization of the strings can be ob-
tained by calculating the intersection of the plane with
the boundary multiconic curves Q,(x), Q,(x) and the
initial and terminal conics. In addition values of x = x*
for which P = 0 with s and ¢ valid are significant. In such
cases the line of intersection of the given plane and the
plane x = x* is tangent to the conic at x= x* and also to
the curve of intersection of the plane and the multiconic.

0=s=1. (17)

The normal vector

The current practice in dealing with polyconics has been

to use a set of points in the neighborhood of the point

of interest to approximate the unit vector. This vector

can be computed directly from the defining equations.
Given the set of functions

y=Alx, s, 1),
z=1(x,8,1),
a(x,s,1)=0, (18)

it is not difficult to show that
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Ts Tt As }\t
& - + : (19)
ay r=constant
s O-t a-s (Tt
}\.l‘ >\s )\t
A A
iz_ = — T.l‘ Ts Tt - s t s (20)
ox y=constant oy 0y
Ul‘ o-s O-t

provided that the denominator is not zero, and the various
functions satisfy appropriate continuity and differenti-
ability conditions.

The components of a unit normal vector are propor-
tional to

}\'t )\s )\t Ts Tt }\s )\t
T, T, T|:i— o of|o, o 21)
U.Z‘ O-s O-t
whether or not the last term is zero.
In the present case
Ax, s, t) =y, (x)s(1—1) +y,(x)¢
+y,(x) (1 =) (1—1),
T(x, 5, 1) =z,(x)s(1 —1) +2,(x)¢
+2,(x) (1 =) (1= 1),
olx, s, )= —¢)s(1—s5)(1—0" (22)

For these functions it follows that

T A

Ts t (3 t
= (1—1)B, =(1—0nC,
O-s O't O'S O't
A
* N =2E01 1),
t, t,

B=2z(x)[2t + ¢ (x)s(1 —1)]

+ 2" (x)d(x) (1 = 25) (1 — 1),
C=y,/(x) 20+ ¢(x)s(1 = 1]

+y, () (x) (1 = 25)(1 — 1),
E= (y,/(x)z,'(x) =y, (x)z," (x}) /2. (23)
A unit normal therefore is proportional to
AB—17,C+20,E:~B:2E, (24)
where
A=Y, (x)s(1—1) +y,(x)¢

+ ¥, (0 (1 =51 —1),
T, =Z(x)s(1—1) + 2 (x)t

+Zo(x)(1_s)(1_t)7
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Figure 4 Conic section after translation and rotation of coor-
dinates.

o = —h(x)s(1—5)(1—1)° (25)

The dot notation indicates differentiation with respect
to the independent variable.

The possibility exists that the three components all
reduce to zero. It is not difficult to show that, at any value
of x for which this condition exists, either the conic re-
duces to a point, or the conic in question is a parabola and
the circumstance occurs only at the parabolic point at
infinity, which is of no interest here.

Values of x at which control curves have infinite slope
need special attention. Except for the unlikely case that
the first component remains finite, the unit normal vector
is=+ (1, 0, 0). The sign can be chosen in a consistent way
by computing the normal at a nearby point.

Volume
In this section the volume contained in a region bounded
by a multiconic surface and the ruled surface defined by
the set of triangle bases is obtained for the domain (x,,
x,). The procedure is to sum the infinitesimals A4 (x)dx
where 4 (x) is the area of the conic section at x contained
in region 1. In order to compute that area it is convenient
to translate the origin to O, and rotate coordinates so that
Q, lies on the new y axis. Then 4 = ff,ma" (v, —y)d=
In Fig. 4, y, refers to values of y greater thany ., ¥_
to values of y less than y . , the two values of y being
taken for a fixed value of z. It is convenient here for nota-
tional purposes to let y, z represent the rotated coordin-
ates rather than the original coordinates, which for the
moment will be called y", 2". Let y =y" —y, , 2’ =2' —
z), r= \/m C=y,'y,’ +2/'2, . Asbefore E=
(v,’2z," — v,'2,’) / 2. Consider the transformation

y=,y +z/2)/r,
z=sign E(—z,'y' +y,'2") /r. (26)
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It is clear that the transformation is a rotation if E > 0
and a rotation and a reflection if E < 0. If r=00r E=0
the conic is a straight line or a point, with area 0, which
case is automatically treated in the following.

Because a rotated (and reflected) conic remains a
conic, and y, = C/r, y,=r,z,=2|E|/r, z,= 0, it follows
that in the new coordinate system the equation of the
conic is

y=rs(1—1 +Ct/r,

z=2|E|t/r. 27)
With

t=w/(1+w), w=Ves(I—ys)

and

di/dw=1/(1+ w)?,

the maximum value of ¢ occurs at the maximum value of
w, i.e., at s=1/2. But z is maximum when ¢ is maximum,

hence
Winax = Vb/ 2, 1, =V/ (2+ V) = p,
Znax = 2|Elp/r. . (28)

In terms of the shape function p, the solution of s as a
function of p leads to

s, =+ Vo = w'(1—p)")/2p,
s =(p~m)/2p. (29)
Now
y,=rs,(1—10+Ct/r,
y.=rs_(1—1 +Ct/r, (30)
and therefore
y,—y_=r(s,—s)(1—1
=rVp' —w'(1=p)* (1-0/p
=NV (1= 0= (1= p)*¢/p. (31)
Because dz/dt = 2|E|/r, it follows that

A=ClE/p [ VFU-0 = (- dn (32)

The integral can be evaluated as follows:

sp<1/2
Elp(1—p)* V1i—2p
A=|—I%[E—arcsin pP__P f]. (33)
(1—2p)** L2 l—p (1—p)
sp=1/2
528 A=2|E|/3.
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ci<p=1

o roVIs— 1 Vig =1
AzlElp(l 52 [p 2p 2l_logp+ 2p 1]. (34)
(2p— 1) (1—p) I=p

Hence the volume is

v=[ " IE@I Flp()a, (35)
where
_pUl=p’'[m . p pVIi—2p
F(p)—(l—Zp)g/z[Z arcsm]_p (l—p)z]’
0=p<1/2
=2/3, p=1/2

p(1—p)° [pV2p—1 | p+\/2pj]
= — log s
(2p—1)3/2 (1—p)2 l-p

1/2<p=1. (36)

Obviously, to evaluate this volume, the zeros of E(x)
must be known. From the design point of view this im-
plies x slices in which the conic reduces to a straight line
or to a point.

If p < 1/2 the result for the total volume in domains
Iand Il is

V=" IE@] Flp(0dr, (37)

where F,(p) =mp(1 — p)?/ (1 — 2p)**. This, of course,
applies only to multiconics for which ¢ < 4, 0rp < 1/2.

Surface area
The surface area of a multiconic can be put in the
form [9]

A=f1 f Vig(x, s) dsdx, (38)
g 0

)?, where the
partial derivatives y,, z, are computed for s constant, and
¥, and z_are computed for x constant. Now

gs:' 62’(1 - t) + (§1’ - §2’S) ts,
t,=¢(1—2s)/2w(l + w)*, (39)

where g(x, s) = (y,2,— y2,)* + (0)" + (2

where w’ = ¢s(1 — s).

Unfortunately ¢, is not finite at s = 0 and s = 1. The
difficulty can be removed by a change of variable

s=u"/[d + (1 —u)], (40)
whence

t=2pu(1—u)/[2u(1—u) + (1 —p)(2u—1)°],

w' =i’ (1—u)*/ [« + (1 — u)’]". (41)
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Then

y =f: f Ve w0 duds, (42)

]

and
éx:ézrs(l - t) +§.1, t+§o+ (gl’ _les)tl‘a
to=¢ w/2¢(1+w)?,

x

£,=&'(1—0 s, + (& —&'9)1,
s, =2u(l—u)/[& + (u— 1),
t,=2p(1—p) (1 —2u)/[2u(1 — u)

+ (1—p)(1—2u)°1". (43)

Except for the case where control curves have an in-
finite slope, the double integral can be evaluated numeri-
cally. Otherwise further analysis is required.

Note the surface area for the surface in region I is ob-
tained when w is taken as the positive square root, and
in region IT when w is taken as the negative square root.

Conclusion and examples
Based on the preceding algorithms, a flexible system can
be designed so that new classes of functions Q,(x), ¢(x),
p(x) can be introduced as desired. This requires for the
most part only the addition of appropriate function sub-
routines for the function calls of the algorithms. A major
advantage of the system is the fact that there is no con-
fusion about points belonging to a complete conic but
" not belonging to the segment which is part of the surface.

As for speed and efficiency, limited experience to date
for spline conic surfaces suggests that there is conserva-
tively an order of magnitude improvement in design time
and a five-to-one ratio for numerical control processing
time. Figure 5(a) exhibits a spline conic which could not
be designed by previous methods unless split into three
or more surfaces. Moreover the design required less in-
put data than normally required for standard polyconic
input.

Figure 5(b) is one-half of a fuselage section designed
by adjoining four spline conics. The other half of the
section is a mirror image of this part. It was estimated that
designing this segment using polyconics would take four
to six man weeks. Subsequently, using spline conics, the
actual time required was ten man hours, of which half
was expended in learning to use the system.
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