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Multiconic  Surfaces 

Abstract: Multiconic surfaces  are a generalization of the  type of surface called polyconic in numerical  control of machine  tools. The 
general  theory is developed in this paper using a new parametrization. In the original form  there  was a  problem as  to  whether or not  a 
point that satisfies surface  equations actually belonged to  the intended  surface. This difficulty is removed by the new  technique. 

Algorithms for calculation of line and plane intersections with the  surface  and for calculation of normal vectors, volume, and surface 
area  are given  for classes of defining functions of which  it is required only that they have  appropriate conditions of continuity and dif- 
ferentiability. 

Examples  are given of surfaces developed using spline  functions.  Preliminary  comparative estimates of design and numerical  control 
processing  times are included. 

Introduction 
The  APT language [ 11 developed for application to  the 
control of machine tools includes  a type of surface called 
“polyconic.” There  appears  to  be  no  adequate  literature 
on  the definition of such  surfaces  and  their properties. 
The  purpose of this paper is to  provide  such  an  exposition. 
The term  “multiconic” is meant to imply that  the  control 
curves used are more  general than  the pseudopolynomials 
which define polyconic  surfaces. This  does  not compli- 
cate  the definition nor  the  development of certain  proper- 
ties of the surface. 

Multiconic  surfaces are finite connected  surfaces  for 
which a family of parallel planes intersect  the  surface in 
curves  that  are  conic sections. For definiteness, let x, y ,  z 
be a  rectangular coordinate  system  for which the  set of 
parallel planes is perpendicular to  the x axis with the do- 
main of x finite (x , ,  xl) .  The mathematical definition of 
the  surface then can  be based on various ways of defining 
conic  sections. Current practice  includes at  least four 
ways of doing this, all being related  to a given  triangle, 
as illustrated in Fig. 1 .  

All four of these  ways  assume  that  the  conic  passes 
through the points Q,, Q, and is respectively  tangent to 
the lines Q,Q, and Q,Ql. From this  information,  a single 
conic  can  be specified by providing the eccentricity. Be- 
cause eccentricity is inconvenient for  present  purposes 
another  number, 4, is provided and is called “shape fac- 
tor,”  to  be defined later.  Alternatively another point Q3 
on  the  conic,  interior  to  the triangle, will complete  the 
definition. This point is called the “shoulder.” 

Since by definition a multiconic is a set of such  conics 
in parallel planes (perpendicular  to  the x axis), it follows 
that  the  set of points { Q i }  for fixed i is a space curve. 

Each point of the  set  corresponds  to a  value of x ,  i.e., Qi 
is a  function of x ,  Q i ( x ) .  It  is  the practice, in defining such 
surfaces,  to define such  space  curves in terms of their y 
and z coordinates, i.e., 
Q , ( x )  ( y , ( x ) ,  zi(x)). 
The  functions y , ( x )  and z i ( x )  are called control  curves. 
Likewise,  the  shape  factor 4 is 4 ( x ) .  For notational  con- 
venience,  the argument x is dropped  whenever x is held 
constant. 

Alternatively,  the  curve Ql(x )  may be implicitly de- 
fined by a pair of scalar functions s,(~), s,(~) which 
represent functions of the angles at Q , ( x ) ,   Q , ( x ) .  

Control  curves of the form  b f i +  aixi,  where N 
is not  greater  than eight, define polyconics. The  reason 
for  the  square  root  term is to provide an infinite slope  as, 

Figure 1 Basic triangle defining a  conic section. 
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Figure 2 Vector  construction of a conic  section Q ( y ,  2). 

I 

for example, in the design of nose  cones.  Various  users of 
the polyconic have  added  functions  such  as ax + b +- 
v p x 2  + qx + Y [2]. 

Such  functions,  however,  are difficult to  use  for design 
and  also  are uneconomical for computing.  Spline control 
curves [ 3 , 4 ]  greatly simplify the design process  and  also 
reduce computing costs. 

In  the remainder of this paper, line and plane intersec- 
tions with the  surface  and  the calculation of normal  vec- 
tors, volume, and  area  are  discussed and  algorithms for 
their calculation  provided. Line  intersection  and normal 
vectors  are essential for numerical  control data pro- 
cessing;  plane intersections, volume, and  area  are  es- 
sential for  the  process of designing surfaces. 

I t  is assumed  here  that  the various  functions have  any 
necessary continuity and differentiability. 

Multiconic surface  equations 
For a fixed value of x, consider in Fig. 2 the points 
Q ( y ,  z)  , Qi(yi,  zi) , i = 0, 1 ,  2 determined by the  vectors 

y - yo, 2’ = z - z,,.so that 5‘ = ( y ’ ,  2’) , ti’ = (yi‘ ,  zi ‘ )  . 
Then E,’ is the  vector from Q,  to Q,, t2‘ from Q,  to Q2, 

and s 5,’ from Q,  to Q*. Evidently Q* is on  the segment 
QoQz if and only if 0 5 s 5 1. Otherwise  it  is  on  that seg- 
ment  extended,  to  the left if s < 0, and  to  the right if 
s > 1 .  

The  vector 5,’ - s 5,‘ is the  vector  from Q* to Q,, and 
t (5 , ‘  - s c2’) is on  that segment if and only if 0 5 t 5 1 ; 
otherwise  it is on  that segment extended,  and  it  is below 
if t < 0, and  above if t > 1. Then 

5 = ( Y ,  z ) ,  ti = ( y j ,  zi). Let 5’ = 5 - to, ti’ = ti - to, Y‘ = 

5‘ = s[,‘ + t(5,’ - s t , ’ )  = &’ s( 1 - t )  + t l ’ t ,  ( 1 )  

t = & s ( l - t )  + ~ , t + 5 , ( 1 - s ) ( 1 - t t ) ,  ( 2)  

and  certain  assertions  can  be  made  about various  re- 
gions of the plane. 
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In Fig. 2 the line through Q,  and Q,  corresponds  to 
t = 0. The point Q ,  corresponds to t = 1. The line  through 
go, Q ,  corresponds  to s = 0. The line through Q 2 ,  8, 
corresponds  to s = 1 .  

As for  the  interiors of domains I ,  11, Ill  in Fig. 3: 

In I: O < s < l , O < t < l ,  

In 11: 0 < s < 1 ,  t < 0, 

In 111: 0 < s < 1 ,  t > 1 .  

Consider  the function g(s, t )  = t2 - +s( 1 - s) ( 1 - t )  and 
the  equation 

g(s,  t )  = 0. (3) 

Now, if E = ( 1 / 2 )  (y2’z1’ - yl’zz’) # 0 then  Eq. ( 1 )  can 
be  solved for s, t :  

s = (2,’y’ - yl’z’) / (2E  + 2,’y‘ - y2’z’) ,  

t = - (z2’y’ - y , ‘ ~ ’ )  / 2E ( 4 )  

for any  point y‘, z ’ ,  for which 2E + zz’y’ - yz‘z’ # 0. This 
inequality has  the geometrical significance that Q cannot 
be on  the line through Q ,  parallel to Q,Q,. When these 
values are  substituted  into ( 3 ) ,  the  equation  becomes 

(yz’z’ - z2’y’)2 - +(z,‘y’ - y,’z‘) 

x [2E  + (2,’ - 2,’)y’ - (y2‘ - y,’)z’l = 0,  ( 5 )  

which, being of second  degree in y and z, is a conic. 
If this equation  is solved for +, the result is 

y2‘ zz’ y’ 2’ 1 y’ 2’ 

+ =  - Y,’ 22’  1 ( 6) 

y’ 2’ 

y z 1 yo 2, 1 l 2  yo zo 

y,’ 2,’ 1 y,’ 2,’ 

or, in terms of the untranslated coordinates, 

+ =  (7 )  y2  2, I .  y 2 1 + y ,  2, 1 

Y z 1 Y1 21 1 Y ,  z, 1 

Geometrically, this is the  square of the  area of triangle 
Q,Q2Q divided by the  product of the  areas Q,QQ, and 
QQ,Q,. The signs of the  areas  are, of course,  important. 
Assuming that  the  vertices of the triangles are  traversed 
in row order,  the signs of the  determinants  are positive 
for  counterclockwise  traversal  and negative for clock- 
wise traversal. I t  follows that + is positive in the interior 
of regions I ,  11,111, is  zero  on  the line through QoQz (ex- 
cept  at Q, and Q,) , is not finite on  the lines  through Q, 
and Ql,   Q,  and Q,, and is negative elsewhere.  Obviously, 
given Q,, Q,,  Q2,  Q, then + can  be  computed if the  excep- 
tions  are excluded. This calculation is required when  the 
shoulder  curve  is given instead of 9. 

IBM J. RES. DEVELOP. 



From  elementary  theory of conics it can  be shown  that 

1 .  the  conic is a straight line if + = 0,  
2. an ellipse if 0 < + < 4, 
3 .  a parabola if + = 4, 
4. a hyperbola if + > 4 or + < 0. 

However,  for  the application being considered here, 
there is no  interest in hyperbolas exterior  to  the domains 
I ,  11, 111. Therefore  the restriction + 1 0  is made. Note 
that this excludes Q for which 2E + z,'y' - y,'z' = 0 ex- 
cept  at Q = Q,, in which  case + is not finite. 

In  the  event  that E = 0,  Eq. (4) is no longer valid. 
Equation ( 3 )  then defines a degenerate conic. 

Another  shape function p = */ ( 2  + *) is also 
used. Its principal utility,  from the design point of view, 
is that t = p when s = 1 / 2. Hence if a  point Q is on  the 
conic and  on  the line from Q, to Q, the  bisector of the 
base Q Q , then p is  the length of QQ divided by the 
length of QQ,. For p = 1 the conic is a degenerate  hyper- 
bola. It  is the  pair of rays through Qo, Q, and Q2, Q,. 

I t  is  necessary [ 51 to impose further  restrictions  on  the 
functions + (x) and p ( x )  of the  form 

0 2  

0 < +, 5 +(x) < +,, 

0 < p 1 5  P ( X )  5 p, < 1, (8) 

where +,, +,, p,,  pz are independent of x. For a zero value, 
the tangents at Q, and Q, would no longer be  directed 
toward Q,, whereas  for any + > 0,  p > 0,  they are di- 
rected  toward Q,. This leads to a discontinuity in the 
surface normal vector  for  those x such  that +(x) = 0. 
Thus, if a straight line conic is desired, it must  be man- 
aged by placing Q, on  the line segment Q,Q,. If the 
shoulder  curve  is used in place of the  shape function, 
the  shoulder must also lie on  the segment  and + com- 
puted by a limiting process. 

I t  should be noted that region 111 is involved  only in 
the  case of the  hyperbola.  Since a continuous  surface 
cannot involve  both branches of a  hyperbola, region 111 
is excluded by the  constraint t < 1 ( t  = 1 only in the  case 
of a degenerate  hyperbola).  Another choice for a rnulti- 
conic representation is whether  to include the full conics 
in regions I and 11, or only the segment in I .  In  the first 
instance  the  conics must be limited to  ellipses;  other- 
wise the surface has infinite extent.  The limitation to 
region I requires the  constraint 0 5 t < 1 .  If the rnulti- 
conic is so restricted,  another multiconic of similar type 
can  be  adjoined  along Q, or Q2 with C, continuity if and 
only if Q, is implicitly defined by the functions So and 
S, mentioned in the  Introduction. 

The  equations  for  the multiconic surface  are obtained 
by  inserting the argument x appropriately  in ( l ) ,  ( 2 ) ,  
and ( 3 1 ,  

t'(x) = s( 1 - t ) t , ' (X)  + tt," > (9) 

\ 

Figure 3 Plane  regions  determined by conic parameters (s, t ) .  

together with 

g(x, s, t )  = i - s(  1 - s) ( 1  - t)' + ( x )  = 0. ( 1   1 )  

It  is  evident  that  the  form of the  representation is in- 
variant  under translation  and  also under  rotation of co- 
ordinates  about  the x axis. 

Line intersections with a multiconic 
Let  the line equation be q = a + bu, where q = (x, y ,  z ) ,  
a = (u,, a,, a 3 ) ,  b = ( b , ,  b,, b3)  and u is a  parameter. 

For the case t < 1, define the interior of the rnulticonic 
to  be  the  convex region delimited by the  complete ellipse 
for  each slice. 

If b, # 0,  select a set of argument values { x i } ,  and 
compute  the corresponding  values { y i ,  zi} from  the line 
equation.  Excluding the exceptional cases noted in the 
previous  section compute { s i ,  t i }  from Eq. ( l o ) ,  hence 
{ g ( x i ,  s i ,  t i ) }  using Eq. (11).  Now g(x, s, t )  < 0 inside 
the  convex region and g(x, s, t )  > 0 outside. If any 
g ( x i ,  s i ,  t i )  = 0, then xi ,  y i ,  zi is a point of intersection. 
If g changes sign for  two  consecutive x i ,  there  exists a 
point of intersection for  some x between the  two values. 
This value, and  hence  the point of intersection,  can  be 
easily computed using some form of regula falsi [ 6 ,7 ,8 ] .  
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For  the  exceptional  cases, including the  case b, = 0,  
special procedures must be devised. 

Reasonable choices of the  test  set { x i }  depend  to  some 
extent  on  the  nature of the defining functions, as  do tech- 
niques for excluding those arguments that  are  not feasible. 
Spline conics,  for example,  lend  themselves to bounding 
segments of the  surface in such a way that  entire seg- 
ments  can  be rapidly  excluded. 

For  the  case 0 5 t < 1 ,  some  intersections may occur 
on a part of the  conic  that is not contained in the defining 
triangle. These  are false  intersections  and must  be ex- 
cluded. 

Plane intersection with a multiconic surface 
Consider a plane 7 = A + Bu + Cw,  where 7 = ( x ,  y ,  z)  ; 
A ,  B ,  and C are  constant  vectors  for which B,  and C, are 
not both  zero;  and u and w are  parameters. Again choose 
a set { x i } .  The plane intersects  the plane x = xi for a 
specific xi in a line 5 = a + bu, where 5 = ( y ,  z ) ,  a and b 
are  constant vectors. In translated coordinates, 5' 
= a' + bu. 

The problem  now is to  determine  its  intersections with 
the conic, i.e., to solve  simultaneously 

& , ' ~ ( l  - t )  + 5,'t = a,' + bu, 

k - + s ( l  - s ) ( l  - t ) ' = O .  ( 1 2 )  

When u is eliminated, the  system  becomes 

p s ( 1  - t )  + q t =  r, 

t2 - +s( 1 - s) ( 1  - t)' = 0,  ( 1 3 )  

r = a,'b, - a2'bl, 

where 

P = Y2'b, - Z,'b,, 

4 = Yl'b2 - zl'b, ,  

r = al'b2 - a,'b,. ( 1 4 )  

Let 

w " + s ( l - S ) , t = W l ( l + ~ ) .  

Define 

p2 = 4 ( r  - 4)' + 4 r ( p  - r ) ,  ( 1 5 )  

where P represents  the positive square  root if P' > 0;  
also 

R = p 2  + + ( r -  q)', 

F = + ( r  - q )  ( p  - 2 r )  + ep V'$ P ,  

G = 2p2 + + ( r  - q )  ( p  - 2q)  + ep V'$ P ,  

H = 2pr + + ( r  - 9)' + e ( r  - q )  V'$ P ,  ( 1 6 )  

where e = k 1 .  

Certainly R 3 0. Assume  for  the moment that R > 0,  
P2 1 0 and  note  that G = 2R + F ,  so that G > F .  Let 
s = H / ~ R , w = F / ~ R ~ ~ ~ , ~ ~ F + ~ R # O , ~ = F / ( F + ~ R )  
= F / G .  With these  values,  Eqs. ( 1 3 )  are satisfied. 

I t  can be  shown that 0 5 H 5 2R, whence 0 5 s 5 1 ,  
as is evident geometrically. The point corresponding  to 
( 3 ,  t )  is in region I if and  only if 0 5  t < 1 and is in regions 
I and I1 if and only if t < 1 .  For region I the condition 
becomes 0 5 F /  G < 1 ,  or 0 5 F < G if G > 0. For G 
< 0 it becomes 0 I F > G, which is not  possible. Hence 
the condition for region I is 0 5 F < G. By a similar 
argument  the condition for regions I and  I1 is F < G, 
G > 0. 

Now  consider  the  case R = 0. Only two possibilities 
arise.  One of these is p = 0, + = 0, which is excluded;  the 
other is p = 0, r = q. In both cases R = F = G = H = 0 
and P2 = - 4:. Unless r = 0 no solutions  exist. If p = q 
= r = 0 then the pair of equations  reduce  to 0 = 0, t' - 
+s( 1 - s )  ( 1  - t)' = 0, whose solutions are 

t = w / ( l + w ) , w = ~ d + S ( l - ~ )  0 5  ~5 1 .  ( 1 7 )  

Points in region I are obtained for w = + d + s  ( 1 - s) , 
in region II  for w = - V + s (  1 - s ) .  

In summary ( 1 7 )  solves  the problem  for R = r = 0, 
and  no solutions exist if R = 0, r # 0. For numerical cal- 
culation,  the criterion for  the  existence of this case is 
R 5 E, IrI 5 E for a preassigned small number E. 

The algorithm leads  to 0,  1 ,  or 2 solutions for  each 
value of xi. Proceeding  through successive  values of the 
xi produces  at most two strings of points belonging to 
the  intersection.  Whenever  there  are two  strings, mem- 
bership in one string or  the  other is determined by the 
value of e in the preceding  algorithm. More information 
concerning the organization of the strings can be  ob- 
tained by calculating the intersection of the plane with 
the boundary  multiconic curves Q o ( x ) ,  Q,(x) and  the 
initial and terminal conics.  In addition  values of x = x* 
for which P = 0 with s and t valid are significant. In  such 
cases  the line of intersection of the given  plane  and the 
plane x = x* is tangent to  the conic at x =  x* and also  to 
the  curve of intersection of the plane and  the multiconic. 

The  normal vector 
The  current  practice in dealing  with  polyconics has been 
to  use a set of points in the neighborhood of the point 
of interest  to  approximate  the unit vector.  This  vector 
can be  computed directly  from the defining equations. 

Given  the  set of functions 

Y = A(x, s, t ) ,  

Z = T(X, S ,  f ) ,  

u ( x ,  s, t )  = 0,  ( 1 8 )  

it is not difficult to  show  that 
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provided that  the  denominator  is  not  zero,  and  the various 
functions satisfy appropriate continuity and differenti- 
ability conditions. 

The  components of a unit  normal vector  are propor- 
tional to 

whether  or not the  last term is  zero. 
In  the  present  case 

A b ,  s, t )  =y,(X)S(1 - t )  + y l ( x ) l  

+ y 0 ( x ) ( 1 - s ) ( 1 - t ) .  

r (x ,  s, t )  = z , (x)s ( l  - t )  + z,(x)t 

+ z o ( x ) ( l - s ) ( l - t ) ,  

u(x ,  s, t )  = t2 - $(x ) s ( l  - s) ( 1  - d 2 .  (22) 

For  these  functions  it follows that 

Figure 4 Conic section  after translation and rotation of coor- 
dinates. 

The  dot notation  indicates  differentiation  with respect 
to  the  independent variable. 

The possibility exists  that the three  components all 
reduce  to  zero.  It is not difficult to  show  that,  at any  value 
of x for which this  condition exists, either the conic re- 
duces  to a  point, or  the  conic in question is a  parabola and 
the  circumstance  occurs only at  the parabolic  point at 
infinity, which is of no interest here. 

Values of x at which control curves  have infinite slope 
need special attention.  Except  for  the unlikely case  that 
the first component remains finite, the unit  normal vector 
is k ( 1, 0,O). The sign can be chosen in a consistent way 
by computing the normal at a  nearby point. 

Volume 
In this  section the volume  contained in a region bounded 
by a multiconic  surface and  the ruled surface defined by 
the  set of triangle bases is obtained for  the domain (x,,, 
x , ) .  The  procedure is to sum the infinitesimals A (x)& 
where A (x) is the  area of the conic  section at x contained 
in region I.  In  order  to  compute  that  area it is convenient 
to  translate  the origin to Qo, and  rotate  coordinates so that 
Q 2  lies on the new y axis. Then A = (y, - y_)dz.  

In Fig. 4, y+ refers  to values of y greater than y,,,, y- 
to values of y less than y,,,, the  two values of y being 
taken for  a fixed value of z. It  is convenient  here  for  nota- 
tional purposes  to let y ,  z represent  the  rotated coordin- 
ates  rather than the original coordinates, which for  the 
moment will be called y“, z”. Let y’ = y” - yo)), z’ = z“ - 
~ , , ” , ~ = ~ ( y ~ ’ ) ~ + ( z ~ ~ ) ~ , C = y ~ ’ y ~ ’ + ~ , ’ ~ ~ ‘ . A s b e f o r e E =  
(y2‘z1’ - y1’z2‘)  / 2. Consider  the transformation 

Y = (Y,’Y’ + z2’z’) / r ,  

z = sign E(-z,’y’ + y2’z’) / Y. (26) 597 
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It is clear  that  the transformation is a rotation if E > 0 
and  a  rotation and a reflection if E < 0. If r = 0 or E = 0 
the  conic is a  straight line or a  point, with area 0, which 
case is automatically treated in the following. 

Because  a rotated  (and reflected)  conic  remains  a 
conic,  and y, = C /  r ,  y p  = r ,  z, = 21 El / r ,  zz = 0, it follows 
that in the new coordinate system the  equation of the 
conic is 

y = rs( 1 - t )  + C t / r ,  

z = 2 l E l t / r .   ( 2 7 )  

With 

t = w /  ( 1  + w ) ,  w = d $ s (  1 - s) 

and 

d t / d w  = 1/ ( 1  + w ) ~ ,  

the maximum value of t occurs  at  the maximum  value of 
MI, i.e., at s = 1 / 2. But z is maximum when t is maximum, 
hence 

wmax = */ 2,  t,,, = */ ( 2  + *I = p,  

zmax = 2 / E l p / r .   ( 2 8 )  

In  terms of the  shape  function p, the solution of s as a 
function of p leads  to 

s, = ( p  + d/pz - w'( 1 - p ) ' ) / 2 p ,  

s- = ( p  - d/p" - w2( 1 - p ) ' )   / 2 p .  

Now 

y ,  = r s+(  1 - t )  + C t / r ,  

y- = r s-( 1 - t )  + C t / r ,  

and  therefore 

Y ,  - Y _  = r(s+ - s J ( 1  - t )  

= r ~ ' / p " - w ; ~ ( ~ - p ) ~   ( ~ - t ) / p .  

= r d / p " (  1 - t)' - ( I - p12t2/p.  

Because dz/ dt = 21 El / r ,  it follows that 

A = ( 2 1 E l / p )   v p ' (  1 - t I 2  - ( 1  - p)'?  dt. 

The integral can be evaluated as follows: 

0 

p < 112 

A =  IElP(1 - p)' P p w p  [; - arcsin - - 
( - 2p):jp2 l " P  ( 1  -p ) '  

1. ( 3 3 )  

p =  1 / 2  

A = 21E1/3. 

B. DIMSDALE A N D  K. JOHNSON 

0 5  p < 1 / 2  

= 2 / 3 ,   p =   1 / 2  

1 / 2  < p i  1. ( 3 6 )  

Obviously, to  evaluate this  volume, the  zeros of E ( x )  
must be known. From  the design  point of view this im- 
plies x slices in which the  conic  reduces  to a straight line 
or  to a point. 

If p < 1 / 2 the result for  the total  volume in domains 
I and I1 is 

v = J"; I E ( x )  I F , [ P ( X )  Id& ( 3 7 )  

where F , ( p )  = 7rp( I - p ) ' /  ( 1  - 2 ~ ) " ' .  This, of course, 
applies only to multiconics  for  which 4 < 4, or p < 1 / 2 .  

Surface area 
The surface area of a  multiconic  can  be  put in the 
form [ 91 

A = r' r' dsdx, 
J X "  J o  

where g ( x ,  s) = (yxz, - ySzs)' + (y,)' + (z,)', where  the 
partial derivatives y,, z, are  computed  for s constant, and 
y ,  and z, are computed for x constant.  Now 

5, = 4,' ( 1 - t )  + (5,' - 5*'s) t,, 
[ , = + ( I  - 2 s ) / 2 w ( l +  w)', 

where w' = +s( 1 - s) ,  

Unfortunately t, is not finite at s = 0 and s = 1. The 
difficulty can  be  removed by a  change of variable 

s = u z / [ u ' + ( l - ~ ) p ] ,   ( 4 0 )  

whence 

t = 2 p u ( l - u ) / [ 2 u ( l - ~ ) + ( 1 - p p ) ( 2 u - l ) ' ] ,  

w ' = $ u ' ( l - u ) D / [ u z + ( 1 - u ) 2 ] 2 .  (41) 
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Then 

A = 1,; dudx, 

and 

5, = i , ’ S C  1 - t )  + i,’ t + io + (tl‘ - 5,’s) tr, 

t ,  = w / 2 4 (  1 + Wl2, 

5, = ( 1 - t )  s, + (5,’ - (*‘SI tu ,  

s u = 2 u ( 1 - u ) / [ U ’ + ( u - 1 ) ” ~ ,  

t , = 2 p ( l - p ) ( l - 2 2 u ) / [ 2 u ( l - u u )  

+ ( 1  - p )  ( 1  - 2 u ) 2 ] 2 .  

Except  for  the  case  where  control  curves ha1 
finite slope,  the double integral can be  evaluated 

(43) 

le an in- 
numeri- 

cally. Otherwise  further  analysis is required. 
Note  the  surface  area  for  the  surface in region I is ob- 

tained  when w is taken  as  the positive square  root,  and 
in region I1 when w is taken  as  the negative square  root. 

Conclusion and examples 
Based on  the preceding  algorithms,  a flexible system can 
be  designed so that new classes of functions Q i ( x ) ,   $ ( x ) ,  
p ( x )  can be  introduced as desired. This  requires  for  the 
most  part only the addition of appropriate function  sub- 
routines  for  the function calls of the algorithms. A major 
advantage of the  system is the  fact  that  there is no con- 
fusion about points belonging to a complete conic but 
not belonging to  the segment  which is part of the surface. 

As for  speed  and efficiency, limited experience  to  date 
for spline conic  surfaces suggests that  there is conserva- 
tively an  order of magnitude  improvement in design time 
and a five-to-one ratio for  numerical control processing 
time. Figure 5 (a )  exhibits a  spline conic which could  not 
be  designed by previous methods unless split into  three 
or  more  surfaces.  Moreover  the design  required less in- 
put data than normally required for  standard polyconic 
input. 

Figure 5 (b) is one-half of a  fuselage  section  designed 
by adjoining four spline  conics. The  other half of the 
section is a mirror image of this  part. It  was estimated that 
designing this  segment using polyconics would take four 
to six man weeks. Subsequently, using spline conics, the 
actual  time  required was ten man hours, of which half 
was expended in learning to use the system. 
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