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Theory of Liquid Ink Development in

Electrophotography

Abstract: When an electric field is present across two different fluid dielectrics having a common plane boundary, some disturbances
in the interfacial boundary are found to grow in time. The liquid ink development process is viewed as the result of varying instability of
the oil-ink interface as a function of the differing field gradient in light and dark areas of the exposed image. In an analysis of the dis-
turbances into normal modes, the theory relates the effects upon instability due to potential difference across the oil, the surface tension,
the respective viscosities of the oil and the ink, and the finite thicknesses of the oil, ink, and the photoconductor layer. The threshold

potential difference for the onset of instability is also given.

Introduction

The formation of a latent electrostatic image in electro-
photography is well understood [1, 2]. In the liquid ink
development process, which is described in [3], a thin
layer of liquid ink is pressure deposited over a thin layer
of dielectric oil already resident on the photoconductor
(PC), on which a latent electrostatic image has been
formed. After development, the ink breaks through the
oil layer in the image area but not in the exposed area.
The purpose of this paper is to analyze this development
process and to relate the physical and material param-
eters that effect the process.

The liquid ink development process is viewed as the
result of instability in the oil-ink interface; i.e., when an
electric field is present across the layers of oil and ink,
some disturbances in the interface may grow in time.
After a sufficient time interval in the developing stage,
the ink may eventually break through the thin oil film
and displace it next to the PC.

In the mathematical formulation discussed here, the
disturbances are analyzed into normal modes. This con-
cept is widely adopted in most stability analyses [4].
Melcher [7] and Michael [8] applied the analysis to
plane surface gravity waves with a normal electrostatic
field at the free surface of a conducting fluid. In the liquid
ink development process, however, we are interested in
the plane surface waves at the interface between the con-
ducting ink and the dielectric oil. In this case, the surface
waves are free from gravitational field (neglecting centri-
fugal force). For infinitesimal disturbances, the problem
consists of linearized hydrodynamic equations of con-
tinuity and of motion, and boundary conditions. In addi-
tion, the electrostatic problem is also solved in its linear-
ized form. The solution to the coupled hydrodynamic and
electrostatic problems results in a characteristic equation,

from which the growth rates for all modes of disturbances
may be computed.

A qualitative understanding of the interfacial instability
can first be derived from the simplest case for inviscid
oil and ink. The effect upon instability due to the potential
difference across the oil can then be studied. The dis-
turbances are found to be unstable only for a finite range
of wave numbers. There exists a wave number at which
the growth rate is maximum. For each mode, there also
exists a threshold potential difference across the oil, be-
low which all disturbances are stable, i.e., not growing.
These results of threshold potential differences were
later found valid also for the cases when oil and ink
viscous effects are included.

The viscosity of the oil is several orders of magnitude
less than that of the ink. Extensive computations are car-
ried out for the case of viscous ink, neglecting the vis-
cosity of the oil. The results are plotted showing the
stabilizing effect. The maximum growth rate and its cor-
responding wave number are also plotted. All results are
presented in terms of dimensionless quantities. When
the viscosities of both the ink and the oil are taken into
consideration, the following contrasting phenomenon is
observed: The viscosity of the ink has little effect on the
disturbance growth at small wave numbers, but it drasti-
cally reduces the growth rate of disturbances at large
wave numbers. On the contrary, the viscosity of the oil
stabilizes the disturbances with small wave numbers and
has little effect on those with large wave numbers.

Mathematical formulation

In the liquid ink development process, a thin layer of ink
is pressed upon a thin film of oil previously applied onto
the PC. The configuration is shown schematically in
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Fig. 1. The mathematical analysis will be based on the
following assumptions:

1. The ink is a perfect conductor and is held at constant
voltage V.

2. The substrate is a perfect conductor, and is grounded;
hence ¥ = 0, where ¥ is the electric potential.

3. The latent electrostatic image is characterized by the
constant charge g, uniformly distributed at the o0il-PC
interface.

4. The PC is elastically rigid.

5. The pressure p,, imposed by the soft elastomer, is
constant and uniformly distributed at the ink-elas-
tomer interface.

6. The oil and ink are homogeneous, incompressible, and
viscous.

7. The dielectric properties of oil and PC are homo-
geneous.

e Notation

Let the x, — x, plane be coincident with the undisturbed
oil-ink interface as shown in Fig. 1. Normalize all linear
dimensions with respect to the nominal thickness of the
oil film, a,. The following notation is used in the analysis:

a, thickness of the oil;

a thickness ratio, ink vs oil;

a, thickness ratio, PC vs oil;

P, p densities of the oil and the ink, respec-
tively;

o, viscosities of the oil and the ink, respec-
tively;

u;, i, velocity components of the oil and the ink,
respectively;

Ty 0y stress tensors of the oil and the ink, re-
spectively;

p, P pressures of the oil and the ink, respec-
tively;

w(x,, X, t) vertical dimensional change of oil-ink
interface from the undisturbed state;

7; unit normal vector of the oil-ink interface;

€ Epc dielectric constants of the oil and the PC,
respectively;

W (x,, x,, X,, t) electric potential;

q, constant charge uniformly distributed at
the oil-PC interface;

| 4 constant voltage (corresponding to q,)

at the 0il-PC interface;
q(x,, x,, x,, t) charge distributed at the oil-ink interface;
v, constant voltage in the ink;

o oil-ink surface tension.

In addition, the summation convention for repeated
indices is understood throughout the analysis. The com-
ma (,) indicates differentiation with respect to the re-
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Figure 1 Liquid ink development for a multilayer configura-
tion on a photoconductor film.

spective coordinate. The Latin subscripts i, j, k,* - -, take
the indices 1, 2, and 3, and the Greek subscripts «, 8, - -,
take the indices 1 and 2 in the x, — x, plane. An overdot
denotes material differentiation, which, for the linearized
analysis carried out here, can be identified with time dif-
ferentiation.

¢ The electrostatic problem
The electrostatic potential ¥ (x,, x,, x,, #) satisfies the
Laplace equation

v, =0. (1)

>

The boundary conditions specify that 1) the substrate
is grounded; 2) the ink, a perfect conductor, is held at
constant potential ¥;; 3) ¥ must be continuous at the
oil-PC interface; and 4) the charge at the 0il-PC inter-
face is a constant, g,. The mathematical expressions for
these conditions are

¥ =0, x,=—(1+a,), (2a)
Y=V, x,=w/a, (2b)
Wx, %, x,=—1—=0,1)=¥(x, x,, x,=—140, 1), (2¢)

€V 5 (x5 Xy X, =140, 1) + spc\lf’s(xl, Xy X,

=—1—0, t) =4mayq, (2d)

The charge distribution at the oil-ink interface,,q, can be
computed from ¥, according to

dmag=c¢ ‘If,a(xl, Xy Xy =w/qg, t). 3)

oil
e The coupled electrostatic-hydrodynamic problem

For incompressible oil and ink, the continuity equations
are, respectively,
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u,,=u,=0. (4)
The equations of motion are, respectively,
(5a)

(5b)

PaM; = Oyj j»

pai, = &,.“,
where the stress tensors o, ; and &, jare, respectively [5],
o, =—p8;+ (1/a,) (u ;+ u;,)

+ (g,/ dma) (¥ ¥, —¥¥, ¥ ,5,), (6a)
Gy =—Bby+ () a,) @y, + 1), (6b)

where §,; is the Kronecker delta.
The solution to the Eqs. (4) and (5) must satisfy the
following boundary conditions:

1. Assuming no shear stress at the ink-elastomer inter-
face, x, = a,,

0= _posis’ ()
2. at the oil-PC interface, x, = —1, for a rigid PC,
u;=0, (8)

3. at the oil-ink interface, x, = w/a,, the velocities must
be continuous, i.e.,

u; =i, %)

1

and the equilibrium of surface tractions has the form
(a'ij—é'ij)nj=—(q/ao)‘l”i+ (a/ai)niwyﬂﬁ‘ (10)

In Eq. (10), the first term on the right-hand side repre-
sents the surface traction due to the charge distribution,
g, at the oil-ink interface [5], and the second term on the
right-hand side is the Laplace formula [6]. It is also im-
plied in Eq. (10) that |w|<< a,, and that both components
Iw’ BI are small compared with unity. Therefore, this
linear analysis describes only the initial growth of dis-
turbances. When growth is sufficient to break through
the oil, the effect is likely to be nonlinear. Consequently,
the unit normal vector, 7,, can be evaluated, approxi-
mately, according to

R (—w, /a,—w,/a, 1). (11)

The oil-ink interface x, = w(x,, x,, t) is related to u,
(or d,) according to

wix,, X, 1) = uy(x,, x,, X, = 0, 1)

= iy (x,, X, X, = 0, 1), (12)
Normal mode analysis
e The equilibrium solution

One solution to the problem posed by Egs. (1) through
(12) can be written down immediately as

u,(x, Xy Xy, 1) = (x5 Xy Xy 1)

= wix, %, 1) =0, (13)
Wix, %, x5 ) =V, + V= Vix, 1= x,= w/a,,
=W/a)[(1+a)+x],—(1+a)=x=-1, (14)
where V and g, are related through the Eq. (2d), ie.,
<, (V.= V) te,(V/a,) =4maq, (15)

The charge distribution at the oil-ink interface, g, is
given by

dmag=-¢c,(V,— V), (16)
which is a constant. The pressure fields are

p=p, +3e,/4nd) (V,— V)’

P =D, (17)

This solution is trivially true. It represents an equi-
librium state of the system. We now ask: What would
happen as a result of any infinitesimal disturbance super-
posed onto this equilibrium state?

e Linearization in the normal mode analysis and the
electrostatic solution

Analyzing the disturbances into normal modes, we seek

solutions whose dependence on x,, x,, and ¢ is given by

E = E(x,, x,, 1) = explik x, + nt], (18)

where k,, « =1, 2, are constants representing wave num-
bers in the x, direction, and » is the growth rate. Thus,
we write solutions in the form:

u,(x,, x,, x5, 1) = 8Ev,(x,), (19a)
1,(x, Xy, X 1) = SE,(x,)., (19b)
P(x,, Xy Xy 1) =py+ 3(g,/4mal) (V,— V)*

+ 8Ed (x,), (19¢)
Pxy X, X, 1) = p,+ SEP(x,), (19d)
W(x, X, x5, ) =V, + (V,— V)x, — 8E(V, — V)¢, (x,),

-1=x,=w/a,

=W/a)[(1+a,) + x,)
—3E(V; — M, (xy),
—(1+a) < x, =1, (19¢)

where v,(x,), 7,(x,), ¢(x,), d(x,) and ¥, (x,), ¥,(x,) are
unknown functions of x, as yet to be determined, and & is
a small numerical perturbation parameter, |§| << 1. The
oil-ink interface, x, = w(x,, x,, t) is, according to the
Eq. (12), given by
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3
wix,, x,, t) =f Uy (x,, x,, x, =0, t') dt'
=8Ev,(x,=0)/n, (20)
which is of the order 8.

Substituting the Egs. (19¢) and (20) into the Eqgs. (1)
and (2) of the electrostatic problem, we find that the
functions 4, (x,) and i, (x,) must satisfy the ordinary dif-
ferential equations:

9" (x)) =K (x) =0, —1=x,<w/a, (21a)

¥, (x,) — kzlliz(xs) = (), —(1+a)=x,=-1, (21b)

where

K =kk(=KE+E). (22)
The linear boundary conditions (2a, ¢, and d) become

P, (—1—a)=0, (23a)

, (=1) = ¢, (—1), (23b)

Eq¥y (—1) = g,y (—1). (23¢)

The boundary condition (2b) is, however, nonlinear
when applied at the moving boundary x,=w(x,, x,, 1)/ a,.
For small 8, it is, therefore, linearized in the following
manner. Using the Eq. (20) and the Taylor’s expansion
for small §, we write

¥, (w/a,) R 4, (0) + 8Ev,(0),'(0) /na, + 0(5°),
where terms of orders higher than 8 are omitted. Conse-
quently, to the first order of 8, Eq. (19¢) gives
Wix, x, X =w/a, t) RV,
+8E(V, — V){[v,(0)/na,] — ¢,(0)}.
The boundary condition (2b) then leads to the condition

¥,(0) = v,(0) / na,. (23d)

It should be remarked here that the above linearization
procedure is applied throughout the analysis whenever
a nonlinear boundary condition is encountered at the
moving boundary x, = w(x,, x,, t)/a,,.

The electrostatic solution is uniquely determined by
Egs. (19¢), (21) and (23) in terms of v,(0). The charge
distribution, g(x,, x,, t) at the oil-ink interface is found
from Eq. (3) to be

£ ks (0)
n

o

dmag=r¢e,,(V,— V){l ~5

[spc + g, (tanh k) (tanh kap)]}_ (24)

g tanh ka, + g, tanh &
» Linearized normal mode analysis
In a similar manner, Eqs. (4), (5), and (6) lead to the
coupled ordinary differential equations
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vy (x,) + ik,v,(x,) =0, (25a)

panv,(xg) =—ik,(xy) + (n/a,) [v,"(x,)

— kzva(xs)], (25b)
panvg(x,) =—¢'(x,) + (u/a,)[v,"(x,)

— kzvs(xa)], (25¢)
5, (x,) + ik 5, (x;) =0, (26a)

pa,ni,(x,) =—ik d(x;) + (&/a,) 5, (x,)
— K0,(x,)1, (26b)

paniy(x,) =—¢' (x,) + (&/a,) [0;(x,)
— K, (x,) 1. (26¢)

Making use of Eqs. (6), (20), and (24), the boundary
conditions (7), (8), (9), and (10) can be expressed in
terms of the functions v,(x,), 7,(x;) and é(xy), ¢ (x,).
However, the algebraic manipulation can be somewhat
simplified if we notice from the form (18) of the solution
that it must be an invariant under an arbitrary rotation of
the coordinate system about the x, axis. Accordingly, a
contraction in the indices « = 1, 2 in the x, — x, plane is
performed. As a result, it can be shown, to the first order
of &, the boundary conditions become

Oy(a,) + K'0y(a,) = 0, (27a)
2(p/a,)y (a) = $(a), (27b)
v,/ (=1) =0, (28a)
v,(—1) =0, (28b)
v, (0) =15,'(0), (29a)
u;(0) = 3,(0), (29b)

K [10,(0) — ED,(0)] + [wvy"(0) — &5, (0)] =0, (302)

[¢(0) = $(0)] —2[(n/a,)vy' (0) — (/a,), (0)]

+ (a/na’) f(k)kvy(0) =0, (30b)
where f(k) is the function of k defined by
= 3, (Vi — V)2
Flky = 4raa,

[sPC + g, (tanh k) (tanh kap)] —k

0
gpctanh k + £ tanh ka (30c)

oil

These boundary conditions do not involve v_(x,) and
,(x;), @ =1, 2. Hence, only the solutions v,(x,), D,(x,)
and ¢(x,) are needed. Their differential equations are
obtained from the Eqs. (25) and (26), and have the form

¢ (x,) — K¢(x,) =0, (31a)
vy (x,) — Nuy(x,) = (a,/m)d’ (x5), (31b)
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Figure 2 Dimensionless growth rate of unstable disturbances
for the interface between inviscid oil and ink.

Figure 3 Minimum potential difference 8, for the existence of
unstable disturbances.
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¢"(x5) — K (x;) =0, (32a)

0y (xg) = N0, (x,) = (a,/ )&’ (x,), (32b)
where

N =K+ (pd’n/p), (33a)
=K+ (pdn/p). (33b)

The problem now consists of the homogeneous dif-
ferential equations (31) and (32) and the eight homo-
geneous boundary conditions (27) through (30). Conse-
quently, the solution leads to the characteristic equation
from which the growth rate, n, may be computed for a
given wave number k. The characteristic equation is, in
general, a transcendental relationship between n and £,
and is in the form of an 8 X 8 determinant. Details of the
analytic results will be omitted except for the case of
inviscid oil and ink, which is described in the next section.

Results
All results will be presented in terms of the following
dimensionless quantities:

B=kk =1+,

B= (3e,,/4maa) (V,— V)Y,

ot = paznz/a,

Lo = (/) (aa,/ )2,

L= (p/ 1) (aa,/p)t. (34)

The definition of f(k), Eq. (31C), becomes

_ [Epc T &y (tanh &) (tanh kap)] _
Flh) = ﬂ[ gpctanh k + £ tanh ka, k. (35)
and the equations (33) become
A2=k2+o-loil’ (36)
=K+ ol

Computations have been carried out using the following
numerical data:

p density of the oil = 0.92 gm/cc;

p density of the ink = 1.103 gm/cc;

a, thickness of the oil = 0.6 X 10~ cm;

a thickness ratio, ink /oil = 8/0.6;

a, thickness ratio, PC /oil = 11/0.6;

a surface tension, oil-ink = 18 dynes/cm;

Eoin dielectric constant of oil = 3.4 X g;

£pc dielectric constant of PC =2.7 X g;

g, dielectric constant in vacuum = 8.85 x 107"
coulomb®/dyne-cm®;

w/p kinematic viscosity of oil & 0.05 stokes;

/o kinematic viscosity of ink & 330 stokes.
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The real dimensional growth rate, n, may be obtained
from o according to

n=0'(a/pao3)%=0.95 x 10°, 1/s,

and the wavelength corresponding to the wave number
kis

wavelength = 2ma, /k=3.8 X 107" /k, cm.

The potential difference across the oil may be obtained
from B by the following relationship:

(V. — V) = [(4naa, /3e,,) B]2 = 43.5 X /B, volts.

The dimensionless parameters / . and /., are found to be

oil ink

L.~ 107"

1~ 0.7.

e Inviscid oil and ink

For the case of inviscid oil and ink, u = 1 = 0, the solu-
tion may be derived directly from the Egs. (31), (32),
they become

" (x5) — K¢ (x;) =0,
panvy(xy) =—¢'(x,),
¢ (xy) — K'd(x;) =0,
panv,(x,) =—¢' (x,), (37)

and the boundary conditions that are needed in this case
are Egs. (27b), (28b), (29b) and (30b). They are

é(a,) =0,
vy (—1) =0, (38)
v,(0) = 3,(0),
[6(0) — (0)] + (a/nd}) f (k)kv,(0) = 0.
The solution of the above homogeneous system leads to
the following characteristic equation:
2 _ pk’tanh k
p + p(tanh k) (tanh ka,)

fk), (39)

where f(k) is given in Eq. (35). The real valued function
f(k) is found to be positive, i.e., f(k) > 0, for a finite
range of k, 0 < k < k,, where f(k,) = 0; and f(k) =0,
when k = k.. For large 8> 1, the root k_ of f(k,) =0 is
found to be k Rz 8; while for small 8,0 < B 1, k,~ V8.

The simplicity of formula (39) permits the following
conclusions:

1. o is real for a finite range of the wave number &, 0 <
k < k.. The positive root ¢ > 0 indicates that the wave
grows in time, hence it is unstable. (The negative root
o < 0, which signifies the attenuation of the wave, is
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Figure 4 Dimensionless growth rate of unstable disturbances
for 8 = 40 and inviscid oil.

of no interest to us. Hence it is ignored.) The growth
rate of the unstable waves are plotted in Fig. 2.

2. o is purely imaginary when k > k.. All waves whose
wave number k = k, are stable. Hence, £, is the cut-
off wave number.

3. For a given wave number %, there exists a threshold
potential difference, 8., such that the wave is unstable
only when the applied potential difference 8 exceeds
B,> B > B,. The threshold g, is found to be

_ gpctanh &k + € tanh ka,
Re= ke ¢, (tanh k) (tanh ka,) ’

(40)

and is given in the plot of the Fig. 3.
4. For a given B, there exists a wave number &, whose
growth rate o is a maximum called o ..

* Viscous ink and inviscid oil

For the next order of complexity, we consider the viscous
effect of the ink but neglect that of the oil. Thus, u =0,
& > 0. The differential equations (31) and (32) are
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Figure 5 Unstable disturbances for inviscid oil as function of applied potential difference. (a) Maximum growth rate. (b) Wave num-
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Figure 6 Unstable disturbances for inviscid oil as function of the dimensionless viscosity of ink. (a) Maximum growth rate. (b) Wave
number corresponding to the maximum growth rate.

¢"(xy) — K'¢p(x,) =0, B, (x,) — N0, (x,) = (a,/ @) &' (x,),
N =K+ (pan/p). 41
panv,(x,) = —¢'(x,), (pa, n/p) (41)
_ The boundary conditions are (27a, b), (28b), (29b),
520 ¢"(x,) — Kp(x,) =0, and (30a, b). The solution of the homogeneous system
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leads to the characteristic equation given by a 6 X 6 de-
terminant. Numerically, for a given k, we have to find
the zero of the determinant.

Computations have been carried out for the parameter
l,=10",107%107,107% 107", 1, and 10. (When [, >
10%, the results practically coincide with those of the in-
viscid oil and ink.) Quite drastic reduction in the growth
rate due to the viscosity of the ink is observed for large
wave numbers. This is obvious in Figs. 4, and 7(a),
where the growth rate is plotted for 8 = 40, 60, and 50,
respectively. Consequently, the wave number &, cor-
responding to o, is shifted towards decreasing k. How-
ever, the viscosity of the ink has little effect upon the
growth rate for small wave numbers. The maximum
growth rate o, is given in Figs. 5(a) and 6(a) as func-
tions of B and [, respectively. The wave number £,
that corresponds to o, is plotted in Figs. 5(b) and 6(b).
There seems to be some sharp increase in k. when

max
l.. & 107% This is realizable from Figs. 4 and 7(a).
There is a fairly flat region of each growth rate curve
when [, < 107 As I, increases and passes 107, this
flat region moves upward to reach and to pass o, .. Thus,
numerically, there may be difficulty to determine pre-

cisely the location of k_, when [, ~ 107"

~ Viscous ink and oil

Taking into consideration the viscosities of both the ink
and the oil, the homogeneous problem involves the full
equations (27) through (32). The characteristic equa-
tion is given in the form of an 8 X 8 determinant. It is
found, analytically, that the conclusions 1, 2, 3, and 4
from the results for the inviscid oil and ink are equally
valid. Computations have been carried out for the cases
B=150,1,, =107 and 10~ and for the values of [, = 10°,
10%, 10, 1, and 107", The results are plotted in Fig. 7. A
contrasting phenomenon is observed apparently in Fig.
7(a). The viscosity of the ink reduces the growth rate
quite drastically for large wave numbers, and it has little
effect on waves of small wave numbers. On the contrary,
the viscosity of the oil has little effect on waves of large
wave numbers, but it tends to stabilize waves of small
wave numbers.

Summary

When an electric field is present across the oil in the liquid
ink development process of electrophotography, some
disturbances in the oil-ink interface are found to grow
in time. If enough time is allowed in the developing stage,
the ink may eventually break through the thin oil film.
When the disturbance is analyzed into normal modes,
such growing, hence unstable, modes of disturbances are
found to be confined in a finite range of wave numbers.
There exists a wave number at which the growth rate is
maximum. For a given mode, there exists a threshold
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Figure 7 Dimensionless growth rates for 8 = 50. (a) Details
for viscoq&s oil when I, = 107, (b) Details for viscous oil when
L = 1077

potential difference across the oil below which the wave
is stable.

The finite viscosity of the ink reduces the growth rate
quite drastically at large wave numbers, and it has little
effect on waves of small wave numbers. On the contrary,
the effect of oil viscosity has little effect on waves of
large wave numbers, but it tends to stabilize waves of
small wave numbers.

Formally in the solution, the pressure at the ink-
elastomer interface does not appear explicitly in this
linear analysis. The effect of the pressure is, however,
felt indirectly through its influence on the thickness of
the oil film. Such an influence may be established by
other means independently of the present analysis.
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