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Theory of Liquid  Ink  Development in 
Electrophotography 

Abstract: When an electric  field is present  across two different fluid dielectrics having a common plane  boundary,  some  disturbances 
in the  interfacial  boundary are found to grow in time. The liquid ink development  process  is  viewed as the  result of  varying  instability of 
the oil-ink interface as a function of the differing field gradient in light and dark areas of the exposed image. In an analysis of the dis- 
turbances into normal  modes,  the  theory  relates the effects upon instability due to potential difference  across  the oil, the surface  tension, 
the respective viscosities of the oil and the ink, and the  finite thicknesses of the oil, ink, and  the photoconductor  layer.  The  threshold 
potential  difference  for the onset of instability is also  given. 

Introduction 
The formation of a latent  electrostatic image in electro- 
photography is well understood [ 1, 21. In  the liquid ink 
development  process, which is described in [3], a thin 
layer of liquid ink is pressure  deposited  over a thin layer 
of dielectric oil already  resident on the  photoconductor 
(PC),  on which a  latent electrostatic image has  been 
formed. After  development,  the ink breaks through the 
oil layer in the image area  but not in the  exposed  area. 
The  purpose of this paper is to  analyze this development 
process  and  to  relate  the physical and material  param- 
eters  that effect the  process. 

The liquid ink development  process is viewed as  the 
result of instability in the oil-ink interface; i.e., when an 
electric field is present  across  the layers of oil and  ink, 
some  disturbances in the interface may grow in time. 
After a sufficient time  interval in the developing stage, 
the ink may eventually break through the thin oil film 
and displace it next  to  the  PC. 

In  the mathematical  formulation discussed  here,  the 
disturbances  are analyzed into normal  modes. This con- 
cept is widely adopted in  most  stability analyses [4]. 
Melcher [7] and Michael [8] applied the analysis to 
plane surface gravity waves with  a  normal electrostatic 
field at  the  free  surface of a  conducting fluid. In  the liquid 
ink development  process,  however,  we  are  interested in 
the plane surface waves at  the  interface  between  the  con- 
ducting ink and  the dielectric oil. In this case,  the  surface 
waves  are  free  from gravitational field (neglecting  centri- 
fugal force).  For infinitesimal disturbances,  the problem 
consists of linearized  hydrodynamic equations of con- 
tinuity  and of motion, and  boundary conditions. In addi- 
tion, the  electrostatic problem is also  solved in its  linear- 
ized  form. The solution to  the coupled  hydrodynamic  and 
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from which the growth rates  for all modes of disturbances 
may be  computed. 

A  qualitative  understanding of the interfacial  instability 
can first be derived  from the simplest case  for inviscid 
oil and ink. The effect upon  instability due  to  the potential 
difference across  the oil can  then  be studied. The dis- 
turbances  are found to be unstable only for a finite range 
of wave numbers. There exists a wave number at which 
the growth rate is maximum. For each  mode, there  also 
exists a threshold  potential  difference across  the oil, be- 
low which all disturbances  are  stable, i.e., not growing. 
These results of threshold  potential  differences  were 
later found valid also  for  the  cases when oil and ink 
viscous effects are included. 

The viscosity of the oil is several  orders of magnitude 
less than  that of the ink. Extensive  computations  are car- 
ried out  for  the  case of viscous ink, neglecting the vis- 
cosity of the oil. The  results  are plotted  showing the 
stabilizing effect. The maximum  growth rate  and its  cor- 
responding  wave number  are  also plotted. All results  are 
presented in terms of dimensionless  quantities.  When 
the viscosities of both the ink and  the oil are  taken  into 
consideration,  the following contrasting phenomenon is 
observed:  The viscosity of the ink has little effect on  the 
disturbance growth at small wave  numbers, but it drasti- 
cally reduces  the growth rate of disturbances  at large 
wave numbers. On  the  contrary,  the viscosity of the oil 
stabilizes the  disturbances with small wave  numbers  and 
has little effect on  those with large wave numbers. 

Mathematical formulation 
In  the liquid ink development  process, a  thin layer of ink 
is pressed  upon  a  thin film of oil previously  applied onto 
the  PC.  The configuration is shown schematically in 
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Fig, 1. The mathematical  analysis will be  based on  the 
following assumptions: 

1.  The ink is a  perfect conductor and is held at  constant 
voltage Vi. 

2 .  The  substrate is a  perfect conductor, and is grounded; 
hence v' = 0, where T is the  electric potential. 

3. The latent electrostatic image is characterized by the 
constant  charge qo uniformly distributed at  the  oil-PC 
interface. 

4. The  PC is elastically rigid. 
5 .  The  pressure po, imposed  by the soft elastomer, is 

constant  and uniformly distributed at  the ink-elas- 
tomer interface. 

6. The oil and ink are homogeneous,  incompressible, and 

7. The dielectric properties of oil and PC  are homo- 
viscous. 

geneous. 

Notation 
Let  the  x1 - x, plane  be  coincident with the undisturbed 
oil-ink interface as  shown in Fig. 1. Normalize all linear 
dimensions with respect  to  the nominal thickness of the 
oil film, a,. The following notation is used in the analysis: 

a0 thickness of the oil; 
ai thickness ratio, ink vs  oil; 
UP thickness ratio, PC vs oil; 
P7 P densities of the oil and the  ink, respec- 

P,  CL viscosities of the oil and the  ink, respec- 

Ui' ui velocity components of the oil and  the ink, 

tively; 

tively; 

respectively; 
u. .) u.. stress  tensors of the oil and  the ink,  re- 

spectively; 

tively; 

interface from  the undisturbed state; 

- 
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P ,  P pressures qf the oil and the  ink, respec- 

w(xl, x2, t )  vertical  dimensional change of oil-ink 

" l i  unit  normal vector of the oil-ink interface; 
'oil? &PC dielectric constants of the oil and  the  PC, 

respectively; 
?(xl,  xz, x3, t )  electric  potential; 
9 0  constant charge uniformly distributed at 

V constant voltage (corresponding  to 4,) 
the  oil-PC interface; 

at  the oil-PC interface; 
q(xl,  xz, x3, t )  charge  distributed at  the oil-ink interface; 

a oil-ink surface tension. 
Vi constant voltage in the  ink; 

In addition, the summation  convention for repeated 
indices is understood throughout the analysis. The com- 
ma (,) indicates  differentiation with respect  to  the re- 
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Figure 1 Liquid ink development for a multilayer  configura- 
tion on a photoconductor  film. 

spective coordinate. The Latin subscripts i ,  j ,  k; . ., take 
the indices 1 ,2 ,  and 3, and  the  Greek  subscripts a, b; . ., 
take  the indices 1 and  2 in the  x1 - x, plane. An  overdot 
denotes material  differentiation,  which, for  the linearized 
analysis  carried out  here,  can be identified with time dif- 
ferentiation. 

The electrostatic problem 
The  electrostatic potential *(xl, x,, x3, t )  satisfies the 
Laplace  equation 

?,ii = 0. ( 1 )  

The boundary  conditions  specify that 1)  the  substrate 
is grounded; 2 )  the  ink, a perfect conductor, is held at 
constant potential Vi; 3 )  ? must be continuous at  the 
oil-PC interface;  and 4) the  charge  at  the oil-PC  inter- 
face is a constant, q,,. The mathematical expressions  for 
these conditions are 

? = O ,  x3=- (1  + a p ) ,  (2a) 

F = Vi, x3 = w/ao, ( 2b) 

v ' ( x , , x 2 , x , = - l - 0 , t ) = v ' ( x , , x , , x 3 = - 1 + 0 , t ) , ( 2 c )  

- ' 0 i 1 ~ , 3 ( ~ 1 7  x29 x3 =-' + O ,  t ,  + 'pCv',3(XI> x29  x3 

= -1 - 0,  t )  = 4ma,q,,. (2d) 

The charge  distribution at  the oil-ink interface,,q,  can  be 
computed from ?, according to 

4.rra0q = E " i l ~ , 3 ( X 1 '  x23  x3 = w/qo, t ) .  (3 1 

The coupled  electrostatic-hydrodynamic problem 
For incompressible oil and ink,  the continuity equations 
are, respectively, 



1 1 . .  = u. . = 0. 
1,l 2,1 ( 4 1  

The  equations of motion are, respectively, 

pa&, = aij, j ,  (5a) 

pa,ui = crij,j,  (5b) 

a,j = -ps,j + (CL/a,) b,,j + U j , i )  

+ ( E o i , / 4 4  (*,iT, j - +*,,*,,Sij) 9 (6a) 

aij = -psij + ( p l a n )  (iii, + (6b) 

where  the  stress  tensors uij and aij are, respectively [SI, 

where Sij is the  Kronecker delta. 

following boundary conditions: 

1. Assuming no  shear  stress  at  the ink-elastomer  inter- 

The solution to  the  Eqs. (4) and ( 5 )  must  satisfy the 

face, x, = ai, 

a,, = -posi3, (7) 

2. at  the  oil-PC interface, x3 = -1, for a rigid PC, 

ui = 0,  (8) 

3. at  the oil-ink interface, x3 = w / a , ,  the velocities  must 
be continuous, i.e., 

ui = ui, (9) 

(aij - qjlvj = -(q/aJ*,, + (a/a:)siW,,,. (10) 

and  the equilibrium of surface  tractions  has  the form 

In  Eq. ( l o ) ,  the first term  on  the right-hand side  repre- 
sents  the  surface  traction  due  to  the  charge distribution, 
q, at  the oil-ink interface [SI, and  the  second  term  on  the 
right-hand side is the  Laplace  formula  [6].  It is also im- 
plied in Eq. ( 10)  that I wI << a,, and that both components 

I w , , ~  are small compared with unity. Therefore, this 
linear  analysis describes only the initial growth of dis- 
turbances. When  growth is sufficient to  break  through 
the oil, the effect is likely to  be nonlinear. Consequently, 
the unit normal vector, vi, can be evaluated, approxi- 
mately, according  to 

vi = ( - w , J a , ,  - , , /ao9 1).  (11) 

The oil-ink interface x ,  = w ( x , ,  x,, t )  is related to u, 
(or U , )  according to 

W ( X , ,  x,,  t )  = U3(XI,  x,,  x3 = 0, t )  

= U 3 ( X 1 ,  x , ,  x, = 0, t ) .  (12) 

Normal  mode analysis 

The equilibrium solution 
One solution to  the problem  posed by Eqs. ( 1 )  through 

51 6 (12) can be written down immediately as 

U i ( X 1 ,  x2, x,, I I  = Ui(A1> A3’ L I  

= w ( x , ,   x , ,  t )  = 0, (13 )  

T ( X 1 ,  x , ,  x,, t )  = vi + (Vi - V)X,,  -1 5 x3 5 w / a , ,  

= ( V / U , ) [ ( ~ + U , ) + X , ] , - ( ~ + U , ) ~ X , ~ - - ~ ,  (14) 

where V and qo are related  through the  Eq.  (2d), Le., 

- , i l W i  - v) + EpC(v/ap) = 4na,40. (15) 

The  charge distribution at  the oil-ink interface, q, is 
given by 

4aa,>q = coil ( Vi - V )  9 (16) 

which is a constant.  The  pressure fields are 

P = P o  f *(&,i1/4na2,) (vi - 
P = Po. (17) 

This solution is trivially true. I t  represents  an equi- 
librium state of the  system. We now ask:  What would 
happen as a  result of any infinitesimal disturbance  super- 
posed onto this  equilibrium state? 

Linearization in the normal mode analysis and the 
electrostatic solution 

Analyzing the  disturbances  into normal  modes, we seek 
solutions whose  dependence  on x , ,  x,, and t is given by 

E = E ( x , ,  x , ,  t )  = exp[ik,x,  + n t ] ,  (18)  

where ka, a = 1,  2,  are  constants representing wave num- 
bers in the xa direction, and n is the growth rate.  Thus, 
we write  solutions in the form: 

U i ( X 1 ,  X,’ x,, t )  = S E u , ( x , ) ,  (19a) 

i i ( X 1 ’  x , ,   x3,  t )  = S E 6 , ( x , ) ,  (19b) 

+ ( x , )  > (19c) 

P ( X 1 ,  X2’ X3’ t )  = P o  + S E 4 ( x 3 ) ,  (19d) 

* ( x 1 ,  X,’ x3,  t )  = vi + (Vi - v 1 x 3  - SEWi - v ) + l ( x , ) ,  

P(X1, X2’ t )  = P o  f %(&,i1/4nai) (vi - v)’ 

-1 5 x 3 5  w / a , ,  

= (v/a,) [ ( I  + a,) + x, ]  

- SE(vi - U + , ( x 3 ) >  

-( 1 + a,) 5 x ,  9 -1, (19e) 

where u i ( x 3 ) ,  Ui(x,), 4 b 3 ) ,   $ ( x 3 )  and +1(x3)> +2(’3) are 
unknown functions of x, as  yet  to  be  determined,  and S is 
a small numerical perturbation  parameter, 161 << 1. The 
oil-ink interface, x ,  = w ( x , ,   x , ,  t )  is,  according to  the 
Eq. ( 12), given by 
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w(x,, xz, t )  = U3(X1’ XZ’ x, = 0,  t ’ )  dt’ J’ 
= SEu,(x, = 0) / n ,  (20) 

which is of the  order S. 

Substituting the  Eqs.  (19e)  and  (20)  into  the  Eqs. (1 )  
and  (2) of the  electrostatic problem, we find that  the 
functions $, (x,) and $’ (x,) must  satisfy the ordinary dif- 
ferential equations: 

$,“(X,) - k’$,(X,) = 0, -1 5 X, 5 w/u,, (2 la )  

$ ; ( X , )  - k2$ , (X , )  = 0,  -( 1 + a,) 5 X, 5 -1, (21b) 

where 

k’ = kaka( = kt + k;) .  (22) 

The linear  boundary  conditions (2a,  c,  and d )  become 

$,(-I - a,) = 0, (23a) 

$,(--l) = $,(-1), (23b) 

Eoi,$,‘ (“1 1 = E,,$’’ (-1 1. (23c) 

The boundary  condition (2b)  is,  however, nonlinear 
when  applied at  the moving boundary x3= w(x,, x2, t )  /uo .  
For small S, it is,  therefore, linearized in the following 
manner.  Using the  Eq.  (20)  and  the Taylor’s  expansion 
for small 6, we write 

r~l~(w/a,) + SEu,(O)$, ’ (O) /na,  + 0(s2), 

where  terms of orders higher than 6 are omitted. Conse- 
quently,  to  the first order of 6, Eq.  (19e) gives 

V(X1, X” x, = w/u0, t )  M vi 
+ s a v i  - ~ ) { [ u , ( 0 ) / n a u 1  - $,(O)I. 

The  boundary condition (2b)  then leads to  the condition 

$,(O) = u,(O)/na,.  (23d) 

It should be remarked here  that  the  above linearization 
procedure is applied throughout the analysis whenever 
a nonlinear  boundary  condition is encountered  at  the 
moving boundary x3 = w ( x , ,  x p ,  t )  /au.  

The  electrostatic solution is uniquely determined by 
Eqs. (19e),  (21) and (23) in terms of u,(O). The  charge 
distribution, q(x,, xz, t )  at  the oil-ink interface is found 
from  Eq. (3)  to be 

ex + c,,,(tanh k )  (tanh ka,) 
c,,,tanh ka, + e,,tanh k 

11 ’ (24) 

Linearized  normal  mode  analysis 
In a similar manner,  Eqs. (4),  ( 5 ) ,  and (6)  lead to  the 
coupled ordinary differential equations 
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Making use of Eqs. (6) ,   (20) ,  and  (24),  the boundary 
conditions (7 ) ,  ( 8 ) ,  (9 ) ,  and  (10)  can  be  expressed in 
terms of the functions ui(x3), Gi(x3) and +(x3), $(x3). 
However,  the algebraic  manipulation  can be  somewhat 
simplified if we notice from  the form ( 18)  of the solution 
that it must be  an invariant under an arbitrary  rotation of 
the  coordinate system about  the x, axis.  Accordingly, a 
contraction in the indices a! = 1, 2 in the x, - x’ plane is 
performed. As a result, it can be  shown,  to  the first order 
of 6, the  boundary conditions become 

k z [ p u 3 ( 0 )  - p 3 ( 0 ) ]  + [pu,”(O) - p 4 ” ( O ) ]  = 0, (30a) 

[+(o) - $ ( 0 ) 1  - 2[(p/a0)u,’(0) - ( ~ / a , ) ~ , ‘ ( 0 ) 1  

+ ( a / n a : ) f ( k ) k u , ( O )  = 0, (30b) 

where f ( k )  is the function of k defined by 

f ( k )  = 
4.rra!au 

3EOil( Vi - V)’ 

epc + coil (tanh k )  (tanh ku,) 
e,,tanh k + e,,,tanh ka, 

1 - k. (30c) 

These  boundary conditions do not  involve U , ( X , )  and 
U,(x,), a! = 1, 2. Hence, only the solutions u,(x,), U3(x3) 
and +(x,) are needed. Their differential equations  are 
obtained from  the  Eqs.  (25)  and  (26),  and  have  the  form 
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Figure 2 Dimensionless growth  rate of unstable  disturbances 
for  the interface  between inviscid oil and ink. 

Figure 3 Minimum potential  difference p, for the  existence of 
unstable disturbances. 

@ ( x 3 )  - k2$(x3)  = 0, (32a) 

u;(x3) - h25,(x3) = (a,//ai'(x,), (32b) 

where 

A2 = k' + (pa',n/p), (33a) 

= k' + (paEn/fi). (33b) 

The problem  now consists of the homogeneous dif- 
ferential equations (3 1 )  and  (32) and the eight homo- 
geneous boundary  conditions (27) through (30).  Conse- 
quently,  the solution  leads to  the  characteristic equation 
from which the growth rate, n, may be computed  for a 
given wave  number k. The  characteristic  equation  is, in 
general,  a transcendental relationship between n and k,  
and is in the  form of an 8 X 8 determinant.  Details of the 
analytic results will be omitted except  for  the  case of 
inviscid oil and  ink, which is described in the  next section. 

Results 
All results will be  presented in terms of the following 
dimensionless  quantities: 

1.5 

518 

Dielectric constant of PC 
Dielectric constant of oil = 1'26 

0.5  1 .o 1.5 

Wave number, k 

k' = kaka = k; + ki,  

p = (3Eoi,/4naao) (Vi - V ) 2 ,  

link = ( P / / . )  (a !a0 /p )4  

lei,= ( P I P )  (,a,/p)f. 

3 2  u2 = paon /a!, 

The definition off(k),   Eq.  (3  lC),  becomes 

E,, + eoi,(tanh k )  (tanh ka,) 
f ( k )  E '[ c,,tanh k + r,,tanh ka, 1 - k ,  

and  the  equations  (33) become 

A' = k' + uloil, 

h2 = k' + d i n k .  

Computations  have been carried  out using the following 
numerical data: 

density of the oil = 0.92 gm/cc; 
density of the ink = 1.103 gm /cc; 
thickness of the oil = 0.6 X cm; 
thickness ratio, inkloil = 810.6; 
thickness  ratio,  PC/oil = 11 10.6; 
surface  tension, oil-ink = 18  dynes/cm; 
dielectric constant of oil = 3.4 X c0; 
dielectric constant of PC = 2.7 X eo; 
dielectric constant in vacuum = 8.85 X 

coulomb2/dyne-cm2; 
kinematic  viscosity of oil M 0.05 stokes; 
kinematic  viscosity of ink 330  stokes. 
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The real dimensional  growth rate, n, may be  obtained 
from u according to 

n = u(a /pao3) i  = 0.95 X 107u, 1 I s ,  

and  the wavelength  corresponding to  the  wave number 
k is 

wavelength = 2.rrao/k = 3.8 X 10-4/k, cm. 

The potential  difference across  the oil may be  obtained 
from /3 by the following relationship: 

(vi - V )  = [(4.rraa,/3Eoi,)pl+ = 43.5 X @, volts. 

The dimensionless parameters lei, and link are found to be 

link FS: 

lei, M 0.7. 

Inviscid oil and ink 
For  the  case of inviscid oil and ink, p = ji = 0, the solu- 
tion may be derived  directly  from the Eqs. (3 1 ), (32), 
they become 

+“(x,) - k2+(x3) = 0 ,  

pa,nu,(x,) = -+’(x,), 

@(X,) - k’$(x3) = 0, 

pa0nC3 (x,) = -4’ (x, 1, (37) 

and the boundary  conditions that  are needed in this case 
are  Eqs.  (27b),  (28b),  (29b) and (30b).  They  are 

6(ai) = 0, 

u3(- l )  = 0, (38) 

U,(O) = V,(O), 

[4(0) - i ( 0 ) l  + (alna:)f(k)ku,(O) = 0. 

The solution of the  above homogeneous system leads to 
the following characteristic  equation: 

2 u =  
pk’tanh k 

p + p (tanh  k)  (tanh  kai) 
f (k),  (39) 

wheref(k) is given in Eq.  (35).  The real valuedfunctioh 
f ( k )  is found to be  positive, i.e., f (k )  > 0, for a finite 
range af k, 0 < k < kc, where f ( k c )  = 0; and f (k )  5 0, 
when  k 5 kc. For large p >> 1, the  root k, off(  kc) = 0 is 
found to  be kc M p; while for small p, 0 < p<< 1, kc M 

The simplicity of formula  (39) permits the following 
conclusions: 

1. u is real for a finite range of the wave number k, 0 < 
k < kc. The positive root u > 0 indicates that  the wave 
grows in time, hence it is unstable. (The negative  root 
u < 0, which signifies the  attenuation of the  wave, is 

10: 

10 

1 
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10- 

10- 
d 
E 
s 
0 10- 
:: 
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\ 
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10-1 1 10 

Vave number, k 

Figure 4 Dimensionless  growth  rate of unstable  disturbances 
for p = 40 and inviscid oil. 

of no  interest to us. Hence it is ignored.)  The growth 
rate of the  unstable waves are plotted in Fig. 2. 

2. u is purely  imaginary when k > kc. All waves  whose 
wave  number k Z kc are stable. Hence, kc is the  cut- 
off wave number. 

3. For a given wave  number k, there  exists a  threshold 
potential  difference, PC, such  that  the  wave is unstable 
only when the applied  potential  difference /3 exceeds 
PC, /3 > PC. The threshold PC is found to  be 

e,,tanh k + E,,,tanh ka, 
= E,, + Eoi,(tanh k)  (tanh ka,) ’ 

and is given in the plot of the Fig. 3. 

growth rate u is a maximum called urnax. 
4. For a given p, there  exists a wave  number k,,, whose 

Viscous ink and inviscid oil 
For  the  next  order of complexity, we consider  the viscous 
effect of the ink but neglect that of the oil. Thus, p = 0, 
ji > 0. The differential equations  (3  1)  and  (32)  are 5119 
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Figure 5 Unstable  disturbances  for inviscid oil as function of applied  potential difference. (a) Maximum growth  rate. (b)  Wave num- 
ber corresponding to the maximum growth  rate. 

0 :  p = 2 0  

e :  p =  70 

v : p = 100 

CH 10" 1 10 102 

7 max 

0 :  p = 20 

e :  p = 7 0  

v : p = 100 

0-2 10" 

Nave number, k,,, 

1 10 

Figure 6 Unstable  disturbances  for inviscid oil as function of the  dimensionless  viscosity of ink. (a) Maximum growth rate. (b)  Wave 
number corresponding to  the maximum growth  rate. 

C;(x3) - h2C,(X3) = b o / i 4 $ ' ( X 3 ) >  

h2 = k2 + (pu,'n/ii). (41 1 
The boundary  conditions are  (27a,  b),  (28b),  (29b), 
and  (30a,  b).  The solution of the homogeneous  system 
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leads to  the  characteristic equation given by a  6 X 6 de- 
terminant. Numerically,  for a given k, we have  to find 
the  zero of the  determinant. 

Computations  have been carried  out  for  the  parameter 
link = lo-', lo-', 1 ,  and 10. (When link > 
lo', the  results practically  coincide with those of the in- 
viscid oil and  ink.)  Quite  drastic reduction in the growth 
rate  due  to  the viscosity of the ink is observed  for large 
wave  numbers.  This is obvious in Figs. 4, and 7 (a ) ,  
where  the growth rate is plotted for /3 = 40, 60,  and 50, 
respectively. Consequently,  the  wave  number k,,, cor- 
responding to u,,, is shifted towards decreasing k .  How- 
ever,  the viscosity of the ink has little effect upon the 
growth rate  for small wave  numbers. The maximum 
growth rate urnax is given in Figs. 5 (a )  and  6 (a)  as func- 
tions of p and link, respectively. The wave number k,,, 
that  corresponds  to u,,, is plotted in Figs. 5 (b) and 6 (b ) .  
There  seems  to be some  sharp  increase in k,,, when 
link M lo-'. This is realizable  from  Figs. 4 and 7(a) .  
There is a fairly flat region of each growth rate  curve 
when link < lo-'. As link increases  and  passes this 
flat region moves  upward to  reach  and  to pass urnax. Thus, 
numerically,  there may be difficulty to  determine pre- 
cisely the location of k,,, when link M lo-'. 

Viscous ink and oil 
Taking into consideration the viscosities of both the ink 
and  the oil, the  homogeneous  problem  involves the full 
equations  (27) through ( 3 2 ) .  The  characteristic equa- 
tion is given in the  form of an 8 X 8 determinant.  It is 
found, analytically, that  the  conclusions I ,  2, 3, and 4 
from the results for  the inviscid oil and ink are equally 
valid. Computations  have been carried  out  for  the  cases 
/3 = 50, link = and and for  the values of lei, = lo3, 
lo2, 10, 1, and 10". The results are plotted in Fig. 7. A 
contrasting phenomenon is observed  apparently in Fig. 
7 (a).  The viscosity of the ink reduces  the growth rate 
quite  drastically for large wave  numbers, and it has little 
effect on waves of small wave numbers. On  the  contrary, 
the viscosity of the oil has little effect on  waves of large 
wave  numbers,  but it tends  to stabilize waves of small 
wave numbers. 

Summary 
When an electric field is present  across  the oil  in the liquid 
ink development  process of electrophotography, some 
disturbances in the oil-ink interface are found to grow 
in time. If enough  time is allowed in the developing  stage, 
the ink may eventually  break  through the thin oil  film. 
When the  disturbance is analyzed  into normal modes, 
such growing,  hence  unstable,  modes of disturbances  are 
found to be confined in a finite range of wave numbers. 
There  exists a wave  number  at which the growth rate is 
maximum. For a given mode, there  exists a  threshold 
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Figure 7 Dimensionless growth rates for p = 50. (a) Details 
for viscous oil when link = (b) Details for viscous oil when 
link = 

potential  difference across  the oil below which the  wave 
is stable. 

The finite viscosity of the ink reduces  the growth rate 
quite  drastically at large wave  numbers,  and it has little 
effect on waves of small wave numbers. On the  contrary, 
the effect of oil viscosity has little effect on  waves of 
large wave numbers,  but it tends  to stabilize  waves of 
small wave numbers. 

Formally in the solution, the  pressure  at  the ink- 
elastomer interface does not appear explicitly in this 
linear  analysis. The effect of the  pressure is,  however, 
felt  indirectly  through  its influence on  the  thickness of 
the oil film. Such an influence may be  established by 
other  means independently of the  present analysis. 
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