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Abstract: In order to fulfill response time constraints in real-time systems,  demands are often handled by means of sophisticated sched- 
uling strategies. This  paper first shows how to  describe  and  analyze  arbitrary combinations of preemptive and non-preemptive  (head-of- 
the-line) priority strategies and,  second,  presents an algorithm that  yields the optimal priority strategy, taking into  consideration  con- 
straints  on  the  response time. 

Introduction 
Today  there  exists a  wide  variety of real-time computer 
systems.  Depending  on  their applications,  they  range 
from small and simple systems  to very  complex configura- 
tions [ I ,  21. In a typical example  there may be several 
printers,  disks, and tapes;  the system may be  connected 
to many interactive  terminals, to  process control devices, 
or  to  another real-time system, as indicated in Fig. I .  
Accordingly, the number as well as  the complexity of 
supervisory  and  application  programs also varies over 
wide ranges. However, in efficient scheduling  strategies, 
there  are some typical features common to all real-time 
systems,  as follows. 

In order  to fulfill response time constraints, urgent de- 
mands are often handled by means of an interrupt-driven 
operating system, i.e., by means of preemptive (hard- 
ware) priorities, On  the  other hand, there  are less  urgent 
demands  that  do not  justify  preemption.  Sometimes  even 
preemptive  priorities are nonsensical, e.g., if the pro- 
cessor  overhead for  interruption is greater than the re- 
maining processing  time of the low priority  demand. 
Therefore, most  real-time computer  systems  serve the 
various demands by reasonable combinations of pre- 
emptive  and  non-preemptive (software) priorities [ 1 - 41. 
Most theoretical  investigations  neglect  this fact and  deal 
either with pure preemptive or  pure non-preemptive 
(head-of-the-line) priorities. Our objective is to  explore 
theoretically those neglected aspects, hoping that prac- 
titioners will be able  to modify existing  models and de- 
velop new models  based on this theory. 

In this paper  we first show how arbitrary combinations 
of preemptive and non-preemptive  priorities can be uni- 
formly  described by means of the so-called “preemption 
distance.” ( I t  therefore  seems  reasonable  to introduce 
the unifying term  preemption-distance  priorities.) Im- 
portant  performance  values are determined for  the sys- 

494 tem M /GE/  1 with an arbitrary  number of priority class- 

es (GE = general  Erlangian; cf. Appendix 1 ). Because 
distributions and  mean  values may also  differ in different 
classes,  arbitrary  types of demands  can be modeled and 
analyzed with any  required accuracy. 

Most often implemented are preemption-distance pri- 
orities with a fixed number of interrupt levels. Within one 
interrupt level demands may occur with different priori- 
ties. However, they do not interrupt  each  other (cf. Fig. 
2) .  The  development of optimal  scheduling  strategies is 
demonstrated in the section on optimal  scheduling  for 
the  above important class of preemption-distance priori- 
ties (fixed number of interrupt  levels).  The optimal 
strategy is defined as  the strategy that gives the mini- 
mal number of expected  interrupts  for a  given number 
of classes, a given traffic intensity and type  per class, 
and  given response time constraints  for  each individual 
class. 

An efficient algorithm has been  developed which is 
based on  the technique of branch-and-bound  and implicit 
enumeration. 

Description of preemption-distance priorities 

Uniform  preemption  distance  for  all  classes,  preemp- 
tive  priorities,  and  non-preemptive  priorities 
A  general class of priority  strategies can be characterized 
by the so-called preemption distance 5, the uniform dis- 
tance between  a priority class  and  the next  priority class 
being interrupted. Table I illustrates  this definition: De- 
mands of class p ( p  = l ,  2 , .  . ., P ;  class 1 being the most 
urgent),  interrupt only demands of classes ( p  + 5) to P ,  
but  not the intermediate classes ( p  + 1 )  to ( p  + 5 - 1 ) .  
On the other hand, demands of the considered class p 
can  be  interrupted by classes 1 to ( p  - t), but  not by 
classes ( p  - 5 + 1 ) to ( p  - 1).  Figure 3 and Table 2 show 
an example for a uniform preemption distance 6 = 3. 
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It is easily seen  that two well known special cases 
of preemption-distance  priorities are included: 5 = I ,  
preemptive  priorities;  and 5 = P ,  non-preemptive (head- 
of-the-line)  priorities. 

Arbitrary,  nonuniform  preemption  distance  for each 
priority class 
The preemption distance5 ( p )  may be defined individually 
for  each priority class p ( p  = 1 ,  2 ,  . . ., P ) .  Then arbi- 
trary  combinations of preemptive  and  non-preemptive 
priorities are allowed. Although nonuniform representa- 
tion and analysis  are possible, the method of determining 
the solution is rather complex. 

A  much  more  elegant  solution is to use  a uniform pre- 
emption distance while introducing "empty" priority 
classes: Dummy  classes (with null arrival rates)  are in- 
terleaved  between the actual ones.  This trick  allows 
us to  generate all scheduling  strategies of practical in- 
terest  (the only two special cases known in the  literature 
[5, 61 are  included).  Furthermore, it facilitates the in- 
vestigation of their influence on the waiting process. 

Example An efficient strategy with nonuniform  preemp- 
tion distance is used for the 1 / 0  control in electronic 
switching systems [4] : The priorities are  to  be controlled 

Figure 2 Queuing of the various demands in a  real-time com- 
puter  system. 
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Figure 1 Small but typical configuration of a  real-time com- 
puter system. 

Table 1 Introduction of the preemption distance 5. The special 
cases of preemptive  priorities (5 = I )  and  non-preemptive pri- 
orities (5 = P )  are included. 

1 . 2 . . . ' , p - - , p - 5 +  I , . . . , p -  I , p , p +  1 , . . . , p + 5 -  I , p + 5 : . . , P  
i _ y _ i ,  

demand do not  not  interrupted 
interrupt  interrupt  interrupted  by 
class p class p by class p class p 

I "_i 

Table 2 Service mechanism  and  preemption distance (PD) 
corresponding to the  priority  strategy of Fig. 3.  

Arriving Does  not Interrupts 
demunds interrupt  service service Actual 
of class of class of class PD 

1 1, 2, 3 4, 5 ,  6 ,  7, 8 , .  . . 3 
2 1, 2, 3,  4 5 ,  6 ,  7, 8; . . 3 
3 1, 2, 3,  4, 5 6 ,  7, 8; . .  3 
4 1 .  2, 3, 4, 5 ,  6 7 ,  8, ' ' ' 3 
5 
6 
7 

. . .  . . .  

. . .  . . .  

. . .  . . .  

Figure 3 Example for a priority strategy with uniform pre- 
emption distance 5 = 3 .  

Priority class 

1 2 3 4  5 6 7 8 . . .  
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Figure 4 Second  example for a combination of preemptive and 
non-preemptive  priorities (cf. Table 3) .  

Table 3 Service  mechanism  and  preemption distance (PD) 
corresponding  to  the  priority  strategy of  Fig. 4. 

Arriving  Does  not  Interrupts 
demands  interrupt  service  service  Actual 
of class of class o j  class PD 

1 1 2, 3 , 4 ,  5 ,  6 ,  7, 8 , ” .  1 
2 1, 2 3, 4, 5 ,  6, 7, 8; ’ . I 
3 1 ,  2, 3,  4 
4 

5 ,  6, 7,  8;. , 2 
1, 2, 3,  4, 5 ,  6 7, 8;’. 3 

5 
6 
7 

. . .  . . .  

. . .  . . .  

. . .  . . .  

such that, e.g.,  priority class 3 interrupts  demands of 
classes 5, 6, etc., but not the intermediate class 4, where- 
as class 4 interrupts only classes 7, 8, etc. (cf. Fig. 4 and 
Table 3) .  Table 4 illustrates how this  interesting  strategy 
can be  interpreted and analyzed as a  strategy with uni- 
form  preemption distance by introducing  some  appropri- 
ate dummy  classes. 

Fixed  interrupt  levels  (two-ditnensional  representa- 
t ion) 
It  was pointed out in the first section that preemption- 
distance priorities with a fixed interrupt level are most 
common in real-time computer  systems  (cf. Fig. 2 ) .  The 
optimization  problem is to find a  strategy that will guaran- 
tee a fast  reaction of the  system while minimizing addi- 
tional overhead  and  hardware  cost. To  describe  the al- 
gorithm that is applied to find optimal  scheduling strate- 
gies, a two-dimensional  notation is adopted  here. 

The notation is summarized in Table 5: Let G groups 
of priority classes be given. Demands of any group g 
( g  = 2, 3 ,  ..., G ) ,  are  interrupted immediately when 
service for  demands of more  important groups is required 
(group 1 being the most urgent). Within a group g (g  = 

I ,  2, . . ., G ) ,  there  exist <,, classes of demands  that  are 
of different priority;  however, they do not interrupt  each 
other  (non-preemptive). For brevity,  such a priority 
strategy is denoted by F [ [ , ,  t2; . ., 5,] and each individual 
class by ( g ,  y ) .  Obviously, the total number P of priority 

496 classes is given by the sum of all 5,. 

Arbitrury  preemption-distance  priorities 
The general solution for  arbitrary combinations of pre- 
emptive  and  non-preemptive  priorities  characterized by 
a  preemption distance  has been  obtained  and presented in 
[4]. In that paper probabilities for waiting or for  inter- 
rupts, mean waiting times, and  other performance  param- 
eters  are determined  exactly for  each  class of demands. 
Arrival processes  are assumed to be Poisson  functions, 
and  service  times may have general Erlangian distribu- 
tions, which may be different for different  priority  classes. 
The  results  are summarized in Appendix 1. 

Preemption-distance  priorities  with Jixed interrupt 
levels 

Tryffic  parumeters  and  response  time 
Demands of each priority class (g, y )  are  distributed, 
as in the general case, according to a Poisson process 
with mean arrival rate h ( g ,  y ) .  The service  time follows, 
individually for  each  class, a general Erlangian (GE) dis- 
tribution with the mean value b ( g ,  y ) .  The mean response 
time ry, for each priority class ( g ,  y )  of a specific pri- 
ority  strategy F [tl, t2, . . ., E,] is given in Appendix 2 .  

Mean  number of interrupts 
Consider a specific class ( g ,  y )  with the arrival rate 
A (g ,  y )  and  the  mean  service  time b ( g ,  y ) .  Then  the  over- 
all arrival rate  for  demands  that may interrupt this class is 

9-1 Ei  

P ( g ,  Y )  = A ( i , j ) .  
i = l  j = 1  

The probability that  such a demand occurs and  inter- 
rupts a demand of class ( g ,  y )  is p ( g ,  y )  = A(g, y )  . 
b(g,  y ) .  Hence,  the  expected total  number of interrupts 
occurring  per  time  unit is given for priority  strategy 
F r t p  t2> ’ . .> [,I by 

I [e,, 5,; . .1 5,l = x x P k ,  Y) . P k ,  Y ) .  
E, 

y=2 Y-1 

In  the next section we show how  to  determine the 
strategy that  generates  the minimum expected number of 
interrupts. 

Optimal scheduling 

Formulation of the  problem 
We  want to find an optimal priority strategy, i.e., a strat- 
egy with the minimum expected number of interrupts, 
taking into consideration response time requirements 
individually for  each priority class. The general  problem 
is to minimize the objective  function (expected number 
of interrupts)  over all G and  over all ti:  
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G €<, Y-1 t i  

<,=2 Y=l  i = l  j=1 

/[5,, t2 , .  "> E,] = P k ,  Y) 2 A(i. j ) ,  

subject to the  response time constraints 

rl,l[51> 5 2 , .  . ' 3  5,l 5 r1,*> 

r1,,[t1' 5 2 '  ' . .9 5,l 5 r1.v 

. . .  

yo, y [ % , 3  5,. . . .1 5,l 5 r!,, y ,  

. . .  

ri;, ,$I> 5 2 ,  ' ' '> 5,l 5 r(;, Cc;9 

where G 2 1 ,  t i  E 1. 

Principle of solution 
In finding a method of solving the problem,  several  op- 
timization methods have been investigated [7-91. In  
comparison with classical optimization problems, this 
problem is characterized by the following features: 

1.  When starting our algorithm, there is no simple way 
to find a  feasible  solution. Therefore,  the algorithm 
has to proceed with the dual objective of finding feas- 
ible solutions  and of minimizing the number of inter- 
rupts. 

2. The computing  time  for  determining the actual re- 
sponse times for each priority class is much higher 
than the time required to  generate a new strategy and 
determine  the total number of interrupts. 

An algorithm based on the branch-and-bound  tech- 
nique  and implicit enumeration has been developed that 
takes into consideration  the  special features mentioned 
above. Roughly speaking, the main steps of the algotithm 
are  as follows: 

Determine a feasible  solution  and the corresponding 
number of interrupts  to be  used as an initial upper 
bound of the  objective  function. 
Partition the  set of all solutions into subsets.  Deter- 
mine a lower bound for all feasible  solutions within 
a subset. 
Those  subsets whose  lower  bounds  exceed  the  upper 
bound of the objective function are excluded. Check 
also conditions whether a subset may have any  feas- 
ible solution at all. 
Partition one of the remaining subsets  further into 
several subsets,  determine their  lower bounds and 
exclude some subsets, etc. 

Dejinition of subsets 
The general notation for a specific priority strategy 
F [t,, t,, . . ., [,I was  introduced in the subsection on 

Table 4 Generation of a nonuniform  preemption  distance 
(PD)  by means  of  empty  classes (classes with zero arrival rate: 
cf. Fig. 4 and Table 3 ) .  

Actual 
and Mrcrn In terrupt  

U n i f o r m   e m p t y  arrival Actual .sc.riYc,e Actual 
P D  class rate c~ass of c~lasse.s P D  

~- 

3 1 X, 
3 

I 4, 7, 9, 10, 1 1 ,  12;'' 1 
2 0  

3 3 0  
3 4 A4 4 7, 9, 1 0 ,  11,  12:.. 1 
3 5 0  
3 6 0  
3 7 X, 7 I O ,  11, 12;.. 2 
3 8 0  
3 9 A!, 9 12,". 3 
3 10 X,, 10 
3 1 1  X,, 1 1  
3 12 X,, 12 

. . . .  

. . . .  

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

Table 5 Notation  for  priority  strategies with fixed interrupt 
level (for an  example, cf.  Table 6 ) .  

Priority  strutrgy F [ [ , ,  5,;. ., {,,I 
~~ - ~~~~ ~~ ~ ~ ~~~~~~ ~~ . ~ ~~~~~ ~~~~ ~. - 

( I ,  I j " ' ( l , ~ , j " ' ( g ,  I ) " ' ( g , y ) " . ( g , S , i ) . . ' ( G ,  I ) ' " ( G , 5 , , )  

Group I Group Gr<Jllp G 

, g =  I ,  2,"', G ,  G 5 P ,  

y =  I ,  2 , . . . ,  f,,, 5,s P,  r l - 1  

6 x 5 ,  = P .  

fixed interrupt  levels  (two-dimensional representation) 
and Table 5. To find an efficient optimization procedure 
it  is suitable to define sets of strategies. 

Let S be the  set of all feasible  solutions F[l, ,  t 2 , .  . ., 
5 J ,  i.e.,  the set of all possible priority strategies which 
satisfy the  response time constraints.  Furthermore, let 
s [ v , ,  u p , .  . ., uf] be the subset of  all feasible  solutions for 
which the first f interrupt levels are fixed; additional in- 
terrupt levels, if any, can be arbitrary: 

S [ U , '  V2' ' . ' 9  'i.1 
= { F 1 F E S  and 4, = v,, r2 = u2, . . ., lf = uf}, 

where vi 5 P.  
Obviously subset ~ [ u , ,  v2; . ., vf] contains all strategies 

F [ u l ,  u2; . ., uf, us+,; . ., vG]. A small example  is shown in 
Table 6 (see also Fig. 5 ) .  

Lower  bounds f o r  subsets 
Let I,,[v,, u 2 , .  . ., uf] be the lower bound for all solutions 
of the  subset s [ u l ,  u2; . ., vf]. Then the following observa- 
tions are immediate  and are  therefore presented  without 
formal proof: 497 
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y-) 
Figurs 5 Sets of all feasible and infeasible solutions for P = 4 
priority classes (i.e., all possible combinations of preemptive 
and non-preemptive priority strategies with fixed  interrupt level; 
cf. Table 6).  

f 
where vf+l = P - 2 vi; 

i=l  

i.e., all vf+l remaining priority classes  are lumped to- 
gether into interrupt level (f+ 1) .  All solutions with 
additional interrupt levels ( f  + 2 , .  . .) cause more in- 
terrupts per  time  unit. 

2.  Per  the definition of subset s[vI, vZ; . ., 4 ,  it includes 
all subsets s [ u , ,  vz, . .., vf, vf+,], vrtl 2 1. From 1 it 
follows  directly that 

IJvl ,  VZ'. . ., 51  5 I , [v , ,  V2' .  . ., Vf. v,+,I 

3.  If the lower bound IL[ vl,  v2, . . ., vf] corresponds to a 
feasible  solution F [ ul ,  vz,. . ., vf, v ~ + ~ ] ,  this  solution is 
the  best strategy for all sets s[ vl, vZ; . ., vf] , s[ vl, vZ; . ., 
vf, vf+,l, s[vI, v2; . ., vf, vf+l, v f + J ,  etc., because I , [v , ,  
v2,. . ., vfl is monotonically  increasing  with f. 

Search for feasible solutions 
Priority  strategy F [ v , ,  vZ, . . ., vf-2, vf-l, vf] is the lower 
bound of subset $[ vl, vZ,. . ., vf-l] ; it contains f interrupt 
levels. Let p = X::: vi. Obviously priority class p is within 
vf-l, i.e., p is in the  group with lowest priority to  cause  an 
interrupt. 

1. Suppose  such a  strategy F [v,, v2, . . ., vf-l, vf] is in- 
feasible because of response time constraints  for  one 
or several classes i, i I p .  Then any strategy in the 
subsets s [v , ,  v2,. . ., vf-p, uf-l + k ] ,  where 

f-1 

O f  k 5  P - 2  vj, 
j=1 

cannot be a  feasible  solution because it gives at best 
the same response time for all classes i. 

Table 6 Possible combinations of preemptive and non-preemptive priority strategies with fixed interrupt level and P= 4 classes as well 
as corresponding sets and subsets (cf. Fig. 5 ) .  

Sets and subsets 

X 
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2 .  Suppose strategy F [u , ,  u2, . . ., u,-~, us] is not  feasible 
because of the  response time constraint  for some class 
i ( i  = p + 1; . ., P ) .  Then it is simpler to  choose in the 
next  step a  strategy F [u , ,  u2; . ., u,-~, ui ,  from the 
same  subset s [ u , ,  u 2 , .  . ., uf-2, u,-~] rather than a  strat- 
egy F [u,, u 2 ; .  ., u,-~, u;-], $1 from some  subset s [ u l ,  

u2, . . ., uf-2. vi-,]. This is so because the response 
times of the first p priority classes  are not affected by 
the additional interrupt levels. Therefore,  these re- 
sponse times  need  not be recomputed. 

The  ulgorithm 
The principle of the algorithm and  some  important 
properties of scheduling  strategies  and subsets  are  de- 
scribed in the previous subsections of this  section. To 
illustrate the search for  the optimal strategy,  the general 
steps of the algorithm are described next; in Fig. 6 we 
outline  a typical example. 

At first we have to find an initial feasible  solution (in 
our  example let it be s[ 1 ,   1 ,  1 1 ) .  Then we will try to im- 
prove this  solution in a  computationally efficient way, 
i.e., we will try to  exclude  computations of subsets that 
are  unnecessary  for  the algorithm. 

Denote  for clarity the strategy that gives the lower 
bound of a subset s [ u I ,  u 2 , .  . ., uf] by F, , {s [u , ,  u p , .  . ., u,] }. 
Recall that p = vi. Then  the general steps of the al- 
gorithm  can be described as follows: 

Step I Initialization 
Start initially with set S; Le., put S = s[O]. Set the  upper 
bound of the objective  function I F  = m. 

S f e p  2 Feasibility 
Check  whether  the considered set s [ u I ,  u2; .., u,] con- 
tains  a  feasible or infeasible  strategy F, ,{s[ul ,  u 2 ; .  ., u,]}. 

If it is not feasible because of response time constraints 
for some class i,  i > ( p  + v f ) ,  go to step 3. 

for  some class i,  i 5 ( p  + v,), go  to step 4. 
If it  is not feasible because of response time constraints 

Otherwise  the solution is feasible; go to  step 5. 

Step 3 Splitting 
The considered set may contain  some  feasible  solutions. 
Therefore, split it into  subsets s[ u I ,  v2,. . ., vf, vf+,] and 
consider  the  next  subset s[ vl, u2; . .. vf, I ] .  Go to  step 2. 

(This  step  corresponds  to a  "horizontal search toward 
the  leaves of the tree"; cf. Fig. 6, e.g., set S and subsets 
sr11, s [ l ,  11,  s[21.) 

Step 4 New subsets of higher  order 
In this case, all subsets s [ u I ,  u 2 , .  . ., u,+ k],  k 2 0 cannot 
contain  any feasible  solution. Therefore, go back to the 
next "higher" level of subsets, if any, and  investigate sub- 
set s [ ~ ~ ,  u 2 , .  . ., u ~ - ~ ,  vf-, + 1 3 .  Go to  step 2 .  Otherwise 
go to  step 6. 

\ 
Figure 6 Search  for  the  optimal  strategy. 

Figure 7 Mean  waiting  time W ( p ) .  For  this  example all service 
times  are  assumed  to  be  exponentially  distributed,  however. 
with different  mean  values  per  class. 
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Figure 8 Mean  number of interrupts per  second for uniform 
preemption distance  (cf. Fig. 7 ) .  

(Typical examples of this step  are  the  sets s[ 1, 1, 21, 
s[ 1, 31, and s[2, 21  in Fig. 6) .  

Step 5 Feasible  solutions 
Check  whether I , , [ v , ,  v2,. . ., v,] is less  than  the  upper 
bound IIL of the objective  function.  If so, set I ,  = I , [ v , ,  
vZ,. . ., v,]. Consider  next  subset s [ vl, v2; . ., vf+ 1 1, if any, 
i.e., search “vertically” for  better solutions in the  tree. 
Go to  step 2 .  Otherwise go to step 6. 

(Figure 6 shows  three  examples of this type;  subsets 
s[l, 1, 11, s[l, 21, and s [ 2 ,  11.) 

Step 6 Optimal  solution 
The IF of the objective  function corresponds  to  the op- 
timal scheduling strategy.  Stop. 

Numerical results 
The following three examples  show  how  various  kinds of 
scheduling  strategies and service  times can  be  described, 
analyzed,  and optimized in a uniform fashion. These ex- 
amples  also  show  the  advantages of preemption-distance 
priority  strategies as  compared  to  pure  preemptive  or 
pure non-preemptive (head-of-the-line) priorities. 

1 Priority class p 

Figure 9 Typical  example for an efficient combination of pre- 
emptive  and non-preemptive priorities (compare with the pri- 
ority strategies of Fig. 7 ) .  

Uniform  preemption  distance 
Figure 7 shows  the influence of the preemption distance 
on the mean waiting time. Traffic intensity and traffic 
character  are  constant. 

The  response time is 250 times  smaller for 6 = 1 than 
for 5 = 6 (head-of-the-line).  ,However,  the price to be 
paid is shown in Fig. 8: An immense number of interrup- 
tions occur. 

Nonuniform  preemption  distance 
Figure 9 shows a  reasonable and often  used  “mixed” 
strategy between  the  two  extremes  (preemption-distance 
priorities with fixed interrupt  level) resulting for  the ur- 
gent  demands exactly  in the  same  fast  response time as 
preemptive  priorities, saving, however, a remarkable 
number of interrupts (cf.  Fig. 10). 

Extreme  distribution  functions for  the  processing  times 
Figure 1 1 demonstrates which extreme  types of distribu- 
tion function are included in the solution presented 
above.  Figure 12 shows  for this  example  some  values 
for  the probability of waiting. 
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0.016 1 Strategy 1 !I I 1 2 3 4 5 6  
""" 

I Priority class p 

Figure 10 Mean  number of interrupts per second  for nonuni- 
form preemption distance  (cf. Fig. 9) .  

Summary and conclusions 
Keasonable  combinations of preemptive  and  non-pre- 
emptive (head-of-the-line) priorities are of major interest 
when operating  real-time computer  systems.  They guar- 
antee  fast reaction to urgent signals, avoiding large over- 
head. All these strategies are uniformly described by 
introducing the preemption  distance. The only two special 
cases known in the literature are included in the  descrip- 
tion and analysis as well. 

The modeling with  service  times  according to a  general 
Erlangian distribution  allows the  accurate description of 
any type of processing  time. 

Mean values (response time, waiting time, . . .) and 
characteristic probability values  (probability of interrup- 
tion. . .) show the main feature of a distinct  strategy.  For 
many practical  applications these  results  are sufficient. 
A more detailed analysis is possible by means of the  dis- 
tribution  function  and  a first step in this  direction is the 
variance being taken  into  consideration. 

Large real-time systems  have duplexed  register sets 
and  hardware  for  interrupt handling. Therefore,  the time 
for  interrupt handling is very small compared  to  the 
processing  times. However, designing small-system in- 

Priority 
class 

Does not Interrupts Preemption 
interrupt class distance 

1 1 2 ,  3 1 

2 1, 2, 3 - 2 

3 1, 2 ,  3 - - 

I t / s  

Figure 11 Example for three different types of service time 
distribution  functions  included in the general Erlangian  distribu- 
tion. The mean values are assumed to  be proportional to the 
class  number [ b ( l )  = Is, b(2)  =2s, h(3)  =3s];  thepreemption 
distance is nonuniform. 

Figure 12 Probability of waiting W ( p )  for all three priority 
classes (priority  strategy and  service time  distributions,  cf. 
Fig. 1 1 ) .  

z 0.01 
4. 

I I I 
1 2 3 
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X(P) Poisson 
distributed input 

Unlimited 
waiting room 

GE( 1) GE(2) GE(P) with different 

b ( 1 )  b ( 2 )  b ( P )  service times 

Single server 

general Erlangian 
................... 
................... 

Preemption-distance priorities 

Figure A1 The investigated system. 

terrupt handling may be done by software, adding a re- 
markable overhead.  First  results  for  these  systems  are 
already  available. 

Preemption-distance  priorities  with fixed interrupt 
levels are most important for  practical  applications. They 
guarantee a  fast response  to urgent requests while mini- 
mizing software overhead and hardware  cost.  Therefore, 
the optimization algorithm has been presented  for this 
class of strategies.  Obviously, it can  be extended  to arbi- 
trary preemption-distance  priorities. It can  be  also  ex- 
tended by introducing cost ai per  interrupt of level i; Le., 
the varying importance of interrupts may be  taken  into 
consideration.  Finally,  the  sensitivity analysis  for various 
scheduling  strategies is an interesting  problem for  future 
investigation. 

Appendix 1: Analysis for arbitrary preemption dis- 
tance 

Structure  and  operating  mode of the  investigated sys- 
tem 
Figure  A 1 shows  schematically  the  system to be investi- 
gated:  Arriving demands  are classified into P parallel 
queues according to their  priorities. All queues  are  as- 
sumed to be  unlimited, i.e., every arriving  demand will be 
stored and processed. This assumption is almost  always 
fulfilled, especially in systems with dynamic  core alloca- 
tion. All demands  are served  according to  an  arbitrary 
preemption-distance strategy, treated in the section on 
description of preemption-distance  priorities; first-in, 
first-out is assumed within each priority class. 

Trajic  parameters 
Demands of each priority class p ( p  = 1 ,  2, .... P )  are 
distributed  according to a Poisson process with the mean 
arrival rate A ( p )  : 

I 
” 

502 A,(-=t) = 1 - e d P ) =  1 - e-A(y) t  

Service times  follow, individually for  each priority  class, 
a general  Erlangian (GE) distribution: 

p=1 

with the mean  value 

l W )  

b ( P )  = 2 q ” ( P )  . b”(P),  
“=I 

and the  variance 

where 

1:  number of (fictitious) parallel “chains” of exponen- 

4,: probability that chain u ( u  = I ,  2 ,  .... I j is passed; 
k y :  number of stages for chain u ;  and 
by: mean  service  time  for  one  stage of chain v. 

It is worthwhile to  note  that this  distribution  allows us 
to  approximate  any  type of distribution  function of ser- 
vice  times  with any required accuracy.  Obviously, it 
includes the hyperexponential [ k u ( p )  = I ]  as well as  the 
Erlangian  distribution [I(p) = I ] ,  both  most important 
for many applications. 

The time to handle interrupts is neglected. This  as- 
sumption is also allowed because of large  real-time  com- 
puters  that  have duplexed  register sets and hardware for 
interrupt handling. (For small systems  without  these 
facilities, see  the summary  and  conclusions. j 

tial “stages”; 

Analysis 

General  remarks 
The most  famous methods  to investigate the  stochastic 
behavior of such non-Markovian queuing systems  are 
the method of embedded Markov  chains [ I O ] ,  the phase 
method [ 1 I ] ,  the integral method [ 121, and the method 
of supplementary  variables [ 131. 

When  arbitrary kinds of preemption-distance  priorities 
were investigated, all methods failed because of the 
complex interdependencies among  different priority 
classes.  However, a general  solution  was  possible by 
means of the method of moments: The  fate of an in- 
dividual demand of priority class p is pursued from its 
arrival up to  the point where it leaves the system. All 
possibilities of interruption -processing, pushing back 
in the  queue,  etc.  -are  considered. Finally,  when expec- 
tation values  are introduced the  presented solution  can 
be  obtained. 
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Characteristic  performance  values 
The  expected  response time (time  spent in the  system, 
waiting and being processed) r ( p )  for a demand of 
priority class p ( p  = 1, 2,. . ., P) is composed of the fol- 
lowing five terms: 

1.  The  expectation b, ( 5 p  + 5 - 1 ) of the remaining rest- 
service  time for  demands of the priority classes 1 to 
( p  + ( - 1 )  that  are  present  at its time of arrival in 
the  server  and will not be interrupted by the  con- 
sidered p-demand. 

2. The expected  time w,(p) necessary  to  serve  demands 
of the priority classes 1 to p waiting in the system at 
its  time of arrival. 

3. Its expected  time in service, h ( p ) .  
4. The expected  time w,,(p)  necessary  to  serve de- 

mands of preemptive priority classes l to ( p  - () 
which enter  the system while the considered  p-de- 
mand is still  in the  system. 

5. The  expected time wIII(p) necessary to  serve  demands 
of the  non-preemptive priority classes ( p  - 5 + 1 )  to 
( p  - 1 )  which enter  the  system while the considered 
p-demand is still in the  system, before  its  last  inter- 
ruption,  however. 

A  detailed  study of these five terms, presented in [ 141, 
leads  to  the following recursive solution  for the expected 
response time for priority class p ( p  = 1, 2 , .  . ., P )  : 

P 

- A ( i )  . b( i )  

where 

is the expected time  a demand of class p has  to wait until 
demands of lower  priority, which cannot be interrupted, 
leave  the  server. 

1 - A ( j )  
j = 1  

is the mean number of demands of class i waiting, but 
being interrupted at  least  once. 

is the remaining rest-service  time of a demand of class 
p after its  last  interruption. 

is the remaining service time for a  demand of class i. 
Additionally, 

Remark It should  be  mentioned that  an explicit  solution 
has also  been  found. However, from the computational 
viewpoint the  presented recursive  solution is more 
practical. 

In addition to  the  expected  response time and waiting 
time w(p)  = r ( p )  - b ( p ) ,  the following characteristic 
performance measures  have been  derived: 

I .  Probability that a  demand of class p is interrupted 
at  least  once: 

2. Mean number of interrupts per  demand of priority 
class p :  

3. Probability of waiting for  demands of priority class p :  

Appendix 2: Response time for preemption-distance 
priorities with fixed  interrupt level (two-dimensional 
representation) 
The  expected  response time for a priority class ( g ,  y )  is 
obtained following precisely the same principle outlined 
in Appendix 1 .  

For brevity set rg ,?[ t l ,  tZ,. . ., (,I = r ( g ,  y ) .  Then  the 
expected  response time is given by the following recur- 
sive  solution: 508 
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where 

5, when a < g ,  

h when a = g ,  
R ( a ,  h )  = 

ing  all investigations  concerning the uniform description 
and  analysis of preemption-distance priorities. The  author 
is also grateful to  two IBM colleagues: L. S. Woo, for 
many stimulating  discussions on optimization, for valu- 
able  comments, and for helpful suggestions; and D. T. 
Tang,  for his support and  discussion of the manuscript. 
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