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Optimal Scheduling Strategies for Real-Time Computers

Abstract:

In order to fulfill response time constraints in real-time systems, demands are often handled by means of sophisticated sched-

uling strategies. This paper first shows how to describe and analyze arbitrary combinations of preemptive and non-preemptive (head-of-
the-line) priority strategies and, second, presents an algorithm that yields the optimal priority strategy, taking into consideration con-

straints on the response time.

Introduction

Today there exists a wide variety of real-time computer
systems. Depending on their applications, they range
from small and simple systems to very complex configura-
tions [1, 2]. In a typical example there may be several
printers, disks, and tapes; the system may be connected
to many interactive terminals, to process control devices,
or to another real-time system, as indicated in Fig. 1.
Accordingly, the number as well as the complexity of
supervisory and application programs also varies over
wide ranges. However, in efficient scheduling strategies,
there are some typical features common to all real-time
systems, as follows,

In order to fulfill response time constraints, urgent de-
mands are often handled by means of an interrupt-driven
operating system, i.e., by means of preemptive (hard-
ware) priorities. On the other hand, there are less urgent
demands that do not justify preemption. Sometimes even
preemptive priorities are nonsensical, e.g., if the pro-
cessor overhead for interruption is greater than the re-
maining processing time of the low priority demand.
Therefore, most real-time computer systems serve the
various demands by reasonable combinations of pre-
emptive and non-preemptive (software) priorities [ 1-4].
Most theoretical investigations neglect this fact and deal
either with pure preemptive or pure non-preemptive
(head-of-the-line) priorities. QOur objective is to explore
theoretically those neglected aspects, hoping that prac-
titioners will be able to modify existing models and de-
velop new models based on this theory.

In this paper we first show how arbitrary combinations
of preemptive and non-preemptive priorities can be uni-
formly described by means of the so-called ““‘preemption
distance.” (It therefore seems reasonable to introduce
the unifying term preemption-distance priorities.) Im-
portant performance values are determined for the sys-
tem M /GE/ | with an arbitrary number of priority class-

es (GE = general Erlangian; cf. Appendix 1). Because
distributions and mean values may also differ in different
classes, arbitrary types of demands can be modeled and
analyzed with any required accuracy.

Most often implemented are preemption-distance pri-
orities with a fixed number of interrupt levels. Within one
interrupt level demands may occur with different priori-
ties. However, they do not interrupt each other (cf. Fig.
2). The development of optimal scheduling strategies is
demonstrated in the section on optimal scheduling for
the above important class of preemption-distance priori-
ties (fixed number of interrupt levels). The optimal
strategy is defined as the strategy that gives the mini-
mal number of expected interrupts for a given number
of classes, a given traffic intensity and type per class,
and given response time constraints for each individual
class.

An efficient algorithm has been developed which is
based on the technique of branch-and-bound and implicit
enumeration.

Description of preemption-distance priorities

» Uniform preemption distance for all classes, preemp-
tive priorities, and non-preemptive priorities

A general class of priority strategies can be characterized
by the so-called preemption distance &, the uniform dis-
tance between a priority class and the next priority class
being interrupted. Table 1 illustrates this definition: De-
mands of class p (p=1, 2, -, P; class 1 being the most
urgent), interrupt only demands of classes (p + £) to P,
but not the intermediate classes (p + 1) to (p + £ — 1).
On the other hand, demands of the considered class p
can be interrupted by classes 1 to (p — ¢), but not by
classes (p — &+ 1) to (p—1). Figure 3 and Table 2 show
an example for a uniform preemption distance ¢ = 3.
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It is easily seen that two well known special cases
of preemption-distance priorities are included: & = 1,
preemptive priorities; and ¢ = P, non-preemptive (head-
of-the-line) priorities.

* Arbitrary, nonuniform preemption distance for each
priority class

The preemption distance £ (p) may be defined individually
for each priority class p (p = 1, 2,---, P). Then arbi-
trary combinations of preemptive and non-preemptive
priorities are allowed. Although nonuniform representa-
tion and analysis are possible, the method of determining
the solution is rather complex.

A much more elegant solution is to use a uniform pre-
emption distance while introducing “empty” priority
classes: Dummy classes (with null arrival rates) are in-
terleaved between the actual ones. This trick allows
us to generate all scheduling strategies of practical in-
terest (the only two special cases known in the literature
[5, 6] are included). Furthermore, it facilitates the in-
vestigation of their influence on the waiting process.

Example An efficient strategy with nonuniform preemp-
tion distance is used for the I/0O control in electronic
switching systems [4]: The priorities are to be controlled

Figure 2 Queuing of the various demands in a real-time com-
puter system.
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Figure 1 Small but typical configuration of a real-time com-
puter system.

Table 1 Introduction of the preemption distance ¢. The special
cases of preemptive priorities (¢ = 1) and non-preemptive pri-
orities (£ = P) are included.

Priority classes

1.20-ap—é&p—&+1,p—1pp+lL--pté~1,pt+té& P

demand do not not interrupted
interrupt interrupt interrupted by
class p class p by class p class p

Table 2 Service mechanism and preemption distance (PD)
corresponding to the priority strategy of Fig. 3.

Arriving Does not Interrupts
demands interrupt service service Actual
of class of class of class PD

1 1,2,3 4,5,6,7,8,- 3

2 1,2,3,4 5,6,7,8,- 3

3 1,2,3,4,5 6,7,8, 3

4 1,2,3,4,5,6 7, 8, 3

5 fe. I .

6

7

Figure 3 Example for a priority strategy with uniform pre-
emption distance £ = 3.

Priority class

Interrupts
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Priority classes

1 2 3 4 5 6 7 8

AN\
PD=1 PD=1 PD=2

PD =3
PD = preemption distance

Figure 4 Second example for a combination of preemptive and
non-preemptive priorities (cf, Table 3).

Table 3 Service mechanism and preemption distance (PD)
corresponding to the priority strategy of Fig. 4.

Arriving Does not Interrupts
demands  interrupt service service Actual
of class of class of class PD

1 1 2,3,4,5,6,7,8," 1

2 1,2 3,4,5,6,7,8," 1

3 1,2,3,4 5.6,7, 8, 2

4 1,2,3,4,5,6 7,8, 3

5 P .

6

7

such that, e.g., priority class 3 interrupts demands of
classes 3, 6, etc., but not the intermediate class 4, where-
as class 4 interrupts only classes 7, 8, etc. (cf. Fig. 4 and
Table 3). Table 4 illustrates how this interesting strategy
can be interpreted and analyzed as a strategy with uni-
form preemption distance by introducing some appropri-
ate dummy classes.

e Fixed interrupt levels (two-dimensional representa-
tion)

It was pointed out in the first section that preemption-
distance priorities with a fixed interrupt level are most
common in real-time computer systems (cf. Fig. 2). The
optimization problem is to find a strategy that will guaran-
tee a fast reaction of the system while minimizing addi-
tional overhead and hardware cost. To describe the al-
gorithm that is applied to find optimal scheduling strate-
gies, a two-dimensional notation is adopted here.

The notation is summarized in Table 5: Let G groups
of priority classes be given. Demands of any group g
(g = 2, 3, "+, G), are interrupted immediately when
service for demands of more important groups is required
(group 1 being the most urgent). Within a group g (g =
1, 2,--+, (), there exist £ classes of demands that are
of different priority; however, they do not interrupt each
other (non-preemptive). For brevity, such a priority
strategy is denoted by F[£,, £, + -, €,] and each individual
class by (g, y). Obviously, the total number P of priority
classes is given by the sum of all £ .

Analysis

* Arbitrary preemption-distance priorities

The general solution for arbitrary combinations of pre-
emptive and non-preemptive priorities characterized by
a preemption distance has been obtained and presented in
[4]. In that paper probabilities for waiting or for inter-
rupts, mean waiting times, and other performance param-
eters are determined exactly for each class of demands.
Arrival processes are assumed to be Poisson functions,
and service times may have general Erlangian distribu-
tions, which may be different for different priority classes.
The results are summarized in Appendix 1.

e Preemption-distance priorities with fixed interrupt
levels

Traffic parameters and response time

Demands of each priority class (g, y) are distributed,
as in the general case, according to a Poisson process
with mean arrival rate A (g, y). The service time follows,
individually for each class, a general Erlangian (GE) dis-
tribution with the mean value b (g, y). The mean response
time r, , for each priority class (g, v) of a specific pri-
ority strategy F[£,, &,, -~ €] is given in Appendix 2.

Mean number of interrupts

Consider a specific class (g, y) with the arrival rate
A(g,v) and the mean service time b (g, y). Then the over-
all arrival rate for demands that may interrupt this class is

g-1 §&
wlg, v) =33 ri, ).
i=1 j=1
The probability that such a demand occurs and inter-
rupts a demand of class (g, v) is p(g, v) = A(g, v) -
b(g, v). Hence, the expected total number of interrupts
occurring per time unit is given for priority strategy

F&, &, &.] by

G &
16, &, E1=3 3 uigy) plgv).
g=2 Y=1

In the next section we show how to determine the
strategy that generates the minimum expected number of
interrupts.

Optimal scheduling

* Formulation of the problem

We want to find an optimal priority strategy, i.e., a strat-
egy with the minimum expected number of interrupts,
taking into consideration response time requirements
individually for each priority class. The general problem
is to minimize the objective function (expected number
of interrupts) over all G and over all £;:
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G f_/; g-1 ‘fi

1€, € n 1= Y plgy) X X ML),

g=2 Y=1 i=1 j=1

subject to the response time constraints
rl’l[gl’ 627 Y f(;] S "1’1,

rl,z[é:l’ £t € S

Fov[€p € €1 r, .,

e, f(',[gl? §2s Y é},] = fe, £

where G = 1, ¢, = 1.

e Principle of solution

In finding a method of solving the problem, several op-
timization methods have been investigated [7-9]. In
comparison with classical optimization problems, this
problem is characterized by the following features:

1. When starting our algorithm, there is no simple way
to find a feasible solution. Therefore, the algorithm
has to proceed with the dual objective of finding feas-
ible solutions and of minimizing the number of inter-
rupts.

2. The computing time for determining the actual re-
sponse times for each priority class is much higher
than the time required to generate a new strategy and
determine the total number of interrupts.

An algorithm based on the branch-and-bound tech-
nique and implicit enumeration has been developed that
takes into consideration the special features mentioned
above. Roughly speaking, the main steps of the algotithm
are as follows:

1. Determine a feasible solution and the corresponding
number of interrupts to be used as an initial upper
bound of the objective function.

2. Partition the set of all solutions into subsets. Deter-
mine a lower bound for all feasible solutions within
a subset.

3. Those subsets whose lower bounds exceed the upper
bound of the objective function are excluded. Check
also conditions whether a subset may have any feas-
ible solution at all.

4. Partition one of the remaining subsets further into
several subsets, determine their lower bounds and
exclude some subsets, etc.

e Subsets, lower bounds, search for feasible solutions

Definition of subsets
The general notation for a specific priority strategy
F[¢,, &, - &.] was introduced in the subsection on

SEPTEMBER 1975

Table 4 Generation of a nonuniform preemption distance
(PD) by means of empty classes (classes with zero arrival rate:
cf. Fig. 4-and Table 3).

Actual
and Mean Interrupt
Uniform empty arrival Actual service Actual
PD class  rate  class of classes PD

3 1 A 1 4,7,9,10, 11, 12,--- 1
3 2 0 . e .
3 4 A, 4 7,9, 10, 11, 12,--- 1
3 5 0 . AN .
3 6 0 . -
3 7 A, 7 10, 11, 12,--- 2
3 8 0 . e .
3 9 Ay 9 12,--- 3
3 10 Ao 10 s .
3 11 Ay 11

3 12 N 12

=

Table 5 Notation for priority strategies with fixed interrupt
level (for an example, cf. Table 6).

Group | Group g Group G
, . _ G
e=1,2,G, G =P, Ef,,:P-
y=12"§, £,= P g=1

fixed interrupt levels (two-dimensional representation)
and Table 5. To find an efficient optimization procedure
it is suitable to define sets of strategies.

Let S be the set of all feasible solutions F[&,, &,,- -+,
£.1, i.e., the set of all possible priority strategies which
satisfy the response time constraints. Furthermore, let
slv,, vy vf] be the subset of all feasible solutions for
which the first f interrupt levels are fixed; additional in-
terrupt levels, if any, can be arbitrary:

S[Vl, Uyt Vf]
={F|FESand { =v, & =v,, &=vl

where E{:, v, = P.

Obviously subset s[v,, »,," - -, Vf] contains all strategies
Flv, v, v v,y v,]. A small example is shown in
Table 6 (see also Fig. 5).

Lower bounds for subsets

Let I [v,, v,,- " v,] be the lower bound for all solutions
of the subset s[v,, »,, - -, »]. Then the following observa-
tions are immediate and are therefore presented without
formal proof:
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s[1,1,1]

Figure 5 Sets of all feasible and infeasible solutions for P = 4
priority classes (i.e., all possible combinations of preemptive
and non-preemptive priority strategies with fixed interrupt level;
cf. Table 6).

1. A lower bound for the objective function of subset

s[vy, vy, o+ v) is given by
Llv, v, v]= Iy, vy, v, Vf+1]
f+1 oy g-1 v
=¥ 3 oley I 3N,
9=2 =1 i=1 j=1
)
where v =P—=3 v

i.e,, all v, , remaining priority classes are lumped to-
gether into interrupt level (f+ 1). All solutions with
additional interrupt levels (f + 2,--+) cause more in-
terrupts per time unit.

2. Per the definition of subset s[v,, v,," ', vf], it includes
all subsets s[v,, v,

follows directly that

5 Ve V) v = 1 From 1t

Llv, vy, vl = v, v, v, v

3. If the lower bound /,[v,, v,," -, ¥ corresponds to a
feasible solution F[v,, v,, -, v,, ¥, ], this solution is
the best strategy for all sets s(v, v,," - v/, slv vy,
Vs VDo sLvg vy s v v, w1 et because [ [,
v,,* v is monotonically increasing with £,

Search for feasible solutions
Priority strategy F[v,, v,, ", Vi g Vpps vf] is the lower
bound of subset i[lvl, vy, """ ¥, ]; it contains f interrupt
levels. Let p= 2{:1 v, Obviously priority class p is within
Vo i.e., p is in the group with lowest priority to cause an

interrupt.

1. Suppose such a strategy F(v,, v,, ", v Y is in-
feasible because of response time constraints for one
or several classes i, i = p. Then any strategy in the
subsets s[v, v,,"*, v, 5, v, , + k], where

st
0= k=P— 2 v,

j=1
cannot be a feasible solution because it gives at best
the same response time for all classes i.

Table 6 Possible combinations of preemptive and non-preemptive priority strategies with fixed interrupt level and P= 4 classes as well

as corresponding sets and subsets (cf. Fig. 5).

Sets and subsets

- ~

Possible - b~ - = = - -
priority oy Sy =y < - ) = o a) = =
strategies “ = = = = = = = = = = =

(1, 1)(2, N(2,2)(2,3) X X X

—— —————

(1, D(1,2)(2, D2, 2) X X X

— —

(1, D(1,2)(1,3)(2. 1) X X

—_ e

(L DL DL 31,4 X X

(1, D2, D(3, D (3,2) X X X X

et Nt N ——’

(1, D2, D2,2)(3, 1) X X X

N S e )

(1L, D(1,2)(2, DB 1 X X X

R e N S—

(1, D, HEG, D@ X X X <

R L S L -
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2. Suppose strategy F[v,, v,, ", v vf] is not feasible
because of the response time constraint for some class
i (i=p+ 1, -+ P). Then it is simpler to choose in the
next step a strategy F [v,,v,," ", ot v, u}“] from the
same subset s{v,, v,, ", Ve g uffl] rather than a strat-
egy Flv, v, "5 v, v;_,, ¥/] from some subset slv,,
Vyy T Yy V}C—l]' This is so because the response
times of the first p priority classes are not affected by
the additional interrupt levels. Therefore, these re-

sponse times need not be recomputed.

o The algorithm
The principle of the algorithm and some important
properties of scheduling strategies and subsets are de-
scribed in the previous subsections of this section. To
illustrate the search for the optimal strategy, the general
steps of the algorithm are described next; in Fig. 6 we
outline a typical example.

At first we have to find an initial feasible solution (in

our example let it be s[1, 1, 1]). Then we will try to im- :
prove this solution in a computationally efficient way,
i.e., we will try to exclude computations of subsets that Figure 6 Search for the optimal strategy.

are unnecessary for the algorithm,

Denote for clarity the strategy that gives the lower
bound of a subset s[v,, »,," "+, Vf] by F {s[v,,v,, -, Vf]}.
Recall that p = 2{;1 v,. Then the general steps of the al-

gorithm can be described as follows: Figure 7 Mean waiting time W (p). For this example all service
times are assumed to be exponentially distributed, however,

Step 1 Initialization with different mean values per class.
Start initially with set 5; i.e., put S = s[0]. Set the upper 10 7
bound of the objective function /, = . 6 lé
Step 2 Feasibility st
Check whether the considered set s[v,, v,,- ", »,] con-
tains a feasible or infeasible strategy F, {s[v,, v,, ", AR ) £=6
» If it is not feasible because of response time constraints

for some class i, i > (p + v,), go to step 3. e
¢ If it is not feasible because of response time constraints

for some class i, i = (p+ v,), 80 to step 4. os | =4

* Otherwise the solution is feasible; go to step 5.

Step 3 Splitting

. . . £=3

The considered set may contain some feasibie solutions. 02
Therefore, split it into subsets s[v,, v,, -, v;, v,,] and
consider the next subset s[v, v,," -~ v, 1]. Go to step 2. o1l Priority classes

(This step corresponds to a “‘horizontal search toward iy b 'Q}H 6
the leaves of the tree”’; cf. Fig. 6, e.g., set S and subsets 0.05F
s[1], s[1, 11, s[2].) A =0S5Erl.  b(p)=p

A A(2): A(3): A(4): A(5): A(6) =

Step 4 New subsets of higher order 0ok 1:1:2:2:3:3
In this case, all subsets s[v,, »,, -, »,+ k], k = 0 cannot o
contain any feasible solution. Therefore, go back to the 5; “oo1l =1
next “higher’” level of subsets, if any, and investigate sub- { ; 3’ 7 js Z
set s[v, vy, v, v, + 1]. Go to step 2. Otherwise
g0 to step 6. Priority class p 480
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0.018
Priority classes =1
0.016
interrupts
0.014
A =05ErlL.  b(p)=p
0.012 LA A(2): A(3): A(4): N(5): A(6) =
1:1:2:2:3:3 £=2
0.010 -
0.008+
0.006 ~
0.004
2 0002+
i @
3
<l
Priority class p

Figure 8 Mean number of interrupts per second for uniform
preemption distance (cf. Fig. 7).

(Typical examples of this step are the sets s[1, 1, 2],
s[1, 3], and s[2, 2] in Fig. 6).

Step 5 Feasible solutions

Check whether I, [v,, v,, -+, v/] is less than the upper
bound /, of the objective function. If so, set /, = I, [»,,
vyt vf]. Consider next subset s{v,, v,, - -, v+ 1], if any,
i.e., search “vertically” for better solutions in the tree.
Go to step 2. Otherwise go to step 6.

(Figure 6 shows three examples of this type; subsets
s[1, 1, 1], s[ 1, 2], and s{2, 1].)

Step 6 Optimal solution
The 1, of the objective function corresponds to the op-
timal scheduling strategy. Stop.

Numerical resuits

The following three examples show how various kinds of
scheduling strategies and service times can be described,
analyzed, and optimized in a uniform fashion. These ex-
amples also show the advantages of preemption-distance
priority strategies as compared to pure preemptive or
pure non-preemptive (head-of-the-line) priorities.

O.SL

0.2+ Priority classes
1 2 3 45 6
PN ——— e
O.Ir pure do not interrupt  interrupted
preemptive each other from all
0~05r A= 0.5 Erl. b(p) =p
AL A(2): X(3): A(4): A(5): A(6) =
1:1:2:2:3:3
0.02-
gl
2l 001
t T T L T
1 2 3 4 5 6

Priority class p

Figure 9 Typical example for an efficient combination of pre-
emptive and non-preemptive priorities (compare with the pri-
ority strategies of Fig. 7).

o Uniform preemption distance

Figure 7 shows the influence of the preemption distance
on the mean waiting time. Traffic intensity and traffic
character are constant.

The response time is 250 times smaller for £ = 1 than
for ¢ = 6 (head-of-the-line). However, the price to be
paid is shown in Fig. 8: An immense number of interrup-
tions occur.

* Nonuniform preemption distance

Figure 9 shows a reasonable and often used “mixed”
strategy between the two extremes (preemption-distance
priorities with fixed interrupt level) resulting for the ur-
gent demands exactly in the same fast response time as
preemptive priorities, saving, however, a remarkable
number of interrupts (cf. Fig. 10).

e Extreme distribution functions for the processing times
Figure 11 demonstrates which extreme types of distribu-
tion function are included in the solution presented
above. Figure 12 shows for this example some values
for the probability of waiting.
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0.018

0.016 Strategy 1
123 456
0.0141 pure preemptive /
Strategy 2 Ill
oon2p L2 LA S /
pure do not interrupt ]
preemptive interrupt from I'
each other all I
0.010 !
]
]
!
/
0.008-
0.006+ Strategy 1 \/
/
!
0.004 II
aa /
/
S 0.002k Strategy 2
2%
=
=< 0
T T T T T T
1 2 3 4 5 6
Priority class p

Figure 10 Mean number of interrupts per second for nonuni-
form preemption distance (cf. Fig. 9).

Summary and conclusions

Reasonable combinations of preemptive and non-pre-
emptive (head-of-the-line) priorities are of major interest
when operating real-time computer systems. They guar-
antee fast reaction to urgent signals, avoiding large over-
head. All these strategies are uniformly described by
introducing the preemption distance, The only two special
cases known in the literature are included in the descrip-
tion and analysis as well.

The modeling with service times according to a general
Erlangian distribution allows the accurate description of
any type of processing time.

Mean values (response time, waiting time, - --) and
characteristic probability values (probability of interrup-
tion - - -} show the main feature of a distinct strategy. For
many practical applications these results are sufficient.
A more detailed analysis is possible by means of the dis-
tribution function and a first step in this direction is the
variance being taken into consideration.

Large real-time systems have duplexed register sets
and hardware for interrupt handling. Therefore, the time
for interrupt handling is very small compared to the
processing times. However, designing small-system in-
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Priority Does not Interrupts Preemption
class interrupt class distance
1 1 2,3 1
2 1,2,3 — 2
3 1,2,3 — —
1
Class 1
Class 2
0.5+
Class 3
i
2
4] 0 1
0 1 2 3 4 5
t/s

Figure 11 Example for three different types of service time
distribution functions included in the general Erlangian distribu-
tion. The mean values are assumed to be proportional to the
class number [b(1) = 1s, 5(2) = 2s, b(3) = 3s]; the preemption
distance is nonuniform.

Figure 12 Probability of waiting W(p) for all three priority
classes (priority strategy and service time distributions, cf.
Fig. 11).

1 0.9
0.7
0.5
0.5+
0.3
Atot
0.2
0.1
0.1+
3
A, =% M) bip)
p=1
0.05-
A = A(2)= A (3)
b(p)=p
0.02
=
2 00
T T T
1 2 3
Priority class p
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Poisson
distributed input

Unlimited
waiting room

Single server
with different
general Erlangian
service times

GE(1) GE(2) GE(P)

®eesssscscscscssone

b(1)  b(2)

sesssssescsssssscss  H(P)

Preemption-distance priorities

Figure A1 The investigated system.

terrupt handling may be done by software, adding a re-
markable overhead. First results for these systems are
already available.

Preemption-distance priorities with fixed interrupt
levels are most important for practical applications. They
guarantee a fast response to urgent requests while mini-
mizing software overhead and hardware cost. Therefore,
the optimization algorithm has been presented for this
class of strategies. Obviously, it can be extended to arbi-
trary preemption-distance priorities. [t can be also ex-
tended by introducing cost a, per interrupt of level i; i.e.,
the varying importance of interrupts may be taken into
consideration. Finally, the sensitivity analysis for various
scheduling strategies is an interesting problem for future
investigation.

Appendix 1: Analysis for arbitrary preemption dis-
tance

s Structure and operating mode of the investigated sys-
tem

Figure A1 shows schematically the system to be investi-
gated: Arriving demands are classified into P parallel
queues according to their priorities. All queues are as-
sumed to be unlimited, i.e., every arriving demand will be
stored and processed. This assumption is almost always
fulfilled, especially in systems with dynamic core alloca-
tion. All demands are served according to an arbitrary
preemption-distance strategy, treated in the section on
description of preemption-distance priorities; first-in,
first-out is assumed within each priority class.

o Traffic parameters
Demands of each priority class p (p=1, 2,--, P) are
distributed according to a Poisson process with the mean

arrival rate A(p):
I3

1 alp) =] _ oA
A,EN=1~e “@=1—-¢"""

Service times follow, individually for each priority class,
a general Erlangian (GE) distribution:

)
B, (=0 =173 q,p)
p=1

x{i-

with the mean value

Kk, ®@)-1

Z [by(p);k,w)]“/ }.

_——t
b,(p)/k,(p)
e

Lp)

b(py =73, q,(p) - b,(p),

p=1
and the variance

Lo k + 1
a(p)= ()

27 by e = by

where

[: number of (fictitious) parallel “chains” of exponen-
tial “stages’’;
q,. probability that chain v (v = 1, 2," -+, 1) is passed;
k : number of stages for chain v; and
b : mean service time for one stage of chain ».

It is worthwhile to note that this distribution allows us
to approximate any type of distribution function of ser-
vice times with any required accuracy. Obviously, it
includes the hyperexponential [k, (p) = 1] as well as the
Erlangian distribution [1(p) = 1], both most important
for many applications.

The time to handle interrupts is neglected. This as-
sumption is also allowed because of large real-time com-
puters that have duplexed register sets and hardware for
interrupt handling. (For small systems without these
facilities, see the summary and conclusions.)

s Analysis

General remarks

The most famous methods to investigate the stochastic
behavior of such non-Markovian queuing systems are
the method of embedded Markov chains [10], the phase
method [11], the integral method [12], and the method
of supplementary variables [ 13].

When arbitrary kinds of preemption-distance priorities
were investigated, all methods failed because of the
complex interdependencies among different priority
classes. However, a general solution was possible by
means of the method of moments: The fate of an in-
dividual demand of priority class p is pursued from its
arrival up to the point where it leaves the system. All
possibilities of interruption —processing, pushing back
in the queue, etc. —are considered. Finally, when expec-
tation values are introduced the presented solution can
be obtained.
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Characteristic performance values

The expected response time (time spent in the system,
waiting and being processed) r(p) for a demand of
priority class p (p =1, 2,--+, P) is composed of the fol-
lowing five terms:

1. The expectation b, (Zp + ¢— 1) of the remaining rest-
service time for demands of the priority classes 1 to
(p + £ — 1) that are present at its time of arrival in
the server and will not be interrupted by the con-
sidered p-demand.

2. The expected time w,(p) necessary to serve demands
of the priority classes 1 to p waiting in the system at
its time of arrival.

3. Its expected time in service, b(p).

4. The expected time w,(p) necessary to serve de-
mands of preemptive priority classes 1 to (p — &)
which enter the system while the considered p-de-
mand is still in the system.

5. The expected time w, (p) necessary to serve demands
of the non-preemptive priority classes (p — ¢ + 1) to
(p — 1) which enter the system while the considered
p-demand is still in the system, before its last inter-
ruption, however.

A detailed study of these five terms, presented in [14],
leads to the following recursive solution for the expected
response time for priority class p (p=1, 2, -+, P):

p—1

r(p) = {3 A0 - 1) +b(p) + b= p+ €= 1)

i=1

»
—2 A@) - b(i)

P —1
=S 0,00 - bl —b) Y AG)]

=1 i=p_£+1
~%—§Amyi

where

oAy Wk +1

PSP = 2 000) 2T kW) o0 4,0
v= p=1 v
p+é-1 A(U)
+ —— =" 1A - b —1
p=p+1 }‘u(v)2 - b(v) { #(U) @
‘) q,(v)
5> )

20, 0) b, /K, ) + 1)

is the expected time a demand of class p has to wait until
demands of lower priority, which cannot be interrupted,
leave the server.

SEPTEMBER 1975

b)) S AG) — b () S AQ)

j=1 Jj=i~é+1

1= A()
j=1

Q,() =A() -

is the mean number of demands of class / waiting, but
being interrupted at least once.

1 ‘® q,(p)
b (p) = 1— d
) Au(p>{ E(xu(m-b,(p)/ky<p>+1>"v“”)}

is the remaining rest-service time of a demand of class
p after its last interruption.

Lw) k + 1
b (v) 1 (v)

ST 2 A

is the remaining service time for a demand of class i.
Additionally,

A(p) =\(p) - b(p) and

p—¢
AP = Ap).

i=1
Remark It should be mentioned that an explicit solution
has also been found. However, from the computational
viewpoint the presented recursive solution is more
practical.

In addition to the expected response time and waiting

time w{p) = r(p) — b(p), the following characteristic
performance measures have been derived:

1. Probability that a demand of class p is interrupted
at least once:
‘@ q,(p)

P(p)=1— .
T ) ) )

2. Mean number of interrupts per demand of priority
class p:

mip) =A,(p) - b(p).

3. Probability of waiting for demands of priority class p:

p+é-t { p+é—1

Wy =3 4 +{1-"3 a0} p,0.

Appendix 2: Response time for preemption-distance
priorities with fixed interrupt level (two-dimensional
representation)
The expected response time for a priority class (g, ¥) is
obtained following precisely the same principle outlined
in Appendix 1.

For brevity set r,,[£,, &, §,1 = r(g, v). Then the
expected response time is given by the following recur-
sive solution:
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g iyy—

; Z A j)r(h j) + blg, y) + b (E g, £)
g Y

-3 z Al ) b j) = b(gy) xS Alg.j)
i=1 =1 =

g
-2

2 DG = b, 1)

where
&, whena <g,
R(a, b) =
b when a = g,
b (= g, v)
I R A, ) oD k() + 1 2
= . . b i\ J ) i\ J
gﬁ ; 260, j) & k(J) AR g, ()
& .
A(g, ) { . .
+ —L8D ) (g, j) - blg,j)— 1
J=v+1 }\,,L(gaj)Z “blg. j)
Lg,j) /
. q,(g.j) - _)}’
— [K (¢.)) - b2 ) N 1] v
k,(g.))
Q, 3G, )

i-1
b(i, j) - A6 ) +{b(i, ) — b, (i, N} Y AU, v)

=N, J) - ’
1=A,,)) =3 Ali,v)
v=1
b,(g. )
-1 {1 ' q,(g v }
k(@Y
)\u(gs ¥) v=1 {/\#(g, v) - b,(gy) N I:I
k(g v)
by(i’j)
1 l(ljk(lj) 1 . N
T 25(0)) 2 k, (i, j) b0, )" q,(i, ), and
1 g
2 2 A(i, j).
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