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Analysis of a Loop Transmission System with
Round-Robin Scheduling of Services

Abstract: A finite population, multi-queue model is developed for a loop transmission system. Approximate expressions for the state
transition matrix and other system variables are derived in recursive forms. It is also shown that a number of useful system parameters,
such as average message response time, average cycle time, and average response time conditioned on message length. can be obtained.

The analytical results have been validated by simulation.

Introduction

In the literature, most system models involving many
queues with a single server assume that customers are
drawn from an infinite population, such that arrival and
service processes are mutually independent. Published
works on this type of model include Liebowitz [1],
Kruskal [2], Cooper and Murray [3], Eisenberg [4],
and Konheim and Meister [5]. These papers differ
mainly in the service disciplines and the degree of gen-
erality of the models assumed. In some physical systems,
however, the arrival and service processes are not in-
dependent. For instance, in an interactive environment,
arrivals at a queue occur in batches and no new arrival
occurs until the previous entry has been completely
served. To our knowledge, only one author has con-
sidered a system model of this type: Runnenberg [6]
assumes that the server patrols the queues in cyclic
order, completely exhausting each before advancing
to the next. In contrast, we assume a round-robin schedul-
ing of services. That is, the server provides only one
unit of service for each visit to a queue.

The motivation that brought this problem to our at-
tention is its application to loop transmission systems.
In this case the server is a processor that controls the
loop; the batches are the messages, each of which con-
sists of a number of characters to be transmitted; the
queues are the terminals attached to the loop. We be-
lieve that the model described in this paper can be useful
in a number of other applications also.

The model consists of N queues distributed around a
loop (Fig. 1). The queues are served in cyclic order by
a traveling server. The arrivals to the queues occur as
messages, where the number of characters in a message
varies according to a geometric distribution with mean
R. The server “walks” from one queue to the next,
servicing exactly one character for each visit to a queue.
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The service time per character, 7, and the walking time
between adjacent queues, ¢, are both assumed to be
constants. At each queue the time interval from the com-
pletion of service of one message to the arrival of the
next is exponentially distributed with mean 1/A.

For this model, several recursive expressions have
been developed to obtain the state transition matrix and
other important system variables. Here, the state of the
system is defined as the total number of non-empty queues
in the system at the instants of termination of the service
quanta. The choice of this definition is made in the in-
terest of limiting the number of possible states to the
total number of queues, N, because a more complete
specification of the system would require 2V possible
states. Such a definition necessitates an approximation
in the derivation of the recursive expressions. However,
comparison with simulation results (Tables 1 and 2)
shows that this approximation is quite acceptable.

From these recursive expressions, it is shown that a
number of useful system parameters, such as average
message response time, average cycle time, and average
response time conditioned on message length, can be
readily derived.

Theory
The solution for the system parameters is based on three
stationary matrices:

State transition: P =[p;l
Walking time: W = [w;;], and
Cycle time: Cc'= [c;].

The terms ‘“‘walking time” and ‘“‘cycle time” as used
above are to be interpreted, respectively, as the elapsed
times between successive service quanta and between
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successive departures from a non-empty queue. The
exact dependence of the system parameters on these
matrices is discussed in detail in the third section.

LetT, (k=1,2,-+,%; T, _ <T,<T,,,) be succes-
sive instants of termination of the service quanta, and
STk be the state of the system at instant 7, ; then

p;; = Prob [S, =JjlS;, =il 0= (i,j)) =N

wy; = Prob [(T,,, — T,) = (t; +jt,)|S;, =1l

0=i=N,; 1=,

c;j = Prob [(T,Hj——
0=(,)) =N

where QT = Q if the server departs from an empty queue
at instant Tk, and QT 1 otherwise. The quantities N,
t,and ¢, are as deﬁned in the Introduction.

The state transition probabilities p;; may be written as

1
py= Prob (S, =jS, =i Q, = r]

r=0
X Prob [QTk = rlSTk =
Let
L TS R - _ i
= [p};): pj;=Prob [S, =jS, =i.Q, =rl:

_ [Prob[Q, =0|S; =i]  fori=]
v 0 otherwise;
Z=1[¢,],0= (i, j) = N;
then,
P=27 P+ (1—-1Z) P, (1)

where I is the unit matrix.

It is clear that P is both irreducible and aperiodic;
hence, there exists a unique vector solution to the steady
state equation:

p=p-P,
where
p=1{p;}; p;=Prob [§, =i];

From Eq. (1) the steady state equation may be written as

0=i= N;k—)oc‘

p-[Z-P+(I—2Z) - -P]l=p. (2)

In Appendix A we show that the matrices P’ and P'
may be obtained in recursive form. Still, vector p cannot
be obtained directly from Eq. (2) because the matrix
Z is also a function of p, as can be seen from the defini-
tion of {;;. The functional dependence, however, may be
obtained through the following relation:

Prob [S, =i+ 1]Q, = 1] =Prob [S, =iQ, =0
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T,) = (i, + Ntw)|STk= i, QTk= 1],

e empty queues
ahead

Tk
fe—

Figure 1 Schematic diagram of a loop model.

Because the message lengths are geometrically distri-
buted with mean R, Prob [QTk =0]=1/R.
Consequently,

Prob [STk =i+ 1, QTk= 1]
Prob [QTk= 1]

- Prob [0, =0]

= (R=1) Prob [, =i. 0, =0].

Prob [S, =1, QTk =0]

On the other hand,
Prob [S,,k =it 1o, = 1]

+ Prob [STk =i+1, QTk =0]=p,,
Combining these equations yields the recursive relation
Prob [STk =i+1.0, = 0]

=P, — (R—1) Prob [S, =i, Qp = 0].
Observe that
Prob [STk =0 QTk = 1] =0;
therefore,
Prob [S;, =0, Qp, =0]=p,

Then the recursive relation generates the closed form
solution below:

i

=3 (1-R)7p, 3)

Prob [STk= i, Qp =
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Table 1 Comparison of theoretical results with simulation. The mean message length R is 10 and ¢/ is 0.05. The simulation result
is the second value in each pair. There were 2000 messages processed in each simulation run.

Server utilization = 30% Server utilization = 90%
N=35 N=7 N=3 N=7
At = 0.66% A, = 0.46% N, =5.05% A, =3.16%

AE[T ] 0.1046 0.08045 1.805 1.457

0.1032 0.08181 1.749 1.505
AE[T ] 0.01549 ) 0.01083 0.005592 0.003497

0.01575 0.01015 0.005555 0.003479
A\E[T,] 0.002353 ) 0.002294 0.1266 0.1110

0.002336 0.002337 0.1273 0.1115
AE[T,,] 0.01065 0.008219 0.1866 0.1511

0.01061 0.008243 0.1844 0.1504

Table 2 Comparison of theoretical results with simulation; the simulation result is the second value in each pair.

Server
utilization
(percent) N=5
3 0.0708 0.6605 0.2161 0.0460 0.0063 0.0004
0.0721 0.6547 0.2170 0.0472 0.0087 0
P
%0 0.0059 0.0694 0.1767 0.2932 0.3041 0.1506
0.0068 0.0737 0.1790 0.2956 0.3018 0.1429
30 0.0897 0.0757 0.0663 0.0584 0.6394
; 0.0968 0.0763 0.0634 0.0628 0.6289
w
% 0.5941 0.2126 0.0905 0.0424 0.0548
0.6086 0.2063 0.0821 0.0413 0.0549
30 0 0.7055 0.2339 0.0525 0.0076 0.0005
] 0 0.7095 0.2322 0.0500 0.0078 0.0003
C
% 0 0.0574 0.1509 0.2734 0.3248 0.1935
0 0.0637 0.1536 0.2784 0.3259 0.1781
Server
utilization
(percent) N=7
R 30 0.0670 0.6278  0.2315 0.0601 0.0118 0.0017 0.0002 0.0000
0.0646 0.6272 0.2301 0.0615 0.0141 0.0022 0 0
P
90 0.0031 0.0366 0.0950 0.1757 0.2435 0.2422 0.1554 0.0485
0.0033 0.0317 0.0852 0.1674 0.2452 0.2549 0.1605 0.0514
30 0.0715 0.0628 0.0565 0.0510 0.0462 0.0420 0.6034
0.0769 0.0647 0.0568 0.0506 0.0438 0.0438 0.5989
w
9 0.5525 0.2233 0.1017 0.0500 0.0264 0.0149 0.0282
0.5848 0.2241 0.0905 0.0364 0.0224 0.0147 0.0236
30 0 0.6665 0.2493 0.0678 0.0140 0.0021 0.0002 0.0000
1 0 0.6626 0.2516 0.0687 0.0140 0.0026 0.0001 0
C
%0 0 0.0300 0.0791 0.1534 0.2292 0.2534 0.1863 0.0687
0 0.0312 0.0807 0.1512 0.2371 0.2467 0.1911 0.0617

488

R. M. WU AND YEN-BIN CHEN IBM J. RES. DEVELOP.




Realizing that
Prob [STk =N, QTk =0] =0,

We can write Eq. (3) in the matrix form

p- 7= P F’ (4)
where
F=[7i,-], Of(l.j)fN,
(1—R)Y7 fori=j0=j<N;
yijz{ )
0 otherwise.

Substituting Eq. (4) in Eq. (2) we obtain

p-X=p (5)
where,

X=T-P+(I-T) P,

p may now be determined from Eq. (5).
Note that although Eqs. (2) and (5) have the same
form, X may not be identified with the probability transi-
tion matrix P because the transformation matrix relating
a pair of vectors is not necessarily unique. However,
given vector p, the matrix Z may be obtained from Eq.
(4), which in turn relates P to P* and P through Eq. (1).
From the definition of W, the unconditional walking
time distribution is given by w = p - W, where
w={w};
w; = Prob [(T,,,— T,) = (1, +j1,)];

1= k— oo,

The derivation of matrix W is given in Appendix B.
The cycle time distribution,

¢ ={c}:
¢; = Prob [(Tyy; — T = Gt + NIW)IQT’C =11
0=j= N:k—>=x
may be obtained as follows. Let the vector
p ={p}for ISi=N,
where
p; = Prob [S; =10, = 1].
Therefore,
¢=p - C.
The matrix C' is derived in Appendix C. By Bayes’ rule,
v O=g)p, (A =Ep

PeTProb [0, =11~ 1-1/R”

In vector notation, this becomes

p1=(1—%>>1p- (1—12).
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Figure 2 Plot of a busy-period cycle of the entire loop system.

Derivation of system parameters

s Average message response time

The message response time T, is defined as the interval
of time from the arrival of a message at a queue until the
last character is served. It is shown below that the aver-
age message response time is given by

E[T, ] =NR{E[T,] +t}— 1/A, (6)

where T, = [(T,,, — T,) — t] is the walking time be-
tween successive service quanta. Even though Prob
[T, — =] > 0, the average walking time E[ 7 ] may still
be obtained in closed form as follows:

E[T,] =p, E[T,|S, =0] + (1—p)EIT,|S, >0].
k k

An examination of the recursive relationship in Appendix
B gives
e—z\')\tw

N
E[TW|STk =0]=1¢, [2 Jwe; Tt Wy
=1

Nty
1—e "™V

-
X (N 14+ )]

—NAt.
l—e "V

N—-i+1

1< .
EIT,08,, > 01 =1, [12=S (3 )]
* L=pr, & = !

Equation (6) may be derived with aid of Fig. 2. The
arrival of messages at a queue has an average cycle time
of E[T,] + 1/\; bence the rate of message arrival in
the system is

N

E[T,] + /N

We define the system as being busy when at least one
of the queues is non-empty, and a busy period as a con-
tiguous period of time that the system remains busy.
Then 1/p, is the average number of service quanta in
a busy period. Let T, be the inter-arrival time of busy
periods; then

E[T,] =p—1{ts+E[Tw]}.

Because the average number of messages served in a
busy period is 1/p R, the rate of message departure from
the system is 1/p,E[T,]R.
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IfLT [T | L1 »|4—Queue idle time —
it 1
- wait "_/ First quantum of service
—t .o _r._ni e
— Ty —
Arrival of | el ’ Message Arrival of
a message of departure next message
length L

Figure 3 Plot of a typical busy-period cycle of one of the
queues in the system.

In the steady state, the rate of arrival must equal the
rate of departure. From this, Eq. (6) follows.

® Average cycle time

Define 7, as the elapsed time between successive de-
partures from a given queue by the server. In accordance
with the definition in the second section, the cycle time is

Tcl = [TCIQTk= 1]

The distribution function ¢' of T,, has been derived in
the second section; hence, the average value is

E[T,]=Nt,+ (m- ¢z,

where the vector m= {1, 2, 3, -+, N}. The unconditional
average cycle time E{T,] may be simply obtained by
observing that the average number of queues served in
acycle is Nt /E[T,]. Therefore,

E[T] = Ni, {1 + E[’T ]}.

w
e Average response time conditioned on message length
For this loop model, the expected response time of a
message is a linearly increasing function of the length of
service demanded. From Fig. 3 it is clear that the aver-
age response time conditioned on message length L is

E[T,|L) =E[T,,,] +t+ (L— DE[T,],

where E[T,,,] is the mean recurrence time. That is,
E[T,,,] is the mean waiting time from the arrival of
the message until the server reaches that queue for the
first time. Since

E[T ] =E[E[T,JL]] =E[T
+(R—DE[T,],

wait] + ts

E[T,.,] may be obtained from this average relationship.
Consequently,

E(T, L} =E[T,] + (L—RE[T,].
Summary

In this paper, some performance aspects of a multi-
queue model under interactive input environments have
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been studied. Such a model describes many terminal-
oriented computer communication systems. In general,
it requires 2" states to completely specify an N-queue
system, which usually results in excessive computational
difficulty. However, it is shown in this paper that by
adopting a certain approximation, the number of required
states is drastically reduced to N and the accuracy of the
desired performance parameters is only slightly degraded.
Even though the expressions derived appear complex,
they may be easily programmed due to their recursive
structure.

Appendix A: State transition matrix

o Stationary transition probabilities
Forr=0and r=1:

P =[p;];

p;; = Prob LSy, =Sy, =i Qp = r]

= Prob [MTk= - i)ISTk =1, QTk= r]
X Prob [Q,, = 1]
+Prob (M, = (j—i+ 1)|S; =i, Qp =]
X Prob [Q, =0], 0=(ij)=N,

where M, is the number of message arrivals in the sys-

k
tem during the interval [ T,, T,,,]. It is clear that

Prob [QTIC+1= 1]=1-1/R and
Prob[Q, =01=1/R.

The probability Prob [MTk = m|ST)c =1, QTk =r] may be
obtained in recursive form as explained below.

® Recursive algorithm

Consider the instant when the server leaves the dth
empty queue during the time interval [T,, T,,,]. Let
Ai(q, e, d) be the probability of ¢ more messages arriving
in the system before T, ,,, given that S, =i, Q, =r, and
there are still ¢ empty queues ahead (see Fig. 1). Then it
is clear that

Al(m, N — i, 0)
. for 0= i= N and

Prob [MTk=m|STk=i, QTk=r]= 0=m=N-—i
except i = m = 0;

0 otherwise.

By enumerating the probabilities of all possible outcomes,
A:(q, e, d) may be represented by a recursive tree struc-
ture as shown in Fig. 4. Note that
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Level

Af(ged)
4]
{24

1 i— N-d-a-r
2 BAB (hh+q) By (ht0hTq) .
3 1 b0 ht0

h+g h+q
s B, (hh+0) o] (0g.ed)
5
6

Figure 4 Transition probability tree.

h=N-—-8, =N-—(i+m);
k+1
1 ifr=d=0,
o=
0 otherwise;

A =exp (—At,); B=-exp (—Az,);

B = (e -0

B,z(h, h + q) = Prob [g arrivals to the system during
t,+tl;

B,(h+s, h+q) =Prob [¢g — s arrivals to the system
during ¢,];

Bs(h, h + s) = Prob [s arrivals to the system during 1,];

(d + 1)th queue is empty at the
€ —

—————— = Prob | instant that the serverleavesthe |-
N—d—a—r
dth queue
(d + 1)th queue is empty at the instant |
h+s

— Prob | that the server arrives at the (d + 1)th |,
queue, given that g — s arrivals occur|
during the preceeding interval ¢,

(e— 1)(/, +q— e) o

h+q—l
()

h+q

¢t messages arrive ahead of |
the server, given that g — s
arrivals occur during the '
preceeding interval 7,
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—=
N-d-o—r
BA(h+s,h+q) . o e BA(h+q,h+q)
: h ht ht
- h s 15 e
By(hhs) o} (sq.ed) Bg(hh+q) &' (g.q.¢.d)

)Gy (0 @) )

A?(x,e—l*O,dJrl)

GO I D)
l | |

Al(se-1-1,d+1) Alse-lg+sd+1)  Aj(qe-ldt1)e?N

Aflg.ed).e=N

It should be observed that, in stating the probabilities
depicted at levels 1 and 5 of Fig. 4, it is implicitly assumed
that the probability of an empty queue receiving a mes-
sage is independent of the time elapsed since last ex-
amined by the server. However, comparisons with simu-
lation (Tables 1 and 2) indicate that the approximations
are entirely justified.
In summary, the tree structure may be written as

N—d—
Ajlg, e, d) =3 Bl li+ )
e— o
——-——N d_a_r{zﬁ(h-Fs h+q)
x[q B,(h, h+s)
h+q'?

(e— 1)(h+q—e>
h+s %3 t q—s—t

> (ra=])

qg—s

XA:(s,e—l—t,d-l—I)Hfore;éN.

For ¢ = N, the extreme right-hand branch in Fig. 4 is
infinitely recursive; hence, it can be seen that

1
1-B,(h+q, h+q)

A:(Qa N, d) = {A:(q’ N, d)}s from 0 to g—1
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Level
0 12 ,1/ (q.e.d)

(d*‘i)‘h queue”

r=N—-d—q

3 Phiglrd+) Ylg-rtsd+l) ;p}i(q—l,e,dﬂ)l

o~

BB(r,r) |pilj(q,r—1,d+1) BB(r,H-s)-'-BB(r+t,r+s)---lBB(r+s.r+s) wl-li(q,r+s—],d+1)

5 ylg1rdt)

Figure 5 Cycle-time probability tree.

Appendix B: Walking time matrix
As with the transition matrix, W may be decomposed
into

W=127 W+ (I1—2Z) - W', where
W =[w]],
wy;=Prob [(T,, — T,) = (4, + jt )8, =i, Qp =r].

It is easy to see that w: ; may also be obtained by tracing
the probability transition tree except under the following
circumstances:

1. Up to N — i message arrivals may occur during the
walking time (i.e., & = 0).

2. For d < j, take only the right-hand branches from
level 0O to level 1 and from level 2 to level 3.

3. For d= j, take only the left-hand branches from level 2
to level 3.

Thus, in analogy to A} (q, e, d), we define

q
r — N
(a6 d) =5 {2 o Bals )

s=0 9
<e— 1)( qg—e
L g—s—t
dl
2 (a1
q—s

XQ(s,e~1—1t,d+ 1)]}
ford <j, e # N,
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-1 ary

QUene=()

jvals in fw

it o, .
mls ar,I
. rA\e. Vals .
st ing

¥ L(ge-1.d+1)

Yh(aLrd+l) Yliglrttd+l) ¥l(glrsd+l)

- _ 1 r
Qij(q, N, d) = 1 _BQ(h +q’ h +q) lﬂij(q’ N, d)}sfmmotoq—l
ford < j,e=N;

r w_ _N—i—e—vr e—a
Q@ e D =N ==t N=j—a—r

X {sé (1 —2) B, (s, q)},

for d =j.
Then it is clear that
wh =0, (N—i, N—i0),

0<i=N,j<N—-i+1;

wh; =BV (N, N)wpy, J=ZN+1.

Appendix C: Cycle time matrix

To compute

cj;=Prob [(T,,;— T,) = (jt, + Nt,)|Sp, =i, Qp =11,
0= (i,j) = N,

consider the instant when the server leaves the dth queue
during the time interval [T,, T, ;]. Let ¥;,(q, e, d) be the
probability of serving g more queues before T, » given
that STk =i, QTk =1, j— g queues have been served since
T,, and there are still ¢ empty queues ahead. Then it is
clear that

¢y =¥, N—i,0).
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Following logic similar to that used in the development
of the probability transition tree, \I’;j(q, e, d) may be
represented by a recursive structure, as shown in Fig. S.
Note that this recursive process terminates due to the
following condition:

\I':j(q, e, N)=1.

Again, the approximation in level 1 of Fig. 4 is made here
and, as before, simulation data indicate that this approxi-
mation is justified.
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