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Round-Robin Scheduling of Services 

Abstract: A finite population.  multi-queue model is developed  for  a  loop  transmission system.  Approximate  expressions  for  the  state 
transition  matrix and  other  system variables are derived in recursive  forms. I t  is also shown that a number of useful system parameters, 
such as  average message response time. average  cycle time, and  average  response time  conditioned  on  message length. can be obtained. 
The analytical results have  been  validated by simulation. 

Introduction 
In  the  literature, most  system  models involving many 
queues with  a single server  assume  that  customers  are 
drawn from an infinite population, such  that arrival and 
service processes  are mutually independent. Published 
works  on this type of model include  Liebowitz [ I ]  ~ 

Kruskal [ 21. Cooper  and  Murray [ 31, Eisenberg [ 41. 
and Konheim and Meister [ 51. These  papers differ 
mainly in the  service disciplines and  the degree of gen- 
erality of the models assumed.  In  some physical systems, 
however, the arrival and service processes  are  not in- 
dependent.  For  instance, in an  interactive environment. 
arrivals at a queue  occur in batches and no new arrival 
occurs until the previous entry  has been  completely 
served. To our knowledge, only one  author  has  con- 
sidered  a  system model of this type:  Runnenberg [6] 
assumes  that  the  server patrols the  queues in cyclic 
order, completely  exhausting each before  advancing 
to  the next. In  contrast. we assume a  round-robin  schedul- 
ing  of services. That is, the  server provides  only one 
unit of service  for  each visit to a queue. 

The motivation that brought  this  problem to  our  at- 
tention is its application to loop  transmission systems. 
In this case  the  server is a processor  that  controls  the 
loop; the  batches  are  the messages, each of which con- 
sists of a number of characters  to be transmitted; the 
queues  are  the terminals attached  to  the loop.  We be- 
lieve that  the model described in this paper  can be useful 
in a  number of other applications also. 

The model consists of N queues  distributed  around a 
loop (Fig. 1 ) .  The  queues  are  served in cyclic order by 
a  traveling server.  The arrivals to  the  queues  occur  as 
messages, where the  number of characters in a  message 
varies  according to a geometric distribution with mean 
R .  The  server “walks”  from one  queue  to the next, 

486 servicing exactly one  character  for each visit to a queue. 

The service time per character, t,, and the walking time 
between  adjacent  queues. t,, are  both  assumed  to be 
constants.  At  each  queue  the time  interval  from the  com- 
pletion of service of one message to  the arrival of the 
next is exponentially distributed with  mean l / h .  

For this  model,  several recursive  expressions  have 
been  developed to  obtain  the  state transition matrix and 
other  important  system variables. Here,  the  state of the 
system is defined as  the total  number of non-empty queues 
in the system at  the  instants of termination of the service 
quanta.  The  choice of this definition is made in the in- 
terest of limiting the  number of possible states to the 
total  number of queues, N :  because a more  complete 
specification of the  system would require 2N possible 
states. Such a definition necessitates  an approximation 
in the derivation of the  recursive  expressions.  However, 
comparison with  simulation results  (Tables 1 and 2) 
shows  that this  approximation is quite acceptable. 

From  these  recursive  expressions, it is shown that a 
number of useful system  parameters,  such  as  average 
message response time, average  cycle time, and  average 
response time  conditioned on message  length. can be 
readily derived. 

Theory 
The solution for  the system parameters is based on three 
stationary  matrices: 

State transition: P = [ p i j ] ,  

Walking time: W = [ w i  j], and 

Cycle time: c’ = [Cij]. 

The  terms “walking  time” and “cycle  time” as used 
above  are  to be interpreted, respectively, as the  elapsed 
times between  successive  service  quanta  and  between 
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successive  departures from a non-empty queue.  The 
exact  dependence of the system parameters  on  these 
matrices is discussed in detail in the third  section. 

Let T ,  ( k  = 1 ,  2, .  . ., a; Tk- l  < T ,  < Tk+l) be succes- 
sive instants of termination of the service quanta, and 
STk be the  state of the system at  instant T,; then 

P i j  Prob [STk+ ,  = j l S ,  = i], 0 5  (i , j)  5 N ;  

~ , ~ = P r o b [ ( T , , , - T , ) = ( t , + j t , ) I S ~ , = i ] ,  

0 5 i 5  N ;  1 5 j ;  

cij =Prob [ ( T , , -  T,)  = ( j t s +  Nt , ) IS  'k = i ,  Q Tk = 11, 

0 5  ( i , j )  5 N; 

where QTk = 0 if the  server  departs  from  an  empty  queue 
at  instant T,,  and QT, = 1 otherwise. The  quantities N I  
t ,  and t ,  are  as defined in the  Introduction. 

The  state transition  probabilities p i j  may be  written  as 

1 

p i j  = Prob [ST,+l = j J S T ,  = i, Qr, = r]  
r=O 

X Prob [ QT, = rJ ST, = i] . 

Let 

Pr = [pz] ; pLj = Prob [ S = jl STk = i. QT, = r] ; 

5.. 

Tk+ 1 

Prob [ Q ,  = 01 ST,  = i] for i = j  

0 otherwise; 
= 

Z =  [5,,], 0 5  ( i? j )  5 N ;  

then, 

P = Z . P O + ( I - Z )  . P I ,  (1 )  

where I is the unit matrix. 
It is clear  that P is both  irreducible  and aperiodic; 

hence?  there  exists a unique  vector solution to  the  steady 
state equation: 

p = p . p ,  

where 

p = { p , } ;   p i  = Prob [ S T ,  = i ] ;  0 5 i 5  N ;  k + m. 

From  Eq. ( 1 )  the  steady  state  equation may be written  as 

p . [Z . PO + (I - Z) . P'] = p. (2)  

In Appendix  A we show that  the matrices Po and P' 
may be obtained in recursive  form. Still, vector p cannot 
be  obtained  directly from  Eq. (2)  because  the matrix 
Z is also a function of p, as  can  be  seen  from  the defini- 
tion of [ i j .  The functional dependence,  however, may be 
obtained  through the following relation: 

Prob [ ST, = i + 1 I QTk = 11 = Prob [ ST,  = iJ QTk = 03. 

t 
'k 

I+ 
Figure 1 Schematic diagram of a loop model. 

Because the message  lengths are geometrically  distri- 
buted with mean R ,  Prob [Q,, = 01 = 1 / R .  

Consequently, 

Prob [ S T ,  = i + 1 ,  Q ,  = 11 

Prob [ Q ,  = 11 

Prob [ Qrk = 03 
- - Prob [ S T ,  = i, e, = 01 

= ( R  - 1 )  Prob [ S T k  = i, Q,, - - 01. 

On  the  other  hand, 

Prob [S. = i + 1, Q ,  = 13 
/x 

+ Prob [ S T ,  = i + 1 ,  Qrk = 01 = pi+l. 

Combining these  equations yields the  recursive relation 

Prob [ S T ,  = i + 1 ,  QT,  = 01 

- - pi+l - ( R  - 1 )  Prob [ST, = i, Qrk = 01. 

Observe  that 

Prob [ST, = 0, Q ,  = 13 = 0; 

therefore, 

Prob [ ST, = 0, QTk = 01 = po. 

Then  the  recursive relation generates  the closed form 
solution  below: 

( 3 )  
487 
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Table 1 Comparison of theoretical results with simulation. The mean message  length R is 10 and in,/ t, is 0.05. The simulation  result 
is the second value in each pair. There  were 2000 messages  processed in each simulation run. 

Server  utilization = 30% Server  utilization = 90% 

N = 5  N = 7  N = 5  N = 7  
A t s  = 0.66% At ,  = 0.46% hi, = 5.05% At,  = 3.16% 

~~ .______ ~ _ _ _ _ _ _  
W T , I  0. IO46 0.08045 1.805 1.457 

XEIT,vl 0.0 1549 0.01083 0.005592 0.003497 
0.0 1575 0.01015 0.005555 0.003479 

AE[T,I 0.002353 0.002294 0.1266 0.1110 

W T , , I  0.0 I065 0.0082 19 0.1866 0.1511 

-. ~______..____ 

0.1032 0.08 18 1 1.749 1.505 

0.002336 0.002337  0.  I273 0.1 115 

0.0 106 1 0.008243 0.1844 0. I504 

Table 2 Comparison of theoretical  results with simulation;  the simulation result is the second  value in each pair. 

Server 
utilization 
(percent) N = 5  

30 0.0708 0.6605 0.2161 0.0460 0.0063 0.0004 
0.072 I 0.6.547 0.2 170 0.0472 0.0087 0 

0.0059 0.0694 0.1767 0.2932 0.3041 0. I SO6 
0.0068 0.0737 0.1790 0.2956 0.3018 0. I429 

P 

90 

30 
w 

90 
_ _ _ _ _ _ . . . ~ _  

30 

C' 

90 

0.0897 
0.0968 

0.5941 
0.6086 

0.0757 
0.0763 

0.2126 
0.2063 

0.7055 
0.7095 

0.0574 
0.0637 

~. 

0.0663 0.0584 
0.0634 0.0628 

0.0905 0.0424 
0.0821 0.041 3 

0.6394 
0.6289 

0.0548 
0.0549 

0.2339 0.0525 
0.2322 0.0500 

0.1509 0.2734 
0.1536 0.2784 

0.0076 0.0005 
0.0078 0.0003 

0.3248 0.  I935 
0.3259 0.1781 

Server 
utilization 
(percent) N = 7  

30 0.0670 0.6278 0.23 15 0.0601 0.01 18 0.00 17 0.0002 0.0000 
0.0646 0.6272 0.2301 0.06 15 0.0141 0.0022 0 0 

0.003 I 0.0366 0.0950 0.1757 0.2435 0.2422 0. I554 0.0485 
0.0033 0.03 I7 0.0852 0.1674 0.2452 0.2549 0.1605 0.05 14 

P 

90 
~~_____"~____ .________  ~ 

30 0.07 I5  0.0628 0.0565 0.0510 0.0462 0.0420 0.6034 
0.0769 0.0647 0.0568 0.0506 0.0438 0.0438 0.5989 

0.5525 0.2233 0.1017 0.0500  0.0264 0.0149 0.0282 
0.5848 0.2241 0.0905 0.0364 0.0224 0.0 I47 0.0236 

W 

90 
~" ____" 

30 0 0.6665 0.2493 0.0678 0.0140 0.002 1 0.0002 0.0000 
0 0.6626 0.25 16 0.0687 0.0140 0.0026 0.000 1 0 

0 0.0300 0.079 1 0.1534 0.2292 0.2534 0.1863 0.0687 
0 0.03 I 2  0.0807 0.1512 0.2371 0.2467 0.191 1 0.0617 

C' 

90 
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Realizing that 

Prob [ST, = N .  QTk = 01 = 0, 

We can write Eq. ( 3 )  in the matrix  form 

p . z = p . r ,  (4) 

where 

r = [rij1 0 5  ( i : j )  5 N ;  
( 1  - R)j- i  f o r i Z j ; O Z j <  N ;  

y . .  = 
" io otherwise. 

Substituting Eq. (4) in Eq. ( 2 )  we obtain 

p ' x = p  ( 5 )  

where, 

x = r . p O + ( ~ - r )  . P I ;  

p may now  be determined from Eq. ( 5 ) .  
Note  that although Eqs. (2)  and (5)  have  the  same 

form. X may not be identified with the probability transi- 
tion matrix P because the  transformation  matrix relating 
a pair of vectors is not  necessarily  unique. However, 
given vector p, the matrix Z may be  obtained from Eq. 
(4) ~ which in turn  relates P to Po and P' through Eq. ( I ) .  

From  the definition of W, the unconditional walking 
time  distribution is given by w = p . W, where 

w = {wj}: 

w j = P r o b [ ( T , + , - T , ) = ( t s + j t , , ) ] ;  I Z , j ; X + ~ .  

The  derivation of matrix W is given in Appendix B. 
The  cycle time distribution, 

c1 = {cj'}; 

c; = Prob [ (T , ,  - T , )  = ( j t s  + Nt,)/Q,, = I ] ;  

0 5 j Z  N : k + m ,  

may be obtained as follows. Let  the  vector 

p l =  {p:}  for I I i 4 N ,  

where 

p: = Prob [ ST,  = i( QTk = I ] .  

Therefore, 
1 1  c = p . c'. 

The matrix C' is derived in Appendix C. By Bayes' rule, 

In vector notation.  this  becomes 

p f =  I -I - I  p .  ( I - Z ) .  
R )  

Start 
of next 
busy 
period 

Figure 2 Plot of a busy-period  cycle of the  entire loop system. 

Derivation of system parameters 

A c w a g e  message response time 

The message response time T,  is defined as  the interval 
of time from the arrival of a  message at a queue until the 
last character is served.  It is shown  below that  the  aver- 
age  message response time is given by 

E[ T,] = N R {  E[ T,,] + t,} - 1 / A .  (6) 

where T ,  = [ ( T,+l - T,) - ts]  is the walking time be- 
tween successive service quanta.  Even though Prob 
[ T ,  "-z m]  > 0. the  average walking time E[ T,] may still 
be obtained in closed form as follows: 

Equation (6) may be  derived with aid of Fig. 2 .  The 
arrival of messages at a queue  has  an  average cycle time 
of E[ T,] + l / h ;  hence  the  rate of message  arrival in 
the system is 

N 
E[T,] + l / h '  

We define the  system as being busy when at least one 
of the  queues is non-empty,  and  a busy period as a con- 
tiguous  period of time that  the system  remains busy. 
Then l / p o  is the  average  number of service  quanta in 
a busy period. Let T ,  be the inter-arrival  time of busy 
periods; then 

Because  the average  number of messages  served in a 
busy period is 1 / p , R ,  the  rate of message departure from 
the system is 1 /p,E[ T,] R .  489 
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1- I 

t f t 
Arrival of +I Tc' It Message Arrival of 
a message of 
length L 

departure next message 

Figure 3 Plot of a typical  busy-period  cycle of one of the 
queues in the  system. 

In the  steady  state,  the  rate of arrival  must  equal the 
rate of departure.  From this, Eq. (6)  follows. 

Average cycle time 
Define T, as  the elapsed  time  between successive de- 
partures from a given queue by the  server.  In  accordance 
with the definition in the second section,  the cycle  time is 

T , , =  [T,IQT,= 1 1 .  

The distribution  function c1 of T,,  has been derived in 
the second section;  hence,  the  average value is 

E[T,,l = Nt ,  + (m . cllt,. 

where  the  vector m = { 1, 2 ,  3 , .  . ., N}. The unconditional 
average  cycle time E[T,] may be simply obtained by 
observing that  the  average number of queues served in 
a cycle is Nt,/ E[ T,] . Therefore, 

Average response  time conditioned on  message length 
For this  loop  model, the  expected  response time of a 
message is a linearly increasing  function of the length of 
service demanded.  From Fig. 3 it is clear that  the  aver- 
age  response time  conditioned on message length L is 

E[ TmlLl = E[ Twait1 + t, + ( L  - 1) E[ T,,I1 

where E[T,,,,] is  the  mean  recurrence time. That  is, 
E[ Twait] is the mean waiting time  from  the  arrival of 
the message until the  server  reaches  that  queue  for  the 
first time. Since 

E[ Tml = E[ E[ T,lLl I = E[ T,,,] + t ,  
+ ( R  - 1)E[T,,l, 

E[ T,,,,] may be  obtained  from  this average relationship. 
Consequently, 

E[ TmJLI = E[ TmI + ( L  - R )  E[ Tell. 

Summary 
In this paper, some  performance aspects of a multi- 
queue model under interactive  input environments  have 490 
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been studied.  Such a model describes many terminal- 
oriented computer communication systems.  In general, 
it  requires 2N states  to completely specify an  N-queue 
system, which usually results in excessive  computational 
difficulty. However, it is shown in this paper  that by 
adopting  a certain approximation, the number of required 
states  is drastically  reduced to N and the  accuracy of the 
desired  performance parameters  is only slightly degraded. 
Even though the  expressions derived appear complex, 
they may be  easily  programmed due  to their recursive 
structure. 

Appendix A: State transition matrix 

Stationary trunsition probabilities 
For Y =  0 and r= 1 :  

P' = [Prj1 ; 

p t  = Prob [ S  =jlS,, = i, Q,, = r ]  
T k + l  

= Prob [ MTk = ( j  - i)  I ST, = i, QTk = r] 

X Prob [QT,+, = 11 

+ P r o b [ M T k = ( j - i + l ) l S T , = i , Q T k = r ]  

X Prob [e,+, = 01, 0 5 ( i ,  j )  5 N, 

where M is the  number of message arrivals in the sys- 
tem during the interval [ T,, Tk+,]. It  is  clear  that 

Prob [eTk+, = 11 = 1 - 1 / R  and 

Prob [ QTk+, = 01 = 1 / R .  

The probability Prob [ MTk = ml STk = i, Q,, = r] may be 
obtained in recursive form as explained  below. 

Recursive  algorithm 
Consider  the  instant when the server  leaves  the dth 
empty  queue during the time  interval [ T,, T,,,]. Let 
hr(q,  e ,   d)  be the probability of q more messages  arriving 
in the system  before T,+l, given that ST,  = i, Q ,  = r,  and 
there  are still e empty queues  ahead  (see Fig. I ) .  Then it 
is clear  that 

Tk 

1 Rr(m, N - i, 0) 

for 0 5  i5 N and 

Prob [M,, = mJS,, = i ,  Q,, = r ]  = 0 5 m 5 N - i 

except i = m = 0; 

0 otherwise. 

By enumerating the probabilities of all possible outcomes, 
hr(q, e,  d) may be represented by a recursive  tree  struc- 
ture as shown in Fig. 4. Note  that 
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Level 

0 

1 

2 

3 

4 

I 

~6 

5 

Figure 4 Transition probability  tree. 

h = N - S   = N - ( ( i + m ) ;  
T k +  1 

f f = {  
1 i f r = d = O ,  

0 otherwise; 

A = exp (-At,,,): B = exp ( -At , ) :  

It should be observed  that, in stating the probabilities 
depicted  at levels 1 and 5 of Fig. 4, it is implicitly assumed 
that  the probability of an  empty  queue receiving a mes- 
sage is independent of the time  elapsed  since  last  ex- 
amined by the  server.  However,  comparisons with simu- 
lation (Tables 1 and 2) indicate  that the  approximations 
are entirely  justified. 

In  summary,  the  tree  structure may be written  as 

P,,(h, h + 4)  = Prob [ 4 arrivals to  the  system during N - d - e - r  
f, + t,l ; A:(4, e ,   d l  = N - d - a - r  P A B ( k  h + Y) 

P,(h + s, h + 4) = Prob [ q  - s arrivals to  the system 
during f w ]  ; 

PB(h,  h + s) = Prob [ s arrivals to  the system  during fS] ; 

n d  + 1) th aueue is emDtY at the? 
I .  

e - a  
N - d - a - r  

. _  
= Prob instant that the server  leaves  the : 

L t h  queue 1 

Prob [ I. For = N ,  the  extreme right-hand branch in Fig. 4 is 
infinitely recursive;  hence, it can be seen  that 

Ar(q, N ,  4 = 
1 

t messages arrive  ahead of 
the  server, given that q - s 
arrivals occur during the 
preceeding  interval t, 1 - p,(h + q, h + 4) 491 
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Level 

0 

1 

2 

1 - - e  
N-d-I 

4 

5 

Figure 5 Cycle-time probability tree. 

Appendix B: Walking time matrix 
As with the transition matrix, W may be decomposed 
into 

W = Z .  W o +  ( I - Z )  . W', where 

w' = [ W ; J ,  

w : ~  = Prob [ ( Tk+l - T,)  = ( t ,  + j tw)  1 STk = i, QTk = r] . 
It is easy to  see  that wLj may also be  obtained by tracing 
the probability transition tree  except  under  the following 
circumstances: 

1. Up to N - i message  arrivals may occur during the 

2 .  For d < j ,  take only the right-hand branches from 

3. Fo rd=  j ,  take only the left-hand branches from level 2 

walking time (i.e., h = 0 ) .  

level 0 to level 1 and from level 2 to level 3. 

to level 3. 

Thus, in analogy to A: (4,  e, d) ,   we define 

" s - t  

x O C ( s , e -  l - t t , d +  1 )  

f o r d < j , e # N ;  

f o r d <  j , e = N ;  

for d = j .  

Then it is clear  that 

wLj = fh;j-l(N - i, N - i, 0 ) ,  

O < i l N , j < N - i + l ;  

A ( N ,  N)wLN, j ? N + l .  W r ,  = 

Appendix C: Cycle time matrix 
To compute 

cij = Prob [ ( T,+j - T,) = ( j t ,  + Nt,) IS = i, QTk = 1 1 ,  

0 5 (i, j )  I N ,  

consider  the  instant when the  server  leaves  the  dth  queue 
during the time  interval [ T,, Tk+ j ] .  Let Y r i j (  4, e,  d) be the 
probability of serving 4 more queues before T k + j ,  given 
that S = i, Q = 1 ,  j - 4 queues  have been served since 
T,, and  there  are still e empty  queues  ahead.  Then it is 
clear  that 

cfj  = Tij(j ,  N - i, 0 ) .  

' k  

' k  ' k  
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Following logic similar to  that used in the  development 
of the probability  transition tree, T;j(q, e, d)  may be 
represented by a recursive  structure, as shown in Fig. 5.  
Note  that this recursive  process  terminates  due  to  the 
following condition: 

vij(q, e, N )  = I .  

Again, the approximation in level 1 of Fig. 4 is made  here 
and,  as before,  simulation data indicate that this  approxi- 
mation is justified. 
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