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Abstract: A queuing model with two  sequential servers is developed  to  analyze  performance  in  computer and communication systems. 
In one case  the CPU is the first server and the  terminal and its associated  communications equipment are the second server. In a second 
case the CPU and the channel are the first server and the auxiliary storage device is the second server. We study the queuing behavior 
of the sequential  server  systems  with  Poisson  arrivals,  general  service  time  distributions, and several  service  disciplines,  including bulk 
arrivals, message priorities, and the input and output queues. The stationary distributions of the queue lengths  and waiting times are 
determined by using an imbedded  Markov  chain  analysis.  Several  examples are given  to illustrate the  applications of these  models to 
practical  problems. 

Introduction 
Networks of queues with blocking occur  often in com- 
puter and communication systems  because  subsystems 
with  different speeds  are used to accomplish  a common 
task. For example, in an information  retrieval system 
data  records  are  transferred  between auxiliary storage 
devices  and main memory.  Queues may be formed when 
the  CPU,  the auxiliary storage  devices or the  channels 
are busy. Another  example is in a  communication system, 
where messages are  transmitted from one  station to an- 
other. If either of the  stations is busy,  the transmission is 
blocked, and a queue of messages may be  formed at  the 
station. 

The simplest  queuing  network consists of two servers 
in sequence.  If there is a  large buffer between them (i.e., 
a large queue may be allowed for the second server), it is 
possible to  analyze this system by considering the  two 
servers as separate single-server systems.  The  output 
distribution of the first server  becomes  the input  distribu- 
tion of the  second  server.  In particular, if the  input  to  the 
first server  has a Poisson  distribution and  the  service time 
is exponential,  the  output  at  the first server is also Poisson 
[ I ] .  In this case  the second queue  can be easily ana- 
lyzed. If the service  time at  the first server is not  ex- 
ponential, the output distribution can be determined by 
using contour integration [2]. In this case,  however,  the 
analysis of the  second  stage is complicated because  the 
output from the first server is not  statistically  indepen- 
dent. 

The  total time for a call to go through the  two  servers 
is the sum of the queuing  times at  these  servers.  More 
realistic  models are  characterized by a limitation on  the 
queue  size  that is allowed between  the  servers.  Hunt [ 31 
has provided some useful results  for this case  when  the 
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A special case of the limited queue  system is that in 
which only one call can  be processed at the  second server, 
and  no waiting line is allowed between  the stages. This 
queuing system  can be  reduced to a special  single-server 
system.  It has  been  investigated by Suzuki [4], Avi- 
Itzhak  and  Yadin [ 51, Prabhu [ 61, and  Chang [ 71. For 
an  input function with Poisson  distribution, Suzuki 
studied a Markov chain  imbedded in the queuing process, 
Avi-Itzhak  and  Yadin  investigated the  stationary waiting 
time and  queue length distribution, and  Prabhu studied 
the  transient  behavior of this type of system.  Chang 
studied the  two  servers in sequence  for  an  input with 
Erlangian  distribution. 

In this paper we investigate the application of a queu- 
ing model to  the analysis of computer  and communication 
systems  and  develop  some additional  models for bulk 
arrivals and priority services. We assume a  Poisson  dis- 
tributed input,  although the model can be extended  to 
cover  an Erlangian input if the need  arises. The arriving 
calls are  served first at  server 1 and then at  server 2 .  
When a call completes  its  service  at  server 1 ,  it  either 
goes to  server 2, if it is free, or stays  at  server 1 and 
blocks further  service  there until the  second  server be- 
comes  free.  Each call spends  some time  being served  at 
the first server  and  then possibly some time waiting for 
the  second  server  to become free (blocking time).  The 
combined time that  the call stays  at  the first server  can 
be interpreted  as  its  actual service  time there, so that  the 
queue at server 1 behaves like a single-server queue with 
a  general service time distribution and  an input with 
Poisson  distribution. The analysis is complicated by the 
fact  that a call which arrives when the  queue is empty 
may experience a lesser  degree of blocking, because  the 
second  server may have  become  free  at  the time of its 
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arrival. An analysis of the single-server system with two 
service time  distributions [SI is useful in treating the 
sequential-server  problem  for  this case. Numerical re- 
sults  are  presented in a later  section. 

Service  time distributions 
Let calls n (n = 1, 2, .  . .) arrive at  the first server with a 
Poisson  distribution. If the first server is busy or blocked, 
the arriving call joins a queue and  waits there  for  the 
first server.  Let  the  service times in both servers be iden- 
tically distributed,  independent, random  variables with 
probability  distributions C ( x )  and D ( x ) ,  respectively. 
Let x,")  and x,r2) be the  service times of the nth call in 
the  servers.  Let x ,  be the length of time that  the  nth call 
spends in the first server.  This includes the  actual service 
time at  the first server and the waiting time, if any,  for 
the second server  to  become  free.  Suppose  that  there is a 
queue when  the  nth call arrives. Obviously, x ,  = max 
{x,"',  x::} and 

H ( x )  = P { x ,  5 x }  = P {x,(1) 5 x ,  x;:l 5 x }  

= C ( x )  D ( x ) .  ( 1 )  

Let  the Laplace-Stieltjes  transform be 

+(s) = J% e-'" d H ( x )  (2)  

and the nth  moment  be 

a, = I xn d H ( x )  = (-l)n$(n)(0). ( 3 )  

In particular, let the first moment  be a,  i.e., a = aI .  
Suppose  that when the ( n  - 1 ) th call enters  the second 

server  the  queue is empty.  The first server is idle until 
the nth call arrives.  Let t be the  time between  the  instant 
that  the ( n  - 1 ) th call enters the second  server and  the 
instant  that  the nth call arrives  at  the first server. In this 
case,  the length of time that  the nth call spends in the 
first server is 

x ,  = max [ x ,  , x,-, - t ] .  (4) 

Define the probability distribution of x ,  as 

(1) ( 2 )  

H ( x ,  t )  = P { x n ( l ,  5 x ,  x;!1 - t I x ]  

= C ( x )  D ( x  + t ) .  ( 5 )  

Thus,  the combined  time of the  nth call, which arrives 
when the  queue is empty,  depends on the length of the 
idle time t of the first server.  The probability  density 
function of t is given by Ae-"; therefore we obtain the 
Laplace-Stieltjes  transform of the combined  time  dis- 
tribution as follows: 

$ (s) = 17 Ae-"dt 6 e-"" dH ( x ,  t ) ,  (6 )  
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and the moments are P,  = ("1 ) "  qb'"'(0). In particular, 
let the first moment be /3, i.e., P = p,. 

More specifically, let the service  time distributions 
be exponential: 

C ( x )  = 1 - C P x ,  and D ( x )  = I - e""x. ( 7 )  

In this case we have 

and 

(#)(s) =-+---- P A u  A v + p  
s + p  A + v s + v  A + v s + v + p L '  ( 9 )  

The first and  second moments are 

a =  1 / p +  1 I v -  l / ( p + v ) ;  (10) 

a2 = 2 /p2  + 2/v2 - 2 / ( p  + V I 2 ;  (11)  

P =  l / p +  [ A / ( A +  v ) l / v  

- [ A / ( A +  v)]/(P+ v);  (12) 

P2 = 2/$ + 2A/ [ ( A  + v);'] 
- 2 A / [ ( A + v ) ( p + v ) 2 ] .  (13 )  

Exponential service time distributions are applicable in 
communication  system analysis; some  voice  and data 
transmissions are known to  have exponential holding 
times.  Exponential  service  time assumptions  are  also 
applicable in the CPU processing  time  analysis.  Service 
times  for other  devices,  however, in particular those with 
mechanical operation,  are  better  approximated by an 
Erlang  distribution. Suppose  that  the second server  has 
an Erlang-2 distribution, i.e., 

D ( x )  = 1 - e-"x - vxe-"' (14) 

and  the first server has the  same exponential  distribution. 

Av w + v  
(16) 
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The first and  second  moments  are 

2Au - 
(A  + v ) ' ( p  + v)' ' 

Other  types of service time  distribution can be de- 
veloped similarly. Once  we obtain $(s) and + ( s )  and 
their  moments,  we  can  use  the  formulas  developed in 
[4]  and [SI to obtain  useful  information, such  as  the 
mean waiting and  queuing  times. For  completeness of 
this paper,  and  for  the  development of additional  models, 
we include some of the earlier results in the  Appendix. 
Other useful formulas are given  below. The  queue-size 
generating  function U ( z )  is given by Eq.  (A3) in the 
Appendix as 

where P, is  the probability that a call arrives  and finds 
the first server  empty; Po is given by Eq. (AS) as 

P, = 
1 - ha 

1 - ha + A@ 

Let  the queuing  time in the sequential server  system be 
defined as  the time that a call spends in the first server. 
This time consists of the call's waiting time, service time, 
and blocking time. Let O(s)  be  the Laplace-Stieltjes 
transform of the queuing  time  distribution. It is found 
from Eq.  (A6)  as 

O ( S )  = U (  1 - s/A) 

The mean queuing  time Y is 

Let C and C, be the first and  second moments of C ( x )  
and D and D, be the first and second moments of D ( x ) .  
The mean  elapsed  time T ,  which is the total average time 
that a call spends in the whole system, is simply T = Y + 
D.  The mean queue length at  the first server  is L = AY. 

Bulk arrival 
In a computer  system, a service call to a device often 
involves several  operations  for  that  device  to perform. 
For  example, a deck of cards is to be read by a card 
reader  that  reads  one card at a time. The  printer is an- 
other example.  When a job  requires printed output,  the 
output may consist of many  lines, or pages, but  the print- 
er  can print  only one line at a time. In queuing theory this 
is known as bulk arrival. The  same situation also  occurs 
in communication systems. A  message from a remote 
station is often  segmented for  transmission,  and  the seg- 
ments are  sent  and received one  at a time. This  reduces 
the buffering requirement at both  ends. 

Single-server systems with bulk arrival and service 
have been  investigated by Bailey [ 8 ] ,  Downton [ 9 ] ,  
Miller [ IO], and  Foster [ 1 I ] .  In what  follows, we pre- 
sent a  solution of a sequential-server system with bulk 
arrival. 

Let m, be  the probability that  an arrival consists of 
n calls. Let M ( z )  be the generating  function of m,; i.e., 

~ ( z )  = 2 rnnzn, (25 )  

where K is the maximum size of the batch. Let M I  and 
M ,  be the first and second moments of the batch arrival 
sizes. The generating  function of the  queue size  distribu- 
tion can be  obtained by following the  approach of Miller 
[ 101. The  queue size at  the  instant of departure  can be 
analyzed by means of an imbedded Markov chain. 

The queue-size  generating  function satisfies the fol- 
lowing relation: 

K 

,=I  

U ( z )  = [ U ( z )  - P,I${A [ 1 - M ( z ) }  2-l 

N 
+ Po mnzn-'+{A [ 1 - M ( z ) l } ,  (26) 

which is obtained since  an arrival consists of n calls. 
Each new arrival increases  the  queue size by n. When  a 
new  arrival finds that  the  system is empty,  one of its n 
calls enters  the first server  for service, and  the remain- 
ing n - 1 calls join  the  queue.  The effect of bulk arrival 
can  be  included in the formulation by replacing z with 
the generating  function of M ( z )  in + [ A (  1 - z)  ] and 
+[A(  1 - z ) ]  of Eq. (21) (see Miller [ I O ] ) .  Solving for 
U ( z ) ,  we obtain 

U ( z )  = 

n= 1 

P , ( M ( z ) $ { A [ l  - M ( z ) l )  -${A[ 1 - M ( z ) l } )  
z - ${A[ 1 - M ( z ) I  } 
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Since by definition U (  1) = 1 ,  we find that 

P" = 
1 - M,Aa 

M , ( 1  - h a +  A B )  ' 
The queuing  time  distribution can be  obtained by 

viewing the arriving batch  as  one  composite entity.  We 
define two new Laplace-Stieltjes transforms, R ( s )  and 
Q (  s) , as follows: 

R ( s )  = C. m,[+(s)l"  (2% 

and 

Q ( s )  = mn4(s )  [+(s)In-'. (30) 

The Laplace-Stieltjes  transform of the queuing  time 
distribution  can be obtained by substituting R ( s )  and 
Q ( s )  for +(s) and 4 ( s )  in Eq. (23) :  

K 

n= 1 

K 

n=1 

Note  that  the queuing-time  formula Eq. ( 3  1 ) is calculated 
on a  message  basis, whereas  the queue-size  generating 
function Eq. (27)  is based on message  segments, or 
individual calls. The queuing  time thus  computed is the 
time for  the whole  message to  pass  the first server, in- 
cluding the waiting time, the blocking time, and  the 
service time at  the first server. Since  the second server 
and the first server  can  overlap  somewhat, i.e., the first 
server handles the nth  segment of a  message while the 
second server handles the ( n  - 1) th segment of the  same 
message, the elapsed  time T for  the whole  message is 
simply T = (-1)8'(0) + D. 

Priority queues 
To ease  the congestion at a computer  center,  the  output 
messages may be put  on a higher priority in the  use of 
system resources than the input  messages to be polled 
from remote terminals. Transactions  to be  processed 
within a computer may be classified into different  priority 
queues. A READ request  to a  disk  unit may also be put 
on a higher priority queue than  a WRITE request  or vice 
versa. i n  this section, priority queues  for sequential- 
server  systems  are described. Stationary queuing  time 
distributions are obtained. 

For a single-server  system  with  priorities, Cobham 
obtained the first moment of the waiting time  distribution 
[ 121. Miller [ 131 and Gaver [ 141 characterized  the 
stationary  distributions of the  queue sizes and waiting 
times.  Welch [ 151 and Jaiswal [ 161 studied the  transient 
solutions of priority queues.  Takacs [ 171 generalized 
the  stationary solutions of priority queues.  The  author 

Figure 1 Sequential  servers with priorities. 

has generalized the  stationary solutions of preemptive 
priority queues including other  service disciplines, such 
as  the  preemptive-repeat  service [ 181. 

In  the sequential-server model the  second  server 
represents a mechanical device at which the  service  is 
not interrupted until completion.  Hence, we consider 
the non-preemptive priority queues. A higher-priority call 
waits and  obtains service  immediately after  the com- 
pletion of the  current lower-priority  service  (including 
blocking time if any)  at  the first server.  Calls with dif- 
ferent priorities arrive  at a facility which consists of two 
sequential servers.  Let  there  be N classes of priorities, 
1, 2, . . ., N .  An arriving call with  a  smaller  number in- 
dicates a  higher priority. The calls are  served in order 
of priority and, within each  class, in order of arrival. I t  
is  also often assumed  that  the  input is a Poisson  process 
with parameter A, for k-type priority calls, where k = 
1 ,  2 , .  . ., N .  Let  the  service  times  for k-type priority calls 
at the first server be  mutually independent, positive, 
random variables  with a distribution  function C,(x). 
The service  time  distribution at  the  second  server  is  as- 
sumed  to be the  same  for all types of calls, D ( x ) .  This 
assumption makes  the  analysis easier. If D (x) is different, 
we have  to  determine  the  joint probability  function of the 
queue sizes for all N priority classes. This  requires  the so- 
lution of a multi-dimensional generating  function. The 
model investigated in this paper is illustrated in Fig. 1. 

Preparatory  to discussing the priority  queuing systems, 
some additional concepts must be defined. Let  the sum 
of the  Poisson-process  parameters  be  expressed a 
follows: 

k 

Ak = A,; in particular, let A = A,v, 
i = l  

Each input is a Poisson  process of parameter A,; there- 
fore  the sum A, is also a Poisson  process. Define the 
Laplace-Stieltjes  transforms of the  service time dis- 
tributions  as 479i 
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f o r k =  1, 2;.., N; 

(33 1 For a  stationary process, [,+,(k) and [,(k) have  the 
same probability distribution and  are related by 

[E,(k) - 1 + T,+~ ifk,(k) > 0 ;  

+,(SI =I dt [ e-sx d[C,(x) n ( x +  t)] (34) 

f o r k =  1, 2 ; . . ,  N; 

T , + l ( i )  if [, (k) = 0 and 
5,’ (k) = 0 and  the 
next call is  of priority 
class equal to i; 

5,+,(k) =< 

and  the nth moments  as 

(” = (-l)n$,‘n)(0) for k = 1, 2;. ., N ;  (35) 

bk (,’= ( - l ) n ~ k ( n J ( 0 )   f o r k =  1 ,  2;.., N. (36) 

Also let the Laplace-Stieltjes transforms of the weighted 
service-time  distributions be 

k 

= x (A{/A,) $ i ( ’ )  (37) 
i= 1 

and 

Qk(s) = 2 X i  + i ( ~ )  / (A - A k ) .  (38) 

Define the  nth  moments of these weighted service time 
distributions as 

k 

i=l 

hk(n) = ( - l ) V , ( y o )  

and 

= (-l)n@,(nyo), (39) 

and, in particular, let 

a, = a, , b, = b,‘”, hk = h,‘” and gk = g ,  . (1) (1 I 

In  the previously defined non-preemptive  service 
discipline, the  service time of a  caller of any priority 
class is not  intenuptable.  Consequently,  the  presence 
of a low-priority call can affect the waiting time of a 
high-priority call. For  example, if a low-priority call is 
being served  when a call of a high-priority class  arrives, 
the high-priority call must  wait for  the completion of the 
lower-priority at the first server  before service begins. 
Calls of low priority receive immediate service  when  no 
call of higher  priority is waiting. 

Let p ,  be the probability that  an arriving  call is of 
priority class k. Clearly, pk  = h , / A .  We now find the 
generating  function and  the queuing time distribution in 
terms of the Laplace-Stieltjes  transform as follows. 

Consider a queuing process in  which  callers are clas- 
sified into  two  queues.  Let [,(k) be the  queue length 
of calls having  priority classes  less  than  or  equal  to k, 
and let 6,‘ (k)  be  the  queue length of priority classes 
greater  than k at the  transition time of the  nth call that 
just  enters  into  the  second  server.  The  nth call can be 
of any priority  class.  We  now  formulate the generating 

480 function for  t,(k). 

if t ,(k) = 0 
but  [,‘(k) > 0. (40) 

Here, qn+l is the  number of new  calls of priority classes 
less  than or equal to’k if the  (n + 1 )  th  service is of pri- 
ority  class  less  than  or  equal  to k. The  parameter qn+l ( i )  
is the  number of new arrivals of priority classes  less 
than or equal to k if the (n + 1)th  service is of priority 
class i. The  parameter qi+l is the  number of new  cells of 
priority classes  less  than  or  equal  to k if the (n + 1)th 
service is of priority class  greater than k. The  reason we 
consider  the  cases separately is that  the (n + 1)th ser- 
vice time is different in each  case. 

Let U ,  ( z )  be the generating  function of t ,(k) so that 

m 

U k ( z )  = x P{t,(k) = j >  2’. (41) 
7t=O 

Thus,  the probability that [,(k) is zero is expressed  as 
follows: 

P{t,(k) = 01 = U,(O). (42) 

Also, the probability that [,(N) is  zero indicates that 
the  queues  are all empty, so we  have 

P{ .$ , (N)  = 0 )  = C r N ( O )  = Po. (43) 

There  are  three mutually exclusive  events considered 
here. 

1 .  5, ( k )  > 0 and  the  next arrival is of priority class  less 
than  or equal to k. This  event  is  represented by the 
generating  function [ U ,  ( z )  - U ,  ( 0 )  ] / z .  

2. [,(k) = 0 and 5,’ (k) = 0 and  the next service is of 
priority class i. This  even  occurs with probability 
( A i / h )  Po,  where Po is  the probability that  the first 
server is free. 

3. [,(k) = 0 and [,’ (k)  > 0 and  the  next  service  is of 
priority class  greater than k. This  event  occurs with a 
probability U,(O) - ( A i / A ) P o .  

Forming the generating functions of [,+, (k)  and [,(k) , 
and using the generating functions  for  the new  arriving 
calls as given in the  Appendix [Eq. (A2) and  its equiva- 
lent],  we  have 
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U,(z )  = z - l  EU,(z) - Uk(0)W,[Ak(1 -211 
+ (Ai/A)P,+i[A,(I - 211 

i = l  

+ [U,(Oi - E (Ai/A)P,] @,[Ak( I - z , l .  (44) 
i = l  

This generating  function  provides the  queue lengths of 
priority classes  less than or equal to k at  every transition 
(departing  instant from the first server), including the 
departure of those calls of priority classes  greater than 
k .  We  formulate the queue-size  generating  function ob- 
served by a departing call of priority  class  less  than or 
equal to k by Takacs method [ 171. The ( n  + 1 jth call 
is of priority class less  than or equal to k if the service- 
time  distribution is of priority class  less than or equal 
to k .  Hence, the partial generating  function 

[U,(z )  - Uk(0)lq,rAk(l  - z ) l  z-' 
IC 

+ (hi /A)Po+i[A,( l  -z)1 (45) 
i = l  

represents a  departing call of priority class less  than or 
equal to k .  Let G,* ( z )  be this partial generating  func- 
tion, Le., 

G,*(z)  = z - l  [U,(z )  - U,(0)1 qkrA,(l -211 
k 

+ ( A i / A )  P ,+i [Ak(  1 - z)]  (46) 
i = l  

and 

k 

G,*( 1 )  = 1 - U,(O) + ( A i / A )  Po. (47) 
i = l  

The generating  function for  the  queue lengths of priority 
classes less  than or equal to k ,  observed by a  departing 
caller of priority class  less than or equal to k ,  is 

G,(z) = G,*(z)/G,*(I). (48) 

Combining  Eqs. (44) to (48) we obtain 

G,(z) = z ( A i / A )  Po+i[A, (  1 - 211 r i = l  

- U,(O) *,[A,(1-2)1] 

+ [U,(O) -f'oI@,[A,(l - z ) I ~ , [ A , ( ~  -211 

+ (Ai/A) P ,  +i[A,(l - 211 v,[A,(l - 2)) 

N 

i = k + l  

+G,*(l){~- '€' , [A,(I  -z)]}. (49) 

For k = N ,  Eq. (44) reduces  to Eq. (48) and we have 

Since U,v( 1) = I ,  applying  L'Hospital's  rule, we have 
Y 

1 - Aiai 
i= 1 

P o  = UJO)  = ,Y ,v . ( 5 1 )  
1 - 2 h p i  + 2 A,bi 

i = l   i =  1 

Because G,( 1 )  = 1, from  Eq. (49) we have 

U,(O) = 11 - Aiai - (A,/A) Aibi P ,  
i = l   i = l  

+ [A,/  (A - A,)] 5 Aiai P o ]  

t { l  - Aiai + [A,/ ( A  - A,)] 2 Aiai]. 

i = k + l  

i = l  i = k + l  

( 5 2 )  

Thus, G,(z) can be uniquely determined. Knowing 
G,(z ) ,  we can easily  obtain the Laplace-Stieltjes trans- 
form of the queuing  time  distribution for callers of pri- 
ority classes less  than or equal to k as follows. 

Let Ok*(s) be  the Laplace-Stieltjes  transform of the 
queuing  time  distribution of callers with priority classes 
less than or equal to k .  Let s = A,( 1 - z)  in Eq. (53) ; 
then we have 

Ok*(s)  = G,(1 - s/A,)  

= [ (A, - $1 P,, i (Ai/A) c$~(s)  
i= 1 

(53) 

To find the Laplace-Stieltjes  transform of the queuing 
time  distribution for calls of priority class equal to k ,  
e,( s) , we use a  method similar to  that in [ 171. Let y k (  s) 
be  the smallest root within the unit  circle of the  equation 

Y,(s)  =+,{ .y+A, -Y,(S)]}. (54) 

The first moment is 

This is known as  the mean  busy period in a single-server 
queue [ 101, 4811 
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Finally, 8, (s) can be obtained as  takes an  average of 5 s each with an exponential  service 
time  distribution;  the operator  can  enter  the nth item 

e k ( s ) = e k * { s + h k - l  [ l - ? k - l ( s ) l } .  ( 5 5 )  while the system is processing  the (n - 1)th item from 

Let Y, be the mean queuing time of a call whose priority 
class is k ,  Le., 

Y,  = -8,' ( 0 )  

= 1  k 

G,(1) A , U ~ ' ~ ' +  2 Po Aibi/A 
i= l   i=1  

k 

+ 2 P, (h,/h) A,b,"' 
i = l  

N 

+ ( A k /  (A  - [u,(o) - '01 Aiai'2' 
i = k + l  

k N 

+ L 2 /  ( A  - ' k )  1 L U k ( O )  - '431 ' i a i  ' iai  
i=l i=k+l  

I; 

+ 2 ( P o / A )  Aiai N 1  Aibi 

+ [2 G k (  1) (1 - 2 Aiai)( 1 - $j Aiai)].  ( 5 6 )  

i-1  i-1 

I ; - 1  

i= l  i = l  

The mean elapsed  time T ,  for  callers of priority class k 
is T ,  = Y ,  + D. 

Numerical  examples. 

Sequential server queues 
Consider a heavily used data collection terminal. Assume 
that it takes 0.50 s for the terminal to prepare  a message 
for transmission. The prepared message is then placed 
in a terminal buffer which can hold one message at a 
time. The buffer is polled by a  central computer through 
a communication line. Suppose that it takes  about 0.67 s 
to transmit  a  message to the  central computer. Assume 
that both of these service times are exponentially  dis- 

the  same terminal. When  the  processing is complete, 
the  computer sends the resultant ( n  - 1)th message to 
the printer. If the work on the  (n - 1)th transaction 
(processing and printing)  has  not  been  completed while 
the nth entry has  been  completed  and is waiting at the 
terminal buffer, the keyboard is locked so that the 
(n + 1 )th entry cannot  be made. 

Suppose that, from other analysis, it is  known that it 
takes  about 1 s for  the small computer  to complete  the 
processing. (This analysis  includes all other  loads from 
the  other terminals.) Assume  that the  printer  takes 
another second to print the output message. Combine 
the  computer and  the  printer as  the second server.  The 
mean service time is 2 s .  For simplicity, assume that 
the second server has an exponential  distribution. (Note 
that  the sequential-server model can handle other types 
of distributions; we  use exponential  service time dis- 
tributions here  for illustration.) Our problem is to de- 
termine the elapsed time of a customer and the mean 
queue size at  each of the counters during the  peak traffic 
situation. For  the example, A = 0.0 1, p = 0.2, and v = 0.5. 
From  these  data, we  calculate a = 5.57, a, = 53.92, 
p = 5.01, and p, = 50.07. The generating  function of the 
arrival  batch is M ( z )  = 0.5 2'' + 0.5 d B ,  with first and 
second  moments M ,  = 13 and M ,  = 178. 

lated as follows: 
The composite  service time moments can  be calcu- 

a* = -R'(O) = M 1 '  a (57) 

CY2* = R"(0) = M,a,  + ( M ,  - M l ) f f 2 ,  ( 5 8 )  

p* = - Q ' ( O )  = ( M ,  - l ) a  + p, (59) 

and 
tributed, Le., p= 1/0.5 = 2  and v = 1/0.67 = 1.5,  and  that 
the arrival rate is one message per second, i.e., A = 1. 
Based on  these  data, we  calculate  that a = 0.88, a, = + ( M ,  - l)a,. (60) 

p,* = Q"(0) = p, + 2 ( M 1  - l)ap + ( M ,  - 3 M ,  + 2)a2 

1.277, /3 = 0.652, and p2 = 0.791. The mean queuing 
time is Y = 5.6 s and the mean elapsed time is T =  6.27 s .  Thus, we obtain a* = 72.4, az* = 5820, p* = 71.85  and 

pZ* = 5715.  Finally, the mean queuing time is 

Bulk arrival  queues 
Consider  an automatic retail store. Several cash registers 
are  connected  to a small in-house computer; each of 
these registers has a  keyboard, a display,  and  a small 
printer. Customers with merchandise  arrive at the count- 
ers for  service. Consider  each individual counter. As- 
sume that in the  peak traffic period, customers  arrive  at 
the  counter  at the rate  1/100 s .  Also assume  that  each 
customer may bring either 10 or 16 items of merchandise 
with  equal probability. The  cashier  enters  each mer- 

482 chandise identification number on  the  keyboard, which 

Y = -et(o) = 
AB," + p*[2 + A2a,*/ (1  - ha*)]  

2(  1 - ha* + Ap*) 
= 190s. 

The mean queue size is L = AY = 1.90 customers and 
the mean  elapsed  time (i.e., total time spent by a cus- 
tomer  at a counter) is T = Y + D = 190 + 2 = 192 s. 

As  another example, consider a computer  communi- 
cation  system.  A  remote  station  generates  an  input traffic 
of 0.1 message/s. The input  message is to be transmitted 
to a  host computer  for processing. Assume  that  each 
input message consists of ten segments  and that  each 
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segment has  an  average of 128 characters, with an  ex- 
ponential  distribution. Assume  that  the  speed of com- 
munication line is 300  characters/s. 

To  send a segment of a message, assume  that a line 
service  time, which includes the transmission time and 
the time for  some line overhead functions  (e.g.,  the 
polling of the input station), is 0.6 s per message seg- 
ment. The host computer handles other input  messages 
from other lines and places  the  input  message  segments 
in a queue.  Assume  that  the  host  computer  has a mean 
response time of 435 ms, with an exponential  distribu- 
tion. The  response time includes all the queuing times 
and  service times that a  segment requires  at  the host. 
Assume  that  the communication  protocol is synchro- 
nized and that  the message  segments are  sequenced. 
(Each segment is given a sequence  number.)  One seg- 
ment may be  prepared  at  the  remote station and  sent 
over  the communication  line, and a  previous  segment 
may be  processed at  the host computer.  This provides 
some  overlapping operation  and  an  error recovery 
capability if something goes wrong. 

This problem may be formulated as a sequential server 
problem. The  remote station  and the communication 
line are  treated  as  the first server  and  the  host  computer 
as  the  second server. The  queue  to  be studied is the input 
message queue  at  the  remote station for which A = 0.1, 
p = 1/0.6, y = 1/0.435, M ,  = 10, and M, = 100. Using 
these  parameters we obtain the  moments 

CY = 0.782, CY, = 0.972, /3 = 0.6076, and /3, = 0.7305; 

CY* = 7.82, a,* = 80.22, /3* = 7.64 and /3,* = 63.50. 

The mean queuing  time  and the mean  elapsed  time are 
determined to be 

Y = 25.4 s and T = 25.8 s. 

Note  that only the  last segment's host time is needed in 
computing T because  the  other  host times are overlapped 
with the line times. 

8 Priority queues 
Consider  an application of the priority queues with bulk 
arrivals in a computer  system.  Consider a computer 
partition  with  two  disk file units as  shown in Fig. 2. Two 
types of transactions form two  queues with type 1 having 
a  higher  processing  priority  than type 2. Let  the arrival 
rates be A, = 0.6 and A, = 0.5, respectively. Each  type 1 
transaction  consists of five units of work. Each unit of 
work  requires  the processing of one  data  record from 
disk unit 1 and  one  data  record from  disk  unit 2. Each 
type 2 operation  consists of six units of work. Each unit 
of work  involves the processing of two  data  records from 
disk  unit 1 and  one  data record  from  disk  unit 2. Suppose 
that  the  average processing time for a data record in the 

Queue 1 

t Disk file - 
Computer 

Queue 2 program 

___) 

Other 
computer 
programs 

Figure 2 Partition with two  queues. 

A, ~5." Queue 1 nri t . 1  andCPU 
Fint  disk unit Second  disk unit 

Queue 2 and CPU 

120 ms 60 ms 

Figure 3 Sequential server system with priorities. 

CPU is 10 ms and  the  access  and  data  transfer time in a 
disk unit is 50 ms for  both  types of transaction  and  for 
both types of file. Thus,  for  each  data  record,  the mean 
CPU time  and the disk file service time are 10 ms+ 50 ms 
= 60 ms. We can treat this  problem as  two  servers in 
sequence, disk  unit 1 and some CPU processing as  the 
first server, and  disk  unit 2 and some CPU processing as 
the  second server. This is shown in Fig. 3. 

Let M , ( k )  be the rth  moment of the  batch arrival  sizes 
in priority class k.  We have  the following data: M,( 1 )  
= 5 ,  M,(1) = 25, and M1(2) = 6,  M,(2) = 36. Assume 
exponential  service  time distributions;  the service rates 
are pl = 1/0.06 = 16.66, p2 = 1 /  (0.06 + 0.06) = 8.33 
a n d v =  1/0.06=  16.66. FromEqs.  (10)-(13),weobtain 

a ,  = 0.09, a,'2' = 0.0126, a,  = 0.14, and up"' = 0.0184; 

b, = 0.061, b,"' = 0.0074, b, = 0.1206, and b,"' 

= 0.1441. 

Since we have bulk arrivals,  the composite service time 
moments can be obtained from  Eqs. (57)-(60): 

u,* = 0.45, = 0.225, a,* = 0.84, and u,'~'* 

= 0.6984; 

b,* = 0.3661, b, - 0.1594, b,* = 0.8206, and b,"'* ( , I * _  

= 0.797. 

Substituting these  values  into  Eq. ( 5  l ) ,  we have Po = 
0.33.  From  Eq. (52),  U,(O) = 0.636. From  Eq. (47),  483 
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G,* ( 1 )  = 0.544 and, finally, from Eq. (56),  we obtain 
Y ,  = 0.77 and Y ,  = 3.2. The mean  elapsed  time to pro- 
cess a transaction of type 1 is T ,  = Y ,  + D = 0.83 s and 
the mean  elapsed  time to  process a transaction of type 
2 is T ,  = Y ,  + D = 3.26 s. The mean queue lengths are 
L, = A,Y, = 0.462 and L, = A,Y, = 1.6. 

Concluding remarks 
In this paper  we  are treating simple environments with 
practical  applications, and  we  have  developed  some 
sequential-server queuing  models for  the analysis of 
computer/communication  system problems. (For  more 
complex environments using sequential-server  queuing 
models  with finite queues  between  stages,  see  Neuts 
[ 191.) Several numerical examples  were given to il- 
lustrate  the use of the models. In  the  examples, mean 
queue lengths and mean  queuing  times are used as per- 
formance  measures. I t  is also  possible to use the  second 
moments  and  variances  that  can be  obtained  from the 
second  derivatives of the generating  function and  the 
Laplace-Stieltjes  transform  studied  in  this  paper. The 
variances are useful  in  predicting the percentiles of a 
probability distribution, which are  often needed in design- 
ing real-time computer  systems. 

Appendix: Sequential  server queue 

Queue length distribution 
Let 5, be the  queue length immediately after  the  de- 
parture of the nth call from the first server  and  the en- 
trance  into  the second server.  Let 7, be  the  number of 
new  calls  which arrive during  the  aggregate service time 
of the nth  call under  the condition that  the  nth call began 
its  service when the  queue was not  empty.  Let 7,' be 
the  number of new calls that  arrive during the aggregate 
service time of the  nth call if the  nth call began its  service 
when no  queue was present.  The  queue lengths (,+, and 
6, and  the number of newly arriving calls are  related by 
the following equation: 

Assume  that  the  stationary distribution of queue length 
exists, then 5,+, and 5, must  have  the  same marginal 
distribution. The 6 ,  calls form  an imbedded Markov 
chain  which we study by using the generating  function 
technique. 

The generating  function for 7, can  be  written as 

m r m  OL 

Equation (A2) is obtained because  the  number of new 
arrivals  follows  a  Poisson process. If each of the new 
arrivals generates a batch of calls, and  the  batch size 
has a generating  function M ( z ) ,  then  Eq. (A2) can be 
written  as 

e - A ( l k " z ) ) x  dff(x) = J l { A [ l -  M(z)I>,  

which is useful for  the bulk arrival model studied in this 
paper. 

Similarly, the generating  function for 7,' can be  ob- 
tained as + [ A (  1 - z )  ]. Define the probability that  there 
are j calls in a queue of length 5, as 

Pit,,  = j l  = Pj, 

and define a new  generating  function U ( z )  for Pj  as 
m 

U ( z )  = x Pj 2 .  
j = O  

If the  stationary solution for  queue length exists,  the 
generating  functions for (,+, and 6, must be the  same. 
From Eq. (A 1 ) and from the  fact  that  the generating 
function of the  sum of two independent variables is the 
product of the  two generating functions, it follows that 

u ( z )  = P , + ( h ( l - ~ ) )  + [ U ( Z )  -Po] 2-l + [ A ( l  -21, 

Solving for U ( z ) ,  we obtain 

where Po remains to  be determined.  Because 
m E P j =  1, 

j = O  

we find from Eq. (A3) that 

U(1) = 1 .  (A4) 

Using  L'Hospital's  rule and  Eq. (A4),  we  obtain 

P ,  = 
1 - ha 

l -Aa+AB'  

Thus,  Eq. (A3) is uniquely determined. 

Queuing time distribution 
Let y ,  be the  nth call's queuing  time at  the first server, 
including the  three segments of the call's waiting time, 
service time, and blocking time. Let Y ( x )  be  its  prob- 
ability  distribution and O(s) be  its  Laplace-Stieltjes 
transform. Because the number of new calls which arrive 
during the queuing  time y ,  must equal  the  queue  size  at 
the nth call's departure  instant  from  the first server, 
we have e[  A (  1 - z)  ] = U ( z )  . Let z = 1 - s/ A;  then we 
find that 
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The nth moment of the queuing time distribution is 
given by 

Y ,  = [xn d Y ( x )  = (-l)n Ocn)(0). (A71 

Knowing O(s) , one can determine the waiting time dis- 
tribution W ( x )  at the first server as  follows. Let 

a(s) = Irn e - s x   d W ( x ) ;  

then, 

0 

8 ( s )  = [ a ( s )  -Pol $(SI + Po +(SI 

Solving for fl(s), we obtain 

The total elapsed time is defined as the duration be- 
tween the instant that a call arrives and the instant that 
it departs from the second server. Let T ( x )  be the elapsed 
time distribution. Its Laplace-Stieltjes transform has 
the relation 

lom L S x  d T (   x )  = 8 ( s )  (A91 
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