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System Analysis

Abstract: A queuing model with two sequential servers is developed to analyze performance in computer and communication systems.
In one case the CPU is the first server and the terminal and its associated communications equipment are the second server. In a second
case the CPU and the channel are the first server and the auxiliary storage device is the second server. We study the queuing behavior
of the sequential server systems with Poisson arrivals, general service time distributions, and several service disciplines, including bulk
arrivals, message priorities, and the input and output queues. The stationary distributions of the queue lengths and waiting times are
determined by using an imbedded Markov chain analysis. Several examples are given to illustrate the applications of these models to

practical problems.

Introduction

Networks of queues with blocking occur often in com-
puter and communication systems because subsystems
with different speeds are used to accomplish a common
task. For example, in an information retrieval system
data records are transferred between auxiliary storage
devices and main memory. Queues may be formed when
the CPU, the auxiliary storage devices or the channels
are busy. Another example is in a communication system,
where messages are transmitted from one station to an-
other. If either of the stations is busy, the transmission is
blocked, and a queue of messages may be formed at the
station.

The simplest queuing network consists of two servers
in sequence. If there is a large buffer between them (i.e.,
a large queue may be allowed for the second server), it is
possible to analyze this system by considering the two
servers as separate single-server systems. The output
distribution of the first server becomes the input distribu-
tion of the second server. In particular, if the input to the
first server has a Poisson distribution and the service time
is exponential, the output at the first serveris also Poisson
[1]. In this case the second queue can be easily ana-
lyzed. If the service time at the first server is not ex-
ponential, the output distribution can be determined by
using contour integration [2]. In this case, however, the
analysis of the second stage is complicated because the
output from the first server is not statistically indepen-
dent.

The total time for a call to go through the two servers
is the sum of the queuing times at these servers. More
realistic models are characterized by a limitation on the
queue size that is allowed between the servers. Hunt [ 3]
has provided some useful results for this case when the
service times of the servers are exponential.

A special case of the limited queue system is that in
which only one call can be processed at the second server,
and no waiting line is allowed between the stages. This
queuing system can be reduced to a special single-server
system. It has been investigated by Suzuki [4], Avi-
Itzhak and Yadin [5], Prabhu [6], and Chang {7]. For
an input function with Poisson distribution, Suzuki
studied a Markov chain imbedded in the queuing process,
Avi-Itzhak and Yadin investigated the stationary waiting
time and queue length distribution, and Prabhu studied
the transient behavior of this type of system. Chang
studied the two servers in sequence for an input with
Erlangian distribution.

In this paper we investigate the application of a queu-
ing model to the analysis of computer and communication
systems and develop some additional models for bulk
arrivals and priority services. We assume a Poisson dis-
tributed input, although the model can be extended to
cover an Erlangian input if the need arises. The arriving
calls are served first at server 1 and then at server 2.
When a call completes its service at server 1, it either
goes to server 2, if it is free, or stays at server 1 and
blocks further service there until the second server be-
comes free. Each call spends some time being served at
the first server and then possibly some time waiting for
the second server to become free (blocking time). The
combined time that the call stays at the first server can
be interpreted as its actual service time there, so that the
queue at server 1 behaves like a single-server queue with
a general service time distribution and an input with
Poisson distribution. The analysis is complicated by the
fact that a call which arrives when the queue is empty
may experience a lesser degree of blocking, because the
second server may have become free at the time of its
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arrival. An analysis of the single-server system with two
service time distributions [5] is useful in treating the
sequential-server problem for this case. Numerical re-
sults are presented in a later section.

Service time distributions

Letcalls n (n=1, 2,---) arrive at the first server with a
Poisson distribution. If the first server is busy or blocked,
the arriving call joins a queue and waits there for the
first server. Let the service times in both servers be iden-
tically distributed, independent, random variables with
probability distributions C(x)} and D(x), respectively.
Let x,"" and x,*’ be the service times of the nth call in
the servers. Let x, be the length of time that the nth call
spends in the first server. This includes the actual service
time at the first server and the waiting time, if any, for
the second server to become free. Suppose that there is a
queue when the nth call arrives. Obviously, x, = max
{xnm, x(2)} and

n-1

H(x)=P{x, = x}= P{xn(” =xx2 =x

n—1 "

= C(x) D(x). (1)

Let the Laplace-Stieltjes transform be
b (s) =f e " dH (x) (2)
o

and the nth moment be

&= X" dH() = 1)6"(0). 3)
0
In particular, let the first moment be «, i.e., a = .
Suppose that when the (n — 1)th call enters the second
server the queue is empty. The first server is idle until
the nth call arrives. Let 7 be the time between the instant
that the (n — 1)th call enters the second server and the
instant that the nth call arrives at the first server. In this
case, the length of time that the nth call spends in the
first server is

_ @y _
x,=max [x,~, x,_, —t]. (4)

Define the probability distribution of x, as
H(x,1)= P{x"m = x, x:f_)l — 1= x}
=C(x) D(x+1). (5)

Thus, the combined time of the nth call, which arrives
when the queue is empty, depends on the length of the
idle time ¢ of the first server. The probability density
function of ¢ is given by Ae™™; therefore we obtain the
Laplace-Stieltjes transform of the combined time dis-
tribution as follows:

and the moments are 8, = (—1)" ¢"(0). In particular,
let the first moment be g3, i.e., 3=8,.

More specifically, let the service time distributions
be exponential:

Cx)=1—e¢*,and D(x)=1—¢""". (7)
In this case we have
and
WA e O
The first and second moments are
a=1/p+1/v—1/(n+»); (10)
a,=2/u +2/v" =2/ (u+v) (11)
B=1/u+ [N/ (N+v)]/v

=N (N )]/ (vt ) (12)
By=2/u" + 20/ [(X + )v"]

=2/ [+ ) (e +)*] (13)

Exponential service time distributions are applicable in
communication system analysis; some voice and data
transmissions are known to have exponential holding
times. Exponential service time assumptions are also
applicable in the CPU processing time analysis. Service
times for other devices, however, in particular those with
mechanical operation, are better approximated by an
Erlang distribution. Suppose that the second server has
an Erlang-2 distribution, i.e.,

Dx)=1—e" —pxe™™, (14)

and the first server has the same exponential distribution.
In this case, §(s) and ¢(s) are given by

2

_ M v _ [l
W) s-%—,u+(s+,,)2 stutv
_ vut) (15)
(s+u+)7°
and
2
b(s) = 3 A v 4 Av v

+
stp Av (s+p)? (AF+p)ist

ApL wt+v
AN+)(p+v)(s+uptv)

A v (,u,-i-v)2
ANtrvutr (s+pt+v)’

Ay mtv

- (16)

_ * -\t ” —sx
qS(s)—f e dtfo e dH(x, 1), (6) (}\+V)2s_+_“+y. 477
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The first and second moments are

1 2 73 2y
a=—+—— P 5 (17)
kv (p+tv) (ptvw)
2 3 2u 3y
o, =+ = — - ; 18
A (TR ) L (PRI e
2
g=11 A n Av __ Al
povA Y s+ e A+ vy (ntv)?
27 A
- e - ; (19)
Ato)(ete) A+2)(w+v)
A 2\ 2+ 3\
B,=—

+ st 2 2 3
oAt AN+ W+ r)(utw)

2w (20)
N+ ) (n+v)? .

Other types of service time distribution can be de-
veloped similarly. Once we obtain ¢/(s) and ¢(s) and
their moments, we can use the formulas developed in
[4] and [5] to obtain useful information, such as the
mean waiting and queuing times. For completeness of
this paper, and for the development of additional models,
we include some of the earlier results in the Appendix.
Other useful formulas are given below. The queue-size
generating function U(z) is given by Eq. (A3) in the
Appendix as

_Plz¢M0—2)] —¢M(1 —2)]}
z—¢P[A(1—2)] ’

U(z) (21)

where P, is the probability that a call arrives and finds
the first server empty; P, is given by Eq. (A5) as

1— A

Py=——
 IT—Aa+ A8

(22)

Let the queuing time in the sequential server system be
defined as the time that a call spends in the first server.
This time consists of the call’s waiting time, service time,
and blocking time. Let 8(s) be the Laplace-Stieltjes
transform of the queuing time distribution. It is found
from Eq. (A6) as

0(s)=U(1—s/\)
_ Py (s) — M (s) — s¢(s)]

A=—s—\j(s) (23)
The mean queuing time Y is
)\2a2
s (o )
Y=—6'(0) = (24)

2(1 ~Aa+ AB)

Let C and C, be the first and second moments of C (x)
and D and D, be the first and second moments of D(x).
The mean elapsed time 7T, which is the total average time
that a call spends in the whole system, is simply T=Y +
D. The mean queue length at the first server is L = AY.

Bulk arrival

In a computer system, a service call to a device often
involves several operations for that device to perform.
For example, a deck of cards is to be read by a card
reader that reads one card at a time. The printer is an-
other example. When a job requires printed output, the
output may consist of many lines, or pages, but the print-
er can print only one line at a time. In queuing theory this
is known as bulk arrival. The same situation also occurs
in communication systems. A message from a remote
station is often segmented for transmission, and the seg-
ments are sent and received one at a time. This reduces
the buffering requirement at both ends.

Single-server systems with bulk arrival and service
have been investigated by Bailey [8], Downton [9],
Miller { 10], and Foster [ 11]. In what follows, we pre-
sent a solution of a sequential-server system with bulk
arrival.

Let m, be the probability that an arrival consists of
ncalls. Let M(z) be the generating function of m,; i.e.,

M(z) = ﬁ mnz", (25)
n=1

where K is the maximum size of the batch. Let M, and
M, be the first and second moments of the batch arrival
sizes. The generating function of the queue size distribu-
tion can be obtained by following the approach of Miller
[ 10]. The queue size at the instant of departure can be
analyzed by means of an imbedded Markov chain.

The queue-size generating function satisfies the fol-
lowing relation:

U(z) = [U(2) = PJY{A [1 —M(2)} 2

+P, S m2 oA [1—-M(2)]},  (26)
n=1

which is obtained since an arrival consists of n calls.
Each new arrival increases the queue size by n. When a
new arrival finds that the system is empty, one of its n
calls enters the first server for service, and the remain-
ing n — 1 calls join the queue. The effect of bulk arrival
can be included in the formulation by replacing z with
the generating function of M(z) in ¢[A(1 — 2z)] and
Y[A(1 — 2)] of Eq. (21) (see Miller [10]). Solving for
U(z), we obtain

_PM@) (A1 = M(2)]} — (A1 —M(2)]})
z—y{A[1 = M(2)]} '

Ul(z)

(27)
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Since by definition U(1) = 1, we find that

p = I —MAa (28)

O M (1 —xa+A8)"

The queuing time distribution can be obtained by
viewing the arriving batch as one composite entity. We
define two new Laplace-Stieltjes transforms, R(s) and
Q(s), as follows:

K

R(s) =Y m,[¢(s)]" (29)
and
Q(s) =3 mb(s)[w(s)]"". (30)

The Laplace-Stieltjes transform of the queuing time
distribution can be obtained by substituting R(s) and
Q(s) for yi(s) and ¢(s) in Eq. (23):

o(s) = [1—=Mxa)/ (1 —ra+ AB)I[AQ(s) — AR(s) — sQ(s))
s) = A—s— AR(s) :

(31)

Note that the queuing-time formula Eq. (31) is calculated
on a message basis, whereas the queue-size generating
function Eq. (27) is based on message segments, or
individual calls. The queuing time thus computed is the
time for the whole message to pass the first server, in-
cluding the waiting time, the blocking time, and the
service time at the first server. Since the second server
and the first server can overlap somewhat, i.e., the first
server handles the snth segment of a message while the
second server handles the (n — 1) th segment of the same
message, the elapsed time T for the whole message is
simply T = (—1)6'(0) + D.

Priority queues

To ease the congestion at a computer center, the output
messages may be put on a higher priority in the use of
system resources than the input messages to be polled
from remote terminals. Transactions to be processed
within a computer may be classified into different priority
queues. A READ request to a disk unit may also be put
on a higher priority queue than a WRITE request or vice
versa. In this section, priority queues for sequential-
server systems are described. Stationary queuing time
distributions are obtained.

For a single-server system with priorities, Cobham
obtained the first moment of the waiting time distribution
{12]. Miller [13] and Gaver [14] characterized the
stationary distributions of the queue sizes and waiting
times. Welch [ 15] and Jaiswal [ 16] studied the transient
solutions of priority queues. Takacs [17] generalized
the stationary solutions of priority queues. The author
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Figure 1 Sequential servers with priorities.

has generalized the stationary solutions of preemptive
priority queues including other service disciplines, such
as the preemptive-repeat service [ 18].

In the sequential-server model the second server
represents a mechanical device at which the service is
not interrupted until completion. Hence, we consider
the non-preemptive priority queues. A higher-priority call
waits and obtains service immediately after the com-
pletion of the current lower-priority service (including
blocking time if any) at the first server. Calis with dif-
ferent priorities arrive at a facility which consists of two
sequential servers. Let there be N classes of priorities,
1, 2,-++, N. An arriving call with a smaller number in-
dicates a higher priority. The calls are served in order
of priority and, within each class, in order of arrival. It
is also often assumed that the input is a Poisson process
with parameter A, for k-type priority calls, where k =
1, 2,---, N. Let the service times for k-type priority calls
at the first server be mutually independent, positive,
random variables with a distribution function C,(x).
The service time distribution at the second server is as-
sumed to be the same for all types of calls, D(x). This
assumption makes the analysis easier. If D (x) is different,
we have to determine the joint probability function of the
queue sizes for all N priority classes. This requires the so-
lution of a multi-dimensional generating function. The
model investigated in this paper is illustrated in Fig. 1.

Preparatory to discussing the priority queuing systems,
some additional concepts must be defined. Let the sum
of the Poisson-process parameters be expressed as
follows:

A=

. \;; in particular, let A = A, (32)

VR

H

i=1

Each input is a Poisson process of parameter \; there-
fore the sum A, is also a Poisson process. Define the
Laplace-Stieltjes transforms of the service time dis-
tributions as
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0, (5) =f e d[C,(x) D(x)] (33)
0

fork=1,2,-+, N;

$,(5) =f Ae™ dtf e d[C,(x) Dix+1)]  (34)
(1] 0

fork=1,2,--+, N;

and the nth moments as

a, V= =D","0) fork=1,2,-"4 N; (35)

bk(n) — (_1)n¢k(n)(0) for k= 1,2, N. (36)

Also let the Laplace-Stieltjes transforms of the weighted
service-time distributions be

V() =3 (N/A) (o) (37)
and

k
O (s) =3 N, &,(s)/ (A= A,). (38)

Define the nth moments of these weighted service time
distributions as

h™ = (—=1)"¥,™(0)

and

gk(n) — (—1)"<Dk(")(0), (39)
and, in particular, let

a,= ak“), b, = bkm, h,= hk(” and g, = gkm.

In the previously defined non-preemptive service
discipline, the service time of a caller of any priority
class is not interruptable. Consequently, the presence
of a low-priority call can affect the waiting time of a
high-priority call. For example, if a low-priority call is
being served when a call of a high-priority class arrives,
the high-priority call must wait for the completion of the
lower-priority at the first server before service begins.
Calls of low priority receive immediate service when no
call of higher priority is waiting.

Let p, be the probability that an arriving call is of
priority class k. Clearly, p, = A, /A. We now find the
generating function and the queuing time distribution in
terms of the Laplace-Stieltjes transform as follows.

Consider a queuing process in which callers are clas-
sified into two queues. Let £, (k) be the queue length
of calls having priority classes less than or equal to k,
and let £,'(k) be the queue length of priority classes
greater than k at the transition time of the nth call that
just enters into the second server. The nth call can be
of any priority class. We now formulate the generating
function for &,(k).

For a stationary process, £,,,(k) and £,(k) have the
same probability distribution and are related by

e,k — 147, £,k >0

if ¢£,(k) =0 and

£, (k) =0 and the
next call is of priority
class equal to i;

Mo if &, (k) =0
( but ¢,' (k) > 0.

N ()
Epr (K Z{

(40)

Here, n,,, is the number of new calls of priority classes
less than or equal to/k if the (n + 1)th service is of pri-
ority class less than or equal to k. The parameter 7, (i)
is the number of new arrivals of priority classes less
than or equal to £ if the (n + 1)th service is of priority
class i. The parameter 7, , is the number of new cells of
priority classes less than or equal to & if the (n 4+ 1)th
service is of priority class greater than k. The reason we
consider the cases separately is that the (n + 1)th ser-
vice time is different in each case.

Let U, (z) be the generating function of ¢,(k) so that

Uple) = S PLEK) = j} 2 (41)

n=0

Thus, the probability that ¢, (k) is zero is expressed as
follows:

P{¢, (k) =0} = U, (0). (42)

Also, the probability that ¢ (N) is zero indicates that
the queues are all empty, so we have

P{¢,(N) =0} =U,(0) =P, (43)

There are three mutually exclusive events considered
here.

1. £,(k) > 0 and the next arrival is of priority class less
than or equal to k. This event is represented by the
generating function [U,(2) — U, (0)]/=.

2. £,(k) = 0 and £, (k) = 0 and the next service is of
priority class i. This even occurs with probability
(A,/A)P,, where P, is the probability that the first
server is free.

3. £,(k) = 0 and ¢,' (k) > 0 and the next service is of
priority class greater than k. This event occurs with a
probability U, (0) — 3, (A,/A)P,.

Forming the generating functions of ¢, (k) and ¢, (k),
and using the generating functions for the new arriving
calls as given in the Appendix [Eq. (A2) and its equiva-
lent], we have
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U,(z) = z“N[Uk(z) — U (0)1V,[A (1 —2)]
+3 (/AP [A (1 —2)]

+ [Uk(O) -3 ()\l./A)PO] O A (1—2)]. (44)

i=1

This generating function provides the queue lengths of
priority classes less than or equal to & at every transition
(departing instant from the first server), including the
departure of those calls of priority classes greater than
k. We formulate the queue-size generating function ob-
served by a departing call of priority class less than or
equal to k by Takacs method [17]. The (n + 1)th call
is of priority class less than or equal to 4 if the service-
time distribution is of priority class less than or equal
to k. Hence, the partial generating function

[U,(2) = U (0)]¥,[A(1—2)] 2"

+i()\i/A )P [A(1—2)] (45)

i=1

represents a departing call of priority class less than or
equal to k. Let G, *(z) be this partial generating func-
tion, i.e.,

G, *(2) =27 [U,(2) — U ()] ¥, [A,(1—2)]
+ 21 (N/A) PN (1 —2)] - (46)

and

G,*(1)=1-U,(0) +i (\/A) P, (47)

i=1

The generating function for the queue lengths of priority
classes less than or equal to &, observed by a departing
caller of priority class less than or equal to 4, is

G, (2) =G, *(2) /G, *(1). (48)

Combining Eqs. (44) to (48) we obtain

- {zz (/A P, [AL(1—2)]

+ [UL(0) = PP, [A (1 —2)]¥ [A(1—2)]

T3 WA Py b LA —2)] WA (1~ 2)
i=l+1

- Uk(o) \Pk[Ak(l —2)]}

=G (D {z— WA (1= 2]}, (49)

For k = N, Eq. (44) reduces to Eq. (48) and we have

G, *(1) =1, Uy(0) =P, and U(z) = G (). (50)
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Since U, (1) = 1, applying L’Hospital’s rule, we have

N
I—E A,
iz1

P,=U,0) = (51)

ﬁ +2)\b

Because G, (1) = 1, from Eq. (49) we have

U, (0) = {1 — 3 g~ (AJA) S A, Py

i=1 i=1

+ A/ (A—AY] EV A Po}

i=k+1

+{1—§}\iai+[Ak/(A—Ak)] 3 N}

i=1 i=k+1
(52)
Thus, G,(z) can be uniquely determined. Knowing
G,(2), we can easily obtain the Laplace-Stieltjes trans-
form of the queuing time distribution for callers of pri-
ority classes less than or equal to & as follows.

Let 6,*(s) be the Laplace-Stieltjes transform of the
queuing time distribution of callers with priority classes
less than or equal to k. Let s = A, (1 — 2) in Eq. (53);
then we have

0,*(s) =G, (1—3s/A,)
k

={A =9 23 /8 000

+ AU, (0)

N
+ A, E

i=k+1

— A, U, (0) ws)}

—P,] ®,(s) ¥, (s5)

A/ APy, ($)F, (s)

“{l1-v,0 +3 /8 P,

X [A, = s = A, W, (5)1 (53)

To find the Laplace-Stieltjes transform of the queuing
time distribution for calls of priority class equal to &,
0,(s), we use a method similar to that in [17]. Let y,(s)
be the smallest root within the unit circle of the equation

Y. (8) =P ds + A, [1 =y, ()]} (54)

The first moment is

M
Kt
s

— v/ (0) =

1— A,

M =
>

i

i=1

This is known as the mean busy period in a single-server
queue [10]. 481
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Finally, 6, (s) can be obtained as
0,(s) =0, {s+A_, [1—v._, ()]} (55)

Let Y, be the mean queuing time of a call whose priority
class is %, i.e.,

Y, =—8,’ (0)

= {Gk(l) é )‘iai(Z) T2P (é )\ib"/A)

i=1 i=1

k
+2P, (A/N) S A
i=1

N
+ (A A=A UL0) =P S ra®

i=k+1

+ 12/ (A= AU ~ P S N, S Mg,

i=k+t

+2 (P,/A) é A, % )\ibi}

N [2 G, (1) (1 —lz_: )\iai>(1 —}i‘; )\iai>]. (56)

The mean elapsed time T, for callers of priority class &
is T,=Y,+D.

Numerical examples.

o Sequential server queues

Consider a heavily used data collection terminal. Assume
that it takes 0.50 s for the terminal to prepare a message
for transmission. The prepared message is then placed
in a terminal buffer which can hold one message at a
time. The buffer is polled by a central computer through
a communication line. Suppose that it takes about 0.67 s
to transmit a message to the central computer. Assume
that both of these service times are exponentially dis-
tributed, i.e., w = 1/0.5=2 and v = 1/0.67 = 1.5, and that
the arrival rate is one message per second, i.e., A = 1.
Based on these data, we calculate that o = 0.88, o, =
1.277, B = 0.652, and B, = 0.791. The mean queuing
time is Y = 5.6 s and the mean elapsed time is T=6.27 s.

» Bulk arrival queues

Consider an automatic retail store. Several cash registers
are connected to a small in-house computer; each of
these registers has a keyboard, a display, and a small
printer. Customers with merchandise arrive at the count-
ers for service. Consider each individual counter. As-
sume that in the peak traffic period, customers arrive at
the counter at the rate 1/100 s. Also assume that each
customer may bring either 10 or 16 items of merchandise
with equal probability. The cashier enters each mer-
chandise identification number on the keyboard, which

takes an average of S s each with an exponential service
time distribution; the operator can enter the nth item
while the system is processing the (n — 1)th item from
the same terminal. When the processing is complete,
the computer sends the resultant (z — 1)th message to
the printer. If the work on the (rn — 1)th transaction
(processing and printing) has not been completed while
the nth entry has been completed and is waiting at the
terminal buffer, the keyboard is locked so that the
(n+ 1)th entry cannot be made.

Suppose that, from other analysis, it is known that it
takes about 1 s for the small computer to complete the
processing. (This analysis includes all other loads from
the other terminals.) Assume that the printer takes
another second to print the output message. Combine
the computer and the printer as the second server. The
mean service time is 2 s. For simplicity, assume that
the second server has an exponential distribution. (Note
that the sequential-server model can handle other types
of distributions; we use exponential service time dis-
tributions here for illustration.) Our problem is to de-
termine the elapsed time of a customer and the mean
queue size at each of the counters during the peak traffic
situation. For the example, A= 0.01, u=0.2,and v=0.5.
From these data, we calculate o = 5.57, o, = 53.92,
8 =5.01, and B, = 50.07. The generating function of the
arrival batch is M(z) = 0.5 2'° + 0.5 2%, with first and
second moments M, = 13 and M, = 178.

The composite service time moments can be calcu-
lated as follows:

a*=—R'(0) =M,a, (57)
a,* = R"(0) = M,a, + (M, — M,)e’, (58)
B*=—0'(0)=(M,— Da+8, (59)

and

B,*=Q"(0) =B, +2(M, — )aB + (M, — 3M, + 2)a*
+ (M, — Da,. (60)

Thus, we obtain a* = 72.4, a,* = 5820, 8* = 71.85 and

B,* = 5715. Finally, the mean queuing time is
AB,* + B*[2 4+ Na,* /(1 — Aa*)]
2(1 — ha* + AB*)

Y=—0'(0)= 190s.
The mean queue size is L = \Y = 1.90 customers and
the mean elapsed time (i.e., total time spent by a cus-
tomer at acounter) is T=Y+D=190+2=192s.
As another example, consider a computer communi-
cation system. A remote station generates an input traffic
of 0.1 message/s. The input message is to be transmitted
to a host computer for processing. Assume that each
input message consists of ten segments and that each
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segment has an average of 128 characters, with an ex-
ponential distribution. Assume that the speed of com-
munication line is 300 characters/s.

To send a segment of a message, assume that a line
service time, which includes the transmission time and
the time for some line overhead functions (e.g., the
polling of the input station), is 0.6 s per message seg-
ment. The host computer handles other input messages
from other lines and places the input message segments
in a queue. Assume that the host computer has a mean
response time of 435 ms, with an exponential distribu-
tion. The response time includes all the queuing times
and service times that a segment requires at the host.
Assume that the communication protocol is synchro-
nized and that the message segments are sequenced.
(Each segment is given a sequence number.) One seg-
ment may be prepared at the remote station and sent
over the communication line, and a previous segment
may be processed at the host computer. This provides
some overlapping operation and an error recovery
capability if something goes wrong.

This problem may be formulated as a sequential server
problem. The remote station and the communication
line are treated as the first server and the host computer
as the second server. The queue to be studied is the input
message queue at the remote station for which A = 0.1,
u=1/0.6, y=1/0.435, M, = 10, and M, = 100. Using
these parameters we obtain the moments

a=0782, a,=0.972, 3= 0.6076, and B, = 0.7305;
a*=17.82, a,* = 80.22, B* = 7.64 and B,* = 63.50.

The mean queuing time and the mean elapsed time are
determined to be

Y=254sand T=258s.

Note that only the last segment’s host time is needed in
computing T because the other host times are overlapped
with the line times.

» Priority queues

Consider an application of the priority queues with bulk
arrivals in a computer system. Consider a computer
partition with two disk file units as shown in Fig. 2. Two
types of transactions form two queues with type 1 having
a higher processing priority than type 2. Let the arrival
rates be A, = 0.6 and A\, = 0.5, respectively. Each type 1
transaction consists of five units of work. Each unit of
work requires the processing of one data record from
disk unit 1 and one data record from disk unit 2. Each
type 2 operation consists of six units of work. Each unit
of work involves the processing of two data records from
disk unit 1 and one data record from disk unit 2. Suppose
that the average processing time for a data record in the
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Queue 1
Disk file
A=06 ——
Computer
Queue 2 program
Ao 0.5 s _@
Other
computer
programs
Figure 2 Partition with two queues.
Queue 1 60 ms 60 ms
Nj=0.6
First disk unit — Second disk unit ~N
Queue 2 and CPU and CPU
Ao =035
120 ms 60 ms

Figure 3 Sequential server system with priorities.

CPU is 10 ms and the access and data transfer time in a
disk unit is 50 ms for both types of transaction and for
both types of file. Thus, for each data record, the mean
CPU time and the disk file service time are 10 ms+ 50 ms
= 60 ms. We can treat this problem as two servers in
sequence, disk unit 1 and some CPU processing as the
first server, and disk unit 2 and some CPU processing as
the second server. This is shown in Fig. 3.

Let M_(k) be the rth moment of the batch arrival sizes
in priority class k. We have the following data: M, (1)
=5, M,(1) =25, and M,(2) =6, M,(2) = 36. Assume
exponential service time distributions; the service rates
are p, = 1/0.06 = 16.66, u, = 1/(0.06 + 0.06) = 8.33
and v=1/0.06 = 16.66. From Egs. (10)-(13), we obtain

a, = 0.09, a,” = 0.0126, a, = 0.14, and 4, = 0.0184;
b, = 0.061, b,”’ = 0.0074, b, = 0.1206, and b,”’
=0.1441.

Since we have bulk arrivals, the composite service time
moments can be obtained from Eqs. (57)-(60):

a*=0.45, a,”*=0.225, a,* = 0.84, and ¢,*”
= 0.6984;

b* =0.3661, b,*”*=0.1594, b,* = 0.8206, and b,”"*
=0.797.

Substituting these values into Eq. (51), we have P, =
0.33. From Eq. (52), U,(0) = 0.636. From Eq. (47),
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G,*(1) = 0.544 and, finally, from Eq. (56), we obtain
Y, = 0.77 and Y, = 3.2. The mean elapsed time to pro-
cess a transaction of type 1is 7, =Y, + D =0.83 s and
the mean elapsed time to process a transaction of type
2is T,=Y,+ D =3.26 s. The mean queue lengths are
L =AY, =0462and L,=\,Y,=1.6.

Concluding remarks

In this paper we are treating simple environments with
practical applications, and we have developed some
sequential-server queuing models for the analysis of
computer /communication system problems. (For more
complex environments using sequential-server queuing
models with finite queues between stages, see Neuts
[19].) Several numerical examples were given to il-
lustrate the use of the models. In the examples, mean
queue lengths and mean queuing times are used as per-
formance measures. It is also possible to use the second
moments and variances that can be obtained from the
second derivatives of the generating function and the
Laplace-Stieltjes transform studied in this paper. The
variances are useful in predicting the percentiles of a
probability distribution, which are often needed in design-
ing real-time computer systems.

Appendix: Sequential server queue

s Queue length distribution

Let £, be the queue length immediately after the de-
parture of the nth call from the first server and the en-
trance into the second server. Let 7, be the number of
new calls which arrive during the aggregate service time
of the nth call under the condition that the nth call began
its service when the queue was not empty. Let 7,’ be
the number of new calls that arrive during the aggregate
service time of the nth call if the nth call began its service
when no queue was present. The queue lengths ¢, ., and
¢, and the number of newly arriving calls are related by
the following equation:

(,— 1+, if¢,,, >0,
fn+1={

nrlt+1 lf g:n = 0

(A1)

Assume that the stationary distribution of queue length
exists, then £,,, and £, must have the same marginal
distribution. The £, calls form an imbedded Markov
chain which we study by using the generating function
technique.

The generating function for 7, can be written as

i P{n,=i} 2= ) i [(Ax)'/i 2 e™ dH (x)

0 i=0

_ f TN gy — N1 —2)]. (A2)

Equation (A2) is obtained because the number of new
arrivals follows a Poisson process. If each of the new
arrivals generates a batch of calls, and the batch size
has a generating function M(z), then Eq. (A2) can be
written as

f“ e MM Gy = wiA[1 — M (2)]},

which is useful for the bulk arrival model studied in this
paper.

Similarly, the generating function for »," can be ob-
tained as ¢[A(1 — 2)]. Define the probability that there
are j calls in a queue of length £, as

P{¢,=j} =P,

and define a new generating function U (z) for P; as

Jj
sz.

Ms

Uz) =

j=0

If the stationary solution for queue length exists, the
generating functions for £,,, and ¢, must be the same.
From Eq. (A1) and from the fact that the generating
function of the sum of two independent variables is the
product of the two generating functions, it follows that

U(z) =P, ¢(M(1—2)) + [U(2) — P] 7 y[\(1—2],
Solving for U(z), we obtain

Py lzd(A(1—2)) —¢p(A(1—2))]

U(z) = , A3
® e =91 - 2)] (A3)

where P remains to be determined. Because

> P=1

j=0

we find from Eq. (A3) that

U(l)=1. (A4)

Using L’Hospital’s rule and Eq. (A4), we obtain

p,=-—1—Aa (AS)

0T 1 —Xa+A\3°

Thus, Eq. (A3) is uniquely determined.

~ Queuing time distribution

Let y, be the nth call’s queuing time at the first server,
including the three segments of the call’s waiting time,
service time, and blocking time. Let Y(x) be its prob-
ability distribution and 6(s) be its Laplace-Stieltjes
transform. Because the number of new calls which arrive
during the queuing time y, must equal the queue size at
the nth call’'s departure instant from the first server,
we have 8[A(1 —2)] = U(z). Let z= 1 — s/\; then we
find that
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1 — e >[(x—s)¢(s) —MP(S)]. (A6)

o(s)=<1—}\a+)\ﬁ A—s— Ap(s)

The nth moment of the queuing time distribution is
given by

Y, = fmx" dY(x) = (~1)" 6(0). (A7)

Knowing 8(s), one can determine the waiting time dis-
tribution W (x) at the first server as follows. Let

O(s) = fw e AW (x):

then,
0(s) = [Q(s) — P ¢(s) + P d(s).
Solving for Q (s}, we obtain

v el

a6s) =5 (A8)

The total elapsed time is defined as the duration be-
tween the instant that a call arrives and the instant that
it departs from the second server. Let T(x) be the elapsed
time distribution. Its Laplace-Stieltjes transform has
the relation

fw e dT(x) = 6(s) ]“ e dD(x). (A9)
o 0 .
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