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Regenerative Simulation of a Queuing Model of an

Automated Tape Library

Abstract: Recently, techniques have been developed for estimating confidence intervals when simulating stochastic systems having a
regenerative structure. These techniques are applied to the simulation of a queuing model of a computer system’s automated tape li-
brary. Theoretical and practical issues related to the application of these techniques are addressed. An interesting feature of the auto-
mated tape library represented in the queuing model is that certain queues have finite capacity; when these queues are filled to capacity
certain services are prevented from occurring. The regenerative techniques are used in conjunction with multiple comparison procedures
to make statistically valid statements about the effect of the finite queue capacities on performance.

Introduction

Contention for the resources that comprise a computer
system can have a significant impact on system per-
formance. Networks of interconnected queues are com-
monly used to model this contention, but often a queuing
model that represénts the system in sufficient detail to
be of interest in performance evaluation is not analytically
tractable. One then faces the choice of developing a less
detailed but analytically tractable model, applying ana-
lytic approximation techniques, or simulating the model.
Simulation of a queuing model of the system is included
in many computer performance studies, either as the
main tool or to validate simpler models and approxima-
tion techniques.

The simulation of a stochastic system such as a queu-
ing model is a statistical experiment. In order to draw
meaningful conclusions from such an experiment it is
necessary to make statistically valid statements about
the outcomes of the experiment. Suppose, for example,
a queuing model is simulated in order to estimate a re-
sponse variable Q (e.g., the long-run average time spent
queuing for service). In addition to obtaining a point
estimate O of Q, it is desirable to estimate a confidence
interval for Q. An estimated 100 - a«% confidence in-
terval for Q is an interval (Ql, Qz) whose endpoints Ql
and QZ are estimated via simulation and have the prop-
erty that Pr{Q, < Q < 0,} = a. (Note that Q, O, and
QA2 are random variables while Q is a number.) Thus, an
estimated confidence interval carries with it a statement
that the response variable is contained in the interval
with a given probability.
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This paper focuses on the application of recently de-
veloped techniques for estimating confidence intervals
when simulating a class of stochastic systems called
regenerative systems. These techniques, called regenera-
tive simulation techniques, are applied to the simulation
of a queuing model of an automated tape library which
serves as the mass storage portion of a computer installa-
tion. Multiple comparison procedures are used in con-
junction with the regenerative techniques to make sta-
tistically valid statements about the effect on tape library
performance of changing the values of certain tape li-
brary parameters. For example, let O, 0, and O, denote
the values of a response variable corresponding to three
sets of parameter values and let D, =Q,— Q,, D,=Q,
- Q, and D, = Q, — Q, denote the three pairwise dif-
ferences. A simple multiple comparison procedure
yields the 100 - «% confidence statement Pr{D,, < D,
< D, D, <D, < D, D, < D, < D} = a where
D,,, D,,, D,,. D,,, D,, and D,, are estimated via the re-
generative techniques. Thus, D,, D, and D, are each
contained in their respective estimated intervals with a
given joint probability a.

In the next section of the paper the automated tape
library is described and a model of the library consisting
of an open network of interconnected queues is pre-
sented. For the purpose of this paper, i.e., to present
an example of the application of regenerative simulation
to a complex queuing model, the model incorporates
several simplifying assumptions, but even so the model
is not analytically tractable. The section on simulation
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methodology contains an exposition of the methods
applied in simulating the tape library model. The method
for estimating confidence intervals is not new, but the
use of multiple comparison procedures in conjunction
with the regenerative techniques is new. In addition, the
theoretical and practical issues involved in applying the
methodology to so complex a queuing model have not
been explored elsewhere. In the experimental results
section, simulation experiments designed to study the
effect on performance of changing the values of certain
parameters of the tape library model are described and
the results of these experiments are presented and dis-
cussed. The last section contains concluding remarks.

The mathematical foundation for the simulation of
regenerative stochastic systems was provided by Crane
and Iglehart [1, 2]. Examples of the application of re-
generative simulation techniques to queuing systems
can be found in the literature, e.g., [2-8].

Library model

o [ntroduction

The system studied is the mass storage portion of a com-
puter installation, here called the library. Libraries have
traditionally consisted of reels of magnetic tape or boxes
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of cards that serve to hold seldom used or backup copies
of data. Data in the library were maintained at relatively
low cost and access to the data required human interven-
tion and consequently time waits of several seconds or
minutes. The evolution of large on-line data bases has
resulted in a need for libraries that have reduced access
times as well as low cost.

One proposal is an automated tape library (e.g.,
Ampex Terabit [9], IBM 3850 [ 10]), in which magnetic
tapes or tape cassettes are the storage media, but the
tapes are retrieved by mechanical means. Figure 1 illus-
trates the components of such a library. Data in the
form of files are stored on a large number of magnetic
tapes. The tapes are contained in fixed storage locations
in the library. To access a file (read or write) requires
removing the tape containing the file from its storage
location, mounting the tape on a drive mechanism, here
called an R/ W unit (read/ write unit), and positioning the
head over the desired file. Due to cost considerations
the number of R/ W units is usually far smaller than the
number of tapes, so mechanical devices called pickers
are included to transport tapes to and from the R/W
units.

An open queuing network model of an automated tape
library is developed in this section to study the effect
on performance of varying parameter values of the library.
The performance measures studied are the average re-
sponse time to satisfy an access request and the max-
imum rate at which requests can be satisfied (maximum
throughput). The model developed is analytically in-
tractable and will be numerically studied via simulation.
Since, however, the main emphasis of this paper is to
illustrate the careful application of simulation techniques,
several simplifying assumptions are incorporated into
the model. A detailed description of the operation of the
automated tape library to be modeled is given next.

e Operation of library
When a request for file access arrives at the library the
tape containing the file must first be located. If the tape
is in its storage location, then the sequence of services
illustrated in Fig. 2 must be rendered. (If the desired
tape is already at an R/W unit, the initial picker service
is not performed.) First, a picker must move the ap-
propriate tape from its storage location to an R /W unit
(fetch service). The R /W unit mounts the tape, positions
the head to the desired file, transfers the data, and de-
mounts the tape (R/ W service). Lastly, the picker re-
turns the tape to its storage location (putaway service).
Each R/W unit has a buffer area that can hold un-
mounted tapes. Figure 3 illustrates the structure of an
R /W unit where the buffer area is represented by pre-
queue and postqueue stations. Fetched tapes are placed
at the prequeue station by the pickers and tapes are re-
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moved from the postqueue station by the pickers for
putaway services. The read/write station, which repre-
sents the tape drive, selects a tape from the prequeue
station, mounts the tape, and transfers the data. Follow-
ing the data transfer, the tape is demounted and placed
in the postqueue station and another tape is selected from
the prequeue.

In practice the stations of an R/W unit have finite ca-
pacities. It is assumed that the prequeue station can hold
at most C, tapes and the postqueue station can hold at
most C, tapes. Additionally, it is assumed that the total
number of tapes in the R/ W unit (at both queue stations
and at the R/W station) can never exceed C, tapes,
where C, = C, + C, + 1. The condition C, < C, + C, + 1
allows representation of an R/W unit in which parts of
both queue stations are realized in a common area. For
example, the IBM 3850 [10] uses a carousel in the R/ W
unit to hold tape cartridges (Fig. 4). The carousel has
three holes, each capable of holding one tape. The picker
places a tape in the carousel and the carousel rotates
first to bring the tape under the R/W station and then
again to allow a putaway. Conceptually, the two holes
not under the R/ W station can serve as either prequeue
or postqueue stations.

The automated tape library considered here uses a
carousel in the R/W unit, which operates as follows.
When a fetched tape is placed in the carousel and the
R/W station is free, the tape immediately is rotated to
the R/W station and an R/W service begins. However,
when an R /W service is completed, the carousel is not ro-
tated if the remaining holes all contain tapes that have
received R/W services and are waiting for putaway
services. The effect of this operation is that for a carousel
with C > 1 holes, the prequeue station capacity is C ~ 1
and the postqueue station capacity is C (i.e., C,=C—1,
C, = C, = C). Thus, the carousel in Fig. 4 corresponds
toC,=2andC,=C,=3.IfC=1thenC,=C,=C,=1.

The finite capacities introduce a blocking effect in that
the starts of services are occasionally delayed even
though the appropriate device is free. Thus, a fetch ser-
vice is blocked if all prequeue stations are filled to ca-
pacity and an R/W service is blocked if the postqueue
station of the same R/ W unit is full. Since blocking tends
to inhibit service, a degradation in performance is ex-
pected. The model to be developed will be studied to
determine the effect on average response time and maxi-
mum throughput as the number of carousel holes C is
varied. Determining that performance could be signifi-
cantly improved by increasing C is of interest since this
change involves relatively little additional cost.

e Description of library model

The automated tape library is modeled by the open
network of queues shown in Fig. 5. The time sequence
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Figure 5 Structure of network queuing model for tape library.

of requests for file accesses is represented by an arrival
process of customers at the network. Customers are of
a single type, i.e., not identified by the file requested. The
pickers and R/ W stations are represented by servers in
the model denoted by P,,---, P,,and R/W, -+, R/W,,
respectively. Associated with each read/write server,
R/W,, are two queues, preq; and postq, to represent
the prequeue and postqueue stations. Arrivals at the
network join a conceptual queue called the ferchg (fetch
queue). The fetchq has unlimited capacity while the
preq’s and postq’s of each R/ W unit are constrained by
C,, C, and C, as described above.

A customer arriving at the network is-routed as sug-
gested by the arrows in Fig. 5. A customer in the fetchq
eventually moves to a picker server to receive a fetch
service. (It is assumed that every file request requires a
fetch service.) He is then placed in a preq and eventually
moves to the associated R /W server for an R/ W service.
Next he is placed in the postq from which he eventually
moves to a picker server for a putaway service. At the
termination of the putaway service the customer departs
from the network. Figure 6 summarizes the lifetime of a
customer in the network. Also indicated is the response
time for a request which is defined as the time interval
between a customer’s arrival and the completion of his
R/W service. (Note that a customer receiving a service
is considered to be at the server and not in a queue.)

The queuing discipline for each queue in the network
is first-in, first-out. Algorithms are used to schedule fetch
and putaway services for the pickers and to determine
the routing to preq’s of customers receiving fetch ser-
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Figure 6 Lifetime of a customer in the network.

vices. It is convenient to call this set of algorithms the
picker scheduler. An important characteristic of the
picker scheduler is that the preq, say preq,, that a cus-
tomer receiving a fetch service will join is determined
when the fetch service begins. While the fetch service is
in progress it is said that the customer is destined
for preq,.

Let

n(preq,, t) = number of customers in preq, at time 7.

n(dest, t) = number of customers destined for preq,
at time 1.

n(postq;, 1) = number of customers in postq, at time .

n(R/W,, 1) = number of customers receiving an R/W
service from server R/ W, at time ¢.

The picker scheduier is invoked whenever 1) a cus-
tomer arrives at the fetchq, 2) an R/ W service is com-
pleted, or 3) a picker service (fetch or putaway) is com-
pleted. Scheduling decisions are made in zero time and
scheduled services start immediately. Picker services are
never interrupted. Upon being invoked, the picker
scheduler schedules all picker services that can be started
using the following rules:

1. A fetch service is scheduled at time ¢ if and only if
there is an available picker, the fetchq is nonempty
and there exists at least one eligible preq. Preq; is
eligible (to receive a customer) at time ¢ if n(preq,, ?)
+ n(dest;, r) < C, and n(preq,, 1) + n(dest,, 1) +
n(R/W,, 1} + n(postq,, 1) < C,. If A, is the set of
eligible preq’s at time ¢ then the destination preq, say
preq,, is chosen as follows: if |4,| = 1 (|A4,] is the
cardinality of 4,) then preq, = A4,; otherwise form a
sequence of sets 4, C 4,4, C 4,,4, C A, A, C A,
in order as necessary until an 4, is reached such that
|4,] = 1, in which case preq, = A4, (|4,| = 1 is guar-
anteed). A4, is formed from A, by retaining each preq
that minimizes n(preq,, ¢) + n(dest, t), A, is formed
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from A, by retaining each preq that minimizes n(R/W,,
1), A, is formed from A, by retaining each preq that
minimizes n(postq;, ¢), and A4, is formed from A, by
randomly choosing one preq with equal probabilities
assigned to the members of 4,. An equivalent selec-
tion rule is to choose preq, with equal probability
from the set of preq’s in 4, that achieve

min{J*[n(preq,, ) + n(dest, £)]+Jn(R/W, 1)

+ n(postq,, 1)}

where J > C, is an arbitrary constant.

2. A putaway service is scheduled at time ¢ if and only
if there is an available picker, no fetch service can
be scheduled, and there is a nonempty postq. The
postq to be serviced is chosen with equal probability
from the nonempty postq’s that achieve

max{Jn(postq, t) +Jn(R/W,, t) + n(preq,, 1)
i

+ n(dest,, t)}.

Observe that the picker scheduler first attempts to
schedule a service using rule 1 and, if unsuccessful,
an attempt is then made using rule 2. Thus, fetch ser-
vices are given priority over putaway services. It is
possible, however, for the picker scheduler to first suc-
cessfully schedule a putaway service using rule 2 and
then immediately successfully schedule a fetch service
using rule 1. For example, consider a model with C, =2
and C, = C, = 3. Suppose at time 7 there is at least one
customer in the fetchq and at least one picker is available,
but there are two customers in each preq and one cus-
tomer receiving R/W service from each R/W server.
Thus, there are no eligible preq’s and all the postq’s are
empty. Suppose further that at time ¢ a customer com-
pletes an R/ W service and joins an empty postq, say
postq,, The picker scheduler, unable to schedule a fetch
service, first schedules a putaway from postq,, Instan-
taneously, the putaway service starts, an R/ W service
starts at R/W, and preq; becomes eligible. A fetch ser-
vice destined for preq, is then scheduled immediately
(assuming there is another available picker). Even
though the picker scheduler can make more than one
decision at the same time, logically the decisions are
made sequentially.

Each read /write server, R/W,, takes customers from
preq, and places them in postq, independent of the actions
of other R/W servers (a separate data channel out of
the library is assumed for each R/ W unit). Thusan R/ W
service begins at R/ W, at time ¢ if and only if n(preq,, 1)
>0, n (R/W,, 1) =0 and n(postq,, 1) < C,.

The following probabilistic assumptions are made for
the model:

1. The arrival process is Poisson with rate A arrivals/s.
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2. Fetch and putaway service times for all pickers are
mutually independent and identically distributed
random variables. The common distribution is uni-
form on the interval g to b seconds (0 = a < b).

3. R/W service times for all R/W servers are mutually
independent and identically distributed random vari-
ables. The common distribution is uniform on the
interval ¢ to d seconds (0 = ¢ < d).

4. All interarrival times, picker service times, and R /W
service times are mutually independent.

e Discussion

Table 1 summarizes the model parameters whose values
are varied. The parameters a, b, ¢, and d of the ser-
vice time distributions are fixed at 1, 3, 4, and 12 seconds,
respectively. The chosen service time distributions are
intended as a simple approximation to reality. Recall
that a request for a file is modeled as an arrival but the
name of the requested file is not included explicitly. The
distribution of fetch and putaway service times is in-
tended to reflect the probabilities over all tapes of the
times to perform fetch and putaway operations. The
times are known to have a nonzero minimum and a finite
maximum; the uniform distribution was chosen for sim-
plicity. The uniform distribution for R/W service time
represents the case where the times to mount and de-
mount a tape are constants, the time to transfer a file is
constant (i.e., equal sized files) and a file is equally likely
to start at any position on the tape. Clearly other dis-
tributions for the service times could be used to reflect
the location of often used tapes in the storage area, un-
equal sized files and nonuniform file position on the tapes.
The simulation techniques used in this paper are still
applicable.

The chosen picker scheduler is intended to represent
the intuitively appealing scheme of assigning a customer
about to begin a fetch service to the R /W unit with the
lightest load and removing a customer about to begin a
putaway service from the R/ W unit with the heaviest
load. As stated, the effect on performance as the number
of carousel holes C is varied will be studied. As C is in-
creased the blocking effect presumably is reduced and
the performance is expected to improve. (It is interesting
to note that this increased performance may not occur
for some picker scheduling algorithms. For example, a
picker scheduler was considered that is identical to the
one described above except that the destination preq
was chosen with equal probability from the set of all
eligible preq’s. There was evidence from simulations that
if N > 1 and \ is small, increasing C from 1 to 2 caused
the average response time to increase! A possible ex-
planation is that for C = 1, if two customers arrive at an
empty system they necessarily will be assigned to dif-
ferent preq’s. If C = 2 there is a chance that both will be
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Table 1 Library model parameters.

Parameter Range Meaning
A >0 arrival rate
M =1 number of picker servers
N =1 number of R/ W servers
C =1 carousel capacity

destined for the same preq, the second customer incurring
a larger delay than if he entered an empty R/W unit.)

e Simulation programs

Because of the complex structure of the library model
(e.g., scheduling algorithms, finite capacity queues) and
the non-exponential service time distributions, the li-
brary model is analytically intractable. Even if expo-
nential service times were assumed, it would not be
computationally feasible to analyze the model. Conse-
quently, the model is studied via simulation, stMpPL/1[ 11]
is chosen as the simulation language because of its suit-
ability for queuing models, the ease of incorporating
various stopping rules for the simulation and the ease of
collecting and statistically analyzing data from the simu-
lation runs. SIMPL/1 is a PL/1 based simulation language
which is able to support asynchronous communicating
processes. SIMPL/I processes are used to represent each
picker server, each R/W server, the picker scheduler
and the arrival process. Separate random number streams
are used to generate the service times for each server and
to generate interarrival times for the arrival process. For
each simulation run the starting seeds are chosen to
insure independent runs.

As described in the next section, different simulation
techniques were used to estimate maximum throughput
and average response time; two experimental simulation
programs were written: Program [, which estimates
maximum throughput, consists of 1619 PL/1 statements
and Program 2, which estimates average response time,
consists of 1842 pL/1 statements. (SIMPL/1 contains a
PL/1 preprocessor. The SIMPL/1 source program for Pro-
grams | and 2 contained 265 and 399 statements, re-
spectively.) The logical correctness of the simulation
programs was verified primarily by running test cases.
(Thelibrary model degenerates to an analytically solvable
M/G/1queueif M=N=C,=C,=C,=1; see the last
part of the experimental results section.) The PL/1 pro-
grams were compiled with the optimizing compiler, but
little additional effort was expended to further reduce the
simulation time.
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Simulation methodology

e Estimation of confidence intervals

Recently, several methods have been proposed for es-
timating confidence intervals for certain response vari-
ables when simulating stochastic systems having a re-
generative structure (1, 2, 6]. Informally, a stochastic
system is said to be regenerative if with probability one
there exists an infinite sequence of increasing random
times, called regeneration points, at which the system
“stochastically restarts.” The evolution in time of the
system between successive regeneration points is called
a tour, or cycle, and the stochastic behavior of the sys-
tem during different tours is independent and identical.
This underlying regenerative structure guarantees that
for many response variables, estimates for the response
variables based on a single run of the simulation are ap-
proximately normal if the run is sufficiently long and if
certain random variables associated with a tour (e.g.,
the time duration of a tour) have finite first two moments.
Furthermore, the variance of the estimates can be es-
timated either from independent replications of the sim-
ulation [6] or by observing a fixed number of tours during
a single run of the simulation {1, 2]. Thus, provided a
simulation run is sufficiently long, a theoretical basis
exists for estimating confidence intervals for many re-
sponse variables in regenerative stochastic systems.

The regenerative methods are applicable to simulating
the tape library model if conjecture CI1, which is pre-
sented later in this section, holds.

For the tape library model, let g, denote the time spent
in the fetch queue plus the time spent in the prequeue for
the kth customer to arrive, and denote by r, this cus-
tomer’s response time, i.e., the time from when he arrives
until the completion of his R/W service. Assuming the
limit exists with probability one, we wish to obtain point
and confidence interval estimates for

Q=lim ¥ q./n
k=1

The average response time

R=lim 3 r/n

k=1
is related to Q by
R=0Q+E[T,]+ E[Tyy] (1)

where T and T, are the fetch and R /W service times.
Point and confidence interval estimates for R are ob-
tained directly from the corresponding estimates for
Q using (1).

Denote by & the event of a customer arriving at the
empty system and assume event & occurs at time 7, = 0.
It is clear, due to the probabilistic assumptions made
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for this model in the previous section, that whenever
event & recurs, the system stochastically restarts. In
order to apply the regenerative simulation method to
estimating Q, it is necessary that two additional con-
ditions be satisfied:

1. Event & occurs infinitely often with probability one as
the system evolves in time.

2. The random variables » and o, respectively the num-
ber of customers served during a tour and the sum
of the times spent in the fetch queue and prequeues
for all customers served during a tour, have finite
first and second moments.

For certain open queuing systems (e.g., the M/ G/ 1
queue [ 8]), these conditions hold if and only if the input
rate is not too high (i.e., the traffic intensity is less than
one) and the service times have finite fourth moments.
A traffic intensity for the tape library model is defined
next.

Suppose that instead of an arrival process of cus-
tomers at the system, the tape library model has an in-
finite number of customers in the fetch queue at time zero
(the fetch queue never empties). Call this the saturated
system; let D*(¢) denote the number of departures from
the saturated system in the time interval [0, #) and let

AFE = !1_)13 D*(1) /¢,

(assuming this limit exists with probability one). The
quantity A* is called the saturated throughput of the sys-
tem and is itself an interesting performance measure.
Define the traffic intensity p for the system to be p =
A/A*. The following conjecture is made for the tape
library model:

Cl1.If p < 1 then Q is finite, the event & occurs infi-
nitely often with probability one and E[»], E[+’],
E[o] and E[¢”] are finite. If p > 1 then Q is infinite
and there is a positive probability the event & will
not recur.

Let {z,: k=1, 2, -} denote the increasing sequence
of random times at which event & recurs. The evolution
of the system between 7,_, and 7, is the kth tour. Denote
by », the number of customers served during the kth
tour and by o, the sum of the queuing times for all
customers served during the kth tour ({v,: k=1,2,--}
and {o,: k=1, 2, -} are sequences of i.i.d. random
variables where for each &, v, is distributed as v and o,
is distributed as o.) Let

n

o(n) =73 o/n,
k=1
v) =S v/n,
k=1
Q(n) =o(n)/v(n), (2)
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and
Vi = Lo, —o(m]*/ (n— 1),
k=1

n

Vz(n) = 2 [V)C— V(n)]z/(n_ 1),

k=1
V() =3 [0 — a(m1lv, — v(m)]/ (n— 1),
k=1

V(n) =V,(n) —20(n)V,(n) + [Q(n)V,(n).

It can be shown (e.g., in the same manner as in [8]) as
a direct consequence of conjecture C1 that if p < 1,
then }11_rp» Q(n) = Q with probability one (in which case
the point estimate Q(n) is said to be a strongly consist-
ent estimate of Q) and that, for »n sufficiently large,

1y(n, a) = [Q(n) —8(n, a), Q(n) + 8(n, a)] (3)

is approximately a 100 - a% confidence interval for Q
where

8(n, ) ="' [(1+a)/2)]1[V(n)/n)/v(n),

&() = (1/2m)% ['_ e~ dx is the probability distribu-
tion function of a normal random variable having mean
zero and variance one, and ¢~ (+) is the inverse of the
function ¢(-). (If «=0.95, corresponding to a 95% con-
fidence interval, then ¢~ '[(1 + @)/2] = 1.960.) Thus,
a point estimate for @ and an approximate confidence
interval for Q can be computed based on observing values
of o and v over » simulated tours. Point and confidence
interval estimates for R, denoted respectively by R(n)
and /,(n, a), are obtained by adding the sum of the mean
fetch service time and mean R /W service time to Q(n)
in (2) and (3) respectively; i.e.,

R(n)=Q(n) + E[T ]+ E[Ty] (4)
and
I,(n, &) = [R(n) —8(n, a), R(n) +8(n, a)]. (5)

While conjecture C1 is strongly believed to hold
for this model, the authors have been unable to prove
its validity. Also, it is known that this conjecture is not
true for some queuing models. For example, Whitt [12]
shows that for the G1/G /s queue (s server queues with
i.i.d. interarrival times and i.i.d. service times) if s > 1
the event & need not occur infinitely often with prob-
ability one if p < 1 unless there is a positive probability
that an interarrival time exceeds a service time. (If a
service time exceeds an interarrival time with probability
one, then the system never empties with probability one.)
Of course, the probability that an interarrival time ex-
ceeds a service time is positive if the arrival process is
Poisson (M/G/s queue). The authors have assumed
the validity of the conjecture when simulating the tape
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library model with Poisson arrivals since the probability
that the system empties is then positive, although it may
not be equal to one. If the arrival process is not Poisson,
but the interarrival times are iid. with distribution
function having a density on the whole positive real line,
then the probability that the system empties is again posi-
tive and the conjecture is believed to hold. Thus, regen-
erative simulation techniques are not necessarily re-
stricted .to systems with Poisson arrivals. The problem
of determining the class of queuing models for which
conjecture C1 holds is currently being investigated.

The saturated throughput A* is not known and must
itself be estimated via simulation. The saturated system
is not regenerative (except in special cases) so that the
regenerative method is not applicable here. The saturated
throughput is estimated by performing U independent
replications of a simulation of the saturated system. Each
replication is stopped when K customers have departed
from the system. Let 7(K) denote the time at which the
Kth departure from the system occurs and let A*(K)
= K/7(K). Let A\ ,*(K) denote the value of \*(K) ob-
served on the uth replication, u =1, -+, U. Then a point
estimate of A* is given by

N (K, U) =S \*(K) /U (6)

and the variance of A*(K) can be estimated by

U
VE(K, U) =3 [N (K) = MK, U/ (U=1).

u=1
By relying on the robustness of the t-statistic when the
observations A\ *(K) are non-normal (see Chapter 10
of [13]), an approximate 100 - a% confidence interval
for A* is given by

I*(K, U, o) =[M(K, U)—8*(K, U, a), \*(K, U)
+ 6 (K, U, a)], (7)

where
8% (K, U, a) =0, [(1 +a) /2][V*(K, U) /U,

6,_,(-) is the probability distribution function of the
t-statistic with U — 1 degrees of freedom and 0;11(-) is
the inverse of ¢,_,(-). If & = 0.95, corresponding to a
95% confidence interval, and U = 10 then

0, (1 +a)/2] =2.262.

According to conjecture C1, A* is the maximum
(actually the supremum) input rate for which the average
response time is finite. Let D(¢) denote the number of
departures from the system with Poisson arrivals in the
time interval [0, 7). It can be shown, as a consequence of
C1, that if A < A* then !1_)1{01 {D(t)/t] = \ with prob-
ability one, i.e., the output rate or throughput equals
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the input rate. Thus, the saturated throughput A* is also
the maximum throughput for which the average response
time is finite.

In summary, to investigate a given configuration of the
tape library model, the model is first simulated with a
saturated fetch queue in order to estimate A*. Then the
model is simulated with Poisson arrivals for any input
rate A < A* and the average response time R is esti-
mated using techniques based on the regenerative struc-
ture of the model.

* Comparing system variants (multiple comparison
procedures)
A prime reason for simulating a system model, such as
for the tape library, is to investigate the effect of dif-
ferent system designs on system performance. For the
tape library model, it might be desired to compare the
average response times for two or more system vari-
ants. Statistical methods for making such comparisons
are called multiple comparison procedures [14]. One
such procedure is to obtain point and confidence interval
estimates for all pairwise differences between the
average response times for the system variants.
Suppose there are L system variants to be compared.
Let the superscript / refer to the /th system variant.
Assume that each system variant has traffic intensity
less than one. Each system variant is simulated indepen-
dently for the same number 7 of tours. It can be shown
that for each [, = 1,--- L, niv®(n) (Q® (n) — Q%) is
asymptotically distributed as a normal random variable
having mean zero and variance V*. Denote this asymp-
totic normality by

v (n) [QV(n) — QP ~ N(0, V).

By applying theorem 4.4.8 of Chung [15], it is permis-
sible to replace v (n) by E[v(“] with the result that

w0 - ]~ Mo v/ 12

Since 0 (n) and QY (n) are independent for j # 1, it
follows that

" (m = 0% (m - (0" - 0]
~ N[O, VO/ERY]) + V“'>/E[v”>])2].
Now replacing v E[v"], V¥ and E[+v?] by V¥ (n),
Y (n), V¥ (n) and v (n), respectively, and again apply-
ing theorem 4.4.8 of Chung [15] yields
0" =0V - (0" - "]
=V /BT + Ve 1
470 ~ N(0, 1).
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Hence, for n sufficiently large,

I(l’j)(n, a)

= [0 = 0Vn) =8 (n, @,

0" (m = 0% (n) +5""(n, )| (8)
is approximately a 100 - a% confidence interval for
0¥ — 0" where
8" (n, a) = ¢ [(1 +a)/2]

{0 /T
V) /D1
Clearly
Q"(n) — 0" (n) (9)

is a point estimate for 0 — Q. If the mean fetch ser-
vice times and mean R /W service times are the same for
system variants / and j, then (8) and (9) are, respectively,
confidence interval and point estimates for R’ — RY.
Otherwise, (8) and (9) are adjusted accordingly.

In order to make a simultaneous confidence statement
about all pairwise differences Q‘” - Q(“, l=1,--,L—1,
j=1+1,--- L, a conservative procedure is to use the
Bonferroni inequality [14]. Thus,

Pr{Q"— 0V e 1"“P(n, ), 1=1,-- L —1,

J=Il+1,--+ L}
zl—Lz_l i (1—-Pr{Q" = QP €1 (n,a)})
=1 j=i+1
R 1—-(1—a)L(L—1)/2. (10)

If L and 1 — o are small, say L =3 and 1 — a =0.05, this
bound can provide a useful approximation to the exact
joint probability [14].

It is also interesting to compare the saturated through-
put for L system variants. This is accomplished by per-
forming U independent replications for each system
variant and computing for each [ and j # [ a point esti-
mate for A*® — A* given by

(K, U) = axP(K, U) (1)

and an approximate 100 - a% confidence interval for
AxY —2\*9 given by
(K, U, o) = [x*‘”(K, U) —aY(K, U)

- &K, U, &), \*"(K, U)

— 9K, U)

+ 8K, U, a)], (12)
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Table 2 Configurations of the tape library model.

Table 3 Estimates of saturated throughput A*.

Basic Configuration Point 95% confidence

configuration label M/N/C M N C, C, C, estimate interval

i Configuration A% (1000, 10) 1*(1000, 10, 0.95)

1/2/1 bbb 1/2/1 0.15871 (0.15800, 0.15942)

Balanced { 1/2/2 212 2 1/2/2 0.23417 (0.23299, 0.23535)

1/2/3 1 2 2 3 3 1/2/3 0.24448 (0.24372, 0.24523)

Picker 1/4/1 1 4 1 1 1 1/4/1 0.24815 (0.24724, 0.24906)

limited 1/4/2 14 1 2 2 1/4/2 0.25115 (0.24999, 0.25231)

1/4/3 1 4 2 3 3 1/4/3 0.25139 (0.24994, 0.25284)

R/W 2/2/1 2.2 1t 11 2/2/1 0.19506 (0.19432, 0.19580)

limited 2/2/2 2.2 1 2 2 2/2/2 0.25069 (0.24890, 0.25248)

2/2/3 2 2 2 3 3 2/2/3 0.24957 (0.24813, 0.25101)

where Since utilizations are never greater than one it follows

8V (K, U, a) = 6y ,[(1 +a)/2]
x {[V*([)(Kv U)
+ V9K, U)]/ U}

As discussed in Scheffé [ 13], Chapter 10, even for small
U the validity of the above confidence interval is insensi-
tive to non-normality of the observations and to in-
equality of the variances of the two populations, i.e.,
to Var[)\u*(”] # Var[\,*"], j # L. In order to make a
simultaneous confidence statement about x*“ — \*V,
I=1,--,L—1,j=I1+1, -+ L, the Bonferroni inequality
can again be used.

Experimental results

In this section the maximum throughput and average
response time for several configurations of the tape li-
brary model are studied via simulation experiments. The
section begins with a description of the configurations
considered. Next the simulation experiments and results
are presented and, finally, the validity of the techniques
used is discussed.

Recall that the goal of the experiments is to under-
stand the effect of the carousel capacity C on perfor-
mance. For C sufficiently large the blocking effect should
be negligible and the performance of the tape library
should not depend on C. In particular, consider the satu-
rated system. It can be shown that for each R/ W server
and each picker server the utilizations S, and S,
respectively, i.e., the fractions of time the servers are
busy, are given by

SR/W =\E[ TR/w]/N’
Sp =M (E[T.] + E[T,])/M,

where T, is the putaway service time.
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that
A* = min {N/E[Tyw], M/(E[T.) + E[T,])}. (13)

Inequality (13) holds for any value of the carousel ca-
pacity C. If N/E[Tyy] < M/(E[T.] + E[T,]) the
system is said to be R/ W limited since the R/ W servers
provide the bound on A*. The system is picker limited
if the inequality is reversed and balanced if N/E[T,y]
= M/(E[T,] + E[T,]). Three basic configurations of
the model are studied corresponding to picker limited
(M=1,N=4), R/W limited (M =2, N =2) and bal-
anced (M = 1, N = 2). For each basic configuration,
carousel capacities C = 1, 2, and 3 are considered. Using
labels of the form M/N/C, Table 2 summarizes the
nine configurations. Observe that for all configurations
the bound on A* in (13) is 0.25 customer/second.
(Recall that 7, and 7, are uniformly distributed on [ 1, 3]
and Ty, is uniformly distributed on [4, 12].)

The saturated system was simulated using Program 1.
For each configuration ten independent replications
were simulated. Each replication was started with the
fetch queue nonempty (logically containing an infinite
number of customers) and no customer elsewhere.
Each replication was terminated when 1000 customers
had departed from the network. Point and 95% confi-
dence interval estimates for A* were calculated from (6)
and (7), respectively, where K = 1000, U = 10, and «
= 0.95. The results are shown in Table 3.

Evidently, the effect on A* of blocking is most promi-
nent for the balanced system. In all cases, however, the
blocking effect appears minimal for C = 2 (the point
estimates for A* are all within 7% of 0.25 if C = 2). For
this reason, capacities larger than 3 were not considered.

Comparisons of the saturated throughputs at differ-
ent capacities were made using the multiple comparison

an
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Table 4 Saturated throughput comparisons.

)\* G) _ )\*(ll
Basic
configuration  Capacities Point 95% confidence
M N [ estimate interval
1 2 1 2 0.07546 (0.07418, 0.07674)
1 3 0.08577 (0.08481, 0.08673)
2 3 0.01031 (0.00901, 0.01161)
1 4 I 2 0.00300 (0.00163, 0.00437)
1 3 0.00324 (0.00165, 0.00483)
3 0.00024  (—0.00148, 0.00196)
2 2 1 2 0.05563 (0.05383, 0.05743)
1 3 0.05451 (0.05300, 0.05601)
2 3 -0.00112  (—0.00326, 0.00101)
procedures. For given M and N let A*" = \* for basic

configuration M/ N/ Table 4 shows point and 95% con-
fidence interval estimates for A*Y’ — A* calculated from
(11) and (12) for (/,j) = (1, 2), (1, 3), and (2, 3) for
each basic configuration. Using inequality (10) allows
one to make the statement for each basic configuration
that all three differences are contained in their respective
intervals with probability at least 1 — (0.05) X 3 =0.85,
where 0.85 is an approximation to the true bound.

The muitiple comparison techniques allow stronger
statements to be made about the effect of varying the
capacity C than can be made solely from the estimates
in Table 3. As an example, consider the statements that
can be made about the effect of increasing C from 2 to 3
for the balanced system (M = 1, N = 2). From Table 3,
if the saturated throughputs for configurations 1/2/2
and 1/2/3 are both contained in their respective inter-
vals then A*® — A*® s contained in the interval
(0.00837, 0.01224), which has width 0.00387. This
event occurs with probability (0.95)> = 0.9025. From
the multiple comparison technique, A*® — A*®’ has
an estimated 95 % confidence interval (0.00901,0.01161)
in Table 4, which has width 0.00260. In either case the
mean of the difference is estimated to be 0.01031, but
the latter statement is stronger (95% vs 90%) and is for
a narrower interval (0.00260 vs 0.00387).

At first glance the point estimates of the saturated
throughput in Table 3 suggest some possible difficulties.
Namely, the estimated values of A* for configurations
1/4/2, 1/4/3 and 2/2/2 exceed the known bound of
0.25. Inspection of the 95% confidence intervals, how-
ever, reveals that rates below 0.25 are never excluded.
Similarly, A* appears to decrease as C increases from 2
to 3 for M = N = 2. In Table 4 the estimated 95% con-
fidence interval for this difference is (—0.00326, 0.00101),
suggesting that no strong conclusion about this effect
should be made.
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Point and confidence interval estimates for the average
response time R were obtained for three values of the
input rate A. Based on the estimates of A* the three values
chosen were A = 0.05, 0.10, and 0.15 customer/sec-
ond (the lowest A* estimate was 0.15871 with a 95%
confidence interval of (0.15800, 0.15942) for the 1/2/ 1
configuration). It is assumed subsequently that A* > 0.15
for all configurations and thus that the traffic intensities
are less than one.

The simulation experiments were made using Program
2. For A = 0.05 and 0.10, 500 tours were simulated for
each configuration and for A = 0.15, 1000 tours were
simulated for each configuration. All simulations were
independent. The number of tours for each value of A
was chosen by performing pilot simulation runs and ob-
serving the number of tours necessary to yield estimated
95% confidence intervals that had widths not greater
than 10% of the point estimates. (A later investigation
of the coverages of these intervals, described at the end
of this section, raises the possibility that the number of
tours chosen, especially for A = 0.15, may be too small
to strongly conclude that the estimated confidence in-
tervals are valid.)

Point and 95% confidence interval estimates for the
average response time R were obtained using (4) and
(5) for each configuration and each value of A. The re-
sults are shown in Table 5. The effect of blocking is seen
to be most dramatic at A = 0.15, especially for the bal-
anced configuration: Increasing C from 1 to 2 causes the
estimated average response time to decrease from 66.487
to 13.674 seconds. As with A*, increasing C from 2 to
3 has relatively little effect on the average response time.

Comparisons of the average response time for different
configurations were made using the multiple comparison
procedures. For given M, N, and A let RV = average
response time for configuration M/ N/ with input rate
\. Point estimates and 95% confidence interval estimates
for R — R over the nine configurations and over the
three input rates were calculated from (9) and (8) and
are shown in Table 6. The hypothesis that increasing
the capacities always decreases the average response
time corresponds to all RV — R, (1,j) = (1,2), (1, 3),
(2, 3) being negative. It is seen that for five cases the
point estimate of RY — R" s positive, but in all cases
the estimated 95% confidence intervals include negative
values and the hypothesis cannot be rejected.

The total simulation time using Program 1 to estimate
A* was 360 seconds and the total simulation time using
Program 2 to estimate R was 526 seconds. In the latter
case 33, 67 and 426 seconds were expended for the
cases A = 0.05, 0.10, and 0.15, respectively.

The confidence interval /,(n, a) for the average re-
sponse time R given by (5) is an approximate 100 - a%
confidence interval; i.e., the probability that R is con-
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Table 5 Point and 95% confidence interval estimates for average response time R.

Configuration A= 0.05 (500 tours) A= 0.10 (500 tours) A= 0.15 (1000 tours)
1/2/1 10.907(10.679, 11.135) 14.572(13.785, 15.360) 66.487(52.921, 80.053)
1/2/2 10.481(10.370, 10.592) 11.615(11.364, 11.865) 13.674(13.314, 14.035)
1/2/3 10.579(10.438, 10.721) 11.645(11.377, 11.912) 13.739(13.440, 14.037)
1/4/1 10.255(10.204, 10.305) 10.779(10.605, 10.954) 12.209(11.837, 12.581)
1/4/2 10.257(10.198, 10.316) 10.545(10.478, 10.611) 11.174(11.0285, 11.322)
1/4/3 10.222(10.176, 10.269) 10.630(10.539, 10.722) 11.096(10.991, 11.201)
2/2/1 10.467(10.293, 10.640) 12.181(11.658, 12.704) 18.159(17.197, 19.121)
2/2/2 10.387(10.262, 10.513) 11.179(10.985, 11.372) 12.996(12.636, 13.357)
2/2/3 10.324(10.219, 10.429) 11.037(10.877, 11.197) 12.723(12.475, 12.971)

tained in /,(n, @) is approximately equal to o, and the
approximation becomes better as n is increased. The
probability that R is contained in /,(n, ) is called the
true coverage. In addition, the point estimate R(n) given
by (4) is, in general, biased for finite n,i.e., E[R(n)] # R,
but for n sufficiently large the bias is small. A question
arises as to how large n must be for the confidence in-
terval approximation to be satisfactory and for the bias
to be small. If R were know, the bias and true coverage
could be estimated via simulation. If, in the model, there
is one picker, one R/W unit and if C, =C,=C,= 1,
then at most one customer can be in the R/ W unit or at
the picker at any one time. The model thus degenerates
to an M/ G/ 1 queue with service time equal to the sum
of the fetch, R/ W and putaway service times. The aver-
age response time for this degenerate model is known.
In [8] the bias of R(n) and true coverage of I,(n, a)
for a=0.95 are estimated by performing 100 independent
replications of a simulation of the M/ G/ 1 queue; each
replication is terminated after n tours have been com-
pleted. Traffic intensities of 0.2, 0.5 and 0.8 and several
values of n are considered. It is found that the bias of
R(n) is not significant even for values of n as small as
50. The estimated coverage, however, is quite low for
small n. For p = 0.2 and p = 0.5 the estimated coverage
is approximately 0.80 for n = 50 but increases to above
0.90 for n = 500. For p = 0.8 the estimated coverage
is only 0.68 at n = 50 and 0.87 at n = 1000. (In [8] the
average waiting time W = R + E[T,] is considered but
the bias and coverage results are identical for W and R.)

It is of interest to consider the validity of the con-
fidence intervals for the library model for other values
of M, N and C, but since the average response time is
not known, a method difference from that in [8] must be
used. The balanced system, i.e., the one with M = 1,
N =2, and C = | was selected for study at an input rate
A = 0.10. A single long simulation of 30 000 tours was
performed and point and 95% confidence interval esti-

SEPTEMBER 1975

Table 6 Average response time comparisons.

Basic
configuration  Capacities A=0.05
M N i RY —R"
1 2 1 2 —0.42673(—0.68033, —0.17313)
13 —0.32817(~—0.59663, —0.05972)
2 3 0.09856(—0.08135, 0.27847)
4 1 2 0.00207(~0.07545, 0.07959)
I 3 —0.03258(—0.10121, 0.03605)
2 3 —0.03465(—0.10957, 0.04028)
2 2 1 2 —0.07936(~0.29349, 0.13477)
1 3 —0.14295(—0.34570, 0.05981)
2 3 —0.06359(—0.22731, 0.10014)
A=0.10
M N I RV —RY
1 2 1 2 —2.9578 (—3.7843, —2.1313)
1 3 —2.9279 (-3.7597, —2.0960)
2 3 0.02991(—0.33651, 0.39633)
1 4 1 2 —0.23484(—0.42164, —0.04804)
1 3 —0.14896(~-0.34607, 0.04815)
2 3 0.08588(~—0.02721, 0.19897)
2 2 1 2 —1.0023 (—1.5601, —0.4444)
1 3 —1.1442 (—1.6913, -0.5970)
2 3 —0.14189(~0.39277, 0.10900)
A=0.15
M N I j RY —RY
1 2 | —52.813 (—66.384, —39.242)
I 3 —52.749 (—66.318, —39.179)
2 3 0.06447(—~0.40363, 0.53258)
1 4 1 2 —1.0355 (—1.4355, —0.6355)
1 3 —-1.1133 (—1.4994, —0.7272)
2 3 —0.07779(—0.25926, 0.10368)
2 2 1 2 —5.1627 (—6.1896, —4.1358)
13 —5.4360 (—6.4292, —4.4428)
2 3 —0.27334(—0.71063, 0.16395)
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Table 7 Estimates for 1/2/1 configuration and A = 0.10.

Average response time
95% confidence

Point estimate interval Experiment
14.755 (14.606, 14.905) 30 000 tours
14.599 (13.888, 15.310) Averages over

100 runs of
1000 tours each

mates of 14755 and (14 606, 14905), respectively,
were obtained for R. Next, 100 independent simulation
runs of 1000 tours each were performed. The resulting
estimates, averaged over the 100 runs, are shown in
Table 7 together with the results for 30 000 tours. It
was assumed that the confidence interval based on 30 000
tours was valid, i.e., that this interval, call it /(30 000),
contains R with probability 0.95. Thus, if 7(30000)
is contained totally within an estimated confidence in-
terval based on 1000 tours, then R is contained in the
latter interval with probability at least 0.95. 1(30 000)
was observed to fall totally within 79, partially within 16,
and totally outside of 5 of the 100 estimated confidence
intervals based on 1000 tours. This suggests that the
true coverage for 1000 tours is between 0.79 and 0.95.

From this experiment one cannot strongly claim or dis-
claim the validity of the 95% confidence intervals es-
timated from simulation runs of 1000 tours. However,
it is reasonable to conclude that the true coverages for
the confidence intervals in Tables 5 and 6, calculated from
runs of 500 or 1000 tours, are not so small that the con-
clusions based on these tables are meaningless. Further
investigation is suggested here, but was not carried out
due to the computer time required. (It took substantially
more computer time to perform the experiment in Table 7
than it took to perform all the experiments in Tables
5 and 6.)

Conclusions

The simulation study presented in this paper illustrates
several issues that arise concerning the application of
regenerative simulation techniques to complex queuing
models. The model considered consists of an open net-
work of interconnected queues and incorporates schedul-
ing algorithms, finite capacity queues and non-exponential
service times. Since all service times and interarrival
times for this model are i.i.d. it is clear that the system
stochastically restarts whenever a customer arrives at
the empty system. However, in order that the regenera-
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tive techniques be applicable, stronger conditions must
be satisfied. It is necessary that the system stochastically
restart with probability one and that certain random vari-
ables associated with a tour have finite first two moments.
Subject to certain restrictions on the interarrival and ser-
vice times, e.g., the interarrival time distribution has a
density on the whole positive real line and all service
times have finite fourth moments, it was conjectured that
the above conditions hold if the traffic intensity (input
rate/ saturated throughput) is less than one. Proving the
validity of this conjecture is an open problem. Nonethe-
less, the regenerative techniques were applied when
simulating the model for traffic intensities less than one.
The system was observed to empty out often during the
simulation runs, although this does not guarantee the
validity of the conjecture.

When the regenerative techniques are applied, the
simulation duration should be large enough so that the
estimated confidence intervals are approximately valid
and so that the widths of the intervals are small enough
to provide useful information about the response vari-
ables being estimated. (These issues arise when any
technique is applied to estimate confidence intervals.)
The validity issue is the more difficult to address. The
test of validity proposed at the end of the previous sec-
tion may be too costly to apply in practice. Testing the
point estimates for normality, using say the Kolmogorov-
Smirnov test of fit, is also costly. Results forthe M/ G/ 1
queue [ 8] and results from the test in the previous section
provide some evidence that simulation durations of 500
or 1000 tours are sufficient to provide reasonably valid
results for the tape library model, with the longer dura-
tion required at higher traffic intensities. Since, the con-
fidence interval width is (approximately) inversely
proportional to the square root of the number of tours,
a pilot run should provide a rough indication of how large
the simulation duration should be for a desired confidence
interval width.

In summary, regenerative simulation was found to be
a viable tool for numerically studying a complex queu-
ing model which is not analytically tractable. Moderate
simulation durations (durations of 500 and 1000 tours
were used where the average computer time to simulate
a tour was 0.03 second using a large computer) were
sufficient to obtain fairly accurate confidence interval
estimates. The model was first simulated under saturated
conditions with independent replications used to estimate
a confidence interval for A*, the maximum input rate for
which regenerative simulation is applicable.
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