
M. Z. Ghanern

Study of Memory Partitioning for Multiprogramming
Systems with Virtual Memory

Abstract: In this paper, we investigate the effect that the shape of the lifetime function has on the optimal partition of the main memory
of a computer among N programs, where the criterion of optimality is maximization of CPU utilization. We used a simple queuing model
as a base for understanding this interrelationship. The lifetime function is the average of the execution intervals of a program as a func-
tion of the amount of memory allocated. When the lifetime function is convex and is proportional to mu, where M is the size of memory,
then the optimal partition is obtained by dividing the main memory equally among q of the N programs (q is the optimal degree of multi-
programming). Thus. the best partition is always one of two policies: allocate all memory equally among the q programs or allocate all
memory to one program. When the lifetime function has a degenerate S shape (is proportional to m" when rn 5 M, and remains constant
beyond m,) , then there exists a memory size m such that no program can have a memory size other than H I or m,: if any program has a
memory size greater than m,, each other program should have a memory size that is equal to or greater than m,.

Introduction
One of the most important purposes of multiprogramming
in a virtual memory computer system is to increase utili-
zation of the central processor. The amount of main mem-
ory that must be allocated to each program is an impor-
tant factor in determining this utilization. Belady [I] has
shown experimentally that biasing the partition of main
memory increases CPU utilization, and he accounted for
this result by the convexity of the lifetime function.
Denning and Spirn [2] explained Belady's observation
analytically using the fact that if the lifetime function f is
convex, then [f (M + A) + f (M - A) J is always greater
than 2 f (M) , where M is the size of memory. But that is
not enough to ensure better CPU utilization due to bias-
ing. Actually, if we follow that argument, it would lead us
to allocate all the memory to one and only one program,
because if f is convex, then [f(M + 2 8) + , f(M - 2A)]
is always greater than [f (M + A) + f (M - A)] .

This argument assumes that CPU utilization is propor-
tional to the sum of the two lifetime functions. In fact,
this neglects the overlapping effect due to multiprogram-
ming (i.e., when some programs are involved in resolving
page faults, others can utilize the CPU) .

In a previous paper [31, the author included the effect
of this overlapping in an analysis through a simple queu-
ing model dehgned to aid in understanding this aspect of
system behavior. In that model it was assumed that only
two programs could use the main memory. The author
found that when the lifetime function is strictly convex in
the region of the available memory and the degree of con-

vexity is less than a certain threshold value, then the op-
timal solution is a balanced partition (allocate to each
program the same amount of memory). If the degree of
convexity exceeds the threshold value, then memory
should be allocated to only one program (the extreme
partition). In other words, the best partition is always
one of the two policies; namely the balanced partition or
the extreme partition. The previous paper also discussed
the case in which the lifetime function has the degenerate
S shape shown in Fig. 1 .

In this paper, we extend the analysis presented in the
previous paper by considering that N programs can use
the main memory (where N can be any number less than
infinity). We first consider a lifetime function having a

Figure 1 Lifetime function.

1
f (m)

Inflection point

." 2 4
cl -

I Allocated main memory (m) 451

SEPTEMBER 1975 MEMORY PARTITIONING

Allocated memory

Figure 2 Very convex lifetime function.

Allocated momory

Figure 3 Lifetime function that is not very convex.

convex shape (i.e., can be expressed as Rma, where R
is the average execution interval of a program for an al-
located memory size of unity and rn is the size of mem-
ory). We then show that the optimal partition is to divide
the main memory equally among q of the N programs (q
is the optimal degree of multiprogramming). We then
consider a lifetime function having a degenerate S shape
(i.e., it can be expressed as Rm" when m is less than rn,
and as Rm," elsewhere). In this case, we found that there
exists a memory size m such that no program can have
a memory size other then m or m,, where m, is the inflec-

452 tion point. If any program has a memory size that is strict-

ly greater than rn,,, each of the other programs should
have a memory size that is greater than or equal to m,.

This result can be explained by assuming that we have
two programs I and J and that the available memory size
is M . Let V , be the average execution interval of program
I when we allocate all the available memory, M , to pro-
gram I ; let V, be the sum of the average execution interval
of program I and the average execution interval of pro-
gram J when we allocate an amount of memory of M / 2
to each program. Since the lifetime function is convex,
V , is always equal to or greater than V2, as is shown in
Figs. 2 and 3. Thus if we neglect the overlapping effect,
it is always better to allocate all the memory to one pro-
gram, but the overlapping effect changes the situation.
If we have a very convex lifetime function (CY is large),
the difference between VI and V, can dominate the over-
lapping effect, and it is better to allocate all memory to
one program (Fig. 2) . If a is not that large (e.g., results
in a straight line), the overlapping effect can dominate
the difference between VI and V, and it is better to divide
the memory between the two programs equally (Fig. 3) .

In the next section, we formulate the problem as a
closed queuing network problem and obtain a formula
for CPU utilization. We then simplify this formula to be
able to analyze the relation between two programs at
the optimal partition. Next we analyze the case in which
the lifetime function is an exponential function of memory
size. Finally, we analyze the case in which the lifetime
function has a degenerate S shape, which approximates
the actual behavior of programs.

Formulation of the problem
For purposes of investigating this particular problem,
we assume that we have N programs residing in main
memory. Furthermore, we assume that the time required
for bringing a page from the secondary memory to the
main memory has the mean value 1 / p and is governed
by a probability distribution having a rational Laplace
transform. We also assume that the time between page
faults for program i has the mean 1 / h i (where hi is a func-
tion of the amount of main memory allocated to program
i) and is governed by a proability distribution having a
rational Laplace transform. The service discipline of the
CPU is assumed to be processor sharing, Le., the CPU
cycles are divided equally among the programs that have
their required pages in main memory. The service dis-
cipline of the paging 1 / 0 device is assumed to be such
that the number of servers in the service center is greater
than or equal to N .

The assumption that a probability distribution has a
rational Laplace transform is a very general assumption.
The processor sharing discipline approximates the round-
robin scheduling mechanism, which should be used in
allocating the CPU because the distribution of the execu-

M. Z. GHENEM IBM J. RES. DEVELOP.

tion intervals has a long tail [4]. The assumption that the
number of I / O devices is greater than N is a simplifica-
tion to make the problem mathematically tractable.

Based on some recent results by Baskett, Chandy,
Muntz, and Palacios [5] on a general queuing network
modeling technique, it can be demonstrated (see Ap-
pendix) that CPU utilization is given by (1 - rI,,), where

G =
- -

where xi = p / h i , i = 1 , 2; . ., N .

Analysis of the objective function
The expression for the CPU utilization given in the pre-
vious section is rather complex. To be able to analyze
the relation between any two programs at the optimal
partition, we derive the objective function as a function
of two variables only (x i and xj) . The form that is derived
is less complicated than the form of Eq. (1).

Theorem I For given i and j , G can be written as

where

Bo = . . .
dl=O,l d2=0,1

" ' dN=O,l [(k = l 5 d k) ! fi
k = l

k # i , j k f i , j

Bl=e e .
dl=O,l d,=O,l

' " dN= 0,l [[(i, d k) + 2] ! fi '2).
k f i , j k#i, j

k = l

And it is clear that the Bo, B, , and B , , do not depend on
xi or xi.

Convex lifetime function
In this section we analyze the case in which the lifetime
function is an exponential function of memory size (i.e.,
is of the form Rm*. We analyze the case in which a > 1
for the following reasons:

+ B12(i, j b i x j , 1 . When 0 5 a 5 1 (i.e., the lifetime function is concave) ,
it is easy to prove that the optimal policy is to divide
main memory equally among the N programs.

2 . The case in which a < 0 (i.e., the lifetime function is
monotonically decreasing) is not important because

where Bo(i , j) , B l (i , j) , and B 1 2 (i , j) are functions of xl,
. .. xi-l. xi+l, . . ., xj-l, x ~ , ~ , . . ., xN; i.e., they do not de-

pend on xi or xj.

Proof By rearranging the order of summation in Eq. (1 1,
G can be rewritten as

it is the nature of the lifetime function to be mono-
tonically nondecreasing.

G = . .
dl=O,l d2=0,1

= e c.
dI=O,l d2=0,1

k f i , j k f i , j

+ [(5 ' k) ! fi '21)
k # i , j . k # i , j
k = l k = l

= B o + B l (x i + xj) + B1,xixj,

In this section we prove that when a > 1, any optimal
partition has to be in the form (M I q, M / q, . . ., MI q,
0, 0, 0) , where q is the optimal degree of multipro-
gramming. In particular when N = 2, we prove that there
exists an CY, such that when a > ac, the optimal partition
is to allocate all of memory to one of these programs and
if a 5 a,, the optimal partition is to divide the memory
equally between two programs.

We first show the maximization of the function

Bo + B,(xl + x2) + B12xlx, (2)

subject to the constraints

x1 = pR(m,)" , (3)

x2 = p R (m,) *, and (4)

is achieved at either (m, = m, = Ml,/2) or (ml, m, =

0, M1J. 4513

SEPTEMBER 1975 MEMORY PARTITIONINK3

Let / = (2 m , / M , ,) - 1 and

A = p R (M 1 2 / 2) ".

T h e n x l = A (l + E) " ,

x,=A(1 - /) O ,

Maximize f (i) = B,A (1 + /) + B,A (I - i) a But because a - 1 > (A B , , / B ,) , it implies that
+ B,,A2(1 - /')" in the range

-1 5 C Z 1.
ac 3 > 0. (17)

The function f (f) is an even function of p, i.e., f (E) On the other hand a'c/ a/' can be written as
=f(-/). Thus we will concentrate on examining f (f) for
positive values of G, i.e., for 0 5 C 5 1 . - =- a(1 - a)B,(1 - e)-"-,

e

Because ar2 + a(1 - a) B , (1 + C)-""l

d f = A B , a [(l +i)a- 'T(l -/)*- ' I ac = a (a - 1) B , [(1 - /) - " - " (1 + C) - " - ']

- 2A"B,,(I - f 2) " - l E , (10) 3 0. (18)

we have a stationary point at i = 0.
Because

a C . 2 = A B , o l (a - l) [(l + t) * ~ 2 + a 2 f (1 - /) a - 2]

- 2A2aB,,[(1 - P) ""l

- (a - 1)(2L2)(1 - P 2) a - - 2] , (1 1)

then at / = 0

a7
- = 2AB1a(a - 1) - 2A"B,,.
a/'

From Eq. (121, we can conclude that if a > 1 + (A B l 2 /
B,) , then .f will have a local minimum at the point = 0.

Proposition I If a > 1 + (A B J B ,) , then a f / a / is
greater than zero for all values of C E (0, 1) .

Proof Because

(1 2)

3 = A a [B 1 (1 + /) " - ' - B , (l ") " - ' ar
- 2AB,,Y(1 - f 2) "-7

From Eqs. (17) and (18) and from the fact that c = 0
at P = 0, we can conclude that (a f / a /) > 0 for all values
of E (0, 1) . Q.E.D.

Theorem 2 If a > 1 + (A B , , / B ,) , then f achieves its
minimum at k = 0. Moreover, it achieves its maximum
at G = I .

Proof We proved that if a > 1 + (A B , , / B ,) then f has a
local minimum at P = 0; from Proposition 1 , the slope
o f f is greater than zero for all values of C . Thus A in
this case, is a monotonically increasing function of /,
which implies that the local minimum at / = 0 is actually
a global minimum. Because f is a monotonically increas-
ing function of e and we consider the range 0 5 i 5 1 ,
it is clear that the maximum off is at e = 1 .

Theorem 3 If 1 5 a 5 1 + (AB1,/ B,) , then the maximum
off is achieved at either / = 0 or f = 1 .

Proof If a 5 1 + (A B , , / B ,) , we can conclude from Eqs.
(16) and (18) that

= Aa(1 - 6-2) "-1 a2 c - =- 0 for every Y .
B , -

(20)
B1 - ? A B , , /] (13) -

x I (1 - /) " - I (1 +o*-' Equations (19) and (20) and the fact that e(0) = 0 imply

and A a (1 - Y2)*" > 0 for all values o f f E (0, I) , all
that we have to prove is that

either that c is always negative or that if c is not always
negative it may become zero once at f = /* (for some
/ *) and then stay nonnegative in the interval (e*, I] .

mum at f = 0. The second case means that the global
maximum should be either at e = 0 or at / = 1 , depend-

e (/) = B,(1 - /) I - " - B,(1 + The first case means tha t f (f) possesses its global maxi-

454 for all values of / E (0, 1) . But ing on whetherf(0) > f (1) or f (1) > f (O) , respectively.

- 2AB,,f > 0 (14)

M. Z. GHANEM IBM .I. RES. DEVELOP.

Corollary 1 For any C, E (0, 1) , if J'(/ ,) > f (0) , then
thenf((,) 5 f (f) for all C E (/,, I] .

Proof If f(C,) > f (0) , then from Theorem 3 /, lies in
the interval (B * , 1 3 . Because c is nonnegative in the
interval (G *, 1 3 , then af/ a/ is nonnegative in that in-
terval. This implies that f (e,) 5 f (() for all (E ((,, 1 1 .
Q.E.D.

From Theorems 2 and 3 we can conclude thatf(/) has
its maximum value either at = 0 or at /i = 1. Now, we
Can conclude the following theorem.

Theorem 4 The maximization of the function B , + B, (x,
+ x2) + B,,x,x,, subject to the constraints x, = pR (m,) ",
x, = pR (m2) " (a 1 0) , and m, + m2 = M,, is achieved at
either (m , = m, = M12/ 2) or (m,, m2 = 0, M,,) .

Now we are ready to prove the main theorem.

Theorem 5 Let P = (m, , m2$. . ., mN) be a memory parti-
tion. Assume that all the programs have the same life-
time function, which is of the form Rm*(a 1 0) . If there
exist i and j such that mi # mj, mi > 0 and mj > 0, then
P is not an optimal partition.

Proof Without loss of generality let m, # m,, m, > 0 and
m2 > 0. Because

G (x,, X,> ' . ., xJ = Bo + B,(.x, + x,) + B,,x,x,,

using Theorem 4 we can redistribute M , , = (m , + m,)
between programs 1 and 2 and find another partition
(ml* = m,* = (m , + m,) / 2 or m,* = 0 and m2* = M,,)
that achieves a larger value of G , Le., a higher CPU
utilization. Thus P is not an optimal partition.

Theorem 5 can be restated as follows:

Theorem 5' Let P = (m,, m2; ' ., mN) be a memory parti-
tion. Assume all the programs have the same lifetime
function, which is convex and of the form Rm". If P is
an optimal partition, then P must be in the following form:

P = (m,, m,,. . ., mN) with

mi= M l j f o r i l j

= O f o r i > j .

Corollary 2 If N = 2, then there is an a? such that if a > ac
the optimal partition of memory is extreme (i.e., all
memory is allocated to one program). And if a 5 ac, the
best memory partition is unbiased (i.e., main memory
is divided equally between the two programs).

Proof The proof is obvious from the above theorems,
and a different proof is given in [6].

Degenerate S shape lifetime function
In practice, the lifetime function is not convex over the
entire region m P 0. Actually, if the amount of memory

SEPTEMBER 1975

~~~ ~ ~ 

allocated to a  program exceeds a  certain amount m,, the 
lifetime function increases little by additional  memory 
allocation [7]. Thus  the lifetime function  can  be  ap- 
proximated by a  function y1 ( m )  of the form: 

0 5  m 5  m, 

m Zrn,  
y , (m) = " (21) 

In  this section, we develop  results similar to  those  that 
were developed in the previous  section.  We analyze  the 
case  where a 1 1 for  the  same  reasons  that  were men- 
tioned  previously. The main result is that  there  exists a 
memory  size m such  that  no programs  can have a mem- 
ory size other than m or m,. 

Now we can conclude  the following theorem: 

Theorem 6 Maximization of the function 

Bo + B , ( x ,  + x,) + B,,x,x,, 

subject  to  the  constraints 

x, = PYl(m,) 9 

x, = w l ( m , ) ,  and 

m, + m2 = M,,  < 2m,, 

is achieved at either m, = m2 = Ml,/ 2 or (m,, m,) = 

(m,, M,, - ma).  

Proof Let y , (m)  be  the lifetime function,  and assume 
that H(yl ,   m, ,  m,) denotes  the value of the function 

Bo + B,(x, + x,) + B,,x,x, 

when x, is equal  to pyl(  m,) and x2 is equal to pyl(m,) .  
If m, < ma < m2, then  for  the function x = py , (m)  de- 
fined above, 

H(Y , ,  m,, m,) = Bo + B,pR(m,)" + B,pR(m,)* 

+ B,,p2R2 ( mlmo) a. 

But H ( y l ,  M,, - m,, m,) = Bo + B,pR(M,, - mol* + 
B,pR(m,)" + B,,p2R'[m,(M,, - m,)] .  Because M,, 
- rn, > m,, we can conclude that H ( y l ,  M, ,  - m,,  m,) 
1 H ( y l ,  m,, m,) for all m, and m2 such  that 

m, < m, < m,. (22) 

On  the  other  hand, if m, < m, and m, < m,, the following 
conclusion  can  be made: 

If H ( Y , ,  m,, m,) > H ( y l ,  MI,/ 2, Ml,/ 2,)  (23) 

then by Corollary 1 to Theorem 3, we  obtain 

H(Y, ,  ma, M,, - m,) 1 H ( y l ,  m,,  m,). (24) 

From  Eqs. (23) and (24) ,  we can conclude  that 

H(Y , ,  m,, m,) 5 max [ H ( Y , ,  m,, M,, - mol 

H ( Y , ,  M12/2,  M,,/2)1  (25) 456 

MEMORY  PARTITIONING 



456 

M. 2. GHANEM 

for any m, and m2 such  that m, < m, and m2 < m,. From 
(22)  and ( 2 5 ) ,  it is clear that  the maximum  value of 
H ( y , ,  m,, m,) should  be at  either  the point (M,,/2, 
Mlz/ 2)  or (m,, M,, - m,) . Q.E.D. 

Theorem 7 Maximization of the function 

B, + B,(x, + x2) + Bl,x,x,, 

subject  to  the  constraints 

x, = PY,(m,) 9 

x2 = PY, (m,) , and 

m, + rn, = M , ,  > 2m,, 

is achieved at all the points of the  set 0, where 

0 = { (m,*, m,*):m,* = (M,,/2) - y, 

mz* = (M1,/2) + Y ,  Y 5 (M,,/2) - mol. 

Proof At any  point (m,*,  m2*) that is in the  set 0, we 
have 

x1 = p R  (m,) and 

x, = pR (m,) a. 

Then H ( y , ,  ml*, mz*) can  be  written  as 

H(Y , ,  m,*, m,*) = B o  + 2B,pR(mO)* 

+ B,,p*R2(m,,)". (26) 

Let (m1, m,) be a point that is not in the  set 0. Then 
either m, < m, or m2 < m,. Without  loss of generality, 
assume m, < m,; then H can be  written as 

ff(vl9 m,, m,) = B,, + B,pR(m,)" + B,pR(m,)" 

+ B&R2 ( ml)  "( m,) a. (27) 

From  (26)  and  (27)  we  conclude  that H ( y l ,  ml*, m,*) 
1 H ( y , ,  m,, m,),  where (ml*, m2*) is a  point in the  set 
0 and (m, ,  m,) is a point that is not in the  set 0. Q.E.D. 

But it can  be  shown  that, at an optimal  partition, if 
any program  has an  amount of memory that is strictly 
greater  than m,, then it can  be proved that mi 3 m, for 
all i .  This  case can never  happen  except  when  the  total 
size of main memory is greater than Nm, (and  the prob- 
lem becomes  trivial). But if the  total size of main memory 
is less than or  equal  to Nm,, we can prove  the following 
theorem. 

Theorem 8 Let P = (m, ,  m,,. . ., m,) be a memory par- 
tition. Assume  that all the programs have  the  same  de- 
generate  S-shape lifetime function,  with inflection point 
m,, of the  form given by Eq. (21). Furthermore,  assume 
that  the total  size of main memory is  less  than,  or equal 

to, Nm,. If there  exist i and j such  that mi f mj (mi f 0 
or m,) and (mj  # 0 or m,), then P is not  an optimal par- 
tition. 

Procq? The proof is similar to  that  for  Theorem 3. 

Conclusion 
The main conclusion of this paper is that  the  best memory 
allocation tends  to  be unbiased  among q programs (where 
q is the optimal degree of multiprogramming). This  step 
decreases  the difficulty of the problem of finding the 
optimal degree of multiprogramming. We have  presented 
here  the  case  in which every program has  the  same life- 
time  function.  We conjecture  that in the  case of different 
programs the meaning of unbiased  memory  allocation 
must be changed to reflect the  characteristic of each 
program. 

Appendix 
Assume  that we have  two  stations,  station 1 representing 
the  CPU  and  station 2 the paging 1 / 0  device.  Consider 
the  state of station 1 to be represented by 

Y ,  = (n,,, n,,,. . ., nlN), 

where 

n,, = 1 if program r is being served  at  the CPU, 

= 0 if program r is not being served  at  the CPU. 

Also consider  the  state of station 2 to be represented by 

y2  = (n,,, a,,, . . ., n2,), 

where 

n,, = 1 if program r is using the 1 / 0  device, 

= 0 if program r is not using the I /  0 device. 

If Pi j  is the probability that a program  moves to  station 
j after  the completion of its service  at  station i, then p,,  
= 0, plz = 1 ,  pzl = 1 ,  and p,, = 0. So from [4], the equi- 
librium state probability can be written as 

P ( Y , ,  Y , )  = C&(Y,) g,(y,), (A I )  

where 

(A31 

Here n, is the number of programs served at the  CPU, 
Le., n1 = X:=, n,,. Then e,, and e,, must  satisfy the fol- 
lowing relations: 

e,, . 0 + eZr . I = e,, ( A41 

e lr  . 1 + e,, . 0 = e2,. (A51 

IBM J. RES. DEVELOP. 



F r o m  Eqs. (A.4) and (A.5) we  conclude  that  

‘ 1 ,  - e ~ r  - 

because nir = 0 or 1, then nir!  = 1. Therefore by  substi- 
tuting Eqs. (A2) and (A3) into (A l )  , we obtain 

But by knowing that e,, = enr and nl,  + n,, = I ,  Eq. (A6) 
can be writ ten as 

= C’fl1!(fi r=l x:’.), 

where x, = pr/ X,. T h u s  P(yl, y,) actually  depends  only 
on the state y , ,  which   was  not unexpected  because y, + 
y,=  (1, l;.., l ) . T h u s P ( y , , y , )   c a n b e w r i t t e n a s  

But because 

then 

Thus the probability that the CPU will be  idle,  P ( 0 ,  
0, . . ., 0) , can be written as lTo = c’ ,  which  implies  that 

r=1 

Acknowledgments 
The author   thanks L. A. Belady, P. J .  Denning, w. D. 
Frazer ,   and J .  R. Spirn for their  valuable comments. 

Cited  and general references 
1 .  L. A. Belady and C .  J .  Kuehner,  “Dynamic  Space Sharing 

in Computer  Systems,” Comm. A C M  12, 5 (May 1969). 
2. P. J .  Denning and J. R. Spirn,  “Dynamic  Storage Partition- 

ing,” 4th A C M  Operating  System  Symposium, IBM 
Thomas J .  Watson  Research  Center,  Yorktown  Heights, 
New  York,  October 1973. 

3. M. Z.  Ghanem,  “On  the Optimal  Memory  Allocation Prob- 
lem,” Reseurch  Report  RC  4443, IBM  Thomas  J. Watson 
Research  Center,  Yorktown  Heights,  New  York, 1974. 

4. M. Z .  Ghanem,  “Experimental Study of the  Behavior of 
Programs,” Research  Report  RC5427, IBM  Thomas  J. 
Watson Research  Center,  Yorktown  Heights,  New  York, 
1975. 

5 .  F. Baskett, K. M. Chandy, R. R.  Muntz,  and F. G .  Palacios, 
“Open,  Closed, and  Mixed Networks of Queues With Dif- 
ferent  Classes of Customers,” J .  A C M  22 (April 1975). 

6. P. H. Oden and G.  S .  Shedler, “A Model of Memory Con- 
tention in a Paging Machine,” Comm.  ACM 15, 8 (August 
1972). 

7. P. J .  Denning and G.  S .  Graham, “Multiprogramming and 
Memory Management,” Proc. l E E E  (Interactive  Com- 
puter Systems) 63, 924  (1975). 

8. R.  A.  Howard, Dynamic  Probubilistic  Systems, Vol. 1 ,  
John Wiley and Sons, Inc.,  New York 1969. 

9. A. E. Ferdinand,  “An Analysis of the  Machine Interference 
Model,” IBM Sysr. J .  10, 2 (1971 ) .  

10. J.  R.  Spirn, “A Model for  Dynamic Allocation in a Paging 
Machine,” 8th Annual Princeton  Conference on Informa- 
tion  Sciences  and  Systems, Princeton  University,  March 
1974. 

1 1 .  D.  D.  Chamberlin, S. H. Fuller, L. Y. Liu, “An Analysis of 
Page Allocation  Strategies for Multiprogramming Systems 
with Virtual Memory,” IBM J .  Res.  Develop. 17, 404 
(1973). 

Received  October 14, 1974; revised  April 23, 1975 

The author is located at the IBM Thomas J .  Watson 
Research  Center,  Yorktown  Heights,  New  York 10598. 

457 

SEPTEMBER 1975 MEMORY PARTITIONING 


