M. Z. Ghanem

Study of Memory Partitioning for Multiprogramming
Systems with Virtual Memory

Abstract: In this paper, we investigate the effect that the shape of the lifetime function has on the optimal partition of the main memory
of a computer among N programs, where the criterion of optimality is maximization of CPU utilization. We used a simple queuing model
as a base for understanding this interrelationship. The lifetime function is the average of the execution intervals of a program as a func-
tion of the amount of memory allocated. When the lifetime function is convex and is proportional to m“, where m is the size of memory,
then the optimal partition is obtained by dividing the main memory equally among ¢ of the N programs (q is the optimal degree of multi-
programming) . Thus, the best partition is always one of two policies: allocate all memory equally among the ¢ programs or allocate all
memory to one program. When the lifetime function has a degenerate S shape (is proportional to m“ when m = m, and remains constant
beyond m,), then there exists a memory size s such that no program can have a memory size other than mn or m,; if any program has a
memory size greater than m,, each other program should have a memory size that is equal to or greater than m,

Introduction

One of the most important purposes of multiprogramming
in a virtual memory computer system is to increase utili-
zation of the central processor. The amount of main mem-
ory that must be allocated to each program is an impor-
tant factor in determining this utilization. Belady [1] has
shown experimentally that biasing the partition of main
memory increases CPU utilization, and he accounted for
this result by the convexity of the lifetime function.
Denning and Spirn [2] explained Belady’s observation
analytically using the fact that if the lifetime function f is
convex, then [f(M + A) + f(M — A)] is always greater
than 2f (M), where M is the size of memory. But that is
not enough to ensure better CPU utilization due to bias-
ing. Actually, if we follow that argument, it would lead us
to allocate all the memory to one and only one program,
because if fis convex, then [f(M + 2A) + f(M — 2A)]
is always greater than [f(M + A) + (M — A)].

This argument assumes that CPU utilization is propor-
tional to the sum of the two lifetime functions. In fact,
this neglects the overlapping effect due to multiprogram-
ming (i.e., when some programs are involved in resolving
page faults, others can utilize the CPU).

In a previous paper [3], the author included the effect
of this overlap,bing in an analysis through a simple queu-
ing model designed to aid in understanding this aspect of
system behavior. In that model it was assumed that only
two programs could use the main memory. The author
found that when the lifetime function is strictly convex in
the region of the available memory and the degree of con-

SEPTEMBER 1975

vexity is less than a certain threshold value, then the op-
timal solution is a balanced partition (allocate to each
program the same amount of memory). If the degree of
convexity exceeds the threshold value, then memory
should be allocated to only one program (the extreme
partition). In other words, the best partition is always
one of the two policies; namely the balanced partition or
the extreme partition. The previous paper also discussed
the case in which the lifetime function has the degenerate
S shape shown in Fig. 1.

In this paper, we extend the analysis presented in the
previous paper by considering that N programs can use
the main memory (where N can be any number less than
infinity). We first consider a lifetime function having a

Figure 1 Lifetime function.

f(m)

Inflection point

Lifetime

mo

Allocated main memory (m)

451

MEMORY PARTITIONING

452

2]

Lifetime

P e

Allocated memory

Figure 2 Very convex lifetime function.

. .
<.
"
| '
2 H
£ i
z |
- i v
M/2 M

Allocated memory

Figure 3 Lifetime function that is not very convex.

convex shape (i.e., can be expressed as Rm”, where R
is the average execution interval of a program for an al-
located memory size of unity and m is the size of mem-
ory). We then show that the optimal partition is to divide
the main memory equally among g of the N programs (g
is the optimal degree of multiprogramming). We then
consider a lifetime function having a degenerate S shape
(i.e., it can be expressed as Rm” when m is less than m,
and as Rm_" elsewhere). In this case, we found that there
exists a memory size m such that no program can have
a memory size other then m or m,, where m, is the inflec-
tion point. If any program has a memory size that is strict-

M. Z. GHENEM

ly greater than m,, each of the other programs should
have a memory size that is greater than or equal to m,

This result can be explained by assuming that we have
two programs I and J and that the available memory size
is M. Let V| be the average execution interval of program
I when we allocate all the available memory, M, to pro-
gram I; let V, be the sum of the average execution interval
of program 1 and the average execution interval of pro-
gram J when we allocate an amount of memory of M/2
to each program. Since the lifetime function is convex,
V, is always equal to or greater than V,, as is shown in
Figs. 2 and 3. Thus if we neglect the overlapping effect,
it is always better to allocate all the memory to one pro-
gram, but the overlapping effect changes the situation.
If we have a very convex lifetime function (« is large),
the difference between V| and V, can dominate the over-
lapping effect, and it is better to allocate all memory to
one program (Fig. 2). If « is not that large (e.g., results
in a straight line), the overlapping effect can dominate
the difference between V, and V, and it is better to divide
the memory between the two programs equally (Fig. 3).

In the next section, we formulate the problem as a
closed queuing network problem and obtain a formula
for CPU utilization. We then simplify this formula to be
able to analyze the relation between two programs at
the optimal partition. Next we analyze the case in which
the lifetime function is an exponential function of memory
size. Finally, we analyze the case in which the lifetime
function has a degenerate S shape, which approximates
the actual behavior of programs.

Formulation of the problem

For purposes of investigating this particular problem,
we assume that we have N programs residing in main
memory. Furthermore, we assume that the time required
for bringing a page from the secondary memory to the
main memory has the mean value 1/p and is governed
by a probability distribution having a rational Laplace
transform. We also assume that the time between page
faults for program i has the mean 1/ A, (where A, is a func-
tion of the amount of main memory allocated to program
i) and is governed by a proability distribution having a
rational Laplace transform. The service discipline of the
CPU is assumed to be processor sharing, i.e., the CPU
cycles are divided equally among the programs that have
their required pages in main memory. The service dis-
cipline of the paging I/ O device is assumed to be such
that the number of servers in the service center is greater
than or equal to N.

The assumption that a probability distribution has a
rational Laplace transform is a very general assumption.
The processor sharing discipline approximates the round-
robin scheduling mechanism, which should be used in
allocating the CPU because the distribution of the execu-

IBM J. RES. DEVELOP.

tion intervals has a long tail [4]. The assumption that the
number of I/0 devices is greater than N is a simplifica-
tion to make the problem mathematically tractable.
Based on some recent results by Baskett, Chandy,
Muntz, and Palacios [S] on a general queuing network
modeling technique, it can be demonstrated (see Ap-
pendix) that CPU utilization is given by (1 —1I,), where

G=1)™"

=2 2 0|:§ diJ!ﬁxjdf (1)

d,=1,0 d2=1,0 d

where x,= u/\, i=1,2,--+, N.

Analysis of the objective function

The expression for the CPU utilization given in the pre-
vious section is rather complex. To be able to analyze
the relation between any two programs at the optimal
partition, we derive the objective function as a function
of two variables only (x; and xj) . The form that is derived
is less complicated than the form of Eq. (1).

Theorem 1 For given i and j, G can be written as

G (x,, X, xy) = By(i, j) + B,)) [x; + xj]

+ Blg(i» j)xixj,

where B(i, j), B,(i, j), and B ,(i, j) are functions of x,,
Xgr " Xy Xppps " , X3 1.e., they do not de-

pend on x; or x;.

X

i X

ISL

Proof By rearranging the order of summation in Eq. (1),
G can be rewritten as

G= 3

d,=0,1 dy=0,1

.dNZM [di;&l d;(“ <§:1 dk) !ﬁxkdk]

;=01 dy=0,1

dN—O,l k’;_llj kk#—l’]
Y ,
+ {[(S d) + 1] 'TI xkdk} X,
k=1 k=1
ki, j Ty
N N o
+{[<g‘ 4)+1]: 1l 5%
ki, j ki, §
N N
(2 4)r 11)
k=1 k=1
i, § ki j

=B,+ B,(x;+ xj) + BopXiX;,

SEPTEMBER 1975

dy=0,1 k=1 k=1
k#i, § ki, j
B=S S -
d,=0,1 dy=0,1

&
|

L

g

s {[(% dk) +2] ! ﬁ xkdk}.

dN=0,1 =.]

And it is clear that the B, B,, and B,, do not depend on
X; OF X;.

Convex lifetime function

In this section we analyze the case in which the lifetime
function is an exponential function of memory size (i.e.,
is of the form Rm®. We analyze the case in which o > 1
for the following reasons:

1. When 0=< o= 1 (i.e., the lifetime function is concave),
it is easy to prove that the optimal policy is to divide
main memory equally among the N programs.

2. The case in which a < 0 (i.e., the lifetime function is
monotonically decreasing) is not important because
it is the nature of the lifetime function to be mono-
tonically nondecreasing.

In this section we prove that when « > 1, any optimal
partition has to be in the form (M/q, M/q, -+ M/q,
0, 0, 0), where g is the optimal degree of multipro-
gramming. In particular when N = 2, we prove that there
exists an o, such that when a > «a, the optimal partition
is to allocate all of memory to one of these programs and
if @ = o, the optimal partition is to divide the memory
equally between two programs.

We first show the maximization of the function

B,+ B,(x, + x,) + B ,xx, (2)

subject to the constraints

X =MR(m1)a’ (3)
x, = uR(m,)*, and (4)
m,+m,=M,, (5)

is achieved at either (m, = m, = M,,/2) or (m;, m, =
0, M,).

453

MEMORY PARTITIONINIG

454

Let #= (2m,/M,) — 1 and (6)

A=pR(M,,/2)" (7
Then x, = A(1 +), (8)
x,=A(1—¢)% (9)

and the maximization problem becomes:

Maximize f(¢) = B A(1+)%+ BA(1—£)°
+ B,A4*(1 — /%) in the range
—1=/=1.

The function f(¢) is an even function of Z, i.e., f(¢)
= f(—¢). Thus we will concentrate on examining (¢ for
positive values of ¢, i.e., for 0= ¢/ = 1.

Because

af

a{—AB a[(1+)" = (11—

—24%B,(1—- "¢, (10)

we have a stationary point at / = 0.

Because
j{f ABa(a— DI(1+)%+ (1= ¢)*7]
—24%B [(1 —)"
—(a— 1@ =5, (1)
thenat £ =0
& :
a/ﬁ l,.o=24Ba(a— 1) —24%aB,,. (12)

From Eq. (12), we can conclude that if « > 1+ (4B,,/
B,), then f will have a local minimum at the point ¢ = 0.

Proposition 1 If o > | + (AB,/B,), then §f/ 3¢ is
greater than zero for all values of # € (0, 1).

Proof Because

o

oy = AalB,(1+) '~ B (11—

—24B,/ (1 - %]

=Aa(l —)"
B B
L — ‘—— —24B,¢ 13
X[A= a+o! "] (13

and 4a(1 — 7%)*™" > 0 for all values of # € (0, 1), all
that we have to prove is that

c(£)=B(1—)""=B,(1+ /)"
—24B,¢ >0 (14)
for all values of # € (0, 1). But

M. Z. GHANEM

C‘f) _ _ —a
Pvaiainlt a)B (1 —17)

—(1—a)B,(1+¢)“=24B,,, (15)
which implies that

dc () |
9 =0

=—2B,(1—a) —24B,,. (16)
But because @ — 1 > (4B,,/B,), it implies that

‘;—; o > 0. (17)

On the other hand 8¢/ 8¢” can be written as

iec N —a—
— =—a(l—a)B,(1—¢)""
e

+a(l —a)B,(1 +)7t

=afa— DB (1= 1+

= 0. (18)

From Eqgs. (17) and (18) and from the fact that ¢ = 0
at ¢ =0, we can conclude that (9f/ 8¢) > 0 for all values
of £ € (0, 1). QE.D.

Theorem 2 If @« > 1 + (AB,,/B,), then f achieves its
minimum at ¢ = Q. Moreover, it achieves its maximum
at £/ = 1.

Proof We proved that if « > 1 + (4B,,/B,) then fhasa
local minimum at ¢ = 0; from Proposition 1, the slope
of f is greater than zero for all values of ¢. Thus f, in
this case, is a monotonically increasing function of 7,
which implies that the local minimum at ¢ = 0 is actually
a global minimum. Because fis a monotonically increas-
ing function of ¢ and we consider the range 0= / = 1,
it is clear that the maximum of fis at £ = 1.

Theorem 3 1f 1= a= 1+ (AB,,/B,), then the maximum
of fis achieved at either ¢ =0 or /= 1.

Proof If a = 1 + (4B,,/ B,), we can conclude from Egs.
(16) and (18) that

€ < 19
a/ Oat /=0 and (19)
62
£L = 0 for every ¢. (20)
a

Equations (19) and (20) and the fact that ¢(0) = 0 imply
either that ¢ is always negative or that if ¢ is not always
negative it may become zero once at 7 = /* (for some
7*) and then stay nonnegative in the interval (£*, 1].
The first case means that £(#) possesses its global maxi-
mum at ¢ = 0. The second case means that the global
maximum should be either at # = 0 or at £ = 1, depend-
ing on whether f(0) > f(1) or f(1) > f(0), respectively.

IBM J. RES. DEVELOP.

Corollary 1 For any ¢, € (0, 1), if f{¢) > f(0), then
then f(¢) = f(¢) forall £ € (¢, 1].

Proof If f(¢,) > f(0), then from Theorem 3 ¢, lies in
the interval (¢*, 1]. Because ¢ is nonnegative in the
interval (¢*, 1], then af/ 9/ is nonnegative in that in-
terval. This implies that f(¢) = f(¢) forall £ € (£, 1].
Q.E.D.

From Theorems 2 and 3 we can conclude that f(#) has
its maximum value either at # =0 or at / = 1. Now, we
can conclude the following theorem.

Theorem 4 The maximization of the function B+ B, (x,
+ x,) + B ,x,x,, subject to the constraints x, = uR (m,)",
x, = uR(m,)* (a = 0), and m, + m,= M, is achieved at
either (m, = m,= M,,/2) or (m;, my=0,M,).

Now we are ready to prove the main theorem.

Theorem 5 Let P = (m,, my,* -, m,) be a memory parti-
tion. Assume that all the programs have the same life-
time function, which is of the form Rm”(a = 0). If there
exist i and j such that m, # m;, m; > 0 and m; > 0, then
P is not an optimal partition.

Proof Without loss of generality let m, # m,, m, > 0 and
m, > 0. Because

G(x,, X, "7 %) = By + B (x, + x,) + B,x,x,,

using Theorem 4 we can redistribute M, = (m, + m,)
between programs 1 and 2 and find another partition
(m* = my* = (m, + m,) /2 or m* =0 and m,* = M,,)
that achieves a larger value of G, i.e., a higher CPU
utilization. Thus P is not an optimal partition.

Theorem 5 can be restated as follows:

Theorem 5' Let P= (m,, m,," - -, m,) be a memory parti-
tion. Assume all the programs have the same lifetime
function, which is convex and of the form Rm® If P is
an optimal partition, then P must be in the following form:

= (m,, my, -+, my) With
m;=M/jfori=j

=0fori>j
Corollary 2 If N =2, then there is an «,. such that if &« > o,
the optimal partition of memory is extreme (i.e., all
memory is allocated to one program). And if ¢ = «,, the

best memory partition is unbiased (i.e., main memory
is divided equally between the two programs) .

Proof The proof is obvious from the above theorems,
and a different proof is given in [6].

Degenerate S shape lifetime function
In practice, the lifetime function is not convex over the
entire region m = 0. Actually, if the amount of memory

SEPTEMBER 1975

allocated to a program exceeds a certain amount m,, the
lifetime function increases little by additional memory
allocation [7]. Thus the lifetime function can be ap-
proximated by a function y, (m) of the form:

Rm"
y,(m) =

0=m=m,

« (21

=
Rm, m=m,

In this section, we develop results similar to those that
were developed in the previous section. We analyze the
case where a = 1 for the same reasons that were men-
tioned previously. The main result is that there exists a
memory size m such that no programs can have a mem-
ory size other than m or m,.

Now we can conclude the following theorem:

Theorem 6 Maximization of the function
B,+ B, (x, + x,) + B ,xx,,

subject to the constraints

x = py,(m,),

x, = uy,(m,), and

my+m,=M, < 2m,,

is achieved at either m, = m, = M,/2 or (m, m,) =
(mo’ M12 - mo)'

Proof Let y,(m) be the lifetime function, and assume
that H(y,, m,, m,) denotes the value of the function

B,+ B,(x, + x,) + B ,xx,

when x, is equal to py,(m,) and x, is equal to wy, (m,).
If m, < m, < m,, then for the function x = uy (m) de-
fined above,

H(y,, m,, m,) = B,+ B,uR(m,)* + B,uR(my)*
+ Blzquz(mlmo)a.

But H(y,, M,, — my, m)) = B, + B juR(M, — mg)® +
B uR(m)® + B,u’'R'[my(M,, — m)]. Because M,
— m, > m,, we can conclude that H(y, M, — my, m)
= H(y,, m,, m,) for all m; and m, such that

m, < m, < m,. (22)

On the other hand, if m, << m,and m, < m,, the following
conclusion can be made:

If H(y, my, m) > H(y, Myy/2, Myy/2,) (23)
then by Corollary 1 to Theorem 3, we obtain

H(y,, myy M\, — m)) = H(y, m,, my). (24)
From Eqgs. (23) and (24), we can conclude that

H(y,, m,, my) = max [H(y,, my, M,, —my)

H(y,M,/2,M,,/2)] (25)

455

MEMORY PARTITIONING

456

for any m, and m, such that m, < m, and m, < m,. From
(22) and (25), it is clear that the maximum value of
H(y,, m;, m,) should be at either the point (M ,/2,
M,/2) or (my, M, —m). QE.D.

Theorem 7 Maximization of the function

B,+ B,(x, + x,) + B ,x

1 T

subject to the constraints

x, = py,(m,),
x, = uy,(m,), and
m +m,=M,> 2my,

is achieved at all the points of the set O, where

O ={(m* m*)m*=(M,/2)~v
*=(M,/2) +y,y= (M,/2) —my}.

Proof At any point (m,*
have

m,*) that is in the set O, we

x, = pR(my)®, and
x, = pR(m)".

Then H(y,, m,*, m,*) can be written as

H(y,, m*, m,*) = B, + 2B,uR(my)"
+ B R (m)™. (26)

Let (m,, m,) be a point that is not in the set O. Then
either m, < m, or m, < m, Without loss of generality,
assume m, < m,: then H can be written as

H(y,, m, m)) =B + B ,uR(m)*+ B uR(my)*

+ B W' R (m) " (my)®. (27)

From (26) and (27) we conclude that H(y,, m,*, m,*)
= H(y,, m,, m,), where (m * m,*) is a point in the set
O and (m;, m,) is a point that is not in the set O. Q.E.D.

But it can be shown that, at an optimal partition, if
any program has an amount of memory that is strictly
greater than m,, then it can be proved that m, = m, for
all i. This case can never happen except when the total
size of main memory is greater than Nm, (and the prob-
lem becomes trivial) . But if the total size of main memory
is less than or equal to Nm,, we can prove the following
theorem.

Theorem 8 Let P = (m,, m,,-- -, m,) be a memory par-
tition. Assume that all the programs have the same de-
generate S-shape lifetime function, with inflection point
m,, of the form given by Eq. (21). Furthermore, assume
that the total size of main memory is less than, or equal

M. Z. GHANEM

to, Nmy. If there exist i and j such that m; # m; (m, # 0
or m,) and (mj # 0 or m,), then P is not an optimal par-
tition.

Proof: The proof is similar to that for Theorem 3.

Conclusion

The main conclusion of this paper is that the best memory
allocation tends to be unbiased among ¢ programs (where
g is the optimal degree of multiprogramming). This step
decreases the difficulty of the problem of finding the
optimal degree of multiprogramming. We have presented
here the case in which every program has the same life-
time function. We conjecture that in the case of different
programs the meaning of unbiased memory allocation
must be changed to reflect the characteristic of each
program.

Appendix

Assume that we have two stations, station 1 representing
the CPU and station 2 the paging I/ O device. Consider
the state of station 1 to be represented by

Y= (g, Ry By,
where
n,, = 1 if program r is being served at the CPU,
= 0 if program r is not being served at the CPU.
Also consider the state of station 2 to be represented by
Yy = (Myps My * s My,
where
n,, = 1 if program r is using the I/ O device,
= 0 if program r is not using the 1/ O device.

If P, is the probability that a program moves to station
J after the completion of its service at station i, then p,,

=0,p,=1,p,,=1,and p,, = 0. So from [4], the equi-
librium state probability can be written as
P(y,, y,) = Cg(¥) 8 (¥,), (A1)
where
N 1 e,, LT
g () =n Tl (—) and (A2)
r=1 1r r
N Rgp
1 (€,
g,y = —() . {A3)
2 H L M\,

Here n, is the number of programs served at the CPU,
ie.,n, =32 n,. Then e, and e, must satisfy the fol-
lowmg relations:

s 0te, l=e, (A4)

iy l4e, - 0=e, (AS)

r

IBM J. RES. DEVELOP.

From Egs. (A.4) and (A.5) we conclude that

elr = e2r

because n;, = 0 or 1, then n, ! = 1. Therefore by substi-
tuting Eqgs. (A2) and (A3) into (Al), we obtain

P() \ N e, My e, oy (A6)
A
1 Y2 1!;[1 Y ,

r

But by knowing that e,, = ¢, and n,, + n,. = 1, Eq. (A6)
can be written as

P(y,, y,) =cn,! f[l (e,,) [ﬁ (_):1_)"” (_1_)"2r:|

- r1 oy

N
=c'n, '<[[1 xf”), (A7)

where x, = ./ \,. Thus P(y,, y,) actually depends only
on the state y,, which was not unexpected because y, +
y,= (1, 1,--+,1). Thus P(y,, y,) can be written as

N
n
P(ny, ny,t o) = C’nll(ll Xy 1?’)_
=1

But because

(30 i)

r=1 r=1

={3 53

=01 7 ,=0,1 nlN:Q,l

Thus the probability that the CPU will be idle, P(0,
0, 0), can be written as Ik, = ¢’, which implies that

m -3 333 n]‘Hx

n1=01 2y,=0,1 n y=01 tr=1

SEPTEMBER 1975

Acknowledgments
The author thanks L. A. Belady, P. J. Denning, W. D.
Frazer, and J. R. Spirn for their valuable comments.

Cited and general references

1. L. A. Belady and C. J. Kuehner, “Dynamic Space Sharing
in Computer Systems,” Comm. ACM 12, 5 (May 1969).

2. P.J. Denning and J. R. Spirn, “Dynamic Storage Partition-
ing,” 4th ACM Operating System Symposium, 1BM
Thomas J. Watson Research Center, Yorktown Heights,
New York, October 1973.

3. M. Z. Ghanem, ““On the Optimal Memory Allocation Prob-
lem,” Research Report RC 4443, IBM Thomas J. Watson
Research Center, Yorktown Heights, New York, 1974.

4. M. Z. Ghanem, “Experimental Study of the Behavior of
Programs,” Research Report RC5427, IBM Thomas J.
Watson Research Center, Yorktown Heights, New York,
1975.

5. F. Baskett, K. M, Chandy, R. R. Muntz, and F. G. Palacios,
“Open, Closed, and Mixed Networks of Queues With Dif-
ferent Classes of Customers,” J. ACM 22 (April 1975).

6. P. H. Oden and G. S. Shedler, “A Model of Memory Con-
tention in a Paging Machine,” Comm. ACM 15, 8 (August
1972).

7. P. J. Denning and G. S. Graham, ‘“Multiprogramming and
Memory Management,” Proc. IEEE (Interactive Com-
puter Systems) 63, 924 (1975).

8. R. A. Howard, Dynamic Probabilistic Systems, Vol. 1,
John Wiley and Sons, Inc., New York 1969.

9. A. E. Ferdinand, ‘‘An Analysis of the Machine Interference
Model,” IBM Syst. J. 10, 2 (1971).

10. J. R. Spirn, “A Model for Dynamic Allocation in a Paging
Machine,” 8th Annual Princeton Conference on Informa-
tion Sciences and Systems, Princeton University, March
1974.

11. D. D. Chamberlin, $. H. Fuller, L. Y. Liu, “An Analysis of
Page Allocation Strategies for Multiprogramming Systems
with Virtual Memory,” IBM J. Res. Develop. 17, 404
(1973).

Received October 14, 1974; revised April 23, 1975

The author is located at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York 10598.

457

MEMORY PARTITIONING

