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Study of Memory  Partitioning  for  Multiprogramming 
Systems  with  Virtual  Memory 

Abstract: In  this paper, we investigate  the effect that the shape of the lifetime function has on the optimal  partition of the main memory 
of a computer among N programs, where  the criterion of optimality is maximization of CPU utilization. We used a  simple  queuing  model 
as a  base for understanding  this  interrelationship. The lifetime function is the  average of the  execution  intervals of a program as a func- 
tion of the amount of memory  allocated.  When the lifetime function is convex and is proportional to mu, where M is the  size of memory, 
then the optimal  partition is obtained by dividing  the main memory  equally  among q of the N programs ( q  is the  optimal degree of multi- 
programming).  Thus.  the  best partition is always  one of two policies: allocate all memory equally among the q programs or allocate all 
memory to  one program.  When the lifetime function has a degenerate S shape  (is proportional to m" when rn 5 M, and remains constant 
beyond m,) ,  then there  exists a  memory  size m such that no  program can  have a  memory  size other than H I  or m,: if any program has a 
memory  size greater than m,, each  other program  should have a  memory  size that is equal to  or  greater than m,. 

Introduction 
One of the most important  purposes of multiprogramming 
in a virtual memory computer  system is to  increase utili- 
zation of the central processor.  The  amount of main mem- 
ory  that must be allocated to  each program is an impor- 
tant  factor in determining  this utilization. Belady [ I ]  has 
shown  experimentally that biasing the partition of main 
memory increases CPU utilization, and  he  accounted for 
this result by the convexity of the lifetime function. 
Denning  and  Spirn [2] explained Belady's observation 
analytically using the  fact  that if the lifetime function f is 
convex, then [f (M + A )  + f ( M  - A )  J is always  greater 
than 2 f (M) ,  where M is the size of memory. But that is 
not  enough to  ensure  better CPU utilization due  to bias- 
ing. Actually, if we follow that argument, it would lead us 
to  allocate all the memory to one and only one program, 
because if f is convex, then [ f( M + 2 8 )  + , f(  M - 2A)] 
is always greater  than [ f ( M  + A)  + f ( M  - A ) ] .  

This argument assumes  that CPU utilization is propor- 
tional to  the sum of the  two lifetime functions. In fact, 
this  neglects the overlapping effect due  to multiprogram- 
ming (i.e., when some  programs are involved in resolving 
page faults, others can utilize the CPU) . 

In a previous  paper [ 31, the  author included the effect 
of this  overlapping in an analysis  through  a  simple queu- 
ing model dehgned  to aid in understanding  this aspect of 
system  behavior. In that model it was  assumed that only 
two programs could use  the main memory. The  author 
found that when the lifetime function is strictly convex in 
the region of the  available  memory and  the  degree of con- 

vexity is  less than a certain  threshold  value,  then the op- 
timal solution is a  balanced  partition (allocate to each 
program the  same  amount of memory). If the  degree of 
convexity exceeds  the threshold  value,  then memory 
should  be  allocated to only one program (the  extreme 
partition).  In  other  words,  the  best partition is always 
one of the two  policies;  namely the balanced  partition or 
the  extreme partition. The previous paper  also discussed 
the  case in which the lifetime function  has the  degenerate 
S shape shown in Fig. 1 .  

In this paper, we extend  the analysis  presented in the 
previous paper by considering that N programs  can use 
the main memory (where N can  be any  number less than 
infinity). We first consider a lifetime function having a 

Figure 1 Lifetime  function. 
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Allocated memory 

Figure 2 Very convex lifetime function. 
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Figure 3 Lifetime  function that is not very convex. 

convex  shape  (i.e., can  be expressed  as Rma, where R 
is  the  average  execution interval of a program for  an al- 
located  memory  size of unity and rn is the size of mem- 
ory). We  then  show that  the optimal  partition is  to  divide 
the main memory equally among q of the N programs ( q  
is the optimal degree of multiprogramming).  We  then 
consider a lifetime function having a degenerate S shape 
(i.e., it can be expressed  as Rm" when m is less than rn, 
and  as Rm," elsewhere).  In this case, we found that  there 
exists a memory size m such  that  no program  can have 
a memory size other then m or m,, where m, is the inflec- 

452 tion point. If any program has a memory  size that is strict- 

ly greater than rn,,, each of the  other programs should 
have a memory  size that is greater than or  equal  to m,. 

This result can  be explained by assuming that we have 
two programs  I and J and  that  the available  memory  size 
is M .  Let V ,  be the  average  execution interval of program 
I  when we  allocate all the available  memory, M ,  to pro- 
gram I ;  let V,  be the sum of the  average execution  interval 
of program I and  the  average  execution interval of pro- 
gram J when we allocate  an  amount of memory of M / 2  
to  each program. Since  the lifetime function is convex, 
V ,  is  always equal to  or  greater  than V2,  as  is shown in 
Figs. 2 and 3. Thus if we neglect the overlapping  effect, 
it is always better  to allocate all the memory to  one pro- 
gram,  but the overlapping effect changes  the situation. 
If we  have a very convex lifetime function (CY is  large), 
the difference between VI and V,  can  dominate  the  over- 
lapping effect, and it is better  to  allocate all memory to 
one program (Fig. 2 ) .  If a is not  that large (e.g., results 
in a  straight line),  the overlapping effect can  dominate 
the difference between VI and V,  and it  is  better to divide 
the memory  between the  two programs  equally (Fig. 3 ) .  

In  the  next  section,  we  formulate  the problem as a 
closed  queuing  network  problem and obtain a formula 
for CPU utilization. We  then simplify this  formula to be 
able to analyze  the relation between  two programs at 
the optimal  partition. Next we analyze  the  case in which 
the lifetime function is an exponential  function of memory 
size. Finally, we analyze  the  case in which the lifetime 
function  has a degenerate S shape, which approximates 
the  actual behavior of programs. 

Formulation of the  problem 
For  purposes of investigating  this  particular  problem, 
we assume  that we have N programs residing in main 
memory. Furthermore,  we  assume  that  the time  required 
for bringing a page from the  secondary memory to the 
main memory has  the mean value 1 / p and  is governed 
by a probability distribution  having a rational Laplace 
transform.  We also  assume  that  the time between page 
faults for program i has  the mean 1 / h i  (where hi is a func- 
tion of the  amount of main memory  allocated to program 
i) and is governed by a proability distribution  having  a 
rational Laplace transform. The  service discipline of the 
CPU is assumed  to be processor sharing, Le., the CPU 
cycles  are divided  equally  among the programs that  have 
their  required  pages in main memory. The  service dis- 
cipline of the paging 1 / 0  device  is  assumed  to be such 
that  the number of servers in the service center is greater 
than or equal to N .  

The assumption that a probability distribution has a 
rational Laplace transform is a very  general assumption. 
The  processor sharing  discipline approximates  the round- 
robin  scheduling  mechanism,  which  should be used in 
allocating the CPU because  the distribution of the  execu- 
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tion intervals has a long tail [4]. The  assumption  that  the 
number of I / O  devices  is  greater than N is a simplifica- 
tion to  make the  problem  mathematically tractable. 

Based on some recent  results by Baskett,  Chandy, 
Muntz,  and Palacios [5] on a  general  queuing  network 
modeling technique, it can be demonstrated  (see Ap- 
pendix) that CPU utilization is given by ( 1 - rI,,), where 

G = 
- - 

where xi = p / h i ,  i = 1 ,  2; . ., N .  

Analysis of the  objective function 
The  expression  for  the  CPU utilization given in the pre- 
vious  section is rather complex. To  be able  to  analyze 
the relation between  any  two programs at the optimal 
partition, we derive  the objective  function as a function 
of two variables  only ( x i  and xj)  . The form that  is derived 
is less  complicated than  the  form of Eq. (1).  

Theorem I For given i and j ,  G can be written as 

where 

Bo = . . .  
dl=O,l d2=0,1 

" '  dN=O,l [( k = l  5 d k ) !  fi 
k = l  

k # i , j   k f i ,  j 

Bl=e e .  
dl=O,l d,=O,l 

' "  dN= 0,l [[(i, d k ) + 2 ]  ! fi '2). 
k f i ,  j k#i,  j 

k = l  

And it is clear  that  the Bo,  B, ,  and B , ,  do  not  depend on 
xi or xi. 

Convex  lifetime function 
In this  section we  analyze  the  case in  which the lifetime 
function is an exponential function of memory  size  (i.e., 
is of the  form Rm*. We analyze  the  case in  which a > 1 
for  the following reasons: 

+ B12(i, j b i x j ,  1 .  When 0 5 a 5  1 (i.e., the lifetime function is  concave) , 
it is  easy  to prove that  the optimal policy is  to divide 
main memory  equally among  the N programs. 

2 .  The  case in  which a < 0 (i.e., the lifetime function is 
monotonically decreasing) is not important  because 

where Bo( i ,  j )  , B l ( i ,  j )  , and B 1 2 ( i ,  j )  are  functions of xl, 
. .. xi-l. xi+l, .  . ., xj-l, x ~ , ~ ,  . . ., xN; i.e., they do not  de- 

pend on xi or xj. 

Proof By rearranging the  order of summation in Eq. ( 1 1, 
G can  be  rewritten as 

it  is  the  nature of the lifetime function to be mono- 
tonically  nondecreasing. 

G =  . .  
dl=O,l d2=0,1 

= e  c. 
dI=O,l d2=0,1 

k f i ,  j k f i ,  j 

+ [ ( 5 ' k )  ! fi '21) 
k # i , j  . k # i , j  
k = l  k = l  

= B o  + B l ( x i  + xj) + B1,xixj, 

In this section  we  prove  that  when a > 1, any optimal 
partition has  to  be in the  form ( M I  q, M /  q, . . ., MI q, 
0, 0, 0) , where q is the optimal degree of multipro- 
gramming. In particular when N = 2, we  prove  that  there 
exists  an CY, such  that  when a > ac, the optimal  partition 
is  to allocate all of memory to  one of these programs and 
if a 5 a,, the optimal  partition is to divide the memory 
equally between  two programs. 

We first show  the maximization of the function 

Bo + B,(xl + x2) + B12xlx, (2) 

subject  to  the  constraints 

x1 = pR(m,)" ,  (3) 

x2 = p R (  m,) *, and (4) 

is achieved at  either (m, = m, = Ml,/2) or (ml,  m, = 

0,  M1J.  4513 
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Let / = ( 2 m , / M , , )  - 1 and 

A = p R ( M 1 2 /  2) ". 

T h e n x l = A ( l  + E ) " ,  

x,=A(1  - / ) O ,  

Maximize f (  i )  = B,A ( 1 + /) + B,A ( I - i )  a But because a - 1 > ( A B , , / B , )  , it implies that 
+ B,,A2( 1 - /')" in the range 

-1 5 C Z  1. 
ac 3 > 0. (17) 

The function f ( f )  is an  even function of p, i.e., f ( E )  On  the  other hand a'c/ a/' can be written  as 
=f(-/). Thus we will concentrate on examining f ( f) for 
positive  values of G, i.e., for 0 5 C 5 1 .  - =- a( 1 - a)B,(  1 - e)-"-, 

e 

Because ar2 + a( 1 - a ) B , ( 1  + C)-""l 

d f = A B , a [ ( l  +i)a- 'T( l  -/)*- ' I  ac = a ( a - 1 ) B , [ ( 1 - / ) - " - " ( 1 + C ) - " - ' ]  

- 2A"B,,( I - f 2 ) " - l  E ,  (10) 3 0. (18) 

we have a stationary point at i = 0. 
Because 

a C . 2 = A B , o l ( a - l ) [ ( l + t ) * ~ 2 +  a 2  f ( 1 - / ) a - 2 ]  

- 2A2aB,,[ ( 1 - P )  ""l 

- ( a -  1)(2L2)(1 - P 2 ) a - - 2 ] ,  ( 1 1 )  

then  at / = 0 

a7 
- = 2AB1a(a  - 1 )  - 2A"B,,. 
a/' 

From Eq. ( 121, we can conclude  that if a > 1 + ( A B l 2 /  
B,) , then .f will have a local minimum at  the point = 0. 

Proposition I If a > 1 + ( A B J B , ) ,  then a f / a /  is 
greater than zero  for all values of C E (0, 1 ) .  

Proof Because 

( 1 2 )  

3 = A a [ B 1 ( 1  + / ) " - ' - B , ( l " ) " - '  ar 
- 2AB,,Y( 1 - f 2 )  "-7 

From Eqs. ( 17) and (18) and  from the  fact  that c = 0 
at P = 0, we can conclude  that ( a f /  a / )  > 0 for all values 
of E (0, 1 ) .  Q.E.D. 

Theorem 2 If a > 1 + ( A B , , / B , ) ,  then f achieves  its 
minimum at k = 0. Moreover, it achieves its maximum 
at G = I .  

Proof We  proved that if a > 1 + ( A B , , / B , )  then f has a 
local minimum at P = 0; from  Proposition 1 ,  the slope 
o f f  is greater  than  zero  for all values of C .  Thus A in 
this case, is a  monotonically  increasing  function of /, 
which implies that  the local minimum at / = 0 is actually 
a global minimum. Because f is a monotonically increas- 
ing function of e and  we  consider  the range 0 5 i 5 1 ,  
it is clear  that  the maximum off is at e = 1 .  

Theorem 3 If 1 5 a 5 1 + (AB1,/  B,) , then  the maximum 
off is achieved at  either / = 0 or f = 1 .  

Proof If a 5 1 + ( A B , , / B , )  , we  can conclude  from Eqs. 
( 16) and ( 18) that 

= Aa( 1 - 6-2) "-1 a2 c - =- 0 for  every Y .  
B ,  - 

(20) 
B1 - ? A B , , / ]  ( 13) - 

x I ( 1  - / ) " - I  ( 1  +o*-' Equations ( 19) and (20 )  and the  fact  that e( 0 )  = 0 imply 

and A a ( 1  - Y2)*" > 0 for all values o f f  E (0, I ) ,  all 
that we have  to  prove is that 

either  that c is always  negative or  that if c is not always 
negative it may become zero  once  at f = /* (for  some 
/ * )  and then stay nonnegative in the interval (e*, I ] .  

mum at f = 0. The  second  case  means  that  the global 
maximum should  be either  at e = 0 or  at / = 1 ,  depend- 

e ( / )  = B,( 1 - / ) I - "  - B,( 1 + The first case means tha t f ( f )  possesses its global maxi- 

454 for all values of / E (0, 1 ) .  But ing on  whetherf(0) > f (  1 )  or f (  1 )  > f ( O ) ,  respectively. 

- 2AB,,f > 0 (14) 
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Corollary 1 For any C, E (0, 1 )  , if J'( / ,) > f (  0) , then 
thenf((,) 5 f ( f )  for all C E (/,, I ] .  

Proof If f(C,) > f ( 0 )  , then  from  Theorem 3 /, lies in 
the interval ( B * ,  1 3 .  Because c is nonnegative  in the 
interval (G *, 1 3 ,  then af/ a/ is nonnegative in that in- 
terval. This implies that f (  e,) 5 f (  ( )  for all ( E ( (,, 1 1 .  
Q.E.D. 

From  Theorems 2 and 3 we can  conclude thatf(/)  has 
its maximum value either  at = 0 or at /i = 1. Now, we 
Can conclude  the following theorem. 

Theorem 4 The maximization of the function B ,  + B, (x, 
+ x2) + B,,x,x,, subject  to the constraints x, = pR (m,) ", 
x, = pR ( m2) " ( a  1 0)  , and m, + m2 = M,, is achieved at 
either (m ,  = m, = M12/ 2) or (m,,  m2 = 0, M,,) . 

Now we are  ready  to prove the main theorem. 

Theorem 5 Let P = (m, ,  m2$.  . ., mN) be a memory  parti- 
tion. Assume  that all the programs have  the  same life- 
time function, which is of the  form Rm*(a 1 0) .  If there 
exist i and j such  that mi # mj,  mi > 0 and mj > 0, then 
P is not an optimal  partition. 

Proof Without loss of generality let m, # m,, m, > 0 and 
m2 > 0. Because 

G (x,, X,> ' . ., xJ = Bo + B,(.x, + x,) + B,,x,x,, 

using Theorem 4 we can  redistribute M , ,  = (m ,  + m,) 
between programs 1 and 2 and find another partition 
(ml* = m,* = ( m ,  + m,) / 2  or m,* = 0 and m2* = M,,) 
that  achieves a  larger  value of G ,  Le., a  higher CPU 
utilization. Thus P is not  an optimal  partition. 

Theorem 5 can  be restated  as follows: 

Theorem 5' Let P = (m,, m2; ' ., mN)  be  a  memory  parti- 
tion. Assume all the programs  have the  same lifetime 
function, which is convex and of the form Rm". If P is 
an optimal  partition,  then P must  be in the following form: 

P = (m,, m,,. . ., mN) with 

mi= M l j f o r i l  j 

= O f o r i > j .  

Corollary 2 If N = 2, then  there is an a? such that if a > ac 
the optimal  partition of memory is extreme  (i.e., all 
memory is allocated to  one  program). And if a 5 ac, the 
best memory  partition is unbiased (i.e., main memory 
is divided  equally between the two  programs). 

Proof The proof is obvious from  the  above  theorems, 
and a  different proof is given in [6]. 

Degenerate S shape  lifetime function 
In practice, the lifetime function is not  convex  over  the 
entire region m P 0. Actually, if the  amount of memory 
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allocated to a  program exceeds a  certain amount m,, the 
lifetime function increases little by additional  memory 
allocation [7]. Thus  the lifetime function  can  be  ap- 
proximated by a  function y1 ( m )  of the form: 

0 5  m 5  m, 

m Zrn,  
y , (m) = " (21) 

In  this section, we develop  results similar to  those  that 
were developed in the previous  section.  We analyze  the 
case  where a 1 1 for  the  same  reasons  that  were men- 
tioned  previously. The main result is that  there  exists a 
memory  size m such  that  no programs  can have a mem- 
ory size other than m or m,. 

Now we can conclude  the following theorem: 

Theorem 6 Maximization of the function 

Bo + B , ( x ,  + x,) + B,,x,x,, 

subject  to  the  constraints 

x, = PYl(m,) 9 

x, = w l ( m , ) ,  and 

m, + m2 = M,,  < 2m,, 

is achieved at either m, = m2 = Ml,/ 2 or (m,, m,) = 

(m,, M,, - ma).  

Proof Let y , (m)  be  the lifetime function,  and assume 
that H(yl ,   m, ,  m,) denotes  the value of the function 

Bo + B,(x, + x,) + B,,x,x, 

when x, is equal  to pyl(  m,) and x2 is equal to pyl(m,) .  
If m, < ma < m2, then  for  the function x = py , (m)  de- 
fined above, 

H(Y , ,  m,, m,) = Bo + B,pR(m,)" + B,pR(m,)* 

+ B,,p2R2 ( mlmo) a. 

But H ( y l ,  M,, - m,, m,) = Bo + B,pR(M,, - mol* + 
B,pR(m,)" + B,,p2R'[m,(M,, - m,)] .  Because M,, 
- rn, > m,, we can conclude that H ( y l ,  M, ,  - m,,  m,) 
1 H ( y l ,  m,, m,) for all m, and m2 such  that 

m, < m, < m,. (22) 

On  the  other  hand, if m, < m, and m, < m,, the following 
conclusion  can  be made: 

If H ( Y , ,  m,, m,) > H ( y l ,  MI,/ 2, Ml,/ 2,)  (23) 

then by Corollary 1 to Theorem 3, we  obtain 

H(Y, ,  ma, M,, - m,) 1 H ( y l ,  m,,  m,). (24) 

From  Eqs. (23) and (24) ,  we can conclude  that 

H(Y , ,  m,, m,) 5 max [ H ( Y , ,  m,, M,, - mol 

H ( Y , ,  M12/2,  M,,/2)1  (25) 456 
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for any m, and m2 such  that m, < m, and m2 < m,. From 
(22)  and ( 2 5 ) ,  it is clear that  the maximum  value of 
H ( y , ,  m,, m,) should  be at  either  the point (M,,/2, 
Mlz/ 2)  or (m,, M,, - m,) . Q.E.D. 

Theorem 7 Maximization of the function 

B, + B,(x, + x2) + Bl,x,x,, 

subject  to  the  constraints 

x, = PY,(m,) 9 

x2 = PY, (m,) , and 

m, + rn, = M , ,  > 2m,, 

is achieved at all the points of the  set 0, where 

0 = { (m,*, m,*):m,* = (M,,/2) - y, 

mz* = (M1,/2) + Y ,  Y 5 (M,,/2) - mol. 

Proof At any  point (m,*,  m2*) that is in the  set 0, we 
have 

x1 = p R  (m,) and 

x, = pR (m,) a. 

Then H ( y , ,  ml*, mz*) can  be  written  as 

H(Y , ,  m,*, m,*) = B o  + 2B,pR(mO)* 

+ B,,p*R2(m,,)". (26) 

Let (m1, m,) be a point that is not in the  set 0. Then 
either m, < m, or m2 < m,. Without  loss of generality, 
assume m, < m,; then H can be  written as 

ff(vl9 m,, m,) = B,, + B,pR(m,)" + B,pR(m,)" 

+ B&R2 ( ml)  "( m,) a. (27) 

From  (26)  and  (27)  we  conclude  that H ( y l ,  ml*, m,*) 
1 H ( y , ,  m,, m,),  where (ml*, m2*) is a  point in the  set 
0 and (m, ,  m,) is a point that is not in the  set 0. Q.E.D. 

But it can  be  shown  that, at an optimal  partition, if 
any program  has an  amount of memory that is strictly 
greater  than m,, then it can  be proved that mi 3 m, for 
all i .  This  case can never  happen  except  when  the  total 
size of main memory is greater than Nm, (and  the prob- 
lem becomes  trivial). But if the  total size of main memory 
is less than or  equal  to Nm,, we can prove  the following 
theorem. 

Theorem 8 Let P = (m, ,  m,,. . ., m,) be a memory par- 
tition. Assume  that all the programs have  the  same  de- 
generate  S-shape lifetime function,  with inflection point 
m,, of the  form given by Eq. (21). Furthermore,  assume 
that  the total  size of main memory is  less  than,  or equal 

to, Nm,. If there  exist i and j such  that mi f mj (mi f 0 
or m,) and (mj  # 0 or m,), then P is not  an optimal par- 
tition. 

Procq? The proof is similar to  that  for  Theorem 3. 

Conclusion 
The main conclusion of this paper is that  the  best memory 
allocation tends  to  be unbiased  among q programs (where 
q is the optimal degree of multiprogramming). This  step 
decreases  the difficulty of the problem of finding the 
optimal degree of multiprogramming. We have  presented 
here  the  case  in which every program has  the  same life- 
time  function.  We conjecture  that in the  case of different 
programs the meaning of unbiased  memory  allocation 
must be changed to reflect the  characteristic of each 
program. 

Appendix 
Assume  that we have  two  stations,  station 1 representing 
the  CPU  and  station 2 the paging 1 / 0  device.  Consider 
the  state of station 1 to be represented by 

Y ,  = (n,,, n,,,. . ., nlN), 

where 

n,, = 1 if program r is being served  at  the CPU, 

= 0 if program r is not being served  at  the CPU. 

Also consider  the  state of station 2 to be represented by 

y2  = (n,,, a,,, . . ., n2,), 

where 

n,, = 1 if program r is using the 1 / 0  device, 

= 0 if program r is not using the I /  0 device. 

If Pi j  is the probability that a program  moves to  station 
j after  the completion of its service  at  station i, then p,,  
= 0, plz = 1 ,  pzl = 1 ,  and p,, = 0. So from [4], the equi- 
librium state probability can be written as 

P ( Y , ,  Y , )  = C&(Y,) g,(y,), (A I )  

where 

(A31 

Here n, is the number of programs served at the  CPU, 
Le., n1 = X:=, n,,. Then e,, and e,, must  satisfy the fol- 
lowing relations: 

e,, . 0 + eZr . I = e,, ( A41 

e lr  . 1 + e,, . 0 = e2,. (A51 
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F r o m  Eqs. (A.4) and (A.5) we  conclude  that  

‘ 1 ,  - e ~ r  - 

because nir = 0 or 1, then nir!  = 1. Therefore by  substi- 
tuting Eqs. (A2) and (A3) into (A l )  , we obtain 

But by knowing that e,, = enr and nl,  + n,, = I ,  Eq. (A6) 
can be writ ten as 

= C’fl1!(fi r=l x:’.), 

where x, = pr/ X,. T h u s  P(yl, y,) actually  depends  only 
on the state y , ,  which   was  not unexpected  because y, + 
y,=  (1, l;.., l ) . T h u s P ( y , , y , )   c a n b e w r i t t e n a s  

But because 

then 

Thus the probability that the CPU will be  idle,  P ( 0 ,  
0, . . ., 0) , can be written as lTo = c’ ,  which  implies  that 

r=1 
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