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Working  Set  Concept 

Abstract: An  algorithm to divide the main memory among N competing  programs with different characteristics, running  in a multi- 
programming  and  virtual  memory  environment,  is  proposed. The algorithm  is  based  on  an  optimal  allocation  policy,  which  is  derived i n  
this  paper,  using  the  concept of the  working set. A brief  description of the  hardware  implementation of the  algorithm  is also presented. 
It is  shown that under this optimal  allocation policy “the value of a page-frame” (the amount of reduction in the page fault rate if an 
additional  page  frame  is  allocated to that  program)  to  each  program is the  same. 

Introduction 
There  are  two  classes of automatic memory manage- 
ment  policies, fixed partitioning  and  variable  partition- 
ing. The  important  advantage of fixed partitioning is the 
apparent low overhead of implementation, since parti- 
tion changes occur  as infrequently as  possible-viz, 
when the  set of active programs  changes. This advan- 
tage can be  very  easily offset (even if the memory  re- 
quirement of each program  can be predicted  prior to 
program processing) when one  accounts  for changing 
locality [ l ]  in a program. Consider  the behavior of a 
fixed partition when each program of the  set of active 
programs (PI,  P, . . . PN) has a large variance in locality 
set size as time  varies. Assume  that Pi has rigidly been 
allocated mi page-frames  and Pj has rigidly been  allocat- 
ed m, page-frames. Assume  that  at a given time, the size 
of the locality of Pi is less  than mi and  the size of the 
locality of Pj is greater than m,. Because  the partition is 
fixed, there is no way to reallocate  page-frames from Pi 
to P,, even though such a  reallocation would not degrade 
the performance of Pi but would improve the perform- 
ance of Pj. Coffman and  Ryan [ 2 ]  have analyzed  this 
effect by comparing fixed versus variable  memory  parti- 
tion strategies in terms of the probability that  the memo- 
ry space which a  program demands  exceeds  the allocat- 
ed space.  Their  study suggests that variable  partition 
strategy is better than the fixed partition  strategy. Oden 
and Shedler [3] obtained  a  similar  conclusion using a 
different approach.  For  an excellent  and  interesting  dis- 
cussion about  the comparison  between fixed and vari- 
able partition strategies,  the  reader is advised to read 
Denning  and  Graham [4, 51. 

In this paper, we develop a  variable  partitioning algo- 
rithm which divides the main memory  among N compet- 

ing programs with different characteristics running in 
multiprogramming and virtual  memory  environments. 
The algorithm is based on  an optimal allocation  policy, 
derived in this paper, by using the  concept of the work- 
ing set.  We  also  describe briefly the  hardware imple- 
mentation of the algorithm. 

In  the  next  section, we review some  important vari- 
able partitioning  algorithms  and the motivations to de- 
velop  this  algorithm. 

The section on optimal  memory  allocation  contains 
the description of the process invoked in the derivation 
of the algorithm. The section on algorithm for imple- 
mentation describes  the algorithm proposed in this paper 
as well as a brief description of a hardware version for 
its  implementation. 

The  last section  contains the concluding  remarks  and 
recommendations  for  further  research. 

Variable partitioning 
Several important algorithms for implerhenting variable 
partitioning  strategies have been proposed in the past. 
Examples are  “Global  LRU”,  “Global  FIFO” [6, 71, 
“Global FINUFO”  (First  In  Not  Used  First  Out) [SI,  
and the  “AC/RT”  procedure [9]. 

Global  LRU  arranges all the pages of the  active pro- 
grams in a single global LRU list. 

Global F IFO arranges all the pages of the  active pro- 
grams in a single F IFO list. 

Global F INUFO arranges all the pages of the  active 
programs in a circular list with a positioning  pointer. 
Each page has a  usage bit which is set  to  “zero” if the 
page has  not  been  referenced  and is set  to  “one”, by the 
hardware,  whenever  the page is referenced.  When a 445 
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Figure 1 Possible  qualitative  relation between the working 
set sizes of two programs. 

page fault occurs,  the pointer is advanced around  the list 
until the first page with a “zero” usage bit is found.  The 
other usage  bits are  reset  to  “zero” when the  pointer 
passes by. The page at which the pointer stops is chosen 
for replacement. Global FINUFO is the paging algo- 
rithm used in the Multics system  at MIT [ 81. 

In  the  “AC/RT” algorithm [ 9 ] ,  each program  has 
associated  with it two  variables, AC and R T ,  whose val- 
ues  are  updated  at  each page  fault of that program. The 
“activity count” AC,, of the Pi program,  registers the 
fraction of its  allocated  memory which has been  refer- 
enced since its  last  page  fault. The  “round  trip frequen- 
cy” RT, ,  registers the fraction of the last K page faults 
( K  is a parameter) of P ,  which caused  the recall of the 
most  recently  replaced page. A high value of AC, indi- 
cates  that  the Pi program is making effective use of its 
allocated  memory.  A high value of RT,  indicates that 
many  mistakes are being made in the  replacement deci- 
sions. The  operation of AC/RT triggered by  a  page  fault 
of Pi  can  be  summarized as follows. 

If the RT,  value is low, steal a page from the program 
itself. If the R T ,  value is high,  replace  a  page from  the 
memory  allocated to  the program  with the lowest ACj 
value. 
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In spite of the  apparent  advantage of these variable 
partitioning techniques  over  the fixed paritioning pol- 
icies, the  reason  for  their  success has  not  been  formulat- 
ed analytically. The analytical  formulation will enable us 
to maximize that  success.  Chamberlin,  Fuller,  and Liu 
[lo] have proposed an algorithm which distributes  the 
main memory  among the programs that  are  resident in 
the main memory such  that  the page fault  rate of each of 
these programs is approximately the  same.  That is an 
intuitively  appealing  algorithm but no analytical proof to 

explain the  expected  success of the algorithm was given. 
A similar algorithm has been proposed  independently by 
Chu  and  Opderbeck [ 1 1 1. 

Another example of variable  memory  partitioning is 
the working set algorithm  which takes  into  account  the 
varying  memory requirements during  execution of a 
program.  Denning [12, 131 introduced the  concept of 
the working set  to  describe program  behavior in virtual 
memory environments.  The working set W ( t ,  T) of a 
program at time t is defined as  the  set of distinct pages 
which are referenced  during the execution of the pro- 
gram over  the  interval (t-T, t )  where T is called the win- 
dow  size. The working set  size w( t ,  T) is the  size  (or 
cardinality) of the  set W ( t ,  T). The working set size  as 
an indicator of program  behavior may be sometimes mis- 
leading for  the following reason:  Two programs may 
have  the  same working set  size  characteristics  for a cer- 
tain  window size, but their working set size characteris- 
tics may differ significantly for  another window size. In a 
certain range of window sizes,  the working set size for 
one program may be  smaller  than the working set size 
for  the  other program; but  the  reverse may be  true in 
another range of window  sizes (see Fig. 1 ). In  other 
words,  the working set size as  an indicator for program 
behavior is a local indicator  and highly dependent  on T. 

Thus, in order  to  better  characterize program  behavior, 
we need to  introduce  an indicator which is global (e.g., a 
working set size with dynamically changing parameter T 
or  the integration of the working set size curve with  re- 
spect  to T ) .  

In this paper,  we transform the problem of partitioning 
the memory space  into  that of choosing an optimal (and 
varying)  set of window  sizes (one window size  for each 
program)  for which the working sets  are defined. Then, 
we  derive  an optimal policy to allocate the main memory 
dynamically  among many programs. Our optimization 
criterion is to minimize the sum of the page fault rates of 
all the programs which are residing in the main memory. 
For each  program  residing in the main memory, we de- 
rive the  value  of   a  page  frame (the  amount of reduction 
in the page fault rate  that  occurs when an additional 
page frame is allocated to  that  program).  We  show  that 
for  the optimal  partition of the main memory, these val- 
ues are equal. So we propose an algorithm that desitri- 
butes main memory  among the  active programs in such a 
way that  these values (the value of a page frame  to  each 
of these programs) lie near  each  other. 

An optimal memory allocation policy 
The problem is  to divide the main memory with a fixed 
size of M pages among N competing  programs so that 
the sum of page fault  rates is minimized. Let T,  be  the 
window  size parameter  associated with program i at a 
given  time t .  Let us further  assume  that a partition of 
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w,(t, T ~ )  page frames of main memory (hereafter we write  time  assigned to program i is linearly proportional to  the 
~ ~ ( 7 ~ )  by suppressing t )  is allocated to this program. The main memory space allocated to it,  then the  objective 
derivative of ~ ~ ( 7 ~ )  with respect  to T~ is called the function is X:=, ~ ~ ( 7 ~ )  w ~ ’ ( T ~ ) ,  and k i ( ~ i )  is found to be 
“missing-page rate” [ 131 and this  quantity is approxi- 
mately equal  to  the  amount of increase in the working k i (T i )  = - ( T i )  + 
set size if we  increase  the window size by one. We as- Wi’ ( ‘ T i )  

Sume that  the  sequence of working set sizes is 1ocaIlY In  other  cases, it may be better  to maximize the summa- 
stationary.  Our Problem is equivalent to finding a set tion of the lifetimes [ 7 ]  of all the programs rather  than 
of {T~} which solves  the following problem to minimize the summation of the missing page rates.  In 

[ 1. ( 6 )  
W i  ( Ti) Will ( Ti) 

v 
minimize wi’ ( T J  

i = l  

Y 

subject to x ~ ~ ( 7 ~ )  = M .  
i=l 

Combining the  constraint wi(7J = M with the 
cost function [X:=, wi’ (T~)] by the  appropriate Lagrange 
multiplier constant A, we obtain 

L = 5  W i ’ ( ~ i )  + k [ i  W i ( ~ i )  - M 1 (3) 
i = l  i = l  

which implies that for the optimal set {T], T ~ ,  . . ., T ~ }  we 
must have 

Let us define the quantity by 

k i ( T 1 )  = - 

this case  the objective  function is 

For a more complicated  function such  as  the  one 
shown in [ 141, it is suggested that  the relation  between 
the working set size and  the lifetime function be used to 
derive  the objective  function. The result will be an 
expression  dependent  on  the working set sizes  and their 
derivatives with respect  to  the window  sizes.  Finally an 
algorithm can  be developed by determining the value of 
the page frame. 

Following is another example that indicates  how to 
apply our  technique  under  other assumptions. Let pro- 
gram i have a  processing rate  requirement  that is dif- 
ferent from the processing rate required by program j 
(due  to  the difference in their  priorities).  We  assume  that 
we  can  choose a vector a = [a,, az,. . ., aN] such  that aj 
represents a relative figure of merit  describing the im- 

( 5 )  portance of program j .  In this case  the problem can be 
formulated as  the following: 

we  see  that k i ( T i )  represents  the  amount of reduction in 
the missing page rate, if an additional page frame is allo- 
cated to program i. It is also  clear  that k i ( ~ i )  represents 
the  increase in the missing page rate, if one page frame is 
taken  away from  program i. So if there is an additional 
page frame available in main memory, it should be given 
to  the program that  has  the largest k i ( T i )  ; and if we want 
to steal a page frame  from some  program,  then it should 
be taken from the program that has the smallest / c ~ ( T ~ ) .  

For  the optimal partitioning, therefore, all the ki must  be 
equal. That is to  say, an optimal policy is to  vary  the T{  

to  keep all the ki as close to  each  other  as possible. Note 
that  the common value of all the ki at  the optimal solu- 
tion is equal  to A, the Lagrange multiplier. On  the  other 
hand A is equal to aL/ aM for the optimal  partition; Le., 
it is the  amount of reduction in the minimized total miss- 
ing-page rate,  when  the  space available to  these pro- 
grams is increased by one page frame. 

The  cost  function, which is also called the objective 
function X:zl w i ‘ ( 7 J ,  has been considered by assuming 
that  the  CPU is distributing  its  time equally among the 
N programs. We  now demonstrate how our technique 
can be applied under different assumptions: If the CPU 

Y 

minimize x aiwi’ ( T J  (8)  
i = l  

N 

subject  to ~ ~ ( 7 ~ )  = M .  (9) 
i = l  

The  interpretation of this  result is as follows: Since pro- 
gram i is an  important  program,  we  conclude  that  for  the 
optimal  solution, the  amount of reduction in the page 1 

fault rate (if we give  this  program an additional page- 
frame) can  be  less than  the corresponding  values for  the 
other programs. 

Algorithm for implementation 
The block diagram of an algorithm to implement the op- 
timal policy derived above is shown  in Fig. 2.  In  the al- 
gorithm, we calculate (for  each program j )  an approxi- 
mation of the value of a page frame of the program for 
32  different  values ( A ,  2A,  3A, . of T ,  where A = 
max.  window  size/2”, where p is an integer. In  other 
words, k j ( ~ j )  is approximated for 32 values of T ~ .  These 
calculations are  carried  out by  calculating  approxima- 
tions of ~ ~ ‘ ( 7 ~ )  and ~ ~ ” ( 7 ~ )  for  the  same 32 values of T~ 44? 
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Interrupt which indicates that 
program f is demanding a page 
which is not in the main memory. 

I 
The number which is  in Wd( i) approximates the 
derivative of Wss at the beginning of subinterval i. 

C + 
Construct  an array Wdd ( i )  approximates the negative of the 
Wdd( .) by calculating 

beginning of subintervali. 
second derivative of the Wss at the 

4 
I Calculate kr ( i )  from 1 

the relation 

relation 

4 
J =  1 

I Increase T by 6' T I  

t 

9- k, Z K  + r  

The responsibility of the rest of the paging 
1/0 handler can be summarized as follows 
(a)   To pick a page from the unwanted pages 
(the pages which are no longer in working 
sets)  and send it back to  the secondary 
memory. 

for the page fault (the missing page). 
(b)  To bring the page which is responsible 

0 Decrease T by8 T 

t 
Figure 2 Block diagram for the proposed  algorithm. 
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mentioned above.  The algorithm determines  the values 
of T ~ ,  such  that all elements of the  set { k j ( ~ j ) }  are within 
a small range 2~ around their mean K .  Therefore,  the 
algorithm distributes  the page frames among the N com- 
peting active programs  such that all values of k are in 
the  neighborhood of their mean. 

Remurks 
1 .  The small  positive  value E is determined so as  to 

avoid unnecessary oscillation of the window  size 
between  two values. 

2. To determine  the  appropriate window  sizes,  a  binary 
search is used due  to considerations of convenience 
in the  hardware implementation of the algorithm. 

The  process of generating an approximation of the 
derivative of the working set  size with respect  to  the 
window size is the most  critical  part of our algorithm. 
All the  other  steps  use well known  operations such as 
addition, multiplication, etc.  Let us now describe  the 
process of generating the approximation of w’. 

Each program has  an array which has 2” entries  for 
some integer p (assume p = 5 ) .  This  array is called Wd. 
W d ( . )  is constructed  to  approximate  the  derivative of 
the working set size  with respect  to  the window  size. 
The  steps  to  construct Wd(.) ,  for  the running  pro- 
gram, are: 

Page frame 
number 

Program 1.D. Reference register 
(5  bits) 

I I I I ’  

Figure 3 Information to be kept in associative memory for 
each page frame. 

(RR) ( 5  bits) 

memory 

~- 

A t  

. 
T 

Associative 

Every page frame in the main memory has a counter, 
RR, of p bits (see Fig. 3 ) .  In a sense  RR is used  as 
an aging register. If we assume  that  the  RR  entry  cor- F~~~~~ The Wd array 
responding to a certain page frame equals 4, then we 
are indicating that  the instruction  generating the last 
reference  to  that page frame  occurred recently 

&+ To the Wd array 

enough to be  included  among the last SA instructions, 
but  not  recently  enough to  be found within the last 4 A  
instructions. 

L. For  every A executed instructions, the  counters  RR 
of the page frames which belong to the running pro- 
gram are incremented. 

3. Every time  a  page is referenced, the  counter  RR of 
the page frame which is accommodating that page is 
reset  to  zero. 

4. Every time a page is brought to  the main memory,  the 
counter of the page  frame which will accommodate 
that page is reset  to zero. 

5.  In  the  event of a page fault, a  microprogram (see Fig. 
4) is initiated,  which  loads the program I.D. into reg- 
ister A and resets register B to 00000. Registers A. 
and B can now be  used as argument  registers for  the 
associative memory C .  The  associative memory is 
equipped with a counter  (register D)  to count  the 
number of matches. Associative  operations  continue 
using values in register B varying  from 00001 - 1 1 1 1 1 .  
After  each  associative  operation  the  content of regis- 

Increment 

ter D is stored in the  appropriate  entry of the Wd ar- 
ray  [e.g., if register B contains 00101, the  content of 
register D is stored in Wd(5)] .  

TO show how the  array Wd( .) approximates the de- 
rivative of the working set size with respect  to  the win- 
dow size [Wd(i) approximates w ’  (iA) ], assume without 
loss of generality that i = 4. Wd (4) contains  the number 
of page frames  that  have 4 in their RR registers  (from 
step 5 ) .  Thus Wd(4)  contains  the number of page 
frames which have not  been  referenced within the last 
4A instructions  but  have been  referenced within the last 

5A instructions.  Therefore Wd(4)  approximates w’ ( 4 A ) .  

Concluding remarks 
We have proposed  a  methodology for developing algo- 
rithms which efficiently and  dynamically  partition main 
memory  among N competing  programs. This methodolo- 
gy  is based on expressing the optimization  criterion ana- 
lytically as a  function of the working set sizes  (of the N 
competing programs)  and  their derivatives  (with respect 449 
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to  their window sizes).  The  case  for which the optimiza- 
tion  criterion is the sum of the page fault rates was  con- 
sidered in detail. A brief description of a hardware im- 
plementation  was also  presented. 

In this paper, we have assumed that  there  are N com- 
peting programs. The  question of finding the  optimal n 
(optimal  degree of multiprogramming) is still an impor- 
tant  question which has  to be answered. Also we  have 
proposed  that  the algorithm  should be initiated after 
every page fault, but the  question of how frequently 
such  an algorithm  should be initiated is another impor- 
tant question. The  answer  to this question  depends  on 
the effectiveness of this algorithm compared with the 
overhead imposed when it  is used. 
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