M. Z. Ghanem

Dynamic Partitioning of the Main Memory Using the

Working Set Concept

Abstract: An algorithm to divide the main memory among N competing programs with different characteristics, running in a multi-
programming and virtual memory environment, is proposed. The algorithm is based on an optimal allocation policy, which is derived in
this paper, using the concept of the working set. A brief description of the hardware implementation of the algorithm is also presented.
It is shown that under this optimal allocation policy “the value of a page-frame™ (the amount of reduction in the page fault rate if an
additional page frame is allocated to that program) to each program is the same.

Introduction
There are two classes of automatic memory manage-
ment policies, fixed partitioning and variable partition-
ing. The important advantage of fixed partitioning is the
apparent low overhead of implementation, since parti-
tion changes occur as infrequently as possible—viz,
when the set of active programs changes. This advan-
tage can be very easily offset (even if the memory re-
quirement of each program can be predicted prior to
program processing) when one accounts for changing
locality [1] in a program. Consider the behavior of a
fixed partition when each program of the set of active
programs (P, P,--- P,) has a large variance in locality
set size as time varies. Assume that P, has rigidly been
allocated m;, page-frames and P; has rigidly been allocat-
ed my page-frames. Assume that at a given time, the size
of the locality of P, is less than m, and the size of the
locality of P, is greater than m,. Because the partition is
fixed, there is no way to reallocate page-frames from P,
to P, even though such a reallocation would not degrade
the performance of P; but would improve the perform-
ance of P, Coffman and Ryan [2] have analyzed this
effect by comparing fixed versus variable memory parti-
tion strategies in terms of the probability that the memo-
ry space which a program demands exceeds the allocat-
ed space. Their study suggests that variable partition
strategy is better than the fixed partition strategy. Oden
and Shedler [3] obtained a similar conclusion using a
different approach. For an excellent and interesting dis-
cussion about the comparison between fixed and vari-
able partition strategies, the reader is advised to read
Denning and Graham [4, 5].

In this paper, we develop a variable partitioning algo-
rithm which divides the main memory among N compet-

SEPTEMBER 1975

ing programs with different characteristics running in
multiprogramming and virtual memory environments,
The algorithm is based on an optimal allocation policy,
derived in this paper, by using the concept of the work-
ing set. We also describe briefly the hardware imple-
mentation of the algorithm.

In the next section, we review some important vari-
able partitioning algorithms and the motivations to de-
velop this algorithm.

The section on optimal memory allocation contains
the description of the process invoked in the derivation
of the algorithm. The section on algorithm for imple-
mentation describes the algorithm proposed in this paper
as well as a brief description of a hardware version for
its implementation.

The last section contains the concluding remarks and
recommendations for further research.

Variable partitioning

Several important algorithms for implementing variable
partitioning strategies have been proposed in the past.
Examples are “Global LRU”, “Global FIFO” [6, 7],
“Global FINUFO” (First In Not Used First Out) [8],
and the “AC/RT” procedure [9].

Global LRU arranges all the pages of the active pro-
grams in a single global LRU list.

Global FIFO arranges all the pages of the active pro-
grams in a single FIFO list.

Global FINUFO arranges all the pages of the active
programs in a circular list with a positioning pointer.
Each page has a usage bit which is set to “zero” if the
page has not been referenced and is set to ““one’’, by the
hardware, whenever the page is referenced. When a

445

DYNAMIC PARTITIONING




446

wl(t,'r )

wo(t,7)

Wit )< Wt 1) | wi(67y) Sw,(hTy)

w(tT)

Tl TZ T

Figure 1 Possible qualitative relation between the working
set sizes of two programs.

page fault occurs, the pointer is advanced around the list
until the first page with a ““zero” usage bit is found. The
other usage bits are reset to “zero” when the pointer
passes by. The page at which the pointer stops is chosen
for replacement. Global FINUFO is the paging algo-
rithm used in the Multics system at MIT [8].

In the “AC/RT” algorithm [9], each program has
associated with it two variables, AC and RT, whose val-
ues are updated at each page fault of that program. The
“activity count” AC,, of the P, program, registers the
fraction of its allocated memory which has been refer-
enced since its last page fault. The “round trip frequen-
cy” RT,, registers the fraction of the last K page faults
(K is a parameter) of P, which caused the recall of the
most recently replaced page. A high value of AC, indi-
cates that the P, program is making effective use of its
allocated memory. A high value of RT, indicates that
many mistakes are being made in the replacement deci-
sions. The operation of AC/RT triggered by a page fault
of P, can be summarized as follows.

If the RT, value is low, steal a page from the program
itself. If the RT, value is high, replace a page from the
memory allocated to the program with the lowest AC;
value.

In spite of the apparent advantage of these variable
partitioning techniques over the fixed paritioning pol-
icies, the reason for their success has not been formulat-
ed analytically. The analytical formulation will enable us
to maximize that success. Chamberlin, Fuller, and Liu
[10] have proposed an algorithm which distributes the
main memory among the programs that are resident in
the main memory such that the page fault rate of each of
these programs is approximately the same. That is an
intuitively appealing algorithm but no analytical proof to

M. Z. GHANEM

explain the expected success of the algorithm was given.
A similar algorithm has been proposed independently by
Chu and Opderbeck [11].

Another example of variable memory partitioning is
the working set algorithm which takes into account the
varying memory requirements during execution of a
program. Denning [12, 13] introduced the concept of
the working set to describe program behavior in virtual
memory environments. The working set W(¢, 7) of a
program at time ¢ is defined as the set of distinct pages
which are referenced during the execution of the pro-
gram over the interval (s-7, t) where 7 is called the win-
dow size. The working set size w(z, 7) is the size (or
cardinality) of the set W (7, 7). The working set size as
an indicator of program behavior may be sometimes mis-
leading for the following reason: Two programs may
have the same working set size characteristics for a cer-
tain window size, but their working set size characteris-
tics may differ significantly for another window size. In a
certain range of window sizes, the working set size for
one program may be smaller than the working set size
for the other program; but the reverse may be true in
another range of window sizes (see Fig. 1). In other
words, the working set size as an indicator for program
behavior is a local indicator and highly dependent on 7.
Thus, in order to better characterize program behavior,
we need to introduce an indicator which is global (e.g., a
working set size with dynamically changing parameter 7
or the integration of the working set size curve with re-
spect to 7).

In this paper, we transform the problem of partitioning
the memory space into that of choosing an optimal (and
varying) set of window sizes (one window size for each
program) for which the working sets are defined. Then,
we derive an optimal policy to allocate the main memory
dynamically among many programs. Our optimization
criterion is to minimize the sum of the page fault rates of
all the programs which are residing in the main memory.
For each program residing in the main memory, we de-
rive the value of a page frame (the amount of reduction
in the page fault rate that occurs when an additional
page frame is allocated to that program). We show that
for the optimal partition of the main memory, these val-
ues are equal. So we propose an algorithm that desitri-
butes main memory among the active programs in such a
way that these values (the value of a page frame to each
of these programs) lie near each other.

An optimal memory allocation policy

The problem is to divide the main memory with a fixed
size of M pages among N competing programs so that
the sum of page fault rates is minimized. Let 7, be the
window size parameter associated with program i at a
given time ¢, Let us further assume that a partition of

IBM J. RES. DEVELOP.



w,(t, 7,) page frames of main memory (hereafter we write
w,(7;) by suppressing ?) is allocated to this program. The
derivative of w,(r,) with respect to 7, is called the
“missing-page rate” [13] and this quantity is approxi-
mately equal to the amount of increase in the working
set size if we increase the window size by one. We as-
sume that the sequence of working set sizes is locally
stationary. Qur problem is equivalent to finding a set
of {r,} which solves the following problem
N
minimize > w,'(7,) (n

i=1
N
subject to Y w,(1,) =M. (2)
i=1
Combining the constraint 2‘1.\;1 w,(t,) = M with the

cost function [21::1 w,' ()] by the appropriate Lagrange
multiplier constant A, we obtain

N N
L= w/(r) + )\[2 w,(r) — M] (3)
i=1 i=1
which implies that for the optimal set {r, 7,,---, 7,} we
must have
w"” (1)
v =\ (4)
w/ (1)

Let us define the quantity by

w/" (1) _ dw, ()

dw(r) ’

k(r) =— (5)

wy' () -

we see that &,(7;) represents the amount of reduction in
the missing page rate, if an additional page frame is allo-
cated to program i. It is also clear that k,(r,) represents
the increase in the missing page rate, if one page frame is
taken away from program i. So if there is an additional
page frame available in main memory, it should be given
to the program that has the largest £,(7,); and if we want
to steal a page frame from some program, then it should
be taken from the program that has the smallest k,(7,).
For the optimal partitioning, therefore, all the k; must be
equal. That is to say, an optimal policy is to vary the 7,
to keep all the £, as close to each other as possible. Note
that the common value of all the ; at the optimal solu-
tion is equal to A, the Lagrange multiplier. On the other
hand A is equal to 9L/ dM for the optimal partition; i.e.,
it is the amount of reduction in the minimized total miss-
ing-page rate, when the space available to these pro-
grams is increased by one page frame.

The cost function, which is also called the objective
function 2‘;’:1 w;'(7,), has been considered by assuming
that the CPU is distributing its time equally among the
N programs. We now demonstrate how our technique
can be applied under different assumptions: If the CPU

SEPTEMBER 1975

time assigned to program i is linearly proportional to the
main memory space allocated to it, then the objective
function is 3, w,(r)w, (r,), and k,(r,) is found to be

w(r)w/ (1) ]

k(r) =— [W{ (r) + )

(6)
In other cases, it may be better to maximize the summa-
tion of the lifetimes [7] of all the programs rather than
to minimize the summation of the missing page rates. In
this case the objective function is

1

w,(7,)

Wi// (7,' )

[Wi,(Ti)]S '

,and k(r,) = 7

VB

It
-

T

For a more complicated function such as the one
shown in [14], it is suggested that the relation between
the working set size and the lifetime function be used to
derive the objective function. The result will be an
expression dependent on the working set sizes and their
derivatives with respect to the window sizes. Finally an
algorithm can be developed by determining the value of
the page frame.

Following is another example that indicates how to
apply our technique under other assumptions. Let pro-
gram /{ have a processing rate requirement that is dif-
ferent from the processing rate required by program j
(due to the difference in their priorities). We assume that
we can choose a vector a = [«a,, o, "+, ;] such that o
represents a relative figure of merit describing the im-
portance of program j. In this case the problem can be
formulated as the following:

N
minimize 2 aw' (7)) (8)
i=1

.
subject to 2 w,(r) =M. (9)

i=1

The interpretation of this result is as follows: Since pro-
gram i is an important program, we conclude that for the
optimal solution, the amount of reduction in the page
fault rate (if we give this program an additional page-
frame) can be less than the corresponding values for the
other programs.

Algorithm for implementation

The block diagram of an algorithm to implement the op-
timal policy derived above is shown in Fig. 2. In the al-
gorithm, we calculate (for each program j) an approxi-
mation of the value of a page frame of the program for
32 different values (A, 24, 34, ---,) of 7, where A =
max. window size/2”, where p is an integer. In other
words, kj(T].) is approximated for 32 values of 7;. These
calculations are carried out by calculating approxima-
tions of w; (r;) and w; (7;) for the same 32 values of 7,

aa7

i

DYNAMIC PARTITIONING:




Interrupt which indicates that
program ! is demanding a page @
which is not in the main memory.

Yes
1 o

Create array | The number which is in Wd (i) approximates the
wd(-) derivative of Wss at the beginning of subinterval . No
Yes
! ®
Wdd(7) approximates the negative of the 1l
No

Construct an array
Wdd(-) by calculating second derivative of the Wss at the

Wdd (i) = Wd (i) — Wd (i + i)| beginning of subinterval i.

Kéep 7 without
change

L 2 2 < < 3 )
Calculate k; (i) from Yes
the relation J=7+1
ky (i) = — wi (i)/w; (i)
No

¥

ll'\é[l‘:tiil(f)zllK by the il"/}g Lespglnsibilit}l; of the rest of the fpz;lging
andler can be summarized as follows

Knew = Kold + (knew — kold)/n (a) To pick a page from the unwanted pages
(the pages which are no longer in working

sets) and send it back to the secondary

memory.

(b) To bring the page which is responsible

] for the page fault (the missing page).

Decrease Tby§

No
v Yes JV
Decrease Tby§ 7
No y l@:rease 7 byd Tl
& @ No +
Yes Yes

§t=487/2

Increase T byd 7

448 Figure 2 Block diagram for the proposed algorithm.

M. Z. GHANEM IBM J. RES. DEVELOP.




mentioned above. The algorithm determines the values
of 7;, such that all elements of the set {kj('r].)} are within
a small range 2¢ around their mean K. Therefore, the
algorithm distributes the page frames among the N com-
peting active programs such that all values of k are in
the neighborhood of their mean.

s Remarks

1. The small positive value € is determined so as to
avoid unnecessary oscillation of the window size
between two values.

2. To determine the appropriate window sizes, a binary
search is used due to considerations of convenience
in the hardware implementation of the algorithm.

The process of generating an approximation of the
derivative of the working set size with respect to the
window size is the most critical part of our algorithm.
All the other steps use well known operations such as
addition, multiplication, etc. Let us now describe the
process of generating the approximation of w',

Each program has an array which has 2” entries for
some integer p (assume p = 5). This array is called Wd.
Wwd(-) is constructed to approximate the derivative of
the working set size with respect to the window size.
The steps to construct Wd(-), for the running pro-
gram, are:

1. Every page frame in the main memory has a counter,
RR, of p bits (see Fig. 3). In a sense RR is used as
an aging register. If we assume that the RR entry cor-
responding to a certain page frame equals 4, then we
are indicating that the instruction generating the last
reference to that page frame occurred recently
enough to be included among the last SA instructions,
but not recently enough to be found within the last 4A
instructions.

2. For every A executed instructions, the counters RR
of the page frames which belong to the running pro-
gram are incremented.

3. Every time a page is referenced, the counter RR of
the page frame which is accommodating that page is
reset to zero.

4. Every time a page is brought to the main memory, the
counter of the page frame which will accommodate
that page is reset to zero.

5. In the event of a page fault, a microprogram (see Fig.
4) is initiated, which loads the program 1.D. into reg-
ister A and resets register B to 00000. Registers A.
and B can now be used as argument registers for the
associative memory C. The associative memory is
equipped with a counter (register D) to count the
number of matches. Associative operations continue
using values in register B varying from 00001-11111.
After each associative operation the content of regis-

SEPTEMBER 1975

Page frame Program I.D. Reference register
number (5 bits)

LT

\/\/\/\/\/\/\/\/\/\/\/\/\)

RV W e e W aVa Ve W Wa Vo e W

Figure 3 Information to be kept in associative memory for
each page frame.

Page frame Program 1.D. Reference register
number (RR) (5 bits)

Associative

r— memory
W/\/\/\}'\W

l\/\/\/\/\/\/\/\/\/\/]

At ts
&gram 1.D.

Reset to
l Counter (5 bits) 1 00000

Increment
D Associative
L— | Counter ——— Reset to
i

To the Wd array

Figure 4 The Wd array

ter D is stored in the appropriate entry of the Wd ar-
ray [e.g., if register B contains 00101, the content of
register D is stored in Wd(5)].

To show how the array Wd(-) approximates the de-
rivative of the working set size with respect to the win-
dow size [Wd(i) approximates w’ (iA)], assume without
loss of generality that i = 4. Wd(4) contains the number
of page frames that have 4 in their RR registers (from
step 5). Thus Wd(4) contains the number of page
frames which have not been referenced within the last
4A instructions but have been referenced within the last
5A instructions. Therefore Wd(4) approximates w'(44A).

Concluding remarks

We have proposed a methodology for developing algo-
rithms which efficiently and dynamically partition main
memory among N competing programs. This methodolo-
gy is based on expressing the optimization criterion ana-
Iytically as a function of the working set sizes (of the N
competing programs) and their derivatives (with respect

DYNAMIC PARTITIONING

449



450

to their window sizes). The case for which the optimiza-
tion criterion is the sum of the page fault rates was con-
sidered in detail. A brief description of a hardware im-
plementation was also presented.

In this paper, we have assumed that there are N com-
peting programs. The question of finding the optimal n
(optimal degree of multiprogramming) is still an impor-
tant question which has to be answered. Also we have
proposed that the algorithm should be initiated after
every page fault, but the question of how frequently
such an algorithm should be initiated is another impor-
tant question. The answer to this question depends on
the effectiveness of this algorithm compared with the
overhead imposed when it is used.

Acknowledgment
The author thanks R. Fagin and W. D. Frazer for their
valuable comments.

References

1. P. J. Denning, “On Modelling Program Behavior,” Proc.
Spring Joint Computer Conference (AFIPS), Spartan
Books, New York 1972.

2. E. G. Coffman, Jr. and T. J. Ryan, Jr., ““A Study of Storage
Partitioning Using Mathematical Model of Locality,”
Comm. ACM 15, 185 (1972).

3. P. H. Oden and G. A. Shedler, “A Model of Memory Con-
tention in a Paging Machine,” Comm. ACM 15, 761
(1972).

4. P.J. Denning and G. S. Graham, “Multiprogramming and
Memory Management,” Proc. IEEE (Interactive Com-
puter Systems) 63, 924 (1975).

M. Z. GHANEM

5. G. S. Graham and P. J. Denning, “Multiprogramming and
Program Behavior,” Report Number CSD-TR 122, Com-
puter Science Department, Purdue University, 1974.

6. L. A. Belady, “A Study of Replacement Algorithms for a
Virtual Storage Computer,” /BM Syst. J. 5,78 (1966).

7. L. A. Belady and C. J. Kuehner, “Dynamic Space Sharing
in Computer Systems,” Comm. ACM 12, 282 (1969).

8. F.J. Corbato, ‘“A Paging Experiment with the Multics Sys-
tem,” Report MAC-M-384, Project MAC, Massachusetts
Institute of Technology, Cambridge, July 1968.

9. L. A. Belady and R. F. Tsao, “Memory Allocation and
Program Behavior under Multiprogramming,” Research
Report RC 3469, IBM Thomas J. Watson Research Cen-
ter, Yorktown Heights, New York 1971.

10. D. D. Chamberlin, S. H. Fuller and L. Y. Liu, “An Analy-
sis of Page Allocation Strategies for Multiprogramming
Systems with Virtual Memory,” IBM J. Res. Develop. 17,
404 (1973).

11. W. W, Chu and H. Opderbeck, ‘“The Page Fault Frequen-
cy Algorithm,” Proc. Fall Joint Computer Conference
(AFIPS), Spartan Books, New York 1972,

12. P. J. Denning, “The Working Set Model for Program Be-
havior,” Comm. ACM 11,323 (1968).

13. P.J. Denning and S. C. Schwartz, ‘Properties of the Work-
ing Set Model,” Comm. ACM 15, 191 (1972).

14. M. Z. Ghanem, “Study of Memory Partitioning for Multi-
programming Systems with Virtual Memory,” IBM J. Res.
Develop. 19, 451 (1975, this issue).

Received September 10, 1974, revised April 24, 1975

The author is located at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York 10598.

IBM J. RES. DEVELOP.



