
E. 6. Fernendez 
T. Lang 

Computation of Lower  Bounds  for  Multiprocessor 
Schedules 

Abstract: A multiprocessing  system  composed of identical units is considered.  This system is executing  a set of partially ordered  tasks, 
with known  execution times, using a  non-preemptive  scheduling  strategy. Lower  bounds on the  number of processors required to com- 
pute  the  tasks before  a  deadline, and on the minimum time to  execute  the  tasks with a fixed number of processors,  are of great value  for 
the  determination of the corresponding  optimal  schedules. In this paper,  methods  for  the efficient computation of the lower bounds ob- 
tained by Fernindez and Bussell are  discussed.  Computational improvements for  the  case of general partial orders  are  reported,  and 
further  reductions of the  number of operations  are  shown  to be possible  for special graphs  (trees, independent chains,  independent 
tasks). 

1. Introduction 
A significant decrease in cost  for digital computer func- 
tional units has  occurred in the  last few years,  due  to  the 
extensive  use of LSI techniques. This  has made the de- 
sign  of multiprocessing systems composed of a large 
number of functional  units  a  practically  feasible en- 
deavor,  and many proposals for  such  systems  have ap- 
peared [ 1, 21. Multiprocessor scheduling is thus becom- 
ing a more significant problem and several papers dealing 
with this  subject have been published [3, 4, 51. 

Two basic  problems are of great  interest in multi- 
processor scheduling theory: 1 )  a  deadline for  the  execu- 
tion time of a given set of tasks must  be satisfied using a 
minimum number of processors; 2 )  a fixed number of 
processors must  be  used to  execute a set of tasks in a 
minimum time. 

A computation to be  scheduled is  represented by some 
precedence graph indicating the relative order in which 
the  tasks must  be executed.  The graph  ranges  from an 
arbitrary partial order  to  an  empty ordering, i.e., a set of 
independent  tasks. The execution  times of the  tasks can 
be estimated in a  probabilistic way (time probability 
distributions)  or in a deterministic way (average  or 
maximum  execution times).  In this paper we are con- 
cerned with the  case  for which the  task execution  times 
are deterministically  known. 

In all known  algorithmic methods used to solve the 
two  basic  problems defined above, it is necessary  to  have 
a  starting  value for  either  the  number of processors  or 
the  total  execution  time [3, 41. For  instance, in the first 
case  the scheduling algorithm tries  to find a schedule 

using the initial assumed  number of processors. If no 
schedule can  be  obtained,  the initial value is incremented 
by one and the scheduling  algorithm is applied  again. 
The whole process is repeated until a  schedule  satisfy- 
ing the deadline is found. The  actual  number of pro- 
cessors required by this  schedule is the optimal  value 
for  the given  deadline.  Since the scheduling of general 
partial orders is basically an  enumerative  process [6], 
the  amount of extra  work can be  enormous if the  as- 
sumed  starting  value is not close  to  the  actual  number 
of required processors.  The  same  considerations apply 
to  the second  problem. The  determination of starting 
values, Le., lower bounds, is then an  important problem 
to be solved before applying any scheduling  algorithm. 
Moreover, it is essential that  the  computational work 
involved in determining these  bounds be  very small 
compared with the complexity of applying some schedul- 
ing algorithm to  produce all the possible  schedules for 
a  given  value of the bound. Lower  bounds of this type 
are also  valuable for evaluating approximate scheduling 
methods [ 5 ] .  

In a previous paper  [7],  the problem of obtaining 
accurate lower bounds  was discussed. Two  expressions 
were obtained which represented  sharper  lower bounds 
than those obtained  previously. In this paper  we study 
the efficient calculation of these expressions.  We discuss 
also how  this efficiency can be improved for special 
partial orders, in particular trees,  independent  chains, 
and independent tasks,  and  for  graphs  where all the  tasks 
have equal  execution  time. 435 

SEPTEMBER 1975 COMPUTATION OF LOWER BOUNDS 



G: 

I t  (time) 
Tasks in  their earliest  positions 

n = 6  

f c p =  I (doublearrow) 

Let D = X ; then : 

e , ]  = 1 ; e i l  = 0 

e,4= 5 ; ei4= 2 

l , ,  = 3 ;  l t ,=  2 

e l  (2,4) = 0 

1,(2,4) = 1 

e4(2,4) = 2 

14(2,4) = 1 

f (time) 
Tasks in  their  latest  positions 

Figure 1 Basic definitions. 

In section 2 we  present  the model, some basic defini- 
tions  and a summary of the  pertinent  results from [7]. 
In section 3 we  consider general  graphs. The  direct de- 
termination of the lower bounds  requires 0 ( n o ' )  opera- 
tions,  where n is  the  number of tasks and D the deadline 
for  the  execution of these tasks. Incremental ways are 
then  proposed  to  evaluate  the  expressions  and  the num- 
ber of operations  becomes O(D' ) .  The possibility of 
using parallel computation  for this case is also briefly 
discussed. Since 0 ( D 2 )  is a  natural limit for this expres- 
sion because of the  number of intervals  that  must be 
considered,  reductions in the  number of needed  inter- 
vals are sought  by looking at particular  partial orders. 
In  section 4 we  discuss  the  determination of the  lower 
bound on  the  number of processors  for  independent 
tasks. By means of two  theorems  the  number of inter- 
vals to consider is reduced  to  about 0 1 2 .  The total 
number of operations is O(D' ) ,  which can be reduced 
by means of incremental methods  to O ( D )  operations. 
A similar analysis is performed in section 5 for  the 
lower  bound on time for  independent  tasks.  Cases of 
trees  and independent chains,  where  reductions in the 
number of intervals  with respect  to general graphs  are 
obtained,  are  considered in  section 6. Finally, in section 7 

436 we  evaluate  the  results obtained. 

2. Model, definitions, and previous  results 
A set of tasks T = {TI,  T,, . . ., T , }  is to be executed by 
a set of identical processors Pi ,  i = 1, 2,. . ., m. A  partial 
order < is given on T ,  and a non-negative  integer dj rep- 
resents  the duration of execution of task Tj.  

The partially ordered  set ( T ,  <) is described by a 
finite,  acyclic  digraph G = ( V ,  A ) , where V is a finite set 
of vertices of cardinality n, and A is a set of arcs rep- 
resented  as  vertex pairs. The  tasks Tj  correspond  to  the 
elements of V ,  and  we shall talk  interchangeably of tasks 
or  vertices.  The  arcs in A describe  the  precedences 
among the  tasks. 

Once a processor begins to  execute a task  it  cannot 
be interrupted until its completion;  that is, we  have a 
non-preemptive type of scheduling. It  is assumed that 
tasks  are scheduled to  start only at integer  values of time. 

The length of the critical path of the  graph, t,,, is  the 
minimum time to perform the  set of computations. More 
general,  and more  useful, is to talk of a deadline, D,  Le., 
a  time within which the  set of computations  must be 
finished. Clearly, D 1. tcp. According  to  some possible 
schedule,  for  each task Tj we  have a specific completion 
time which we  denote  as cy C is the completion  time 
vector, whose j th component  is cy Of  particular interest 
are  the  two  extreme  task completion  times defined below. 

The earliest  completion  time,  rei, of a  task Tj  is the 
minimum time in which  this  task can be finished, given 
the  precedence  constraints of the graph. 

The latest  completion  time, l C j ,  of a  task Tj indicates 
how long the completion  time of this  task can  be delayed 
without  exceeding the deadline. 

According to a  possible  schedule, there  exists  also  an 
initiation  time 5 for a  given  task Tj.  In analogy  with the 
definitions above, it is  then possible to define for a  task 
Tj an earliest initiation time, e i j ,  and a latest inititation 
time, l i j .  

If all the  tasks  are in their earliest  possible  positions, 
the  number of units of task Tj that lie in the interval [ t,, I , ]  
is denoted  as e j ( t , ,  t,). Similarly, if all tasks lie in their 
latest possible  positions, the  number of units of task Tj  
in this  interval is called h(t , ,  t 2 ) .  

The  concepts presented above  are illustrated in Fig. 
1.  By making use of these definitions the  lower  bounds 
presented in [7] can  be  expressed  as below. 

A lower bound on  the minimum number of processors 
required to perform the  computations of G in time D 
is given  by 

mL = max [ - f: min[ej(tl? f 2 ) .  rjct,, t , ) l ] ] .  (1) 
[ t , , t , ]  t z  - 'I j=1  

If the  number of processors, m, is not  sufficient for per- 
forming the  computations of G within time D, a lower 

~ E. B. FERNANDEZ AND T. LANG IBM J .  RES. DEVELOP. 



bound on the minimum time to  execute G with these 
m processors is given  by 

t, = D + max - ( t 2  - t , )  [ 

Because of its  importance  for computational purposes, 
we make the following definition: 

n 

M ( t , ,  t,) = C. min[ej(t,, t , ) ,  l j ( t , ,  t , ) l ,  
j=l 

which allows  rewriting ( 1 )  and ( 2 )  as 

The  operation defined below is used later in this work: 

a - b i f a z b ,  

0 otherwise. 
a ~ b =  

3. Calculation of the lower bounds for general 
graphs 

Figure 2 Possible relative positions oft,,  t,, and Tj. 

3.1 Direct computation 
It can be  seen from the  expressions  for mL and t,, that 
the key point in their evaluation is the calculation of 

M ( t , ,  t,) = C. min [ej(t , ,  t ,),  4(t l ,  t,)l 
j l t l , t p l  

for  every integer  interval. 
In this  section we shall see the complexity of calculat- 

ing this expression directly. The number of operations ob- 
tained is used as a reference  to  evaluate  alternative pro- 
cedures.  It should be noticed that  the  number of inter- 
vals to  consider is +D(D + l ) ,  and  that  therefore  any 
computation method will require  at  least O(D')  oper- 
ations: 

With reference  to Fig. 2 ,  which shows all the possible 
positions of Tj with respect  to [ t,, t,] , it can be  seen  that 
ej(t , ,  t2) and l j ( t l ,  t,) can  be  expressed  as 

e j ( t l ,  f,) = min[eej 7 t , ) ,  dj, ( t ,  - t , ) .  ( t z  7 eij)l ,  ( 6 )  

$ ( t , ,   t 2 )  = min[(t, 7 l i J 1  dj, ( t ,  - t , ) ,  ( l e j  7 t , ) I ,  (7)  

and because ( t , T e i j )  3 ( t 2 7 1 i j )  and (1 c j  . ~ t  1 -  ) ' (e e 3  . T t  1 '  ) 
we have  that 

minlej(t,, t z ) ,  lj(tl, t , )  1 
= min[ ( ee j  7 t , ) ,  dj, ( t ,  - t , ) ,  ( t ,  l i j ) ] .  (8)  

For a  given  interval [t,,  t,], the  determination of this 
minimum requires  one  subtraction  to obtain ( t ,  - f,) , 

and  then  two  subtractions  and  three  comparisons  per 
task. Finally, ( n  - 1 )  additions  are required to perform 
the summation,  which  gives  a  total of 

1 + 2n + 3n + ( n  - 1)  = 6n operations per  interval. 

For all intervals  we  have 

6n X @ ( D  + 1 ) M 3nD' operations 

to  determine M (  t,, t 2 )  

3.2 Incremental  computation 
A reduction over  the  number of steps required for  direct 
computation of the lower bounds can be  obtained by 
using an incremental  strategy where M(t , ,  t,) is de- 
termined  from &I([,, t2 - l ) .  The value of t ,  is varied 
between 0 and D - 1 ,  and for each t ,  all the intervals 
[ t,, t,] are  determined by varying tz between t ,  + 1 and D. 

We show in this  section that M( t,, t,) can  be  computed 
incrementally using the  expression 

M o l ,  ',I = M o l ,  t, - 1 )  + F t , ( t z ) ,  

and  therefore only one addition  per  interval is required 
to  do this computation.  For  each value of t ,  a new func- 
tion Ftl has  to be computed, and we will see  that 4nD 
operations  are required for this. We therefore obtain  a 
total of 4nD + $ D ( D  + 1 )  operations, which is consid- 
erably better than the  direct method. In fact it can  be 
argued that this is a  nearly optimal method because in 437 

COMPUTATION OF LOWER BOUNDS SEPTEMBER 1975 



It (time) 

Figure 3 Proof of Lemma 1: (a) t ,  5 /ij; (b) t ,  > /ij. 

any  algorithm all intervals  have  to be  considered  and at 
least  one  operation  has  to be  performed per interval. 

Lemma 1 

where 

1i l c j  - ej(O, r , )  t ,  5 l i j  

l c j  - ( I , ,  - e,,) t ,  > I i j ,  
7; = 

that is, for t ,  5 I,,, this minimum is given by $(tl ,  t2 )  if 
t, 5 lc j  - ej(O, t,) , and it is independent of t, afterwards. 
Similarly, for t ,  > l,,, the minimum is given by b ( t , ,  t,) 
up to t, = I c j  - ( l i j  - eij) , and it is independent of t, after- 
wards. 

The proof of this  lemma is evident  from Fig. 3 .  

We  now define a density  function&' such  that 

i & p  = 
1 for lij 5 t 5 7i1, 

0 elsewhere. 

By Lemma 1 we  have 

(9) 

We  can then  write 

and interchanging the summations  and defining 

we obtain 

and therefore 

with the initial condition M (  t,, t , )  = 0. 

by just  one addition per interval. 

mentally. From  the definition we obtain 

Consequently, we can  compute  the M ' s  incrementally 

Furthermore,  we  have  to calculate F t l ,  also incre- 

n 

Ftl - F,*-, = c, (&{ -&!+I; 
j = 1  

and  from  the definition of&:, 

where 8 [ a ]  = 1 for t=  a and 0 elsewhere. Consequently, 

with the initial condition 

which corresponds  to  the "latest load density  function" 
of section 6.1. 

We now present  an Algol-like algorithm to  compute 
M (  t,, t,) incrementally by the  use of expressions ( 10) 
and (11).  

Arrays MIO : D,O : Dl contains M ( t , ,  t z ) ;  
PIO : D l  contains F,, (initially latest load 

LI[ 1 : nl contains  the  latest initiation times; 
EI[ 1 : nl  contains  the earliest  initiation times; 
T[ 1 : nl  contains  the  values of T:, (initially / c , )  ; 
EC[ 1 : n]  contains  the earliest  completion tides; 

density  function) ; 

E. B. FERNANDEZ AND T. LANG IBM J.  RES. DEVELOP. 



From this algorithm it is possible to  see  that  we need 4nD 
operations  for computing the F ’ s ,  and +D(D + 1) opera- 
tions for calculating the M’s. 

3.3 Parallel computation 
Parallel computation  can reduce  the time  considerably 
but at  the  cost of a large number of processors.  In effect, 
to  compute  the  three  subtractions and the  three compari- 
sons of the expression (8) in parallel, we could use a 
processor per  task per interval. Then,  to perform the 
additions to consider all tasks, a log-sum procedure [ 81 
can be  used. 

The  number of computation cycles is then 

6 + Ilog,nl, 

requiring a  total of ( n / 2 ) D ( D  + 1 )  M ( n / 2 ) D 2  pro- 
cessors. 

3.4 Completing the calculation 
In order  to  determine m,, and t,, M(t,,  f )  must  be di- 
vided by the interval length tz - t ,  and  the number of 
processors m, respectively. The number of divisions to 
be performed in the first case  can be minimized by notic- 
ing that 

max [R] M ( t  t 1 = m y  [i [ max ~ ( t , ,  r z ) ] ) .  
[ t , , t , l  t - t ( t , - t , - d )  

In  other  words, by first determining the maximum  value 
of M ( t , ,  t 2 )  for  each interval  size d, only one division 
per interval  size is necessary.  This  reduces  the  number 
of divisions  from one  per interval of length greater  than 1, 
i.e., [+D(D + 1)  - D l ,  to  one  per interval size,  i.e., 
( D  - 1 )  divisions. 

As divisions are usually considerably  slower  than 
multiplications and  sums, it is possible .to obtain  a 

further reduction of divisions by noticing the following 
fact.  Suppose  the  values of the maxima are obtained in 
an  order  corresponding  to increasing  length of the in- 
tervals. Assume k ( d )  is the maximum obtained  up to 
intervals of length d ,  and M ( d  ) is  the maximum  obtained 
for intervaIs of Terigth. d. Then 

k ( d +  1 )  > k ( d )  i f fM(d+  I )  > k ( d )  x ( d +  1 ) .  

Consequently, instead of dividing for every length, we 
perform the multiplication and the  comparison,  and only 
divide if the inequality holds. 

”~ . . - ~~ ” - 

4. Calculation of the lower bound on the number of 
processors for independent tasks 
We now study the calculation of the  lower bound on  the 
number of processors  for  the  case in which the  tasks  are 
independent.  We show  that in this case  the  number of 
operations  can be reduced considerably because  the 
number of intervals that  have  to be  considered is +D 
instead of $D(D + 1 ) .  The calculation for  these intervals 
can  be  performed efficiently in an incremental  manner. 

9 4.1 A simplij?ed expression for the lower  bound 
To simplfy the notation in the  subsequent  development 
we now make  the following change of variables to de- 
scribe  the intervals: [ t,, t z ]  = [a ,  b ] ,  where a = r ,  and 
/3 = D - tz .  Then we define 

b ( a ,  P )  = M(a,  p )  / ( D  - a - P I ,  (12) 

which represents  the  average of the  number of tasks  that 
have  to be executed in interval [ a ,  p]  , and therefore 
corresponds  to a bound on  the  number of processors 
required to  execute  the  tasks in this  interval. The lower 
bound on  the number of processors  for all intervals is 
then given by 

m, = max b ( a ,  p )  . 

As  the  tasks  are  independent,  the earliest  completion 
time of Tj is dj and  the  latest completion  time is D (Fig. 
4). Due  to  the symmetry of e j ( a ,  p )  and Ij(a, p )  with 
respect  to  an  axis through +D, b ( a ,  p )  = b(P ,  a ) .  There- 
fore,  we  calculate b(a ,  p )  only for intervals where 
p 2 a. 

The  contributions to b ( a ,  p )  can be  divided  into three 

I 1 (13 )  
La41 

classes: 

a. tasks with dj 5 p do not contribute  to  the bound be- 

b. tasks with p < dj < D - a contribute with (dj - p) 

c. tasks with dj 1 D - a contribute with one unit each 

cause e j (a ,  p )  is  zero in that  interval; 

( D - a - P P ) ;  

because they  span the  whole interval. 439 

COMPUTATION OF LOWER BOUNDS SEPTEMBER 1975 



I 
I 
I 

I 
I 
I 
I 

I 
I I I I 

I I I 
p " I  
I I I 
I h+dj -4 Proof BY (141, 

I I 

I 

Theorem 2 For a  graph  composed of independent tasks, 

I I 
I 

I 

i 
I 1 f o r p  E If1 a n d p  Pa. 

I I 

I I I 1 I I I I F l  I I 

0 f l  d i  f2 D 

b( - 1 ,  I:] - 1) = L$/2, nL for D odd; 

= 5 nL + + nDi2 for D even. 
L=(D/P)+ l  

t (time) This expression can be decomposed into 
Figure 4 Extreme positions for independent tasks. D-a-I 

n L +  x n, forDodd 
L=[D/2]  

Consequently, b(a ,  p )  is given by D 

= x nL+ E nL 

D-a-1 

D D-a- l  nL( L - p)  C=D-a L=(D/Z)+ l  

+ 3 nDlz for D even, b(% P )  = E ( 1 4 )  
L=D-a IZL , + Lz+l D - a - /3 

where nL is the  number of tasks of duration L. and comparing  this  expansion with ( 14), we conclude  that 

tervals  that  has  to be  considered in the evaluation of ( 13). b ( a ,  p)  5 (If] - I ,  If] - 1 )  for p 2 If], The  two  theorems below reduce  the  number of in- 

Theorem 1 For a graph composed of independent  tasks, 

b ( a ,  p)  5 b(P,  p)  for p < 

Proof By ( 14) ,  

which can be further  decomposed  into 

b(P,p)  = x n L +  x nL+ 
D D-a-1 D-fi-l nL ( L  - p )  

L=D-a L z D - 0  L=p+1 - 2p  ' 

In  the  same way, b(a ,  p)  can  be decomposed  into 

We now compare term by term  both  expressions.  The 
first terms  are  the  same;  the second term  is larger for 
b(P,  p )  because L - p < D - a - p for that range of 
values of L,  and the third  term is also larger for b(P,  p )  
because D - 2p E D - a - p. Consequently, b ( p ,  p) 
2 b(a,  p )  and the  theorem is proven. 

This  theorem indicates that  for p < r D / 2 ] ,  only the 
intervals (p ,   p )  have  to be considered to obtain the 
bound.  We now prove  another  theorem  that shows that 
no additional  intervals have  to  be considered for p 

440 2 [ D / 2 ] .  

which proves this  theorem. 

As a summary,  to calculate the lower  bound mL de- 
fined by ( 1 3 ) ,  for  independent  tasks, we compute 

m,, = [ m y  b(p,  P I ] ,  o 5 P < If]. (16) 

Consequently, only [ D /  21 intervals need to  be con- 
sidered, instead of the +D(D + 1 )  intervals  required 
in the general case. 

4.2 Number of operations required to  compute the 
lower  bound  directly 
Consider  the  expression for b(P, p)  given by (15). To 
obtain  the first term we need p additions. To obtain the 
second  term we perform ( D  - 2p)  multiplications, D 
- 2p - 1 additions, and one division. Then  both  terms 
are  added by one addition. This  has  to be  performed  for 
each /3, for 0 5 /3 5 ID/  21. Finally, [ D /  21 - 1 com- 
parisons are required to  obtain  the maximum. In total 
we  have O( D') additions, O( DL) multiplications, O( D) 
divisions,  and O ( D )  comparisons. 

This  direct calculation does not produce a  very sig- 
nificant reduction in the  number of operations  as com- 
pared with the general case.  In  the following section an 
incremental  method is considered  which  allows more 
improvement in this respect. 

4.3 Incremental calculation 
With use of the notation defined in section 4.1, the ex- 
pression for b(a ,  p )  given by ( 1 2 )  for a = /3 becomes 

E. B. FERNANDEZ AND T. LANG IBM J .  RES. DBVELOP. 



so that using ( 15) we have 

and 
1) 

M ( P +  1 , p +  I )  = x t l L ( 0 - 2 p - 2 )  

+ x n L ( L - p -  I ) .  

L=D”p-1 

D-8-2 

L=D+2 

This  latter expression can be  written as 
n 

M ( P +  l , p +  1 )  = 2 n,(D-2P-2)  
L=D-o 

because np+l ( p  + 1 - p - 1)  = 0. 

Consequently, 

M ( P +  l , P +  1) - M ( P , P )  
D D-8-1 

=”2 x nL-  x n,=-h(P), 
L=D-8  L = p + l  

D 

h ( 0 )  = n,+ nL. 
L= 1 

1. for calculating M (0, 0 )  , D multiplications and D - 1 

2 .  for calculating h ( 0 )  , D - I additions; 
3.  for calculating M ( P  + 1, /3 + I )  and h(P  + 1) from 

M(p ,  p )  and h ( p ) ,  one  subtraction and  two additions; 

additions; 

9 ( 17)  4. for calculating b ( P ,  p ) ,  one division;  and 
5.  for calculating mL, [D/2 ]  - 1 comparisons. 

In total, D multiplications, 7 [ 0 / 2 ]  additions, [ 0 / 2 ]  di- 
visions, and [D/2 ]  - 1 comparisons. 

This is considerably better  than  the nan-incremental 
calculation. It can still be  improved if the incremental 
calculation is begun  with /3 = [ 0 / 2 ]  - 1 and this  value 
is decreased until it becomes  zero, Le., we  take intervals 
[ p ,   p ]  of increasing  size. Similar recurrence relations 
as  for  the previous case can be developed, and it can be 
shown that  the total number of operations is decreased 
by D with respect  to the first incremental  method. Notice 
also  that  the  number of divisions can be reduced in the 
same manner as described for general graphs  (sec- 
tion 3.4). 

5. Calculation of the lower bound oh time for in- 
dependent tasks 
When the  tasks  are independent it is also possible to re- 
duce considerably the  number of operations required 
to  determine  the lower  bound on time, t,,. In effect, it is 
shown below that only D intervals have  to be consid- 

( 1 8 )  ered.  It is also  possible to calculate  this  bound in an 
incremental  manner. 

If in (4) we define (using  the a, p notation) 

c ( a ,  P )  = - M ( a ,  PI - ( D  - a - P I  7 

1 
m 

we can express  the lower  bound on time of (4) as 

In a similar fashion to what was  done for the bound on 
the number of processors, we can write for  independent 
tasks 

D-a  8+1 

The following theorem reduces  the  number of intervals 
that  have  to be considered in the calculation of the bound. 

Theorem 3 For  independent  tasks, 

Since,  because of Theorems I and  2, we only need to 
consider intervals [p ,  p ]  for 0 5 p < [ D /  21, the  number 
of operations required to perform the calculation of m,, 
in this  incremental manner is and 

c ( p ,  p )  2 c ( p  - A, p + A ) ,  

4411 

SEPTEMBER 1975 COMPUTATION OF LOWER BOUNDS 



Proof From ( 2  I ) ,  

- ( D  - 2/31, 

and 

D-@+A-l 1 + x n L ( L - / 3 -  A) - ( D -  2P) .  
p+A+l J 

These  expressions can be  decomposed  into 

and 

. r  D 

+ n , ( L - P - A )  
D-D+A-l 

D-io 

0-8-1 

R+A+l I + n , ( L - P - A )  - ( D - 2 / 3 ) .  

By comparing corresponding  terms it is possible to con- 
clude that 

c ( P ,  P )  1 c ( P  - A, P + 4 .  

~ An analogous analysis  shows that 

' c ( P , P +  l ) .?c(p-~A, /3+A+ l ) ,  

which proves  the theorem. 

That is, for all intervals of width ( D  - 2 P ) ,  the largest 
bound is obtained for  the interval ( P ,  /3), and for all in- 
tervals of width ( D  - 20 - 1) the  largest bound is ob- 
tained for  the interval @, P + 1 ) .  Therefore,  the total 
number of intervals  that  have  to be  considered is only 
[ D / 2 ]  + [ D / 2 ]  = D. 

An incremental procedure, similar to  the  one  de- 
scribed for  the computation of the  lower bound on  the 

442 number of processors, is also applicable  here. 

6. Calculation of the  lower  bound for other  types 
of graphs 

6.1 The lower bound on the number of processors 
for trees 
We define trees in the regular way [ 9 ]  ; however, we 
need the following definitions for  our  development 
[7 ,  101: 

The activity of task Tj is defined as 

I 1, for t E [ cj - dj, cjl ; 
0, otherwise. 

f (e j>  t )  = 

The load  density function is defined by 

Then, f ( c j ,  t )  indicates the activity of task Tj along 
time,  according to  some  schedule  that  does  not violate 
the  restrictions imposed by the  graph, and F ( C ,  t )  in- 
dicates  the total  activity as a function of time. Clearly, 
maxt F ( C ,  t )  indicates the  number of processors re- 
quired for  the schedule defined by F (  C ,  t ) .  

If we call E,  the  vector of the  earliest completion  times 
eCj ,  then F ( E , ,  t )  is the earliest loud density function, 
that is, it corresponds  to a schedule  where all tasks  are 
processed as early as possible.  Similarly, calling LC the 
vector of the  latest completion  times l e j ,  we  can de- 
fine a latest load density  function, Also, in this  section 
we shall use [ t,, t2] instead of [a, P I .  

We  consider now the general lower bound on  the num- 
ber of processors defined by (3) and we see  that,  because 
of the particular structure of trees, it is not  necessary 
to  consider all the possible intervals [ t i ,  t,J to calculate 
this  bound. First  we need the following lemma. 

Lemma 2 For  trees,  the earliest load density  function 
is monotonically  decreasing  with time. 

Proof The  vertices of a tree  (with  the  exception of the 
root)  have exactly one  successor.  Therefore,  each level 
of the  tree can have  at most as many vertices as  the pre- 
vious  level, until the level of the  root is reached,  where 
there is exactly  one vertex. As soon as a  given vertex 
ceases its activity,  its  successor is initiated if possible; 
that is, at most one new vertex  enters in activity. Then, 
at a  given instant in time, there will never  be  more ver- 
tices going into activity than  vertices ceasing their ac- 
tivity, i.e., F (Ec, t )  is monotonically  decreasing along 
time. 

Theorem 4 For  trees, 

b(t , ,  D )  5 b(0 ,  D ) ,  1 5  t1 5 D - 1 .  

Proof For general graphs  we  have 

E. B. E E ~ N ~ N D E Z  AND T. LANG IBM J .  RES. DEVELOP. 



b( t l ,  D )  = e j ( a ,  0) / ( D  - t l ) .  ( 2 4 )  

since tasks  that  are  at  their earliest  positions in the inter- 
val [t , ,  0 3  must also be there in their latest positions. 

j=l 

For t ,  = 0,  (24) becomes 
n 

ej(O, D )  
b (0 ,  D )  =jZ1 , 

which can be decomposed into 

Since the earliest load density  function for  trees is mono- 
tonically decreasing, 

and consequently, 

and again because  the earliest  density  function is mono- 
tonically decreasing,  we  have 

F (E , ,  t l )  1 b(t l ,  D l ,  

which results in 

b ( 0 ,  D )  1 b(t , ,  D ) .  

This theorem  allows us to  drop all intervals of the  class 
[ t,, D l ,  1 5 t ,  5 D - 1, from  consideration in calculating 
the lower  bound on  the  number of processors,  that is, 
a saving of D intervals. 

For  trees with tasks of unit  length, our bound re- 
duces  to Hu’s bound [ 91. Hu’s bound is exact for  this 
type of tree, and since our bound subsumes Hu’s bound 
[ 1 3 ,  the bound in (3 )  is also  exact  for  trees of unit 
length. In this case  the additional terms in (3)  are su- 
perfluous. 

6.2 The lower  bound on the  number  of  processors 
for  independent  chains 
A graph  composed of a set of independent  chains can 
be  considered as a  particular case of a tree  (assuming 
a  root of zero  duration).  Therefore,  the reduction in 
the number of intervals to  consider, defined by Theorem 
4, still applies. However,  because of the particular nature 
of this type of graph, a further reduction in the number 
of intervals to  consider is possible. 

Lemma 3 For independent tasks, F (  E,, t )  and F (  L,, t )  

Figure 5 The lower  bound for independent  chains. 

are  the image of each other with respect  to  an  axis 
through t = D /  2. 

Proof Order  chains by increasing length and  exam- 
ine their f ( e c j ,  t )  and f ( l e j ,  t ) ,  i.e., the  activities of the 
tasks in their  earliest  and latest positions,  respectively. 
As it can be  seen from Fig. 5, forf(eCj, t )  chain i starts 
at t = 0 and ends  at t = dil + di, +.  . . + dip, where  the di 
are  the  durations of the  tasks of chain i. In f ( l c j ,  t )  chain 
i starts  at t = D - (d,, + d,, +. . .+ d, ) and  ends at t =  d. 
In  other  words,  the  two possible poitions of each chain 
are images of each  other with respect  to t = D / 2 .  With 
the notation [a,  /3] as before, the following theorem can 
be defined. 

Theorem 5 For a graph  composed of a set  of indepen- 
dent  chains, b(0 ,  /3) = b(P ,  0) 5 b ( 0 ,  0).  

Proof From Fig. 5 it can be seen  that b(0 ,  f 2 )  corre- 
sponds  to  the  area  under  the  latest density  function 

ZOMPUTATION ( 

443 

3F LOWER BOUNDS 
SEPTEMBER 1975 



F (LC,  t )  and b(P,  0)  corresponds  to  the  area  under  the 
earliest  density  function F ( E c ,  t ) .  By Lemma 3 these 
two  areas  are equal. The inequality holds  since  this graph 
is a degenerate  tree  (Theorem 4). 

Hence,  for this type of graph,  intervals  starting at 
t ,  = 0 and  intervals  ending at tz = D do  not  have  to be 
considered in the calculation of the lower  bound on  the 
number of processors, i.e., a saving of 2 0  intervals. 

7. Summary 
An analysis  has  been  presented of the computational 
characteristics of lower bound expressions  for  the num- 
ber of processors and for  the time of optimal  schedules. 
These  expressions,  proposed in an earlier  work [7],  
imply the consideration of t D ( D  + 1 )  varying-length 
intervals, and this  study has  attempted  to  evaluate and 
to  reduce  the number of operations  to obtain these 
bounds. 

Direct computation of the  expressions  for general 
graphs  has been  shown to  require approximately 3nD2 
operations  (for large n and D )  . By means of an incre- 
mental  method  this  value  can be reduced to  about D2 
operations.  As  the incremental  method requires only 
one operation  per interval,  it  represents  the  best pos- 
sible way of evaluating these  bounds  for  the general 
case. Parallel computation  can  reduce  the  execution 
time to 6 + [log,n], but  at  the  cost of ( n /  2)  D2processors. 

Reductions in the number of intervals to  consider in 
the determination of the  expressions can  be  obtained 
for special classes of graphs. For  the  case of independent 
tasks, it was shown that it is  necessary  to  consider only 
D l  2 intervals  for  the bound on  the  number of processors, 
and D  intervals for  the bound on time. However, in this 
case the  computational  savings are partially offset by 
the increased  number of operations  that  have  to be made 
in each interval, which results in a total of + 0’ operations 
for  the bound on  the  number of processors.  Incremental 
computation in this case  decreases this  total to only about 
( 1 112) D operations.  For  trees,  the  number of intervals 
to  consider  can  be  decreased by D ,  and  for  independent 
chains  the saving is 2 0  intervals  (for  the bound on m 
in both cases  and with respect  to i D ( D  + 1 ) ) .  

In summary, it can  be said that  the  number of opera- 
tions  required to obtain accurate  lower  bounds,  as  the 
ones  represented by the  expressions ( 1 )  and (2) ,  can 
be  reduced  to values that  are very small in comparison 

with the  number of additional operations  that  have  to be 
performed if the lower  bound was a  poor  starting  value 
for  the scheduling process. 

It should be  mentioned also  that  the lower  bound on 
time  can  be refined at  the  cost of extra computation. In 
effect, in expression (4) t, can  be  evaluated  recursively, 
such  that  at  step k ,  

t , ( k )  = t , ( k -  1 )  + 
t , (O)  = tcp.  

In this case M ( t , .  f9 )  has  to be redefined at  every  step 
because of the  change in the  reference deadline. 

References 
1. G. H.  Barnes et  al., “The  ILLIAC  IV  Computer,” IEEE 

Trans.  Comput. C-17, 746  (1968). 
2 .  B. A.  Crane  et al., “PEPE  Computer  Architecture,” Proc. 

IEEE (COMPCON 1972),  57  (1972). 
3 .  C. V. Ramamoorthy, K. M. Chandy,  and M. J.  Gonzilez, 

“Optimal Scheduling  Strategies in a Multiprocessor Sys- 
tem,” IEEE Trans.  Comput. C-21, 137 (1972). 

4. B. Bussell, E. B. Fernandez,  and H. 0. Levy, “Optimal 
Scheduling for  Homogeneous  Multiprocessors,” Informa- 
tion Processing 74, North-Holland Publishing Co., 1974, 

5. T. L. Adam, K. M. Chandy,  and J .  R. Dickson,  “A  Com- 
parison of List  Schedules  for Parallel Processing  Systems,” 
Comm. A C M  17,685 ( 1974). 

6. R. L. Graham,  “Bounds on  Multiprocessing  Anomalies 
and  Related  Packing  Algorithms,” AFIPS ConJ: Proc. 40, 
205, AFIPS Press, Montvale, NJ, 1972. 

7. E. B. Fernandez  and B. Bussell, “Bounds  on the Number 
of Processors  and  Time for Multiprocessor Optimal 
Schedules,” IEEE Trans.  Comput. C-22, 745  (1973). 

8. D. J. Kuck, “ILLIAC  IV  Software  and Application  Pro- 
gramming,” IEEE Trans.  Comput. (2-17, 758  (1968). 

9. T. C.  Hu, “Parallel  Sequencing and Assembly Line Prob- 
lems,” Oper. Res. 9, 841  (1961). 

10. A. B. Barskiy,  “Minimizing the  Number of Computing 
Devices  Needed  to Realize a Computational  Process with- 
in a Specified Time,” Eng. Cybernetics (USSR), 59 (1968). 

pp. 286-290. 

Received January 5 ,  1975 

E. B .  Ferna‘ndez is located at the IBM ScientiJic Center, 
Data Processing Division,  1930  Century Park West, 
Los  Angeles,  CA  90067; T .  Lang is with the Computer 
Science Department,  University of California, Los 
Angeles,  CA  90024. 

444 

E. B. FERNANDEZ AND T. LANG IBM J. RES. DEVELOP, 


