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Schedules

Abstract: A multiprocessing system composed of identical units is considered. This system is executing a set of partially ordered tasks,
with known execution times, using a non-preemptive scheduling strategy. Lower bounds on the number of processors required to com-
pute the tasks before a deadline, and on the minimum time to execute the tasks with a fixed number of processors, are of great value for
the determination of the corresponding optimal schedules. In this paper, methods for the efficient computation of the lower bounds ob-
tained by Fernindez and Bussell are discussed. Computational improvements for the case of general partial orders are reported, and
further reductions of the number of operations are shown to be possible for special graphs (trees, independent chains, independent

tasks).

1. Introduction

A significant decrease in cost for digital computer func-
tional units has occurred in the last few years, due to the
extensive use of LSI techniques. This has made the de-
sign of multiprocessing systems composed of a large
number of functional units a practically feasible en-
deavor, and many proposals for such systems have ap-
peared [ 1, 2]. Multiprocessor scheduling is thus becom-
ing a more significant problem and several papers dealing
with this subject have been published [3, 4, 5].

Two basic problems are of great interest in multi-
processor scheduling theory: 1) a deadline for the execu-
tion time of a given set of tasks must be satisfied using a
minimum number of processors; 2) a fixed number of
processors must be used to execute a set of tasks in a
minimum time.

A computation to be scheduled is represented by some
precedence graph indicating the relative order in which
the tasks must be executed. The graph ranges from an
arbitrary partial order to an empty ordering, i.e., a set of
independent tasks. The execution times of the tasks can
be estimated in a probabilistic way (time probability
distributions) or in a deterministic way (average or
maximum execution times). In this paper we are con-
cerned with the case for which the task execution times
are deterministically known.

In all known algorithmic methods used to solve the
two basic problems defined above, it is necessary to have
a starting value for either the number of processors or
the total execution time [3, 4]. For instance, in the first
case the scheduling algorithm tries to find a schedule
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using the initial assumed number of processors. If no
schedule can be obtained, the initial value is incremented
by one and the scheduling algorithm is applied again.
The whole process is repeated until a schedule satisfy-
ing the deadline is found. The actual number of pro-
cessors required by this schedule is the optimal value
for the given deadline. Since the scheduling of general
partial orders is basically an enumerative process [6],
the amount of extra work can be enormous if the as-
sumed starting value is not close to the actual number
of required processors. The same considerations apply
to the second problem. The determination of starting
values, i.e., lower bounds, is then an important problem
to be solved before applying any scheduling algorithm.
Moreover, it is essential that the computational work
involved in determining these bounds be very small
compared with the complexity of applying some schedul-
ing algorithm to produce all the possible schedules for
a given value of the bound. Lower bounds of this type
are also valuable for evaluating approximate scheduling
methods [5].

In a previous paper [7], the problem of obtaining
accurate lower bounds was discussed. Two expressions
were obtained which represented sharper lower bounds
than those obtained previously. In this paper we study
the efficient calculation of these expressions. We discuss
also how this efficiency can be improved for special
partial orders, in particular trees, independent chains,
and independent tasks, and for graphs where all the tasks
have equal execution time.
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Figure 1 Basic definitions.

In section 2 we present the model, some basic defini-
tions and a summary of the pertinent results from {7].
In section 3 we consider general graphs. The direct de-
termination of the lower bounds requires O (nD") opera-
tions, where » is the number of tasks and D the deadline
for the execution of these tasks. Incremental ways are
then proposed to evaluate the expressions and the num-
ber of operations becomes O(D?). The possibility of
using parallel computation for this case is also briefly
discussed. Since O(D") is a natural limit for this expres-
sion because of the number of intervals that must be
considered, reductions in the number of needed inter-
vals are sought by looking at particular partial orders.
In section 4 we discuss the determination of the lower
bound on the number of processors for independent
tasks. By means of two theorems the number of inter-
vals to consider is reduced to about D/2. The total
number of operations is O(D?), which can be reduced
by means of incremental methods to O (D) operations.
A similar analysis is performed in section 5 for the
lower bound on time for independent tasks. Cases of
trees and independent chains, where reductions in the
number of intervals with respect to general graphs are
obtained, are considered in section 6. Finally, in section 7
we evaluate the results obtained.
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2. Model, definitions, and previous resuits

A set of tasks T={T,, T,,---, T,} is to be executed by
a set of identical processors P, i=1, 2, -, m. A partial
order < is given on T, and a non-negative integer dJ rep-
resents the duration of execution of task T,

The partially ordered set (7, <) is described by a
finite, acyclic digraph G = (V, A), where V is a finite set
of vertices of cardinality n, and A is a set of arcs rep-
resented as vertex pairs. The tasks T correspond to the
elements of V, and we shall talk interchangeably of tasks
or vertices. The arcs in A describe the precedences
among the tasks.

Once a processor begins to execute a task it cannot
be interrupted until its completion; that is, we have a
non-preemptive type of scheduling. It is assumed that
tasks are scheduled to start only at integer values of time.

The length of the critical path of the graph, ., is the
minimum time to perform the set of computations. More
general, and more useful, is to talk of a deadline, D, i.e.,
a time within which the set of computations must be
finished. Clearly, D = t_,. According to some possible
schedule, for each task T, we have a specific completion
time which we denote as ¢ C is the completion time
vector, whose jth component is ¢ Of particular interest
are the two extreme task completion times defined below.

The earliest completion time, e, of a task T, is the
minimum time in which this task can be finished, given
the precedence constraints of the graph.

The latest completion time, I, of a task T, indicates
how long the completion time of this task can be delayed
without exceeding the deadline.

According to a possible schedule, there exists also an
initiation time i for a given task T; In analogy with the
definitions above, it is then possible to define for a task
T; an earliest initiation time, e,;, and a latest inititation
time, [, 5

If all the tasks are in their earliest possible positions,
the number of units of task 7; thatlie in the interval [z, 1,]
is denoted as ¢;(1;, t,). Similarly, if all tasks lie in their
latest possible positions, the number of units of task T;
in this interval is called Ij(tl, £,).

The concepts presented above are illustrated in Fig.
1. By making use of these definitions the lower bounds
presented in [7] can be expressed as below.

A lower bound on the minimum number of processors
required to perform the computations of G in time D
is given by

mL=[max{ L S min[e,(t,, t2),1j(t1,z2)]ﬂ. (1)

[tyt5) L= L=

If the number of processors, m, is not sufficient for per-
forming the computations of G within time D, a lower
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bound on the minimum time to execute G with these
m processors is given by

t,=D+ [max {— (t,— 1))

ltpty]
1S .
+7an1 minle;(1,, 1,), (z,, tz)]}]. (2)

Because of its importance for computational purposes,
we make the following definition:

M(1, 1,) = minle(t,, 1,), L1, 1,)],
j=1

which allows rewriting (1) and (2) as

M(t,t
m, = [ max 2L, 3)
o) T h
1
= —(t,— 1) +— .
t =D+ [maél[ (t,— 1) p M(t, tz):” (4)
The operation defined below is used later in this work:
a—bifaz=b,
a~b= (5)
0 otherwise.

3. Calculation of the lower bounds for general
graphs

s 3.1 Direct computation
It can be seen from the expressions for m; and ¢ that
the key point in their evaluation is the calculation of

M(t, 1,) = min [, 1,), [(1,, t,)]
7 tpty)
for every integer interval.

In this section we shall see the complexity of calculat-
ing this expression directly. The number of operations ob-
tained is used as a reference to evaluate alternative pro-
cedures. It should be noticed that the number of inter-
vals to consider is 3D(D + 1), and that therefore any
computation method will require at least O(D") oper-
ations;

With reference to Fig. 2, which shows all the possible
positions of 7, with respect to {1, t,], it can be seen that
ej(tl, t,) and lj(tl, t,) can be expressed as

tl)v dj’ (tg - tl)w ([2 - eij)]’ (6)
(1, t,) = min[ (¢, = L)), d}, (1, — 1)), (I; = 1)], (7

and because (1,—e;;) = (t,=/;) and (/,;=1,) = (e,; = 1,),
we have that

e].(t,, t,) = min[ecj -

min[ej(tl, L), lj(tl, 1,)]
=min[(ecjvt1),dj, (tz—tl),(tzflij)]. (8)

For a given interval [z, ¢,], the determination of this
minimum requires one subtraction to obtain (z, — t,),
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Figure 2 Possible relative positions of ¢,, #,, and 7.

and then two subtractions and three comparisons per
task. Finally, (n — 1) additions are required to perform
the summation, which gives a total of

1+ 2n+ 3n+ (n— 1) = 6n operations per interval.
For all intervals we have
6n X 3D(D + 1) & 3nD" operations

to determine M (¢, t,).

o 3.2 Incremental computation
A reduction over the number of steps required for direct
computation of the lower bounds can be obtained by
using an incremental strategy where M(¢, ¢,) is de-
termined from M(¢,, 1, — 1). The value of ¢, is varied
between 0 and D — 1, and for each ¢, all the intervals
[t,, t,] are determined by varying ¢, between ¢, + 1 and D.
We show in this section that M (¢, ¢,) can be computed
incrementally using the expression

M, t,)=M(,t,— 1)+ Ftl(tz),

1’ %2

and therefore only one addition per interval is required
to do this computation. For each value of ¢, a new func-
tion Ftl has to be computed, and we will see that 4nD
operations are required for this. We therefore obtain a
total of 4nD + $D(D + 1) operations, which is consid-
erably better than the direct method. In fact it can be

argued that this is a nearly optimal method because in
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any algorithm all intervals have to be considered and at
least one operation has to be performed per interval.

Lemma 1

L(t,8,) if,= 7
min[(1,, 1,), (1., 1,)] ={ ' *

lj(tl, Ttl) if 1, > Ttl
where

[lcj — ej(O, t) L= lij

’Tt1
lj— (L;— ¢ >l

that is, for #, = /;;, this minimum is given by [(z,, #,) if
1, = 1,;—¢(0,t), and it is independent of ¢, afterwards.
Similarly, for ¢, > lij, the minimum is given by lj(tl, t,)
up to £,= 1/, — (I;;—¢;), and it is independent of ¢, after-
wards.

The proof of this lemma is evident from Fig. 3.

We now define a density function ftjl such that

) lforlijftffrf,
L (1) = ' 9
! 0 elsewhere.

By Lemma 1 we have

t
2 .
min[L(z,, 1), e(t,,t,)] = (k).
438 s kgt,"
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We can then write

M(t,t,) = En:

j=

min [[(1,, 8,}, e;(1,, 1,}]

=

i 22 £k,
j=1 k=t,

and interchanging the summations and defining
n .
F (0 =3 ;0

we obtain

t
2
)= F, (b,
k=t,
and therefore

My, )= M@, t,— 1)+ Ftl(tz), (10)

with the initial condition M(z,, #,) = 0.

Consequently, we can compute the M’s incrementally
by just one addition per interval.

Furthermore, we have to calculate F 0 also incre-
mentally. From the definition we obtain

Ftl - Ftl—l =ng (ftjl "ftjl_l);
and from the definition of ftj1 ,

t)I — t’1_1 =— 8[frt 1 % (1' — Ttrl)

where 8[a] = 1 for t = a and O elsewhere. Consequently,

=3 8lr] x (7] =7/ _) (11)

n=1

with the initial condition
n n
= E f;)',’
=1

which corresponds to the “latest load density function”
of section 6.1.

We now present an Algol-like algorithm to compute
M(t,, t,) incrementally by the use of expressions (10)
and (11).

Arrays M[0 : D,0 : D] contains M(¢,, t,);
F[0 : D] contains F, (initially latest load
density functlon)
LI[ ! : n] contains the latest initiation times;
EI[ 1 : n] contains the earliest initiation times;
T[1 : n] contains the values of 7, (initially I, )
EC[1 : n] contains the earliest completlon tlmes
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BEGIN
FOR t, = 0 UNTIL D — 1 DO
BEGIN
FOR j= | UNTIL n DO
BEGIN ‘COMPUTE NEW F’;
1F (¢, > EI(j))A (s, < LI(j))A(¢, = EC(j))
THEN
BEGIN
F(T(j)) =F(T()) — L;
T() =T() — I
END;
END;
M(z, t,) = 0;
FOR [, =t + | UNTIL D DO
M(z,,1,) = M(t,, 1,— 1) + F(1,);
END;

’

END.

From this algorithm it is possible to see that we need 4nD
operations for computing the F’s, and £D(D + 1) opera-
tions for calculating the M’s.

s 3.3 Parallel computation

Parallel computation can reduce the time considerably
but at the cost of a large number of processors. In effect,
to compute the three subtractions and the three compari-
sons of the expression (8) in parallel, we could use a
processor per task per interval. Then, to perform the
additions to consider all tasks, a log-sum procedure [ 8]
can be used.

The number of computation cycles is then

6 + [log,nl,

requiring a total of (n/2)D(D + 1) = (n/2)D" pro-
CEessors.

s 3.4 Completing the calculation

In order to determine m, and t,, M(t,, t,) must be di-
vided by the interval length ¢, — ¢, and the number of
processors m, respectively. The number of divisions to
be performed in the first case can be minimized by notic-
ing that

max [M] = max {i [ max M(z,, tz)]}.

frpl L 6, — 4 d (ty—t,~d)

In other words, by first determining the maximum value
of M(t,, t,) for each interval size d, only one division
per interval size is necessary. This reduces the number
of divisions from one per interval of length greater than 1,
ie, [$D(D + 1) — D], to one per interval size, i.e.,
(D — 1) divisions.

As divisions are usually considerably slower than
multiplications and sums, it is possible 'to obtain a
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further reduction of divisions by noticing the following
fact. Suppose the values of the maxima are obtained in
an order corresponding to increasing length of the in-
tervals. Assume k(d) is the maximum obtained up to
intervals of length d, and M (d ) is the maximum obtained
for intervals of Tength d. Then T

k(d+1) > k(d) if M(d+ 1) > k(d) X (d+ 1).

Consequently, instead of dividing for every length, we
perform the multiplication and the comparison, and only
divide if the inequality holds.

4. Calculation of the lower bound on the number of
processors for independent tasks

We now study the calculation of the lower bound on the
number of processors for the case in which the tasks are
independent. We show that in this case the number of
operations can be reduced considerably because the
number of intervals that have to be considered is %
instead of $D(D + 1). The calculation for these intervals
can be performed efficiently in an incremental manner.

o 4.1 A simplified expression for the lower bound

To simplfy the notation in the subsequent development
we now make the following change of variables to de-
scribe the intervals: [7,, t,] = [, B], where a = ¢, and
B =D —t,. Then we define

b(a, B) =M(a, B) /(D —a—B), (12)

which represents the average of the number of tasks that
have to be executed in interval [a, 8], and therefore
corresponds to a bound on the number of processors
required to execute the tasks in this interval. The lower
bound on the number of processors for all intervals is
then given by

m, = [max bl )] (13)

As the tasks are independent, the earliest completion
time of 7, is d; and the latest completion time is D (Fig.
4). Due to the symmetry of ¢;(a, 8) and /;(a, B) with
respect to an axis through 3D, b(a, B) = b(B, a). There-
fore, we calculate b(a, B) only for intervals where
B =

The contributions to b(«, 8) can be divided into three
classes:

a. tasks with d, = 8 do not contribute to the bound be-
cause ej(a, B) is zero in that interval;

b. tasks with 8 < d; < D — a contribute with (d;— B/
(D—a—8);

¢. tasks with dzZD—a contribute with one unit each
because they span the whole interval.
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Consequently, b(a, 8) is given by

D-a—1 ”L(L — B)

D—a-B (14

b(a, B) = i n, +

L=D-a ., L=B+1

where n, is the number of tasks of duration L.
The two theorems below reduce the number of in-
tervals that has to be considered in the evaluation of (13).

Theorem | For a graph composed of independent tasks,
b(a, B) = b(B. ) for B < g} and 8 = a.

Proof By (14),

N )
b(B, B) = n,+ T
L:%—B L L=%+l D -2
which can be further decomposed into

D D—a—1 D-B-1 L_
bBA =3 m+ S m+ 3 %—TS_)

L=D-a L=D—8 L=B+1

(15)

In the same way, b(a, 8) can be decomposed into

D D—-a—-1 L_
ba® =S n+ %%
L=D-a L=D-8
D

Ztn(L—B)
+ =
L=%+1D—a_ﬁ

We now compare term by term both expressions. The
first terms are the same; the second term is larger for
b(B, B) because L. — B8 < D — a — B for that range of
values of L, and the third term is also larger for b(8, B8)
because D — 28 = D — a — B. Consequently, b(8, B)
= b{«, B) and the theorem is proven.

This theorem indicates that for 8 < [D/2], only the
intervals (B8, B) have to be considered to obtain the
bound. We now prove another theorem that shows that
no additional intervals have to be considered for 8
=[D/2].

E. B. FERNANDEZ AND T. LANG

Theorem 2 For a graph composed of independent tasks,

o= [Z]-1[2]-1)

for g = [?] and B8 = a.

Proof By (14),
D
b([—Q] -1, [Q] - 1) = z n, for D odd;
2 2 LD2)
D

— 1
= n, +1% np, for D even.
L=(Df2)+1

This expression can be decomposed into

D D D D—a-1
b([—]—l,[—]—l>= 2 n,+ > n for D odd
2 2 L=D—-a L=[D/2}
D D—a-1
= 2 m+ > n
L=D-a L=(D{2)+1
+ 3% n,, for D even,

Dj2

and comparing this expansion with (14), we conclude that

o =[5]- 1 [2]-1) s =[2]

which proves this theorem.

As a summary, to calculate the lower bound m de-
fined by (13), for independent tasks, we compute

mL=[m§1x b(B, 3)1,0534?]. (16)

Consequently, only [D/2] intervals need to be con-
sidered, instead of the 3D (D + 1) intervals required
in the general case.

s 4.2 Number of operations required to compute the
lower bound directly

Consider the expression for b(8, 8) given by (15). To
obtain the first term we need B additions. To obtain the
second tetrm we perform (D — 28) multiplications, D
— 28 — 1 additions, and one division. Then both terms
are added by one addition. This has to be performed for
each B, for 0 = 8 = [D/2]. Finally, [D/2] — 1 com-
parisons are required to obtain the maximum. In total
we have O(D?) additions, O(D”) multiplications, O(D)
divisions, and O(D) comparisons.

This direct calculation does not produce a very sig-
nificant reduction in the number of operations as com-
pared with the general case. In the following section an
incremental method is considered which allows more
improvement in this respect.

s 4.3 Incremental calculation
With use of the notation defined in section 4.1, the ex-
pression for b(a, B) given by (12) for &« = 8 becomes
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M(B, B)

b(B.B) = g

so that using (15) we have

D D—B-1
M@B.B =S nD-28+ 3 n(L—B). (7
L=D-f8 L=B8+1

and

D

MB+LB+NH)= Y n(D—28-2)

L=D—8-1
D-B-2
+ z n(L—B—1).
L=8+2
This latter expression can be written as

n

M@B+1LB+1D)=S n(D-28—2)

L=D-8

+ npgy(D—28—2)
D-B-2

+ Y n(L—B-1),
L=B+1

because n, , (B+1—8— 1) =0.

Consequently,

M(B+ 1,8+ 1) —M(B, B)

D D-B8-1
==2 % n— ¥ n,=—h(B), (18)
L<D-8 L=B+1
and
D D-B—2
hB+1)=2 % n+ 3> n,
D-B-1 B+2
so that

B+ 1) —h(B) = My gy~ Mgy
Consequently,

M(B+1,8+1)=M(B,B) — h(B),]
and

h(ﬁ + 1) = h(B) + nD—B—l - nB+1’
with the initial conditions

b > (19)
M(0,0) = nlL,

L=1

and

D
h(0) = n, + 2 n,.
L=1

4

Since, because of Theorems 1 and 2, we only need to
consider intervals [8, 8] for 0 = 8 < [D/2], the number
of operations required to perform the calculation of m;
in this incremental manner is
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1. for calculating M (0, 0), D multiplications and D — 1
additions;

3. for calculating #(0), D — 1 additions;

3. for calculating M(B8 + 1, 8+ 1) and A(B + 1) from
M (B, B) and h(B), one subtraction and two additions;

4. for calculating b(8, B). one division; and

5. for calculating m,, [ D/2] — 1 comparisons.

In total, D multiplications, 7[D /2] additions, [D /2] di-
visions, and [D /2] — 1 comparisons.

This is considerably better than the non-incremental
calculdtion. It can still be improved if the incremental
calculation is begun with 8 = [D/2] — 1 and this value
is decreased until it becomes zero, i.e., we take intervals
[B, B] of increasing size. Similar recurrence relations
as for the previous case can be developed, and it can be
shown that the total number of operations is decreased
by D with respect to the first incremental method. Notice
also that the number of divisions can be reduced in the
same manner as described for general graphs (sec-
tion 3.4).

5. Calculation of the lower bound oh time for in-
dependent tasks

When the tasks are independent it is also possible to re-
duce considerably the number of operations required
to determine the lower bound on time, 7. In effect, it is
shown below that only D intervals have to be consid-
ered. It is also possible to calculate this bound in an
incremental manner.

If in (4) we define (using the «, 8 notation)

¢, ) =-- M(a, p) = (D —a~p),

we can express the lower bound on time of (4) as

L, =D+ [max c(a, B)]. (20)
[ 8]

In a similar fashion to what was done for the bound on
the number of processors, we can write for independent
tasks

1 D D—a-1
c(a, B) = [E n(D—a—B)+ > nL(L-B)]

D—a B+1
—(D—a—p),

for B8 = o (21)

The following theorem reduces the number of intervals
that have to be considered in the calculation of the bound.

Theorem 3 For independent tasks,
c(B, B) Zc(B—A, B+ A4),

Ofﬂf[g]—l,lfAf,B,

and
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c(B, B+ 1) =c(B—AB+1—4),
0535[?]*1,15/353.
Proof From (21),

1 D D-B-1
@B =L|S md-2+ 3 n-p)]

DB B8+1

— (D —12B),

and

D

c(,B—A,/3+A)=r—1n[ S n(D—28)

DIB+A
D-B+A—-1
+ E nL(L—B—A)] — (D —2B).
B+A+1
These expressions can be decomposed into
1 D D-B+4-1
8.8 =L S -2+ S nd-20
m D—B+A D-8
D—B—1 .
+ > n(L—B)
B+Aa+1
B+A
+3 n(L-p|- (=20
B+t

and

cg-a.p+8=1] 3 n(D-28)
D-B+A
D—B+A-1

+ Y mL—-B—4
b=

D-B-1
+ 3 nL(L—B—A)] - (D—2B).
B+A+1

By comparing corresponding terms it is possible to con-
clude that

c(B,B) Zc(B—A, B+ 4).
An analogous analysis shows that
c(B, B+ 1).Zc(B=A,8+A+1),

which proves the theorem.

That is, for all intervals of width (D — 23), the largest
bound is obtained for the interval (8, 8), and for all in-
tervals of width (D — 28 — 1) the largest bound is ob-
tained for the interval (8, 8 + 1). Therefore, the total
number of intervals that have to be considered is only
[D/21+ [D/2] = D.

An incremental procedure, similar to the one de-
scribed for the computation of the lower bound on the
number of processors, is also applicable here.
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t

6. Calculation of the lower bound for other types
of graphs

e 6.1 The lower bound on the number of processors
Sfor trees
We define trees in the regular way [9]; however, we
need the following definitions for our development
[7,10]:

The activity of task T, is defined as

1,fort € [Cj'— dj, cj];

fle, = (22)
0, otherwise.

The load density function is defined by

F(C.0) = flc, . (23)
=t

Then, f(cj, t) indicates the activity of task T, along
time, according to some schedule that does not violate
the restrictions imposed by the graph, and F(C, ¢) in-
dicates the total activity as a function of time. Clearly,
max, F(C, 1) indicates the number of processors re-
quired for the schedule defined by F(C, 1).

If we call E_ the vector of the earliest completion times
e.;» then F(E,, t) is the earliest load density function,
that is, it corresponds to a schedule where all tasks are
processed as early as possible. Similarly, calling L, the
vector of the latest completion times /., we can de-
fine a latest load density function. Also, in this section
we shall use 7, #,] instead of [a, B].

We consider now the general lower bound on the num-
ber of processors defined by (3) and we see that, because
of the particular structure of trees, it is not necessary
to consider all the possible intervals [z,, £,] to calculate
this bound. First we need the following lemma.

Lemma 2 For trees, the earliest load density function
is monotonically decreasing with time.

Proof The vertices of a tree (with the exception of the
root) have exactly one successor. Therefore, each level
of the tree can have at most as many vertices as the pre-
vious level, until the level of the root is reached, where
there is exactly one vertex. As soon as a given vertex
ceases its activity, its successor is initiated if possible;
that is, at most one new vertex enters in activity. Then,
at a given instant in time, there will never be more ver-
tices going into activity than vertices ceasing their ac-
tivity, i.e., F (E_, t) is monotonically decreasing along
time.

Theorem 4 For trees,
b(t,D)=b(0,D),1=1,=D—1.

Proof For general graphs we have
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n
b(1,, D) =Y ej(oz, 0)/(D—1), (24)
j=t
since tasks that are at their earliest positions in the inter-
val [¢,, D] must also be there in their latest positions.
For t, = 0, (24) becomes
Y €0, D)
b0, D) =2,
( ) D

which can be decomposed into

~L1S 0.0 +3 o D) |

=1 =1

b(0, D)

Since the earliest load density function for trees is mono-
tonically decreasing,

n

2 ej(O, 1) Z F(

j=1

E.t)Xt,
and consequently,
b(0, D) = [F (E.,1,) X t,+ b(1,, D)]D — tl]]

. [F(E, t)—b(t,D)]t
- D

L+ b(1,, D);

and again because the earliest density function is mono-
tonically decreasing, we have

F(E, t,) = b(1, D),
which results in
b(0, D) = b(1,, D).

This theorem allows us to drop all intervals of the class
[t,, D], 1= ¢,= D—1,from consideration in calculating
the lower bound on the number of processors, that is,
a saving of D intervals.

For trees with tasks of unit length, our bound re-
duces to Hu’s bound [9]. Hu’s bound is exact for this
type of tree, and since our bound subsumes Hu’s bound
[1], the bound in (3) is also exact for trees of unit
length. In this case the additional terms in (3) are su-
perfluous.

e 6.2 The lower bound on the number of processors
for independent chains

A graph composed of a set of independent chains can
be considered as a particular case of a tree (assuming
a root of zero duration). Therefore, the reduction in
the number of intervals to consider, defined by Theorem
4, still applies. However, because of the particular nature
of this type of graph, a further reduction in the number
of intervals to consider is possible.

Lemma 3 For independent tasks, F(E,, 1) and F(L,, 1)
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Figure 5 The lower bound for independent chains.

are the image of each other with respect to an axis
through ¢t = D/ 2.

Proof Order chains by increasing length and exam-
ine their f (e, ; 1) and f(/;, 1), ie., the activities of the
tasks in their earliest and latest positions, respectively.
As it can be seen from Fig. 5, for f(eC ., 1) chain i starts
att=0and ends at t=d, + d R dk where the d,
are the durations of the tasks of chain i. In f(/ ;, ) chain
i starts at t = D — (d, +d2+ +d)andendsatt—a’
In other words, the two possible positions of each chain
are images of each other with respect to 1= D /2. With
the notation [«, B8] as before, the following theorem can
be defined.

Theorem 5 For a graph composed of a set of indepen-
dent chains, #(0, 8) = b(B, 0) = b(0, 0).

Proof From Fig. 5 it can be seen that b(0, ¢,) corre-
sponds to the area under the latest density function
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F (L, t) and b(B, 0) corresponds to the area under the
earliest density function F (E,, t). By Lemma 3 these
two areas are equal. The inequality holds since this graph
is a degenerate tree (Theorem 4).

Hence, for this type of graph, intervals starting at
t, = 0 and intervals ending at 7, = D do not have to be
considered in the calculation of the lower bound on the
number of processors, i.e., a saving of 2D intervals.

7. Summary

An analysis has been presented of the computational
characteristics of lower bound expressions for the num-
ber of processors and for the time of optimal schedules.
These expressions, proposed in an earlier work [7],
imply the consideration of $D(D + 1) varying-length
intervals, and this study has attempted to evaluate and
to reduce the number of operations to obtain these
bounds.

Direct computation of the expressions for general
graphs has been shown to require approximately 3nD"
operations (for large n and D). By means of an incre-
mental method this value can be reduced to about D’
operations. As the incremental method requires only
one operation per interval, it represents the best pos-
sible way of evaluating these bounds for the general
case. Parallel computation can reduce the execution
time to 6 + [log,n], but at the cost of (n/2) D* processors.

Reductions in the number of intervals to consider in
the determination of the expressions can be obtained
for special classes of graphs. For the case of independent
tasks, it was shown that it is necessary to consider only
D/ 2 intervals for the bound on the number of processors,
and D intervals for the bound on time. However, in this
case the computational savings are partially offset by
the increased number of operations that have to be made
in each interval, which results in a total of { D operations
for the bound on the number of processors. Incremental
computation in this case decreases this total to only about
(11/2)D operations. For trees, the number of intervals
to consider can be decreased by D, and for independent
chains the saving is 2D intervals (for the bound on m
in both cases and with respect to 2D (D + 1)).

In summary, it can be said that the number of opera-
tions required to obtain accurate lower bounds, as the
ones represented by the expressions (1) and (2), can
be reduced to values that are very small in comparison
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with the number of additional operations that have to be
performed if the lower bound was a poor starting value
for the scheduling process.

It should be mentioned also that the lower bound on
time can be refined at the cost of extra computation. In
effect, in expression (4) ¢, can be evaluated recursively,
such that at step &,

t(k)=zt(k—1)+ [max f—(,— 1)+ 1/ mM(t, t2)]],

L
1(0) =1,.

In this case M (¢, t,) has to be redefined at every step
because of the change in the reference deadline.
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