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Interpolation  with  Discontinuous  Functions: 
Application  to  Calculation of Shocks 

Abstract: An interpolation procedure, which uses a step  function plus a polynomial correction, is devised and studied for application to 
the numerical  solution of problems having discontinuous  solutions. We apply the interpolation procedure  to  the calculation of shock 
waves  produced by a single convex  conservation law. The resulting algorithm does not have  the usual  undesirable  numerical features 
associated with shock-wave calculations. The stability and  convergence of the algorithm is also  demonstrated. 

1. Introduction 
Many  numerical methods  for solving equations  are  based 
on  the interpolation of data by a family of functions. The 
latter is most  commonly chosen to be the  set of monomi- 
als xn, n = 0, 1 , .  . .. The resulting  numerical methods us- 
ually work well when the solution that is sought is reason- 
ably approximated,  say, by the monomials.  When the 
problem to be  solved does  not  have a smooth solution 
(e.g.,  shock-wave problems and stiff differential equa- 
tions),  these usual numerical procedures frequently fail 
to give good results. 

In this paper we attempt  to  address this difficulty by 
devising an interpolation procedure in terms of discon- 
tinuous as well as  continuous functions. In particular, we 
use  the monomials  augmented by a step  function.  First, 
we give  a study of the interpolation procedure  and  then 
we give an application of it to  devise a  numerical  method 
for  the initial value  problem for a single convex  conserva- 
tion law, the  latter being a well-known problem with dis- 
continuous solutions (shocks  and  rarefactions.) 

In  Section 2 we develop  the interpolation procedure. 
In Section 3 we devise a numerical  algorithm for  the 
conservation law. This  proceeds by exploiting an ex- 
tremal characterization of the solution of a conservation 
law due  to P. Lax [ 11. 

The  data  at  each mesh  point are  represented by an 
interpolant  composed of a step function plus a smooth 
correction.  We  show  that  the extrema1 characterization 
also decomposes,  and  the solution may be computed 
simply in terms of the  interpolants  at  each mesh  point. 
In Section 4 we demonstrate  the stability  and conver- 
gence of our algorithm under  appropriate  restrictions  to 
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tion 5, we give the  results of numerical experiments  per- 
formed  with our algorithm to  demonstrate its effective- 
ness in eliminating the usual  numerical difficulties 
associated  with the  shock-wave problem. 

The initial step of the algorithm frequently corresponds 
to solving  a  Riemann  problem locally along the mesh. In 
this respect,  the application has a resemblance  to meth- 
ods devised by J .  Glimm [2] and S. K. Godunov [3] .  

There  are  other numerical schemes  that exhibit some 
of the  favorable  properties  produced by our application. 
One  such  scheme,  and  moreover a  fairly  simple one, is 
due  to G. W. Hedstrom [4], which in turn is based on 
some  observations of C. M. Dafermos [ 51. 

Although our numerical scheme  produces excellent 
results,  our main objective has not been to  invent  an al- 
gorithm for solving shock-wave problems which ma- 
jorizes  features of other existing schemes.  Rather, it is 
to introduce a novel  method of interpolation using dis- 
continuous functions with the objective of applying it to 
numerical problems  themselves made difficult because of 
a  lack of smoothness.  Our application can  be viewed as a 
feasibility study  for this idea. We expect it to be the first 
of other possible  ways of exploiting  this  interpolation 
process computationally. 

In most cases, proofs of technical results  are  omitted, 
and we refer to [7] for  these details. 

2. Interpolation 
Let +(x), which represents  the  data in some problem, 
be a  real-valued  function of the real  variable x. To sample 
and then interpolate  the  data, we begin by laying down a 
uniform mesh with increment Ax. The ith mesh  point is 
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denoted by xi = ihx, i = 0, -+ 1,. . .. Let +i = +(xi),  i = 0, 
& 1,. . .. At  each mesh  point x i ,  we interpolate  the { + j }  by 
a  function xi(x) = $o, i(x) + $,, i ( x )  which satisfies the 
interpolatory conditions, 

Xi(Xj) = $0, & j )  + $1, i b j )  = +j> j = i, i -+ 1. (2.1) 

and $,, are  each  chosen from the  set composed of 
step  functions, straight  lines,  and  parabolas. We distin- 
guish two  cases which may occur  at xi, depending  upon 
whether  the  sequence {+i-l, +i, +i+l} is monotone (or 
constant)  or is not monotone. We study these  two  cases 
separately.  In  the  remainder of Section 2, we suppose 
that  the x axis is translated  to  that xi  = 0. Since  no con- 
fusion will result,  we  also  suppress  the  subscript i. 

2.1 The monotone case 
In the  monotone  case we choose  the  two  functions $o and 
$, so that  one of them is a step function with at  most  one 
discontinuity while the  other is a  straight line: 

x 5  A, {:, x > A. 
X " $ o + $ l = a x + c +  

Here y = ax + c is the  equation of the straight line in ques- 
tion and I and r are  the values of the  step function to  the 
left and to  the right, respectively, of its  discontinuity, 
which itself is located at A .  

Set b = c + I and the  jump, u = r - 1. Then 

$ , + + , = a x + b +  
x 5  A, 

(p:, x > A. 

To determine a, b, u and A ,  we apply the interpolatory 
conditions (2.1) and (2.2) to get 

+j = axj + b + [ O' 
u, j =  o , +  1. 

(2.3) 

If 4-1 - 4o # 40- 4, then A lies in the interval [ x - ] ,   x ] ) .  
Were this not  the  case  we would have +-, - 2+0 + +, = 0, 
a contradiction. 

Equation (2.3) has  two possible  solutions,  viz., 

If 4o - = - +o, so that  the  points (xj, + j ) ,  j = 0, -t 1 
are colinear, the  two solutions (2.4) are equal. In this 
case, a, b and u are uniquely  determined and,  moreover, 
u =  0. 

If +o - 9, # 4-, - +o the two  solutions (2.4) are dif- 
ferent  and  the  corresponding values of u are of opposite 
sign. A choice from  among these  two solutions is made 
according to  the following criterion. 

Criterion 2.1 a, b and u are  chosen so that u has  the sign 
of +, - +o or of +o - +-, in the  event 4, = +o. (Note  that 
in the  monotone  case,  sig(+, - +o) = sig(+, - +-1) un- 
less ( + 1  - +o) ( + o  - 4-J = 0.) 

A  justification of Criterion 2.1 will be given in Lemmas 
2.5 and 3.3. 

2.2 The non-monotone case 
In  the non-montone case we choose the  two functions 
$o and $l so that  one of them is a  step  function with at 
most  one discontinuity  and the  other is a  parabola with 
its axis vertical and  with its vertex  at x = 0: 

Here y = arxZ + c is the equation of the parabola  and 
1, r and A are  the  parameters of the  step function  exactly 
as in Section 2.1. As in Section 2. I ,  set b = c + 1 and 
u = r - I. Then  the interpolatory  conditions (2.1 ) and 
(2.5) become 

(2.6) 

If $-1 - 4o f 4l - 40, then A E [x-,, x , ) .  Were this  not the 
case, we would have +-, = +,, a  contradiction. 

Equation (2.6) has  two possible  solutions,  viz., 

i) 

ii) 
4 b= 

These two  solutions are equal if +, = +-]. In  the  con- 
trary  case, a' ,  b and u are specified according to  the fol- 
lowing criterion. 

Criterion 2.2 a', b and u are  chosen  corresponding 
to  the  case giving the smaller value of la'l. 

A justification of Criterion 2.2 will be  given in Lemmas 
2.5  and 3.4. 

2.3 Properties of the interpolation 
We combine the discussion of the  monotone and non- 
monotone  cases by writing 

with the  convention: a' = 0 in the  monotone  case  and 
a = 0 in the non-monotone case. 

We  use I to  denote  the well-defined transformation 
+o, 4,) -+ (a' ,   a, b, u). We now give several lem- 
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Lemma 2.1 I is a continuous mapping of R3 into R4. 

Lemma 2.2 Let Z(+-,, 4,, 4,)  = (a ’ ,  a, b, u). If for  each 
k P 0, 

I ( + - ,  + k ,  6, + k ,  6, + k )  (a;, ak> bk, uk)9 

then 

a(, = a’,  at = a, bk = b + k and uk = u. 

The following lemma  shows that  the analogue of choos- 
ing a’ according to  the minimality criterion 2.2 is valid 
for  the  choice of a as well. 

Lemma 2.3 Criterion 2.1 is equivalent to 

Criterion 2.3 a, b and u are  determined by (2.4i) or 
(2.4ii) according to which choice  results in the smaller 
value of la[ .  

Proof of Lemma 2.3 The proof is divided into  the follow- 
ing four  cases: 

(i) {4, - 4o 2 0) * {4,- 4-, 2 0) 

* u 1 0, from  Criterion  (2.1). 

(a) 4-, - 24, + 41 2 0 * 4, - 4, 1. 4, - 4-, 1. 0, 

(b) 4-1 - 24, + 4,5 0 * 4, - 4-, 1. 41 - 4, 1.0. 

(ii) {+, - 4, 5 0) * {4, - +-, 5 0) * u 5 0, 

(a) 4, - 24, + 4,5 0 * 4, - 4, 5 4o - 4-1 5 0, 

( b )  4, - 24, + 4-, 2 0 * 4-, - 4, 2 4, - 4, 2 0. 

In  each  case,  then, we see  that  the value of a, chosen ac- 
cording to  Criterion 2.1, has a smaller  magnitude than  the 
rejected  choice. 

The following lemma characterizes  the  extent  to which 
the location A of the discontinuity of the  step function, 
hitherto unspecified, is constrained by the  criteria 2.1, 
2.2 and 2.3. 

Lemma 2.4 A € [ x , ,  xl) f, I+-, -+,I < b o  - 4,l, 

A E [ x - , , x o )  * 14, - < - +,I. 
Proof To begin with, note  that if I+-, - = 14, - 
then there is no discontinuity. Next  from  the  Criteria 2.2 
and 2.3 andif 14-l-+ol < I4,-4,I,wehave4,=b.Thus 
A € [ x , , x , ) .  Similarlyif 14-1-401 > I4,-4,I,4,=b+‘+, 
from which it follows that A € [ x - , ,  x , ) .  This  proves  the 
assertations of the lemma from right to left. With these 
the  assertions from  left to right follow directly. 

A monotonicity property of the  interpolant x is the 
subject of the following lemma. 

Lemma 2.5 In  each of the intervals [x - , ,  x,] and [x, ,  x , ] ,  
x is a monotone function. 
Note: In  the  monotone  case, x is monotonic in the  entire 
interval [x- , ,  x , ] .  
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3. Application to the numerical solution of a conser- 
vation law 

3.1 Preliminaries 
We consider  the initial value  problem 

( a u / a t )  + (af ( u ) / a x )  = 0, t > 0, 1x1 < m. (3.1) 

The solution in the classical sense of the system (3.1 ) 
may develop singularities after a finite time, and it is thus 
not continuable as a regular  solution. Nevertheless a con- 
tinuation as a  generalized  solution is possible.  Such a 
solution is characterized in the following definition. 

Definition 3.1 u(x ,  t )  is a weak  solution of (3.1) if u 
and f(  u )  are integrable on all bounded subsets of R X 

[0 ,  m) and if the integral  relation 

[ [wp + wrf  (u)]dxdt + w ( x ,  O)+(x)dx = 0 

is satisfied for all test  functions w ( x ,  t )  EC’[ R X [0 ,  m)] 
which  vanish for 1x1 + t sufficiently large. 

A regular  solution of (3.1) is a weak solution and, 
conversely, a weak  solution  with coftinuous first  partial 
derivatives satisfies (3.1 ). 

The behavior of a weak solution at a discontinuity is 
characterized by the following lemmz.. 

Lemma 3.1 A piecewise continuous weak  solution obeys 
the Rankine-Hugoniot  condition, 

/-: (3.2) 

sru1 = [ f l ,  (3.3) 

at  each point of a curve of discontiluity.  Here [.I de- 
notes  the  jump  across  the  curve of d  scontinuity  and s is 
the speed of propagation of the discontinuity. 

Extrema1 characterization of the solution 
We now review an extrema1 characte ‘ization of solutions 
of (3.1 ) due  to P. Lax  and  refer  to [ 1 ] for  details  and 
proofs. 

Given a  strictly convex  (concave) function f ( u ) ,  de- 
fined for all u E  R, we  introduce  the conjugate  function 
g ( s )  by means of the relation 

(3.4) 

Let u = b (s)  denote  the  value of u where  the maximum 
(minimum) of u in (3.4)  is  attained,  and let a = f’. It  is 
then easily shown  that 

b[a(u)l = u, (3.5) 

The  functions b ( s )  and g ( s )  are defined on  the range of 
a ( u ) ,  where g ( s )  is itself convex  (concave). g ( s )  tends 
to infinity as s approaches  the  extremities of the domain 
of definition of g .  
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We introduce .@ ( y )  through 

@ ( Y )  = + ( V ) d V .  

Consider  the  expression 

J , ( Y )  = J ( Y )  = @ ( Y )  + @ ( x  - Y / t ) .  (3.7) 

J possesses a finite minimum (maximum) in the interior 
of its  domain of definition as  characterized in the follow- 
ing lemma. 

Lemma 3.2 For  each t ,  with the  exception of a denumer- 
able  set of x, the function J (  y )  possesses a  unique mini- 
mum (maximum) which we denote by ?+(x, t ) .  

We may now state  the following theorem characteriz- 
ing the solution of (3.1 ) . 
Theorem 3.1 The function u4(x, t )  = b ( x  - j J t )  is a 
weak solution of (3.1 ). Moreover if we  denote this solu- 
tion by u,(x, t )  = S ( t ) + ,  then the  operator S ( t )  has the 
following two  properties: 

i) S ( t )  forms a one  parameter semigroup: 

S ( t ,  + t 2 )  = S ( t , ) S ( t , ) ,  t,, 2, 2 0, 

S ( 0 )  = I .  

ii)  For  each t ,  S ( t )  is continuous in a  certain  topology. 

Property  ii) is made  precise in Theorem 3.3. 

Remark 3.1 Using (3.5) and Theorem  3.1, we may write 
- 
y,=x-  t f ’ [u , (x ,  t ) ] .  (3.8) 

Monotonocity of S and the expansion theorem 
A key property of S is its  monotonocity. 

Theorem 3.2 For  each t ,  the  operator S ( t )  is monotone. 

Note:  In all that follows we will use 11 .11  to  denote  the L,  
norm. 

We now give the  expansion  theorem. 

Theorem 3.3 Let  the initial data be denoted by +,, where 

4, = E‘$;. 
m .  

i=n 

We  suppose  that  each $i EL,, i = 0, 1 ,  . . ., and  that  the 
series ETzo Il$illel has radius of convergence  strictly great- 
er than R > 0. Let yo = jn = 9 and  let 

*O 

( I / r )  + a’r$n(Yn)l $A(Y,) f 0. (3.9) 

If for some n 2 1, $jEC”il~i, i =  0, 1; . ., n andfECni2, 
then  there  exist y i ,  i = 1,. . ., n such that 
- 
J ’ , c = y n + y , & + . . . + y n E “  [ l + o ( l ) ] .  

Remark 3.2 u ’ [ $ ~ ( Y J I  = . f ” ( $ o ( ~ , , ) )  = f ” [ b ( x -  y 0 l t ) l .  
Using this and  Theorem 3.1, we may obtain 
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(3.10) 

Remark 3.3 The only case of indeterminacy of yl and y,, 
. . ., y ,  as well occurs when 

( I / t )  + ~’[+O(Y~)I$~(Y~) = O .  (3.11) 

Now we give  a proof of Theorem 3.3. 

Proof of Theorem 3.3 We  consider  the  case n 1, the 
proof for  other n follows  directly. Let { E ~ }  v = 1,2; . ., be 
a sequence of positive numbers converging to zero. 
Since J ( y )  is a continuous function of y ,  

+n 

a 

Thus 

J + ( ) ( Y )  5 J,n(vn). 
This inequality and the  uniqueness of the location of 

the minimum of J gives j = j,,. Thus ?+E -+ yo = yo as 
E -+ 0. Thus we have  demonstrated  the continuity of j 
in E for E = 0. 

*c 

To continue, note that  where  attains its minimum, 

$11 

its derivative must  vanish. This gives 

$() (Yo)  - !?‘ (x  - Y 0 / t )  = 0. 

(x - Y o )  l t  = a[+,(.Yn)1. 

( x -  y , ) l t = a [ + , ( Y & ) l .  

Therefore, 

Similarly, 

Subtracting these  two  equations, we get 

( Y O -  j & ) / t = a [ + , ( . V e ) l  “ ~ [ + o ( Y , ) l .  
Now 

a[+&(j&)I -a[$”(~o)l 
c.2 

= 4+()(.?&) + E+,(l.,) + 2 Ei$i(?&)l - ll[$n(jjn)l 
i=Z 

= ~ [ $ J , ( Y , )  + ( Y E  - Y ~ ) $ ; ( Y O )  + & $ , ( Y O )  
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1 

Thus, setting 

completes  the proof of the theorem in the  case n = 1 .  

Normalizations 
In all that follows we  assume  that  the initial data + take 
values in [0, MI where M > 0 is specified. That this  pre- 
sents  no loss of generality is proved for  to  case f =& u2 by 
means of the following theorem. 

Theorem 3.4 If u is a  weak  solution of 

ut + uu, = 0,  t > 0,  1x1 < m ( 3 . 1 2 )  

with the initial value + ( x ) ,  then 

(i) ul(x,t)=u(x-cct, t)+cisaweaksolutionof(3.12) 
with the initial value u1 ( x ,  0 )  = + ( x )  + e,  and 

(ii) u,(x,  t )  = ( 1 / m )  u ( m x ,  t )  is a  weak  solution of 
(3.12)withtheinitialvalueu2(x,0)=(1/rn)+(rnx). 388 
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To  demonstrate  our claim concerning the normalization, 
let $ ( x )  satisfy 00 < b 5 $5 B < m where b # B .  Let += 
M[$((B-b)x/M)-b]/(B-b),thenO5+5M.Then 
from (ii) of Theorem 3.4,  if u is a weak solutio’n of ( 3 . 1 2 )  
with initial value +, [ ( B  - b )  / M I  u ( M x /  ( B  - b ) ,  t )  is a 
weak  solution of ( 3 . 1 2 )  with initial value + ( x )  - b. Simi- 
larly from (i) of Theorem 3.4,  we  see  that 

- B - b  M *=- ~ M u(B - b X -  bt, I) + b 

is a  weak  solution of ( 3 . 1 2 )  with initial values $. 

Remark 3.4 If u is piecewise continuous  then ii is piece- 
wise continuous,  and by Lemma 3.1,  ii satisfies the 
Rankine-Hugoniot condition.  We now give  a proof of 
Theorem 3.4.  

Proof of Theorem 3.4 
(i) By hypothesis, j”; (wtu + 4 w,u2)dxdt + w ( x ,   O ) + ( x ) d x  = 0 r: 

for w a test function. 
Setting Q = ( x  - et, t ) ,  this can  be written as 

+ !-: ( + ( x )  + c ) w ( x ,   0 ) d x  = 0,  

Set u(x ,  t )  = w ( Q ) .  As w varies  over  the  set of test func- 
tions so also  does u. We also  have u(x,  0 )  = w ( x ,  0), 
u,(x,  t )  = M ~ , ( Q )  - c w , ( Q )  and u,(x, 1 )  = w , ( Q ) .  

Using these  observations,  we obtain 

J o  J - m  

+ j”; ( + ( x )  + c )u(x ,   0 )dX  = 0,  

completing the proof of part ( i ) .  

(ii) Setting x = my and u ( y ,  t )  = w(rny,  t )  in ( 3 . 2 )  with 
f ( u )  = 4 u2, we obtain 
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lorn ( u p Z  + 3 u,u:) dxdt 

from which the  assertion of part (ii) follows. 

3.2 Algorithm 
In this  section we describe  the numerical algorithm as a 
mapping of mesh valued functions into themselves. The 
mapping is based on  the  ideas of the  expansion  Theorem 
3.3  and the interpolation procedure developed in Sec- 
tion 2. 

At time t the  data is represented by a  mesh valued func- 
tion & ( t ) ,  i = 0, k 1 ,  . * .. Corresponding  to  each mesh 
point xi ,  we  associate  an interpolant x i ( x ) .  

To use  Theorem 3.3  to  the first order, we decompose 
xi into  two  functions. For clarity we  suppress  the sub- 
script i and  we  consider first the monotone and  then the 
non-monotone  case. 

Decomposition of the interpolant. Monotone  case 
We have 

x 5  A, 
x ( x ) = a x + b +  (b" x > A, 

where b = c +  1 and u =  r -  1. 

Rule 3.1 Let 8 1 0 be a prescribed tolerance. 
i) If la1 5 8 ,  choose 

x 5  A, 

b + u, x > A, 
$0 

= (". 

$1 
= (" 

+] = ax. 

ii) If la1 > 8, choose 

+o = ax + b ,  

x 5  A,  

(+, x > A, when u 3 0, 

or 

+ , = a x + b + a  +,=r. x 5  A, 
0, x > A, when u < 0. 

The decomposition afforded by Rule 3.1  is illustrated 
in Fig. 1 and  has  the following property. 

Lemma 3.3 If la1 9 8, the resulting +, is of minimum 
L,  (x-], x,)-norm. 

Remark 3.4 If la1 > 8, the resulting +, is positive  and of 
minimum Lm-norm.  (Since A is unknown, we are unable 
to  make a similar statement  for  the  L,-norm.) 

- 
( i - 1 ) A x  X i A x  ( i + l ) A x  

I -  I 

tal < e  la1 > e  

Figure 1 Interpolation and decomposition in the  monotone 
case.  The decomposition is afforded by Rule 3.1 .  

We turn now to  the non-monotone case. 

Decomposition of the interpolant. Non-monotone  case 
We have 

x 5  A, [:, x > A, 
x ( x )  = a'x' + b + 

where b = c + I and u = r - 1. 

Rule 3.2 Let 0' 1 0 be a prescribed  tolerance. 

i) If 1 0 ' 1  5 e', choose 

XP A, 

ii) If 1 0 ' 1  > e', choose 

t,b0 = a'x' + b,  

$, = i" x 5  A, 

U, x > A, when u 2 0, 

or 

+o = u'x2 + b + u, 
x 5  A, 

x > h, when u < 0. 389 
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I I ,  I I 

( i - l ) A x  X i A x   ( i + l ) A x *  
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Figure 2 Interpolation and decomposition in the non-mono- 
tone case.  The  decomposition is afforded by Rule 3.2.  

The decomposition afforded by Rule 3.2 is illustrated 
in Fig. 2 and has  the following property. 

Lemma 3.4 If lu‘l 5 O ’ ,  the resulting $, is of minimum 
L,(x-,,  x,)-norm. 

Remurk 3.5 As in the  monotone  case,  and if lu‘l > O ‘ ,  the 
resulting $, is positive and of minimum L_-norm. 

In Figs. 1 and 2 we illustrate the interpolant  and  its 
decomposition in the  montone  and non-monotone cases, 
respectively. 

Description of the algorithm 
The numerical  algorithm updates $ i ( t )  to  produce $ i ( t  + 
A t ) .  The calculation for  each  i  depends solely on x i ( x ) .  
We will require  the mesh  ratio  condition 

At 5 A ~ / m a x / f ’ [ 9 ~ ( t ) ]  I (3 .13 )  
1 

to be obeyed. 
For  each  i, we solve  the problem Po: 

There  are  three possible  problems Po corresponding to 
the  three possible $o, $ ( x ) ;  namely  a step  function, a 
straight  line,  and  a parabola.  The  case of the  step func- 
tion is subdivided  into three  subcases: a  shock corre- 
sponding to a monotone nonincreasing step, a  rarefaction 
corresponding to a  strictly  increasing step,  and a special 
case called a simple shock to be described below. Po is a 

Riemann  problem in the  case  that I)”, is a step function 
or is a simple problem in the  case  that $o, is a  straight 
line. 

Next, using ( 3 . 8 ) ,  we compute 

yo = x i  - A r f ’ [ u i ( x i ,   A t ) ] .  

Then, from (3.10), 

Then from the  expansion  theorem we have, neglecting 
YZ’. . ’. Y n >  

f ’ [ u ( x i ,  A t ) ]  = ( x i - Y o - y l ) / A t ,  (3 .14 )  

which we solve to  determine u(x i ,  A t ) .  It is always pos- 
sible to solve (3 .14 )  for u if y ,  / A t  is sufficiently small or 
iff  takes  on all values in (-00, m). Sincef‘ is strictly  in- 
creasing (decreasing)  the solution of (3 .14 )  is unique. 

At t = 0, we  associate a parameter, pi, with each mesh 
point xi where 

-Ax 5 pi  < 0. (3 .15)  

It will suffice to  describe  the algorithm in the  case t = 0. 
The numerical algorithm will update both $< and pi to 
produce $i ( A t )  and pi  ( A t ) ,  respectively. 

We now consider  the various  problems Po. 

Solution of the  problems Po 

3.2.1 $o, is u step  function 
In this case Po is a  Riemann  problem whose solution is 
well known.  We first compute a type, gi, of the mesh 
point xi  determined from the function $,,, (x) .  

L if h i €  [ x i - l ,  xi) 
g .  = (3 .16)  
’ iR if hi€  [ x i ,  xi+,).  

In  the  case gi = R ,  $o, i ( x )  will be  referred to  as a pseu- 
dojump (pseudoshock  or pseudorarefaction, as  the  case, 
may be when this emphasis is needed). We now consider 
the  three  subcases  A, B, and  C. 

A .  $o, is u shock 
a )  Compute  the shock speed 

(3 .17 )  

pi  = p i  + s a t .  (3 .18 )  

Note (3.13) and (3.17) imply thatpi  +xi€[xi-,,  xi+,). 

c )  The solution $o, i ( A t )  is given by 

gi = L and pi  < 0 

otherwise. 
$o, $ ( A t )  = (3 .19 )  
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This solution may be  explained as follows. Consider 
pi  to  be  the location of the  shock. When gi = L and 
pi < 0, the shock  propagates to  the right but fails 
to  reach xi.  Thus $o, i ( A t )  = r.  In all other  cases  at 
time At, this  shock is located to  the right of xi and 
$o, i ( A t )  = 1. 

d )  The  choice  for  the  updated value of pi is computed 
from { p i ,  p i - ] }  according to  the following scheme: 
Since pi  + x i €  [x i - , ,  x i+ , )  and pi-, + xi-,  E [xi-2,  x i ) ,  
the interval  [xi-1, xi) will contain q =  0,  1 ,  or 2 of the 
points {p i  + xi, pi-, + x i - l } .  

If g = 0 the shock whose location is associated with 
pi  has moved off to  the right beyond xi ,  and a new 
shock  whose location is associated with pi-, has not 
propagated  beyond xi- , .  Thus  we must  supply  a can- 
didate shock  location in [ x i - ] ,  x i ) .  We take it to be 

If q = 1 then exactly  one of the  shocks  just referred 
to is located in [x i - , ,   x i ) .  Then  we  take p i ( A t )  as pi  or 
pi-,  - Ax, depending on which of pi  + xi or pi_,  + xi-, 
is in [xi-1, x i ) .  

If q = 2, we  have  one too many of these shock  loca- 
tions  and  we  choose  one of them. If gi-, = gi = R ,  then 
both jumps  are pseudojumps and  we  take p i ( A t )  =PI. 
If gi-, and gi are of opposite  type, we choose p i ( A t )  
as pi-,  - Ax if gi-l = L or as pi  if gi = L. If gi-, = gi = L,  
both p,!-, - Ax and pi are  acceptable  and  we  choose 
the larger of the two. 

p i ( A t )  = pi  - Ax. 

B. Simple  shock 
The  case of simple shock occurs when +i-2 = +i-l and 
when pi as  computed in (3.18) is positive. In this case 
the solution is taken  directly to be 

+ i ( A f )  = +i- l ,  

xi  = L. 

pi is updated  exactly as in case A. 

C .  $i, is a rurefaction 
(a)  Compute  the speed of the leading edge of the rare- 

faction 

s = f ' ( r ) .  (3.20) 

(b)  Set 

p i  = p i  + sAt.  (3.21) 

As above,  note  that pi + x i €  [x i - , ,  x i + , ) .  

(c)  The solution $o, i ( A t )  is given by 

if gi = R ,  

where 

k ( l ,  r )  = r -  [ f ( r )  - f  ( l ) l / f ' ( r ) .  (3.23) 

To derive (3.22),  shift x so that xi-,  = 0. Now 

(3.24) 

Solving the Riemann  problem  with these initial data 
gives 

$o, i ( A t )  

I 

r 

I 

h r s )  

if gi = R,  

if gi  = L and if 

pi  < - f ' ( r ) A t  

pi 1 - f ' ( / ) A t  

- f ' ( r ) A t Z   p i  

< - f ' ( 1 ) A t .  

In fact,  instead of (3.25) we  take (3.21), where 
k(1 ,  r )  is the  average of the last  two cases in the 
right member of (3.25), viz., 

(3.26) 

We take this average  for  the following reason.  The 
third case in (3.25) by itself describes  the evolution 
of a step-rarefaction  into a step-rarefaction because 
of our parametric  representation of the  data. Since 
this  evolution does  not  occur in the analytic  solution, 
we wish to eliminate it in the numerical  solution. The 
device of averaging represented in (3.26) accom- 
plishes  this.  We  rejected the  alternative way of ac- 
complishing this by means of altering p i ,  because 
altering pi would change  the location of the leading 
edge of the rarefaction, an undesirable consequence. 

3.2.2 Jl0, is a straight  line 
Shift x so that xi = 0. If $o, = ax + c and f ( u )  =3 uz, then 

yo  = - c a t /  ( 1 + a A t )  

u , = c ( l - a A t ) / ( l + u A t ) .  (3.27) 

When f is not 3 u', uo and yo  may be determined in some 
approximate manner. For example,  use some  standard 
numerical scheme  to  determine uo and then (3.8) to  de- 
termine y,,. Since $o, is a straight  line, there will be  no 
significant numerical difficulties associated with  this  pro- 
cedure. 

Although pi  is not used in this  solution procedure, it 
must be  updated for  further  reference.  Corresponding  to 
$a = ax + c we  have $1, a step function  with parameters 391 
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rand 1. Imagine the  tolerance 8 to be  increased indefinite- 
ly. We then reverse  the  roles  of straight line and step 
function. Indeed, in this manner  we  obtain a step func- 
tion independent of the  tolerance 8 and with parameters 
r + c and 1 + c respectively. We  compute  the speed s 
based on  these  parameters, viz: 

I f  ‘ ( r  + c ) ,  15 r (not a  shock‘). 

Then  we  compute p;  = pi + sat, and we update p i  ex- 
actly as before. 

3.2.3 $o, is a  parubolu 
In  the  case of the parabola we  do not use the expansion 
theorem. Instead  we  compute a  numerical  approximation 
directly by means of the finite difference scheme,  due  to 
P. Lax  [cf. [6] ) ,  

+ [ ( A t / 2 A ~ ) l [ f ( + ~ + ~ )  -f(+i-l)l. (3.29) 

The  quantity pi, although not  used, is updated  exactly as 
is done in Section 4.2.2. 

Note: A reason for using (3.29) instead of our  expansion 
technique is that  the  latter is intended to deal  with data 
which are shock-like (discontinuous). When the domi- 
nant  part, $ ,  is not  shock-like, we  expect a  standard 
finite diit‘erence scheme  to perform  satisfactorily. 

Evuluution of the corrections 

3.3.1 is a step  function 
This  case  occurs only when $o, is a  straight line. We use 
this Go, and (3.8)  to  compute y o .  Then Y ,  is determined 
from (3.10), viz: 

(3.30) 

where 

yo  < p i  or gi = R ,  

otherwise. 
$1, i ( Y 0 )  = {;, (3.31) 

In  (3.3 1 ) the  choice I ,  should be  taken if yo < hi. It  can 
be  shown that yo  determined in Section 3.2.2. has  the 
property y o  5 xi .  Thus, if gi = R (so that hi 1 xi ) ,  then 
yo < hi. When gi = L,  we identify hi with pi.  

Now +i (At )  is obtained by solving 

f ‘ [ 4 i ( A t ) l  = ( X i - . Y o - Y 1 ) / A t  (3.32) 

[c.f. (3.14)]. 

3.3.2 $1, is a  straight line 
The  case of $1, a  straight line occurs only  when $o, is a 
step function.  We  proceed as in Section 3.3.1. Here 
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(3.10)  for determining y1 becomes simply 

- yl/At = $1, , ( Y , ) ~ ” ( J I ~ ,  i ( A t ) )  

= a ~, f”[$~,  i ( A t ) l .  (3.33) 

Remurk 3.6 It is precisely at this  point where  the lack of 
smoothness in the problem (i.e.,  the  step function Go, $)  
is dealt with. For, although (3.14)  requires  the  derivative 
$I, i ,  it requires  it  not  at  the  step location. Thus in fact 
$A, = 0. 

Now $ i ( A t )  is obtained by solving (3.32). 

3.3.3 $1, is a  parabola 
This  case  occurs only when $o, is a step  function. We 
proceed as in Section 3.3.2, with (3.33) replaced by 

- .y , /At = (a’.+:+ c )  f”[$o .  i ( A t ) l .  (3.34) 

4. Stability and  convergence of the  algorithm 
For  the  sake of simplicity we have restricted our argu- 
ments  on stability and  convergence  to  the  case f ( u )  = 
8 u 2 ,  although the  results in this  section are probably true 
for  arbitrary  convex  (concave) f ( u ) .  The  convergence is 
demonstrated only for  monotone  (decreasing) initial 
data,  but  the stability does  not require this additional  re- 
striction. 

In all that follows we will assume a sharp bound M on 
the  data introduced in Section 3.5. 

4.1 Stability 
Consider  the triple (4, p ,  r ) ,  where 4 is the  sequence 
4 = {&; i = 0,  & 1;. .}, p is the  sequence p = {pi,  i = 0, 
& 1, . . .} and t is a  scalar. The numerical  algorithm is a 
mapping of this  triple  into another  denoted 

AI(+, P ,  t )  = (4, P ,  f). (4.1 ) 

This mapping has  the  property 

AI(+ ,  p ,  T )  = (4 ,  p,  T + f - t ) .  (4.2) 

Let us extend  the numerical approximation $I defined on 
the mesh to  the function $(x) defined for all x, as follows. 

$(x) = + i ,  pi + xi < x 5  pi+l + xi+,. (4.3) 

Starting at t = 0, the  repeated application of the al- 
gorithm results in the  sequence 

k 

T ,  = x Atj, 
j=l 

(4.5) 

and  where 
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Note  that  the values of the third argument in (4.1 ) and 
in (4.2) must be chosen from  among the  elements of the 
sequence { T , } .  

We now collect  several properties of the  algorithm by 
means of Lemmas 4.1-4.4. 

Def 4.0 Let 4; denote $'(x,). 

Lemma 4.1 If 4:'' 1 4; 2 CP:+~, then $;-' 1 +:+' 1 6:. 
Lemma 4.2 If c#$-~ 5 $I: f $:+', then 4L1 f +:+' 5 I#('. 
Cor 4.1 If 4:'' = c$:, then 4:'' = 4:. 

Remark 4.1 Although the value of 4:" depends on the 
tolerance 13, these lemmas themselves  are independent of 
0. This is not the  case  for  the following two lemmas. 

Lemma 4.3 In  the non-monotone case,  and when $,,, is a 
step function,  then +:+' E [+:-', +:I. 
Lemma 4.4 In the non-monotone case, and  when $,,, is 
not a step  function, then &+'E c $ : + ~ ] .  

A direct  consequence of Lemmas 4.1 and 4.2 is the 
following theorem. 

Theorem 4.1 If  $(x) is monotone, then for  each k the se- 
quence {&I is monotone. 

Remark 4.2 The  presence of oscillations  accompanying 
most numerical methods  for solving conservation laws is 
ruled out  for  the  present method by this  theorem. 

Lemmas 4.1-4.4 imply the following theorem. 

Theorem 4.2 For  each k = 0, 1,. . ., and  for each i = 0, 
2 l;.., 

min (+:-', cpzk, +:+') 5 4;+' 5 max (+:-', +:, (4.7) 

The following corollary which assures  the stability of 
the algorithm is an immediate consequence of this 
theorem. 

Corollary 4.2 (Stability) If 0 5 m 5 &(x)  5 M, then  for 
each k =  0, l;.., and  for  each i =  0, -t- l;.., we have 
05  m f  & 5  M .  

From Corollary 4.2 and  from (4.6), we  have  the fol- 
lowing theorem, which assures  the reachability of any 
t 1 0 by the algorithm. 

Theorem 4.3 lim T,  = a. 

4.2 Convergence 
An estimate of the deviation of the numerical solution 
from the  exact solution is the subject of the following 
theorem. 

Theorem 4.4 If the  sequence 4' = {$I:} has N distinct 
values,  then 

l lS (Tk)$o-$k /15  3(N- l ) (M-m)Ax.  (4.8) 

k-rn 

Suppose  the initial data  are @(x),  where 

if x 5 0,  

i f x Z A ,  
@ ( x )  = {Z; 
and is decreasing otherwise.  (Here A is some positive 
constant).  To  obtain  the  convergence of the numerical 
algorithm as Ax + 0, we must represent @(x)  by a se- 
quence 4' in which,  according to (4.8), the  number N of 
distinct values  must  be o(A."). We obtain  this represen- 
tation  as follows. 
Let 

B = A / A ~  

and  let 

4; = @ ( j A x B ) ,  ( j  - l)B < i 5  jB, j = o , *  l ; . .  . 

Note  that 

M ,  i5 0 

m, i 1 B 2 ,  

and that  the number of distinct values in the  sequence 
{+:} is not  greater than 1 + B. 

The  convergence of the algorithm is the  subject of the 
following theorem. 

Theorem 4.5 For  each k = 0,  1,. . ., 

~ ~ S ( T , ) @ - $ k ~ ~ 5  5 [ IA/Axl t ] (M-m)A.=O(Ax~)  

5. Numerical results 
We now assemble  the  results of calculations performed 
with our algorithm on a set of illustrative  problems. In 
a11 casesf= u2. 

5.1 
We begin with the following simple case of initial data 
composed of three shock waves. 

4, x 5  0.75, 

0.75 < x 5  3.75, 

3.75 < x 5  7.75, 

7.75 < x. 

@(x)  = 1:; 
These initial data  generate  the following exact solution: 

0 5  t f  2 

u ( x ,  t )  = I 4, x 5  0.75 + 3t, 
2, 0.75 + 3t < x 5  3.75 + 1.5t, 

1 ,  3.75 + 1.5t < x 5 7.75 + 0.5t, 

0 ,  7.75 + 0.5t < x. 
393 
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These initial data  generate  the following exact solution: 

394 

w. L. 

f solution solution 
t = 3 after 24 0 - .  

1 -.- x 
2 -..- 0 
3 -."- + 

Exact Numerical 

time steps 

0 1 2 3 4 5 6 7 8 9 1  /r 
Figure 3 Numerical  results  for a simple  case of initial data 
composed of three  shock  waves  which  overtake  one  another. 

2 < t 5 3  

4, x 5 1.75 + 2.5t, 

u ( x ,  t )  1.75 + 2 .9  < x 5  7.75 + 0 . 9 ,  

7.75 + 0.5t < x. 

t > 3  

x 5  3.25 + 2t, 
u ( x ,  t )  = !: x > 3.25 + 2t. 

Set Ax = 0.5, 

4 =  (4,4, 2,  2,  2,  2,  2, 2, 1,  1, 1, 1 ,  1, 1 ,0 . . .0 )  

and 

pi = -0.25, i = O  , -  + 1, .... 
Then 

4 = @. 

The  results displayed in Fig. 3 show that  the numerical 
solution at  the times t = T ,  = 1, t = T I ,  = 2 and t = T,, = 3, 
lie on  the  curve of u(x, t )  for the  same  values of t. It 
serves  no  purpose  to  continue  the calculations for times 
larger  than 3, since  beyond  this  time we obtain  a step 
function  with  a single discontinuity for which the calcula- 
tion may be  shown to  be  exact. We have verified this for 
t =  4. 

5.2. 
The second  example is a case of two rarefaction  waves. 

x 5  0.75: 

0 . 7 5  < x 5 2.75, 

x > 2 . 7 5 .  

u(x, t )  = 

0, x 5  0.75, 

( 1  / t )  (X - 0.751, 0 . 7 5  < x 5 2t + 0.75, 

2 ,  2t + 0.75 < x 5 2t + 2.75, 

( 1 / t )  (x - 2.751, 2t + 2.75 < x 5 4t + 2 . 7 5 ,  

4, x > 4t + 2.75. 

This  case is calculated  with Ax = 0.5, 0.25 and 0.1, 
respectively. The  number of time steps required to  attain 
T = 1.5 are 12, 24 and 60, respectively. The  results  are 
displayed in Fig. 4. 

The maximum  time t in each of the  three diagrams of 
Fig. 4 is the  same.  Thus  these diagrams  exhibit an  ap- 
proach by the numerical  solution to  the  exact solution as 
Ax decreases.  This  prompts  that  conjecture  that  the al- 
gorithm converges in the  case of monotonic  increasing 
initial data.  This  conjecture  has not as  yet been con- 
firmed. 

Notice  that  the location of the leading edge of the rare- 
faction waves  are  reproduced  exactly in  all cases. 

5.3 
Consider  the  case  where  the initial function is 

! 1, x 5  0, 

1 - x ,  0 5  x 5  1 ,  

x -  1, 1 5 x 5 2 ,  

1,  2 5 x. 

@(x) = 

The corresponding exact solution is for 

O 5 t <  1 

u(x, t )  = 

and  for 

1, 

(1 - x ) / ( l -  r ) ,  t 5  x 5  1, 

( x -  l ) / ( t  + I ) ,  1 5  x 5  2 + t ,  

1, 

x 5  t ,  

2 + t 5 x  

t 1 1 ,  denoting = (2 + 2 t ) i ,  

X < 2 + t " T ,  

u ( x , ~ ) =   ( x - I ) / ( t + I ) ,   2 + t - r < x 5 2 + t ,  1:: 2 f t 5 x .  

This  case  has been computed up to t = 15 with the 
discretization steps Ax = 0.25 and 0.05. These  corre- 
spond to 60 and 300 time steps, respectively. Figure 5 
exhibits a comparison  between  the numerical  solutions 
and  the  exact solution. 

Notice  that  the position of the shock is determined with 
good precision while, as in the preceding case,  the loca- 
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f =  1.5 after 12 t solutlon solutlon 
Exact Numerical 

I time steps 0 -  
1 --- x 
1.5"~- 

4 

2 

3 - 

Exact Numerical 
t = 1.5 after 24 t solution solution 

time steps 

t = 1.5 after 60 time steps Exact Numerical 
t solution solutlon 

(C) 

0 . 7 5 1  2 3 4 5 6 7 8 9 

X 

Figure 4 Numerical results for  a case of two  rarefraction 
waves  for ( a )  LLX = 0.5, (b )  Ax = 0.25, and (c)  0.1. 

tion of the leading edge of the rarefaction  wave is re- 
produced  exactly. 

5.4 
We now discuss  the calculation of a case corresponding 
to initial data with compact support. The following 
theorem (Lax [ 11 ) contains a relevant  characterization 
of such problems. 

Theorem 5.1 Let the initial data @ ( x )  be of compact sup- 
port. The behavior for large t of the corresponding  weak 
solution ~ ( x ,  t ) ,  of the initial value  problem is given by 
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t = 15 after 60 time steps - Exact solution 
- 0  Numerical solution 

1 

0.7 

3 

f = 15 after 300 time steps -Exact solution -. e.. Numerical solution 
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11 12 13  14  15  16  17  18  19 

X 

Figure 5 Comparison between  numerical and  exact solutions 
for a rarefraction wave: (a)  initial function, (b)  Ax = 0.25, and 
(c) ax = 0.05. 

u ( x ,  t )  M 

Here k ,  c,  a and p are  appropriate  constants. By this 
theorem is meant  that  for t large, each point of the graph 
of u ( x ,  t )  is within o(.\/iJ of the  graph of the function in 
(5.1 ). In  the  case  that f is convex  (concave),  the con- 
stants in (5.1) have  the values 

c = f ' ( O ) , k =  l / f " ( O ) , a = V i m , l k , a n d P = =  
where 



4 

3 

t of time steps 
Number 

0 0 
1 40 
2.12  80 

6.09 180 
3.50 120 

9.31 240 

2 4 6 8 10  12  14 16 18 

X 

Figure 6 Calculation of a case corresponding to initial data 
with compact  support: (a) Ax = 0.5, and (b )  Ax = 0.1. The  de- 
velopment of a shock is shown. 

Figure 7 Calculated  solution with asymptotic behavior  given 
in Theorem 6.1: (a) A x =  0.5, and (b)  Ax= 0. I ,  This calculation 
verifies the long-time  behavior of solutions with compact sup- 
port. 

1 

0 

-- Asymptotic shape - Numerical solution 
t = 9.28 

I 

Number 
t of time steps 

0 0  
1 8  
3.01 24 
4.73 36 

t - 0   f = l  t =  3.01 
t = 4.13 

I I I I I I I 

2 4 6 8 10 12 14 16 18 

X 

Figure 8 Calculation  showing a rarefaction  overtaking  a shock, 
with Ax = 0.5. 

r-m 

For f = 4 u", these constants become 

c = 0, k = 1, a = 0, and p = 4 f i .  

Our calculation treats the case 

@(x) = 

4 sin - x ,  0 5  x 5  8, 

.0, otherwise. 

2 n .  

8 

In  Fig. 6 (a )  the results for A x =  0.5 are illustrated. The 
maximal time, t = 9.28 is achieved after 48 steps.  In Fig. 
6 (b) we  illustrate  correspondingly Ax = 0.1, t = 9.3 1 and 
252 steps. 

In Fig. 7 we compare  the calculated solution with the 
asymptotic  behavior given in Theorem 5.1. Notice  that 
for Ax = 0.1, the difference between the two is of the 
order of 0.2 for <> 3. 

5.5 
Our final example is illustrated in Fig. 8 and  deals with a 
case where the  data contain both a shock and a  rare- 
faction. 

@(x)  = 

x 5  0.75, 

0.75 < x 5  3.75, 

2, x > 3.75. 
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This calculation is performed with Ax = 0.5. 
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