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Interpolation with Discontinuous Functions:
Application to Calculation of Shocks

Abstract: An interpolation procedure, which uses a step function plus a polynomial correction, is devised and studied for application to
the numerical solution of problems having discontinuous solutions. We apply the interpolation procedure to the calculation of shock
waves produced by a single convex conservation law. The resulting algorithm does not have the usual undesirable numerical features
associated with shock-wave calculations. The stability and convergence of the algorithm is also demonstrated.

1. Introduction

Many numerical methods for solving equations are based
on the interpolation of data by a family of functions. The
latter is most commonly chosen to be the set of monomi-
als x", n=0, 1,-- . The resulting numerical methods us-
ually work well when the solution that is sought is reason-
ably approximated, say, by the monomials. When the
problem to be solved does not have a smooth solution
(e.g., shock-wave problems and stiff differential equa-
tions), these usual numerical procedures frequently fail
to give good results.

In this paper we attempt to address this difficulty by
devising an interpolation procedure in terms of discon-
tinuous as well as continuous functions. In particular, we
use the monomials augmented by a step function. First,
we give a study of the interpolation procedure and then
we give an application of it to devise a numerical method
for the initial value problem for a single convex conserva-
tion law, the latter being a well-known problem with dis-
continuous solutions (shocks and rarefactions.)

In Section 2 we develop the interpolation procedure.
In Section 3 we devise a numerical algorithm for the
conservation law. This proceeds by exploiting an ex-
tremal characterization of the solution of a conservation
law due to P. Lax [1].

The data at each mesh point are represented by an
interpolant composed of a step function plus a smooth
correction. We show that the extremal characterization
also decomposes, and the solution may be computed
simply in terms of the interpolants at each mesh point.
In Section 4 we demonstrate the stability and conver-
gence of our algorithm under appropriate restrictions to
the conservation law and to initial data. Finally, in Sec-
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tion 5, we give the results of numerical experiments per-
formed with our algorithm to demonstrate its effective-
ness in eliminating the usual numerical difficulties
associated with the shock-wave problem.

The initial step of the algorithm frequently corresponds
to solving a Riemann problem locally along the mesh. In
this respect, the application has a resemblance to meth-
ods devised by J. Glimm [2] and S. K. Godunov [3].

There are other numerical schemes that exhibit some
of the favorable properties produced by our application.
One such scheme, and moreover a fairly simple one, is
due to G. W. Hedstrom [4], which in turn is based on
some observations of C. M. Dafermos [5].

Although our numerical scheme produces excellent
results, our main objective has not been to invent an al-
gorithm for solving shock-wave problems which ma-
jorizes features of other existing schemes. Rather, it is
to introduce a novel method of interpolation using dis-
continuous functions with the objective of applying it to
numerical problems themselves made difficult because of
a lack of smoothness. Our application can be viewed as a
feasibility study for this idea. We expect it to be the first
of other possible ways of exploiting this interpolation
process computationally.

In most cases, proofs of technical results are omitted,
and we refer to [7] for these details.

2. interpolation

Let ¢(x), which represents the data in some problem,
be a real-valued function of the real variable x. To sample
and then interpolate the data, we begin by laying down a
uniform mesh with increment Ax. The ith mesh point is
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denoted by x, = iAx, i=0,x 1, -~ Let ¢,=(x,),i= 0,
= 1,- - At each mesh point x;, we interpolate the {¢;} by
a function x,(x) = ¢, ,(x} + ¢, ,(x) which satisfies the
interpolatory conditions,

Xi(xj) = lpo, i(xj) + lbl, i(xj) = d)j’

¥, ; and ¥, ; are each chosen from the set composed of
step functions, straight lines, and parabolas. We distin-
guish two cases which may occur at x;, depending upon
whether the sequence {¢, ,, ¢,, &,,,} is monotone (or
constant) or is not monotone. We study these two cases
separately. In the remainder of Section 2, we suppose
that the x axis is translated to that x, = 0. Since no con-
fusion will result, we also suppress the subscript i.

j=iix1. (2.1)

2.1 The monotone case

In the monotone case we choose the two functions ¥, and
¥, so that one of them is a step function with at most one
discontinuity while the other is a straight line;

1, X= A,
x5¢0+1!/1=ax+c+{
’

’

x> A

Here y = ax + ¢ is the equation of the straight line in ques-
tion and / and r are the values of the step function to the
left and to the right, respectively, of its discontinuity,
which itself is located at A.

Set b = ¢ + | and the jump, o = r — . Then

0, X = A,
Y+, =ax+b+ 2.2)
a, x> A

To determine a, b, o and A, we apply the interpolatory
conditions (2.1) and (2.2) to get

07
d>.=axj+b+{ (2.3)

! o, j=0,%1.

If¢_, — ¢, # ¢,— ¢, then A lies in the interval [x_, x,).
Were this not the case we would have ¢_, —2¢,+ ¢, =0,
a contradiction.

Equation (2.3) has two possible solutions, viz.,

. b — ¢,
L v LA by =20, + by,
a= b= o= (2.4)
. b, — &,
ll) A b — b+ by ~¢_ + 20, — ¢,

If ¢, — ¢, = ¢_, — &,, so that the points (x;, ¢;), j=0,= 1
are colinear, the two solutions (2.4) are equal. In this
case, a, b and o are uniquely determined and, moreover,
o=0.

If ¢, — ¢, * ¢_, — ¢, the two solutions (2.4) are dif-
ferent and the corresponding values of o are of opposite
sign. A choice from among these two solutions is made
according to the following criterion.
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Criterion 2.1 a, b and o are chosen so that ¢ has the sign
of ¢, — ¢, or of ,— ¢_, in the event ¢, = ¢,. (Note that
in the monotone case, sig(¢, — ¢,) = sig(¢p,— ¢é_,) un-

less (¢, — ¢y) (d—d_,) =0.)

A justification of Criterion 2.1 will be given in Lemmas
2.5 and 3.3.

2.2 The non-monotone case

In the non-montone case we choose the two functions
¥, and s, so that one of them is a step function with at
most one discontinuity and the other is a parabola with
its axis vertical and with its vertex at x = 0:

) 1 x= A,
X=¢,+t¥ =ax +c+ (2.5)
r, x> A
Here y = a’x” + ¢ is the equation of the parabola and
I, r and A are the parameters of the step function exactly
as in Section 2.1. As in Section 2.1, set b = ¢ + [ and
o = r — I. Then the interpolatory conditions (2.1) and
(2.5) become

0,
d=a'x; +b+ (2.6)
o, Jj=0,=1.
Ifé_,—d,#* ¢, — b, then A€ [x_,, x,). Were this not the
case, we would have ¢_, = ¢,, a contradiction.
Equation (2.6) has two possible solutions, viz.,

. P, —
a = b=
11) ?_1—;,5—0 » ¢_1 + ¢0 - ¢1’ g = d)l - d)—l'
Ax
(2.7)

These two solutions are equal if ¢, = ¢_,. In the con-
trary case, a’, b and o are specified according to the fol-
lowing criterion.

Criterion 2.2 a’, b and o are chosen corresponding
to the case giving the smaller value of |a’|.

A justification of Criterion 2.2 will be given in Lemmas
2.5 and 3.4,

2.3 Properties of the interpolation
We combine the discussion of the monotone and non-
monotone cases by writing
0, x = A,
x=a'x+ax-+b+ (2.8)
o, x <A,
with the convention: a’ = 0 in the monotone case and
a = 0 in the non-monotone case.
We use I to denote the well-defined transformation
(¢_,, &y @,) = (d', a, b, ). We now give several lem-
mas which describe properties of /.
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Lemma 2.1 I is a continuous mapping of R® into R*.

Lemma 2.2 Let I{(¢_,, b, ¢,) = (a’, a, b, o). If for each
k=0,

I(d)_l + k? ¢0 + k’ d)l + k) = (a),c’ ak’ bk’ o-k)a
then

[ ’ j— — _—
a=a,a,=a b,=b+kand o, =0.

The following lemma shows that the analogue of choos-
ing a’ according to the minimality criterion 2.2 is valid
for the choice of a as well.

Lemma 2.3 Criterion 2.1 is equivalent to

Criterion 2.3 a, b and o are determined by (2.4i) or
(2.4ii) according to which choice results in the smaller
value of |a|.

Proof of Lemma 2.3 The proof is divided into the follow-
ing four cases:

(i) {¢,—¢,Z0} < {¢,—¢_, =0}
< o =0, from Criterion (2.1).

(@) ¢ =20+, Z0 ¢, — ¢, Z ¢, —¢_, =0,

(b) ¢, —2¢,+¢, =0 ¢ —d_, =, —d,=0.
(i) {¢,— =0} @ {p,—d_ =0} <=0,

(@) ¢, =24, + ¢, =0 ¢, — ¢, = d,—d_, =0,

(b) ¢, =2¢,+¢_ 20 ¢ — ¢, Z¢,— ¢, = 0.
In each case, then, we see that the value of a, chosen ac-

cording to Criterion 2.1, has a smaller magnitude than the
rejected choice.

The following lemma characterizes the extent to which
the location A of the discontinuity of the step function,
hitherto unspecified, is constrained by the criteria 2.1,
2.2 and 2.3.

Lemma 2.4 X €[x, x) © |¢p_, — &, < |, — ¢,1,

AELx_, x,) < oy — &, < |d_, — &,|.

Proof To begin with, note that if |¢_, — ¢ = |d, — ¢,],
then there is no discontinuity. Next from the Criteria 2.2
and 2.3 andif [¢_, — ¢ | < |$p,—¢,|, we have ¢,=b. Thus
A E[x,, x,). Similarly if [6_, — | > [, —,|, ¢, =b+ 0,
from which it follows that A €[x_,, x,). This proves the
assertations of the lemma from right to left. With these
the assertions from left to right follow directly.

A monotonicity property of the interpolant x is the
subject of the following lemma.

Lemma 2.5 In each of the intervals [x_, x,] and [x,, x,],
X is a monotone function.

Note: In the monotone case, x is monotonic in the entire
interval [x_,, x,].

W. L. MIRANKER AND A. MORREEUW

3. Application to the numerical solution of a conser-
vation law

3.1 Preliminaries
We consider the initial value problem

(ou/or) + (3f (u)/ox) =0, >0, |x|] <e. (3.1)

The solution in the classical sense of the system (3.1)
may develop singularities after a finite time, and it is thus
not continuable as a regular solution. Nevertheless a con-
tinuation as a generalized solution is possible. Such a
solution is characterized in the following definition.

Definition 3.1 u(x, t) is a weak solution of (3.1) if u
and f(u) are integrable on all bounded subsets of R X
[0, «) and if the integral relation

on fw [wtu-f-wmf(u)]dxdl‘-i-f°° w(x, 0)p(x)dx=0
0 Y- e (3.2)

is satisfied for all test functions w(x, 1) €C'[R x [0, )]
which vanish for |x| + ¢ sufficiently large.

A regular solution of (3.1) is a weak solution and,
conversely, a weak solution with coritinuous first partial
derivatives satisfies (3.1).

The behavior of a weak solution at a discontinuity is
characterized by the following lemma.

Lemma 3.1 A piecewise continuous weak solution obeys
the Rankine-Hugoniot condition,

slul =111, (3.3)

at each point of a curve of discontinuity. Here [-] de-
notes the jump across the curve of discontinuity and s is
the speed of propagation of the discontinuity.

Extremal characterization of the solution

We now review an extremal characterization of solutions
of (3.1) due to P. Lax and refer to|[1] for details and
proofs.

Given a strictly convex (concave) function f(u), de-
fined for all u€R, we introduce the|conjugate function
g(‘s) by means of the relation
g(s) = max (min) {us — f(u)}. (3.4)

Let u= b(s) denote the value of u where the maximum
(minimum) of u in (3.4) is attained, and let a = f'. It is
then easily shown that

bla(w)] = u, (3.5)
4 () = b(s) (3.6)
ds g(s) = b(s). .
The functions b(s) and g(s) are defined on the range of
a(u), where g(s) is itself convex (concave). g(s) tends

to infinity as s approaches the extremities of the domain
of definition of g.
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We introduce ‘®(y) through
Y
= [ ¢man
0

Consider the expression
Jo(¥) =J(yy=®(y) +1glx—y/1). (3.7)

J possesses a finite minimum (maximum) in the interior
of its domain of definition as characterized in the follow-
ing lemma.

Lemma 3.2 For each t, with the exception of a denumer-
able set of x, the function J(y) possesses a unique mini-
mum (maximum) which we denote by yé(x, t).

We may now state the following theorem characteriz-
ing the solution of (3.1).

Theorem 3.1 The function u,(x, 1) = b(x — y¢/t) isa
weak solution of (3.1). Moreover if we denote this solu-
tion by u,(x, t) = S(1)¢, then the operator S(z) has the
following two properties:

i) S(¢) forms a one parameter semigroup:
S, +1,)
S(0)=1.

=5(1,)8(1,), t, 1,20,

ii) For each ¢, §(¢) is continuous in a certain topology.
Property ii) is made precise in Theorem 3.3.

Remark 3.1 Using (3.5) and Theorem 3.1, we may write

Vo =x—1f"[u,(x, )] (3.8)

Monotonocity of S and the expansion theorem
A key property of S is its monotonocity.

Theorem 3.2 For each t, the operator S(¢) is monotone.

Note: In all that follows we will use ||| to denote the L,
norm.
We now give the expansion theorem.

Theorem 3.3 Let the initial data be denoted by ¢., where
= 2 £ ll]
i=0

We suppose that each ¢, €L, i= 0, 1, -, and that the
series 37, [,le’ has radius of convergence strictly great-
erthan R > 0. Lety, =y, = )7% and let

(1/6) + a' [P (y,) ] W (y,) # 0. (3.9)

If for some n = 1, wiEC"“’i, i=0,1,- -, nand fEC™?,

then there exist y, i=1,-, n such that
}_7¢E=yo+yls+...

Remark 3.2 a’[W(y,)] = f" (Y {y,}) =f"[b(x —y,/0)].
Using this and Theorem 3.1, we may obtain

+y,e" [1+o0(1)].
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Remark 3.3 The only case of indeterminacy of y, and y,,
", ¥, as well occurs when

(1/0) +a' [, (y,) 1 (y,) = 0. (3.11)

Now we give a proof of Theorem 3.3.

(3.10)

Proof of Theorem 3.3 We consider the case n = 1, the
proof for other n follows directly. Let {e } v=1,2,---, be
a sequence of positive numbers converging to zero.
Since J%(y) is a continuous function of y,

J%(ﬁ) = xlzl—golo J"‘o('\‘)sv )

¥
Ve,

= lim [Jd,z (¥ )— Se, llli(n)dn]
y—>% v 4 0 i=1
= lim [J‘f’a (¥, — 2 Sf, ll‘,-(”'))dﬂ]

r—>% v 0

=lim [J%(yo) _

” z &l vy () |

=J, (y0 ) + lim 2 ||1111||

y—o i=1

Yo

Thus
4, () =Ty (5.

This inequality and the uniqueness of the location of
the minimum ofJ gives y = ¥,. Thus $y = Yo =y,a8
€ — 0. Thus we have demonstrated the cont1nu1ty of y Yo,
in € fore =0.

To continue, note that where J attcuns its minimum,
its derivative must vanish. This glves

P, (y,) — g (x—y,/t) =0.

Therefore,

(x =y /t=alP,(v,)].

Similarly,

(x=y)/t=ald (y,)]

Subtracting these two equations, we get
(Yo = V) /t=ald (3] — ali,(F,)].
Now

ald (57— alw, ()]
= alWy(5.) + &, (5,) + 3 €4,(5,)]

i=2

= ald,(y,) + (F. =y )0 (y,) + &, (y,)
+te (3, =y (,) + 0, —y,)*

— alY,(§,)]

o

+3 £, (5,)

i=2

1= al, (v, 1.
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" Here Yo, € (3> ¥ ). Similarly,
alé (¥,)] — aly,(y,)]
=a'[P,(y,) [T, — y)w, (v,) + e, (¥,)

+eG, =y () | DG, =yt + S €,5,)]

+ C(e)[ (e —y )W € + &, (3,)
+e(@ =) (,) + O, —3)" + 3 €, T

i=2

C(e) is bounded since it is equal to 4 ¢” evaluated at an
argument which is bounded, since . — y, as € — 0.

Inserting this last equation into (y, — 3./t =
aly_(y,)} — aly,(y,)] and rearranging terms we get

(yo = 7)1/ + a' (W, (v )W (vy) + OF, — ¥,)]
— e, (yo)a' (Y(y,))
=¢e(J, —y)[a' (P, (y ) )i (vy. ) + 2C ()Y, (y,)]

+a' (Wy(y,)) & gl ey, (5,)
+EC @) [, (3,) + (5, =y (v, )
+3 P
Then _
[ — 7)) /ell(1/8) + a' ()8, (3y) + O (Ve — 3,01
— ) y)a (P, (y,)) =00).

From this and (3.8), we have
Yo~ Ve _ U (y)a’ [y (y,)]
(1/8) + a' [y (yy) 10 (vg)
Thus, setting
R A AV CXCAN
! (1/1) + a' [, (3) Wy (3,)

completes the proof of the theorem in the case n = 1,

lim
e—0 £

Normalizations

In all that follows we assume that the initial data ¢ take
values in [0, M] where M > 0 is specified. That this pre-
sents no loss of generality is proved for to case f=3% u® by
means of the following theorem.

Theorem 3.4 If u is a weak solution of
u+uu,=0,1t> 0, |x] <o (3.12)
with the initial value ¢ (x), then

(i) u,(x,1) =u(x—ct, 1)+ cisaweak solution of (3.12)
with the initial value «,(x, 0) = ¢ (x) + ¢, and
(ii) uy(x, 1) = (1/m) u(mx, t) is a weak solution of
388 (3.12) with the initial value u,(x, 0) = (1/m) ¢ (mx).
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To demonstrate our claim concerning the normalization,
let ¢s(x) satisfy o < p =y <= B <o where b # B. Let¢p=
M[y((B—b)x/M) —b]/(B—b),then0=¢= M. Then
from (ii) of Theorem 3.4, if u is a weak solution of (3.12)
with initial value ¢, [(B—b)/M] u(Mx/(B—b),t) isa
weak solution of (3.12) with initial value ¥(x) — b. Simi-
larly from (i) of Theorem 3.4, we see that

L B=b M N
u= M M(B—bx t,t)

is a weak solution of (3.12) with initial values .

Remark 3.4 If u is piecewise continuous then # is piece-
wise continuous, and by Lemma 3.1, & satisfies the
Rankine-Hugoniot condition. We now give a proof of
Theorem 3.4.

Proof of Theorem 3.4
(i) By hypothesis,

fw fc (wtu-i-%wluz)dxdt-l-foc wix, 0)d(x)dx=0
0 —w —o0

for w a test function.
Setting Q = (x — ct, t), this can be written as

fw f (w,(Q)u(Q) + 3} w_(Q)i(Q))dxdr
0 —

+f° w(x, 0)b(x)dx = 0.
Clearly,

f: E (c w(Q) — 4 *w,(Q))dxdt

+f°° ew(x, 0)dx = 0.
Addi_:g these last two equations gives
[ [ 10 —en @i + o
+ 3w, (Q) (u(Q) + c¢)*1dxdt
+ f ($(x) + )w(x, 0)dx =0,

Set v(x, t) = w(Q). As w varies over the set of test func-

tions so also does v. We also have v(x, 0) = w(x, 0),

v,(x, 1) =w Q) —cw,(Q) and v, (x, 1) = w_(Q).
Using these observations, we obtain

f f (vu, +3 vxuf)dxdt
1) —x

+[7 @0 +erix 0ax =0,
completing _the proof of part (i).

(ii) Setting x = my and v(y, t) = w(my, t) in (3.2) with
f(u) =%, we obtain
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f f (vtuz-l—%vru:)dxdt
0 —

+fwML0h%Mmmﬂ=0,

—

from which the assertion of part (ii) follows.

3.2 Algorithm

In this section we describe the numerical algorithm as a
mapping of mesh valued functions into themselves. The
mapping is based on the ideas of the expansion Theorem
3.3 and the interpolation procedure developed in Sec-
tion 2.

At time 7 the data is represented by a mesh valued func-
tion ¢,(t), i = 0, £ 1, -+~ Corresponding to each mesh
point x;, we associate an interpolant x;(x).

To use Theorem 3.3 to the first order, we decompose
x; into two functions. For clarity we suppress the sub-
script { and we consider first the monotone and then the
non-monotone case.

Decomposition of the interpolant. Monotone case
We have

0, X= A,
X(x)=ax+ b+

o, X > A,
where b=c+/land o =r— .

Rule 3.1 Let & = 0 be a prescribed tolerance.
i) If |a| = 6, choose

b, XA,
¥, =
b+ o, x> A,
¢, = ax.
ii) If |a| > 6, choose
Y,=ax+b,
0, X=X,
Y, =
a, x> A, when o = 0,
or

Yy=ax+b+o
—a, X= A,
Y, =
0, x > A, when o < 0.

The decomposition afforded by Rule 3.1 is illustrated
in Fig. 1 and has the following property.

Lemma 3.3 If |a| = 6, the resulting , is of minimum
L,(x_, x,)-norm.

Remark 3.4 If |a| > 6, the resulting ¢, is positive and of
minimum L _-norm. (Since XA is unknown, we are unable
to make a similar statement for the L -norm.)
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(—~DAx XN iAx (+1)Ax

Pii1| L bi1 ®
@il L \

bi 'l’]l .\
A Yo,
Pi+1[ \ b Piv1 . .{
1 1 1 L r— I3 [T
(—DAx iAw)Xx (~DAx A iAx G+DAx

Y

lal <9 lal >0

I------
-
k=1

Figure 1 Interpolation and decomposition in the monotone
case. The decomposition is afforded by Rule 3.1.

We turn now to the non-monotone case.

Decomposition of the interpolant. Non-monotone case
We have

. 0, X=Z A,
x(x)=a'x"+b+
o, X > A,
whereb=c+/lando=r—1[

Rule 3.2 Let ' = 0 be a prescribed tolerance.

i) If |a’| = 60, choose

2
bt B FESY
4
Y= 2
b+o+d (A:) s x > A,
A 2
P, = a’(x2 _{ :) )
ii) If |a’| > @', choose
g, = a'x* + b,
0, X= A,
Y, =
o, x>\, when o = 0,
or
¢0=a’x2+b+0',
—a, X = A,
¥, =
0, x > A\, when o < 0. 389
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A
¢ \.
i—1r
N
i Xi
@ i ./
i1 i
bir \./
Lot 1 | —
G=DAx N iAx (i-1)Ax
A A
i @ Fi-1 ]
v, Yo,
Pl L] r /
i+1 Vo, Pit1 \ /.
?il L ' @il ~~e
1 :

) ,
(-DAx X Tay G+HDAx (—DAx X iAx (+HDAx

lat=8 la’|>8

Figure 2 Interpolation and decomposition in the non-mono-
tone case. The decomposition is afforded by Rule 3.2.

The decomposition afforded by Rule 3.2 is illustrated
in Fig. 2 and has the following property.

Lemma 3.4 If |a'| = ', the resulting 4, is of minimum
L, (x_,, x,)-norm.

Remark 3.5 As in the monotone case, and if |a’| > 6', the

resulting ¢, is positive and of minimum L _-norm.

In Figs. 1 and 2 we illustrate the interpolant and its
decomposition in the montone and non-monotone cases,
respectively.

Description of the algorithm

The numerical algorithm updates ¢,(¢) to produce ¢, (¢ +
At). The calculation for each i depends solely on x;(x).
We will require the mesh ratio condition

Ar= AX/m?le’[d)i(t)]l (3.13)

to be obeyed.
For each i, we solve the problem P,;

ou, ou,
=+ f'(u) —=0.
P ot ox

0

u;(x, 0) =, ,(x).

There are three possible problems P, corresponding to
the three possible @, ,(x); namely a step function, a
straight line, and a parabola. The case of the step func-
tion is subdivided into three subcases: a shock corre-
sponding to a monotone nonincreasing step, a rarefaction
corresponding to a strictly increasing step, and a special
case called a simple shock to be described below. P is a
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Riemann problem in the case that §, ; is a step function
or is a simple problem in the case that s, , is a straight
line.

Next, using (3.8), we compute

vo =X, — Atf'[u(x,, At) ].
Then, from (3.10),

¥, (o) fu(x;, Ar)]
U+ Atf"[uy(x,, AT, (v

Then from the expansion theorem we have, neglecting
yzy M) yns

flulx, &) = (x;— y,—y,) /A, (3.14)

which we solve to determine u(x,, At). 1t is always pos-
sible to solve (3.14) for u if y, /At is sufficiently small or
if f'takes on all values in (—oo, o). Since f’ is strictly in-
creasing (decreasing) the solution of (3.14) is unique.

At t = 0, we associate a parameter, p,, with each mesh
point x; where

—Ax< p, < 0. (3.15)

It will suffice to describe the algorithm in the case r=0.
The numerical algorithm will update both ¢, and p; to
produce ¢,(At) and p,(At), respectively.

We now consider the various problems P,

v,/ At =—

Solution of the problems P,

3.2.1 ¥, ; is a step function

In this case P, is a Riemann problem whose solution is
well known. We first compute a type, g;, of the mesh
point x; determined from the function ¥, ;(x).

{L it X\, € [x,_,, x,) G16)

Rif N, € [x;, x

i+1 ) *
In the case g, = R, ¢, ,(x) will be referred to as a pseu-
dojump (pseudoshock or pseudorarefaction, as the case,

may be when this emphasis is needed). We now consider
the three subcases A, B, and C.

A. i, ;is a shock
a) Compute the shock speed

—f(
Sy —f) ’ [ r
§= r—1
I=r. (3.17)
fr),
b) Set
p; =p, T sAt (3.18)
Note (3.13) and (3.17) imply that p; + x,€ [x,_,, x,,,)-
¢) The solution ¢, ;(Ar) is given by
v g;=Land p; <0
¥, (At) = (3.19)
{, otherwise.
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This solution may be explained as follows. Consider
p, to be the location of the shock. When g, = L and
p; < 0, the shock propagates to the right but fails
to reach x,. Thus ¥, ;(At) = r. In all other cases at
time Az, this shock is located to the right of x; and

¥, (A1) =1L

d) The choice for the updated value of p, is computed
from {p;, p; ,} according to the following scheme:
Since p; + x,€[x, ,, x,,,) and p;_, +x,_ E[x,_,, x,),

the interval [x, ,, x;) will contain g=0, 1, or 2 of the

points {p; + x, p;_, + x,_,}.

If g = 0 the shock whose location is associated with
p; has moved off to the right beyond x;, and a new
shock whose location is associated with p,_, has not
propagated beyond x,_,. Thus we must supply a can-
didate shock location in [x,_,, x;). We take it to be
pi(A1) = pj — Ax.

If g = 1 then exactly one of the shocks just referred
to is located in [x,_,, x;). Then we take p,(At) as p; or
pi_, — Ax, depending on which of p; + x, or p; , + x, |
isin [x,_, x,).

If g = 2, we have one too many of these shock loca-
tions and we choose one of them. If g, , =g,= R, then
both jumps are pseudojumps and we take p,(At) = p;.
If g, , and g, are of opposite type, we choose p,(Ar)
asp, ,—Axifg, ,=Lorasp/ifg=L.Ifg, ,=g,=L,
both p; , — Ax and p; are acceptable and we choose
the larger of the two.

B. Simple shock

The case of simple shock occurs when ¢, , = ¢, | and
when p; as computed in (3.18) is positive. In this case
the solution is taken directly to be

o, (A1) =¢,_,,
g;=L.
p; is updated exactly as in case A.

C. ¥, , is a rarefaction
(a) Compute the speed of the leading edge of the rare-

faction
s=f'(r). (3.20)
(b) Set
p; = p; + sAt. (3.21)
As above, note that p] + x,€{x,_, x, ).
(c) The solution ¢, ;(Ar) is given by
! ifg;=R,
¥, (A1) =4r ) p; <0, (3.22)
’ }1fgi=Land{,
k(l, r) pl =0,
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where

k(bry=r—=[f(r)=fW1/f'(r).
To derive (3.22), shift x so that x;,_, = 0. Now

(3.23)

(3.24)

1, X= A,
Uy, = {
r?

x> A,

Solving the Riemann problem with these initial data

gives
¥, (A1)
) ifg;=R,

, p; <—f'(r}At
=< ) Apz=f(DA
if g;= L and if
b(_x——pi) -f (r)AtEpi

At < — f'(D)At.

In fact, instead of (3.25) we take (3.21), where
k(l, r) is the average of the last two cases in the
right member of (3.25), viz.,

AL
£ o
b

At >d"

ki =1 nan”| |

—f'(r)at

+ 1 f do].
—F1 (DAL

We take this average for the following reason. The
third case in (3.25) by itself describes the evolution
of a step-rarefaction into a step-rarefaction because
of our parametric representation of the data. Since
this evolution does not occur in the analytic solution,
we wish to eliminate it in the numerical solution. The
device of averaging represented in (3.26) accom-
plishes this. We rejected the alternative way of ac-
complishing this by means of altering p;, because
altering p; would change the location of the leading
edge of the rarefaction, an undesirable consequence.

(3.26)

3.2.2 W, ;is a straight line
Shift x so that x, = 0. If ¢, ;= ax+ cand f (u) =% u’, then

v, = cAt/ (1 + aAt)

uy=c(1—aAt)/(1+ aAt). (3.27)

When f is not i, u, and y, may be determined in some
approximate manner. For example, use some standard
numerical scheme to determine «, and then (3.8) to de-
termine y . Since ¢, ; is a straight line, there will be no
significant numerical difficulties associated with this pro-
cedure.
Although p; is not used in this solution procedure, it
must be updated for further reference. Corresponding to
¥, ;= ax+c we havey, ,a step function with parameters 391
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r and /. Imagine the tolerance 6 to be increased indefinite-
ly. We then reverse the roles of straight line and step
function. Indeed, in this manner we obtain a step func-
tion independent of the tolerance # and with parameters
r + ¢ and [/ + ¢ respectively. We compute the speed s
based on these parameters, viz:

flrt+e)y—fU+c)
r—1

f'ir+c),

, [ > r (shock)

(3.28)
{ = r (not a shock).

Then we compute p; = p, + sAt, and we update p, ex-
actly as before.

3.2.3 P, . Is a parabola

In the case of the parabola we do not use the expansion
theorem. Instead we compute a numerical approximation
directly by means of the finite difference scheme, due to
P. Lax [cf. [6]),

o,(A1) = (¢, + ¢,_,) /2

+ [(A1/280) ][ f (dy,,) = f (b )] (3.29)

The quantity p,, although not used, is updated exactly as
is done in Section 4.2.2.

Note: A reason for using (3.29) instead of our expansion
technique is that the latter is intended to deal with data
which are shock-like (discontinuous). When the domi-
nant part, ¥, , is not shock-like, we expect a standard
finite difference scheme to perform satisfactorily.

Evaluation of the corrections

3.3.1 P, ; is a step function

This case occurs only when ¢ , is a straight line. We use
this ¢, ; and (3.8) to compute y,. Then y, is determined
from (3.10), viz:

N 00, (4D)

- , (3.30)
At T+ A" (Y, i(At))lll(;’ ;(Ar)
where
L, Yo <piorg =R,
b i = . (3.31)
r, otherwise.

In (3.31) the choice /, should be taken if y, < A, Itcan
be shown that y, determined in Section 3.2.2. has the
property v, = x,. Thus, if g, = R (so that A\, = x,), then
vy < A, When g, = L, we identify A, with p,.

Now ¢,(At) is obtained by solving

Fo,(Anl= (x,—y,—v,) /At (3.32)
[cf (3.14)].

3.3.2 ¥, , is a straight line
The case of ¢, , a straight line occurs only when W, 152
step function. We proceed as in Section 3.3.1. Here
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(3.10) for determining y, becomes simply

=y, /At=4, () f" (Y, ;(At))
=ay,f'l¥, (An)]. (3.33)

Remark 3.6 Tt is precisely at this point where the lack of

smoothness in the problem (i.e., the step function ¥, )
is dealt with. For, although (3.14) requires the derivative
¥, » it Tequires it not at the step location. Thus in fact
lll(’)‘ ;= 0.

Now ¢,(At) is obtained by solving (3.32).

3.3.3 ¥, , is a parabola
This case occurs only when ¢, , is a step function. We
proceed as in Section 3.3.2, with (3.33) replaced by

—y, /A= (a'y;+ ) f'[¥, (Br)]. (3.34)

4. Stability and convergence of the algorithm
For the sake of simplicity we have restricted our argu-
ments on stability and convergence to the case f(u) =
14, although the results in this section are probably true
for arbitrary convex (concave) f («). The convergence is
demonstrated only for monotone (decreasing) initial
data, but the stability does not require this additional re-
striction.

In all that follows we will assume a sharp bound M on
the data introduced in Section 3.5.

4.1 Stability

Consider the triple (¢, p, t), where ¢ is the sequence
¢={d;i=0,%1,---}, p is the sequence p= {p,, i=0,
+ 1,---} and ¢ is a scalar. The numerical algorithm is a
mapping of this triple into another denoted

Al(¢, p, 1) = (¢, p, T). (4.1)
This mapping has the property
Al($, p, 1) = (b, p, 7 +T—1). (4.2)

Let us extend the numerical approximation ¢ defined on
the mesh to the function ¢ (x) defined for all x, as follows.

dx)=¢, p+x,<x=p. +x,,. (4.3)

Starting at t = 0, the repeated application of the al-
gorithm results in the sequence

{(@"(x), T,); k=0,1,2,-"}, (4.4)

where

°(x) = ¢(x),
k

T,=2 A, (4.5)
j=1

and where

AtjzAx/max|f’[J>j_l(x)]|. (4.6)
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Note that the values of the third argument in (4.1) and
in (4.2) must be chosen from among the elements of the
sequence {7T,}.

We now collect several properties of the algorithm by
means of Lemmas 4.1-4.4.

Def 4.0 Let q'f denote J)k(x.).
Lemma 4.1 If¢”__¢» = ¢F

then ¢ > gl

i+1° i-1 =

Lemma 4.2 If ¢ | = ¢) = ¢f,, then ¢} = ¢}*' = ¢},
Cor 4.1 If ¢} | = ¢}, then ¢, = ;.

Remark 4.1 Although the value of ¢,*' depends on the
tolerance 6, these lemmas themselves are independent of
6. This is not the case for the following two lemmas.

Lemma 4.3 In the non-monotone case, and when ¥, ;i
step function, then ¢! ' €[] |, ¢/ ].

Lemma 4.4 In the non-monotone case, and when
not a step function, then ¢, €[¢} , ¢! 1.

()l

A direct consequence of Lemmas 4.1 and 4.2 is the
following theorem.

Theorem 4.1 If ¢(x) is monotone, then for each k the se-
quence {¢f} is monotone.

Remark 4.2 The presence of oscillations accompanying
most numerical methods for solving conservation laws is
ruled out for the present method by this theorem.

Lemmas 4.1-4.4 imply the following theorem.

Theorem 4.2 Foreach k=10, 1,--

+ 1,

-, and for each i=0

min (¢q_, ¢, d,,) = ¢ = max (@, 4], ¢i,,). (47)
The following corollary which assures the stability of

the algorithm is an immediate consequence of this
theorem.

Corollary 4.2 (Stability) If 0= m = ¢(x) = M, then for
each k=0,1,--+, and for each i =0, = 1,---, we have
0=m=¢ =M.

From Corollary 4.2 and from (4.6), we have the fol-
lowing theorem, which assures the reachability of any
t = 0 by the algorithm.

Theorem 4.3 lkim T, =

4.2 Convergence

An estimate of the deviation of the numerical solution
from the exact solution is the subject of the following
theorem.

Theorem 4.4 If the sequence ¢’ = {d)?} has N distinct

values, then

IS(T,)8° — ¢ = 3(N — 1)(M — m)Ax. (4.8)
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Suppose the initial data are ®(x), where

M, if x=0,
CI>(x)={

m, ifx=A4,

and is decreasing otherwise. (Here A is some positive
constant). To obtain the convergence of the numerical
algorithm as Ax — 0, we must represent ®(x) by a se-
quence ¢° in which, according to (4.8), the number N of
distinct values must be o(Ax ™). We obtain this represen-
tation as follows.

Let

B=4/Ax

and let

é; = ®(jAxB), (j— 1)B <i= B, j=0,%1, -
Note that

. M i<0

d)'_{m, i= B,

and that the number of distinct values in the sequence
{¢;} is not greater than 1+ B.

The convergence of the algorithm is the subject of the
following theorem.

Theorem 4.5 Foreach k=20, 1,---,

IS(T,)® — "< 5 [|4/Ax|*] (M — m)Ax = O(A%).

5. Numerical results

We now assemble the results of calculations performed
with our algorithm on a set of illustrative problems. In
all cases f=1 .

5.1

We begin with the following simple case of initial data
composed of three shock waves.

4, x=0.75,
0.75 < x= 3.75,
d(x)=
1, 375 < x=17.75,
0, 7.75 < x.

These initial data generate the following exact solution:

0=t=2
4, x=0.75 + 3¢,
2, 075 +3r< x=3.75+ 1.5¢,
u(x, t)
1, 375+ 1.5t < x= 7.75 + 0.5¢,
0, 7.75 + 0.5t < x.
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Exact  Numerical
solution solution
t =13 after 24

time steps

.
—— X

—— O

WO =

— e —

4 @ 0 oy X s Yoo i s Qe O s Qe Gomes Ot e Oy s 4 0 mn 0 0oy

2+ .—.—._._._T«_x_x"

e

Figure 3 Numerical results for a simple case of initial data
composed of three shock waves which overtake one another.

2<t=3
4, x=1.75 + 2.5¢,
ulx, t) =9 1, 1.75 + 2.5t <x= 7754+ 0.51,
0, 7.75 + 0.5t < x.
t>3
la x=<3.25+21
u(x, t) =
0, x > 325+ 2t
Set Ax=0.5,

b=1(4,4,2,2,2,2,2,2,1,1,1,1,1, 1,0---0)
and
p,=—0.25,
Then

i=0,%1,

é=2.

The results displayed in Fig. 3 show that the numerical
solution at the times t=T,=1,t=T =2 andt=T,,=3,
lie on the curve of u(x, t) for the same values of ¢. It
serves no purpose to continue the calculations for times
larger than 3, since beyond this time we obtain a step
function with a single discontinuity for which the calcula-
tion may be shown to be exact. We have verified this for
t=4,

:sl"lie second example is a case of two rarefaction waves.
0, x=0.75,

d(x) =42, 0.75 < x= 275,
4, x> 2.75.

W. L. MIRANKER AND A. MORREEUW

These initial data generate the following exact solution:
(O, x=0.75,
(1/6)(x—0.75), 0.75 < x= 2:+0.75,
u(x, t) =<2, 204+ 075 < x=2r+2.75,

(1/6)(x—2.75), 26+2.75 < x=<4r+2.75,

L4, x> 4t 4+ 2.75.

This case is calculated with Ax = 0.5, 0.25 and 0.1,
respectively. The number of time steps required to attain
T = 1.5 are 12, 24 and 60, respectively. The results are
displayed in Fig. 4.

The maximum time ¢ in each of the three diagrams of
Fig. 4 is the same. Thus these diagrams exhibit an ap-
proach by the numerical solution to the exact solution as
Ax decreases. This prompts that conjecture that the al-
gorithm converges in the case of monotonic increasing
initial data. This conjecture has not as yet been con-
firmed.

Notice that the location of the leading edge of the rare-
faction waves are reproduced exactly in all cases.

5.3
Consider the case where the initial function is

1, x=0,

1—x, 0=x=1,
D(x) =

x—1, 1=x=2,

1, 2= =x

The corresponding exact solution is for

0=1<1
1, xX=t,
(1=—x)/(1—=1), t=x=1,
u(x, t) =
x—10/+1), 1=x=2+1,
1, 24+t=x
and for

t = 1, denoting 7= (2 + 2t)%,
I, x<24+t—r,
u(x, t) =4 (x=10D/(t+1), 2+t—7<x=2+1,
1, 2+1=x

This case has been computed up to ¢+ = 15 with the
discretization steps Ax = 0.25 and 0.05. These corre-
spond to 60 and 300 time steps, respectively. Figure 5
exhibits a comparison between the numerical solutions
and the exact solution.

Notice that the position of the shock is determined with
good precision while, as in the preceding case, the loca-
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Exact  Numerical

r=1,5 after 12 t solution solution
time steps 0
1
1
4+ 77
ol 4
Y7 “
/ S~
&
) - xS ’O:'O"
/x/{:
7
P Z (2)
x/o

Exact  Numerical

t= 1.5 after 24 ¢t solution solution
time steps 0
% 5::_: ; t = 15 after 60 time steps = Exact solution
: —e Numerical solution
4+ x o
7/ Uit
, /; ¥ /o/’g’o 1.0
i
5
/ﬁj 0.9
0.8
(b) 0.7t
1 1 i
t == 1.5 after 60 time steps ' Eﬁﬁ(t:iton ls\éllxlrlxtlgrilcal
(1) #= 15 after 300 time steps — Exact solution
1. «=+ »se Numerical solution
4+ 1
2r 7 R "
Wi
P
) 0.7
(c)
s 0 L | L ! ] | L 1 3 \ \ N . . ) " . A

(a)

Figure 4 Numerical results for a case of two rarefraction
waves for (a) Ax = 0.5, (b) Ax=0.25, and (¢) Ax=0.1.

tion of the leading edge of the rarefaction wave is re-
produced exactly.

54

We now discuss the calculation of a case corresponding
to initial data with compact support. The following
theorem (Lax [1]) contains a relevant characterization
of such problems.

Theorem 5.1 Let the initial data ®(x) be of compact sup-
port. The behavior for large ¢ of the corresponding weak
solution u(x, t), of the initial value problem is given by

JuLy 1975

Figure 5 Comparison between numerical and exact solutions
for a rarefraction wave: (a) initial function, (b) Ax = 0.25, and
(c) Ax=0.05.

k[(x/t) —c], ct—aVi<x<ct+pVH

ulx, t) =~
0, otherwise. (5.1)

Here k, ¢, @ and 8 are appropriate constants. By this
theorem is meant that for ¢ large, each point of the graph
of u(x, ¢) is within o(V7) of the graph of the function in
(5.1). In the case that f is convex (concave), the con-
stants in (5.1) have the values

c=f"(0),k=1/f"(0), = V2m,/k,and B=V2m,/k,

where
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Number
t of time steps
0 0
1.02 8
(a) 2.11 16
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Figure 6 Calculation of a case corresponding to initial data
with compact support: (a) Ax= 0.5, and (b) Ax=0.1. The de-
velopment of a shock is shown.

Figure 7 Calculated solution with asymptotic behavior given
in Theorem 6.1: (a) Ax=0.5, and (b) Ax=0.1. This calculation
verifies the long-time behavior of solutions with compact sup-

port.
—= Asymptotic shape (a)
— Numerical solution
=928
P s |
P !
1k P 1
e i
1
0 t ! 1 1 1 1 I I -
t==9731 (b)
‘_,—’1
=]
1+ —__——‘—‘ i
o =
o 0 1 1 L 1 1 L T S 1
2 4 6 8 10 12 14 16 18
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Number
t  of time steps
0 0
1 8
301 24
473 36
t=0 t=1 —
4 | JOmOmOmOmOm0y /+.+.+,+‘ ! 3'01 t=4.73
A+ ! x_x-*'x'x' ‘.I ._.'._._.,.-«_
& o H
2+ +,+' o-o-oﬂ:ﬁ&ioﬁwgoww-m-oﬂwbw-o
= l+’+ M -
A il 1 ! ! 1 L 1 !
2 4 6 8 10 12 14 16 18
x

Figure 8 Calculation showing a rarefaction overtaking a shock,
with Ax = 0.5.

, = max (min) fﬁm d(£)de,

£

)

= max (min) fw b (£)de.

For f=1% «°, these constants become
¢=0,k=1,a=0,and 8= 4V2.
Our calculation treats the case

4sin2%x, 0< x=<S8,
®(x) =

0, otherwise.

In Fig. 6(a) the results for Ax=0.5 are illustrated. The
maximal time, 7 = 9.28 is achieved after 48 steps. In Fig.
6(b) we illustrate correspondingly Ax =0.1, r=9.31 and
252 steps.

In Fig. 7 we compare the calculated solution with the
asymptotic behavior given in Theorem 5.1. Notice that
for Ax = 0.1, the difference between the two is of the
order of 0.2 for Vi > 3.

5.5

Our final example is illustrated in Fig. 8 and deals with a
case where the data contain both a shock and a rare-
faction.

0, x=0.75,
D(x) =<4, 0.75 < x =< 3.75,
2, x> 3.75.

This calculation is performed with Ax = 0.5.
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