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Zero-Modulation Encoding in Magnetic Recording

Abstract: This paper deals with waveform encoding methods in which binary data are mapped into constrained binary sequences for
shaping the frequency spectrum of corresponding waveforms. Short and long pulse widths in the waveform are limited by constraints
on the minimum and maximum run-lengths of zeros in the coded sequences. These constraints reduce the intersymbol interference in
magnetic recording and provide an adequate rate of transition for accurate clocking. Signal power at low frequencies is limited by means
of a constraint on a parameter that corresponds to the maximum imbalance in the number of positive and negative pulses of the wave-
form. This constraint on the maximum accumulated dc charge also eliminates the zero-frequency component.

Zero modulation is one such code that is especially suitable for magnetic recording channels. The encoding and decoding algorithm is
presented. A one-to-one correspondence between binary data and constrained sequences is established by creating data states that are
isomorphic to the charge states having the same growth rate. Sequences with other values of run-length and charge constraint are ex-

amined as candidates for other codes with zero dc component.

Introduction

In magnetic recording, digital information is recorded
as magnetic-flux transitions in predetermined, fixed-
length partitions of the magnetic media. Unlike the binary
convention of “up” and “down” states in data trans-
mission, the intervals in which the magnetic recording
transitions occur are assigned the value ‘“‘one” and those
with no transition are assigned the value ‘“‘zero.” The
readback process consists in detecting these flux transi-
tions with a transducer positioned over these intervals
in a fixed time sequence, thus producing a read wave-
form.

If clocking data are derived from the read waveform,
the transitions must occur frequently enough to provide
synchronization pulses for the free-running clock. On
the other hand, consecutive transitions must be far
enough apart to limit the interference to an acceptable
level for reliable detection. For this purpose we encode
binary data into coded binary sequences that correspond
to waveforms in which the maximum and minimum dis-
tances between consecutive transitions are constrained
by prescribed coding rules. Phase encoding (PE), mod-
ified frequency modulation (MFM), synchronized NRZI
(NRZI-S), and run-length-coded NRZI (RLC-NRZI)
are some of the encoding methods used in digital mag-
netic recording. Examples of their use are PE in IBM
tape machines, MFM in the IBM 3330 disk file, NRZI-S
in the IBM 1311 and 1405 disk files, and RLC-NRZI in
the latest models of IBM 3420 tape machines.

Another reason for encoding the binary data into
binary sequences is the shaping of the frequency spec-
trum of the signal waveform. The maximum and mini-
mum distances between consecutive transitions cor-

respond to the minimum and maximum pulse rates in the
waveform, respectively. This range of pulse rate in the
highly nonlinear read-write process of magnetic record-
ing causes irregular read signal amplitudes and results
in phase-shift errors. For any given data density it is
desired to constrain this range of pulse rate to be as
narrow and as low as possible. This, however, is not the
only consideration if the channel uses ac coupling net-
works to process read-write signals. For example, in
the IBM 3850 Mass Storage System, the read-write
function is performed by a transformer-coupled rotary
head, in which case signal waveforms should not have a
dc component. A dc component in the waveform results
in a nonzero average value of the amplitude and causes
charge accumulation at any ac coupling element in the
channel. A constraint on the maximum accumulated
charge is an effective means of reducing the signal dis-
tortion caused by the ac coupling networks. The result
is a reduction of errors in signal detection. In a wave-
form corresponding to a binary coded sequence, the
accumulated charge increases by one unit for a posi-
tive pulse and decreases by one unit for a negative
pulse from digit to digit in the waveform. Thus, the ac-
cumulated charge at any digit in a binary coded sequence
is the difference between the numbers of positive and
negative pulses in the corresponding waveform up to that
digit.

A data encoding method, then, is in general a one-to-
one mapping of binary data into constrained binary se-
quences. Such coded sequences may be denoted by the
design parameters (d, k; c¢) corresponding to the follow-
ing three constraints:
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1. The shortest run-length (sequence) of zeros between
any two consecutive ones in the coded sequence is d
digits. This determines the minimum distance between
the recorded transitions and hence the highest transi-
tion density.

2. The longest run-length (sequence) of zeros between
any two ones in the coded sequence is k digits. This
determines the maximum distance between the re-
corded transitions and hence the lowest transition
density.

3. The accumulated charge at any digit position in the
sequence is bounded by ¢ units.

If, on the average, x data bits require y binary digits,
where x = y, in a coded sequence, the ratio of m/n is
called the rate of the code. The highest recorded density
of magnetic transitions for given data density is de-
termined by x/y and the minimum run-length constraint
d. This density ratio DR is a measure of recording ef-
ficiency and is given by

data density (x)

= ={=)(d+1).
highest recorded density \y d+1)

For given data rate and density, the lower rate code re-
quires faster clock and more complex detection circuits.
On the other hand, a higher density ratio DR is desired
to limit the intersymbol interference to a reasonable de-
gree. Codes with rates ranging from 0.5 to one are used
in magnetic recording. Codes with much lower rates than
0.5 are usually impractical.

In this paper we present a theory and the implementa-
tion of such an encoding method. In particular, we deal
with 0.5-rate run-length-limited codes that produce wave-
forms with no zero-frequency (dc) component. A specif-
ic code is presented called zero modulation (ZM ), which
is designed with parameters d= 1,k =3, and ¢=3 and is
the first binary code in which the waveform possesses
zero dc component and yet has a density ratio close to
one. Heretofore, phase encoding was the only known
binary code with the zero-dc property. However, it is
characterized by a very low recording efficiency (DR =
0.5). Delay modulation [1] or modified frequency
modulation (MFM) provided high recording efficiency
(DR = 1) but the accumulated charge in the waveform
often increased indefinitely. Zero modulation combines
the desirable properties of phase encoding and delay
modulation. Franaszek [2] has reported many (d, k) run-
length-constrained binary codes. Other related results
are reported by Tang [3], Gabor [4], and Frieman and
Wyner [5]. Some dc-free ternary codes were reported by
Franaszek [6], who used a parameter called the digital
sum variation. This parameter is related to our accumu-
lated charge in binary codes. Croisier [7] reported com-
pilation of many results on pseudoternary codes with
zero dc component. These nonbinary codes are widely

DR

JuLy 1975

‘used in data transmission but are not as suitable for mag-

netic recording because of the highly nonlinear charac-
teristics of the magnetic recording process. Zero modula-
tion was designed for, and is used in, magnetic recording.
It is however, equally suitable for transmission of binary
data over other types of channels.

The second section presents the ZM algorithm and in-
cludes discussion of the waveform parameters and
practical implementation with limited memory. The
third section provides the proof for the algorithm us-
ing a method called “isomorphism of state diagrams.”
The waveform sequences are analyzed by means of
state diagrams. The growth rate of constrained se-
quences is compared with that of binary data sequences.
Isomorphic state diagrams are created for data and con-
strained sequences which then provide the one-to-one
mapping between them. In the fourth section the con-
straints are exploited to provide detection of errors in
zero modulation sequences at the receiver. A subse-
quent section provides a useful result regarding syn-
chronization sequences for clocking of zero modulation
patterns.

The appendix gives a mathematical derivation for
the growth rate of the constrained sequences. It is shown
that the growth rate of ZM sequences is two, the same as
that of binary sequences. The appendix also includes
some results regarding other 0.5-rate charge-constrained
codes with higher density ratios and different run-
length-limit parameters.

Zero-modulation algorithm

In this section we present the zero-modulation algorithm
for mapping binary data sequences into constrained se-
quences with parameters d= 1, k = 3, and ¢ = =3. This
algorithm was the outcome of a multifaceted approach
involving most desirable parameters for magnetic re-
cording and the structure of constrained binary se-
quences. The initial approach was to look for “good”
block codes of fixed-length constrained sequences by
means of a computer search and then generate a one-to-
one mapping using minimum logic. The results showed a
rather surprising structure of constrained binary se-
quences which finally led to the generalized mapping
with a convolutional algorithm which is presented here.
The background results on block codes are omitted for
the sake of brevity. The coded sequences generated by
the ZM algorithm with limited memory, discussed in the
latter part of this section, turned out to be the same as
those obtained in the earlier results using block codes.
The algorithm appears in this section without a formal
proof of uniqueness of the mapping. The proof is de-
ferred to the third section, entitled ‘‘State diagrams,”
where the data sequences and constrained sequences are
represented by state diagrams and the proof of unique-
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Data 01001111010111111011100110
P(4) 01000101010010101010100010
P(B) 1701111100111 1111000010001

ZM pattern 0001001010001000100100100010001000100101010010010100

Waveform ||||||| || |||||I|

+3 —
Charge 0 :AAVAVAVAWAVAVZ

-3

(a)

ness is obtained from the isomorphism of these state
diagrams.

The algorithm maps every data bit into two binary
digits in a sequential manner. The resulting binary se-
quence is then converted into a waveform using NRZI
rules, i.e., a transition for one and no transition for zero
in the binary sequence. The mapping of the data bit into
a two-digit ZM pattern is a nonlinear function of the pre-
ceding and following data sequences and requires an
encoder with memory. In a practical implementation, the
amount of memory can be limited to f bits, where f'is any
positive integer, by adding a small amount of redundancy.
This procedure is described later. First, the ZM algo-
rithm is given in its functional form which, in general, re-
quires unlimited memory.

» ZM algorithm with unlimited memory

Let d, denote the data bit to be encoded in the sequential
encoding process, d_, the preceding data bit, and d,, the
following data bit. Similarly, let a,b, denote the ZM
digits corresponding to the data bit d, with a_,b_, de-
noting the ZM digits corresponding to the data bit d_,,
and a,,b,, denoting the ZM digits corresponding to the
data bit d,,. The algorithm is given in terms of these
digits and two parity functions requiring look-ahead and
look-back. These functions are denoted by P(A4) and
P(B), signifying look-ahead (4) and look-back (B),
respectively. The two functions are defined as follows.

P(A): Look-ahead, one-sequence-parity is the modulo-2
count of ones in the binary sequence from d, to the
next zero in the following data. This is the parity of the
sequence of ones looking ahead from d, (including d,).
For example, in the data sequence 01011110, P(A) is
1 at the second, fifth, and seventh digits from the left;
P(4)is 0if d;is 0.

P(B): Look-back zero-parity is the accumulated modulo-2
count of zeros from the start of the data up to and in-

Data with P bits

at intervals of
eight bits

P(A4)
P(B)
ZM pattern

ZM waveform
+3

Charge 0
-3

P bit

v
010011110
114001014

110111110
00100101000100010

P bit

$
010111111
1186604080680
110000000

00100010101010101

1011 1--
g0101--
0111
100010101--~~

1-=

N\

4

(b)
Figure 1 Relations among parameters of the data sequence and the corresponding ZM waveform. (a) Example of ZM waveform for
the case of unlimited memory. (b) ZM waveform for the case of limited memory.

cluding d,. For example, in the data sequence 01011110,
P(B) is one at the first, second, and eighth digits from

the left.

The encoding algorithm may be described as follows:

d, —> agb, Condition

0 — 10 d,=0

0 —10 d_j=1landa_b_, =00

0 — 00 d_ =1landa_b_, # 00

1 - 10 d_ =0and P(4)=0and P(B) =1
1 - 10 d_,=1landa_b_ =00

1 - 00 d,=1landa_b_,=10

1 =01 otherwise.

The decoding algorithm may be described as follows:

azb, — d, Condition
10 —1 a,b, =00
10 -0 ab, # 00
00 —1 a_b_ =10
00 -0 a_b_, # 10
01 -1 none.

Alternatively, the encoding rule for the mapping of
data into a ZM sequence can be given by the binary logic

functions

a,=d,d ,+dd  P(4) P(B)+d_a_pb

-1

b,=d,[P(4)d_ ,+P(B)+b_].

(1)
(2)

The decoding rule for mapping a ZM sequence into
data can be given by the binary logic function

d,=b,+ agab, +aa_b_,.

(3)
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It is convenient to use the following boundary con-
ditions in the encoding and decoding process: d_, = 1
and P(B)_, = 0 are assumed at the first data bit, and d,
= ( at the last data bit.

The example, Fig. 1(a), illustrates the relationships
among the various parameters of the data sequence and
the corresponding ZM waveforms. Note that the max-
imum pulse width in terms of data bit width is two units
and the minimum pulse width is one unit. Some pulses
are 1.5 units wide.

The ZM waveform looks similar to the well known
MFM, or delay modulation, waveform [1]. The impor-
tant difference, however, is that the MFM waveform
contains the dc component, and the accumulated charge
often increases indefinitely. The maximum accumulated
charge in the ZM waveform is =3 units in terms of the
coded digit intervals.

The functions P(4) and P(B) represent information
from the following and previous data sequences, respec-
tively; P(B) is the accumulated parity of the number of
zeros and hence can be derived simply by updating the
content of a one-bit storage as the data bits are encoded;
P(A), however, depends on the run length of ones in the
foliowing data sequence. Thus, the memory requirement
for computation of P(A4) is, in general, unlimited. The
section following describes the ZM algorithm in which
the memory requirement is limited to f bits, where f is
any positive integer.

o ZM algorithm with limited memory

Consider the functions in Egs. (1) and (2) when P(B),
the accumulated look-back zero-parity value, is zero.
These functions can be written as

+d_ja_b

o1 IS L L]

}if P(B) =0.

The mapping is thus independent of the look-ahead data
sequence when the look-back zero-parity is even.

Now consider a continuous data stream in which a
digit P is inserted at fixed intervals of f bits. This P-bit in
the f + 1 position in the modified data stream sets P(B)
equal to zero at the end of each interval section of f + 1
bits. This implies that the look-ahead parity P(A4) of the
sequence of ones at the end and beginning of any section
has no effect on the ZM mapping in the modified data
sequence. [See Fig. 1(b): P(A4) is denoted by &, which
is a DON'T CARE value when P(B) = 0.] The only se-
quences of ones affecting the mapping, then, are those
which exist between two zeros in the same section. The
longest such one-sequence has length f— 1 digits, with a
zero at the beginning and a zero at the end of an f + 1
digit section. Thus, the memory requirement for computa-
tion of P(A) is f — 1 bits. It will be observed later that
P(B) = 0 corresponds to a zero value of accumulated
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Table 1: Definition of accumulated charge

Pattern and waveform Value of s
0 1 0
I

0 1.0 0 2

S

0 1 0 0 01 -2

charge in the coded waveform. Consequently, at the end

of every section the accumulated charge is zero. The ZM

algorithm with limited memory then has the following two

important modifications:

1. The data sequence is modified by inserting an extra
P-bit at the end of every section of fdata bits, where P
is given by the value of P(B) at position f.

2. The computation of the function P(A4) at any data bit
is truncated beyond the following f— 1 data bits.

Implementation of the ZM algorithm with eight bits of
memory is shown in the foliowing example. To limit the
memory, one bit of redundancy is added for every f bits
of data. The percentage redundancy decreases with f and,
hence, the memory size increases. )

The look-ahead one-sequence parity function P(A) is
given by a binary logic function of the data stored in f
bits of memory,

P(4)=dd, +ddd, +dddd, +

04243
ot dydyd, dt—4‘_1t—3 +dydydydy_yd,

where r =fif f is even and t =f— 1 if f is odd. The look-
back zero-parity P(B) is given by the function P(B) =
P(B)_,vd, where P(B)_, is the value of P(B) at the
previous data bit and V represents the binary EXCLUSIVE
oR function. Note that the encoding process is delayed
by f bit-periods in a continuous stream of data. The de-
coding process is delayed by only a one bit-period. Thus,
the decoding errors in ZM do not propagate.

State diagrams

e State diagram of constrained sequences

The accumulated charge in a binary sequence is defined
in the following manner. Every digit in the coded se-
quence corresponds to one of the two signal levels in the
waveform, starting at the center of the digit position and
ending at the center of the next digit position. Let n, and
n, denote the numbers of digits corresponding to the two
levels, respectively, in a waveform for a sequence of
n, + n, digit lengths. Then, the accumulated charge s at
the end of this waveform is given by s =+(n, — n,).
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Table 2 Possible state transitions.

Transition symbol
(catenation)

New state values

Conditions for transition

k

-1

Lt1=

+1=¢,
+Sdr

Table 3 State transitions, for 0.5-rate codes.

Transition symbol

Present state values

Conditions for transition

aObD SO r(]

00 So=8_,+2 r,=r_,+2 s +t2=cr +2=k
01 S,="5_, ro=0 d=r_+1=k
10 So="5_,+2 r,=1 2-—s15c,d<r1

11 5, =8 r,=0 =

e

o

Table 4 State identification for all possible values of s and r in
a ZM state diagram.

s/r 0 1 2 3
+2 X A A’ D

0 Y B C N(3)
-2 4 N(1) N(2) N(4)

Only the absolute value of s is important, because the
sign of s changes with the choice of starting the wave-
form with a positive or a negative level. For convenience
in iterative computation of s from digit to digit, the con-
vention followed is that s is the value of accumulated
charge associated with the waveform in which the last
level is a positive level. The waveform patterns in Table 1
illustrate this convention.

It is easily seen that the value of s in any pattern can
be computed iteratively from digit to digit. With the
above convention, the “present” value s, of s depends
only on the “previous” value of s_,, and the “‘present”

Figure 2 Example showing how, in a binary sequence, the
state at every symbol can be identified by two parameters: the
accumulated charge s and the run-length r.

Digit
pattern 0 0 0 1 0 0 1 01 0 00 100O0CT1O0O0°1

Waveform —| [ ] j—_l_l—
/\/\

Charge 0—

v v
3
Valueofs 1 2 3-2-1 01 2-1012-101 2-1010
Isk=Icharge|
Valueofr 1 2 3 01 2010123 01230120

digit being catenated to the pattern. For example, catena-
tion of a one or a zero to a pattern causes the following
changes in the charge values:

+1,
—1).

Catenation of 0 > 5, =5 _,

Catenation of 1 — s, =—(s_,

These catenations can be considered as state transi-
tions in descriptions of the constrained sequences by
means of state diagrams. The states can be characterized
by two parameters, namely, the accumulated charge s
and the run-length r of zeros at the end of sequence, using
the identifying pair (s; r). The constraints on s and r are
|s| = c and d = r = k, respectively, where +c represents
the value of maximum accumulated charge, and d and &
denote the minimum and maximum run-lengths of zeros.
Table 2 gives the possible state transitions. In any binary
sequence, the state at every symbol can be identified as
shown in the example, Fig. 2. Alternatively, the run-
length sequences can be represented as a series of state
transitions on a state diagram.

In general, the encoding of binary data into constrained
sequences requires n coded digits for every x data bits,
where x < y. It is convenient to use symbols of at least y
digits in dealing with such x/y-rate codes. In particular,
for a 0.5-rate code, two-digit symbols denoted by agb,
are used as state transitions. Zero modulation is a 0.5-
rate code.

Table 3 represents the state transitions for 0.5-rate
codes. The new state values (s,, r,) are given in terms of
the previous state values (s_,, r_,), using concatenations
of two digits a.b, at a time. This table is constructed using
the transition information in Table 2.

The state diagram can now be constructed for ZM pat-
terns. The (d, k; ¢) constraints in zero modulation are
(1, 3;3). It is clear from Table 3 that the charge values
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Table 5 All possible state transitions for ZM sequences, according to Table 3 rules. (Note: § indicates violation of the charge con-

straint; R indicates violation of the run-length constraint.)

Previous state:

New state: (s,, r,) for three conditions

(s_p 7, Name agh, =01 agh, =10 agph, =00
(2,0) X (-2,0) Z R S
(0,0) Y 0,00 Y R (2,2) A’

(—2,0) Z (2,0) X S R 0,2) C
2,1 A (=2,0) 2 (0,1) B S
0, 1) B 0,0) Y 2,1) A 2,3) D

(2,1 N(1) (2,0) X S (0, 3) N(3)
(2,2) A’ (—2,0) 2 (0,1) B S R
(0,2) C (0,00 Y 2,1 A R

(-2,2) N(2) (2,00 X s R
(2,3) R (0,1) B S R
(0, 3) N(3) R (2,1) A R

(—2,3) N(4) R S R

must be an even number at the end of each pair ab, in
the coded pattern, with the practical assumption that s is
zero at the starting point. Thus, the only possible values
of s in ZM state diagram are 0, +2, and —2. Table 4 lists
all possible states with the above constraints. It is seen
later that the states N(1), N(2), N(3), and N(4) of
Table 4 do not exist and that the states A and A’ can be
merged together. Table 5 lists all possible state transi-
tions according to the rules of Table 3, using transition
symbol ayb,.

None of the states maps into the states N(1), N(2),
and N (4). Also, only N(1) maps into N(3). Since N (1)
cannot be the initial state, it is obvious that states N(1),
N(2),N(3), and N (4) are nonexistent. The states A and
A’ can be combined. This is true because both map into
the same states, namely Z and B, when g b, =01 and 10,
respectively, and 00 is an inadmissible transition from
both. The resulting state diagram is shown in Fig. 3.
Inadmissible states and transitions are not shown. The
state A’ is merged into A.

In the Appendix we define the growth rate of con-
strained sequences and show how to determine the
growth rate of the (1, 3; £3) sequences from the eigen-
values of the state transition matrix. A necessary condi-
tion for a one-to-one mapping is that the growth rate be
at least two, i.e., the same as that of the binary data se-
quences. If the growth rate is higher than two, then some
states or state transitions must be eliminated or modified
to reject some of the sequences. If the growth rate is less
than two, then, of course, a one-to-one mapping is not
possible unless some of the data sequences are rejected.
It is shown that the (1, 3; =3) constrained sequences
possess a growth rate of exactly two (Appendix) with
two-digit symbol catenations. This satisfies the necessary
condition. The study of eigenvalues and eigenvectors of
the state transition matrix shows much of the information
leading to the structure of the mappings.
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Table 6 Identification of states in the data sequences in terms
of four parameters.

State d, P(B) P(B1) P(A)
o 0 1 (1] [1]
B 0 0 ] )
Y 1 0 0 @
W, 1 1 0 0
#, 1 1 0 1
1, 1 1 1 I
Moy 1 1 1 0

The fact that the growth rate turns out to be exactly two
is an intriguing mathematical coincidence. Or is it? Could
it not be the manifestation of still unknown but more
general structural properties of constrained sequences
and related band-limited signaling waveforms? This
question is open for future investigation.

Figure 3 The ZM state diagram (inadmissible states and
transitions are not shown).

X 4 C
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Figure 4 State diagram constructed for data sequences simi-
lar to that for ZM sequences (the state transitions are listed
in Table 7).

a,b,#00

Figure 5§ Modified ZM state diagram, in which states E and
F are created by splitting state B.

s State diagram for data sequences

Next to be presented is a sufficient condition for a one-to-
one correspondence between ZM sequences and data
sequences. The ZM state diagram of Fig. 1 shows the
difficulty of encoding binary data into sequences with the
run-length and charge constraints. There are two eXits
from each of the states A, B, C, Y, and Z, and thus the
two distinct transitions can be used to encode a binary
one and a binary zero.

By contrast, states D and X each have only a single
exit, and only one binary number can be represented
when the encoding operation is in these states. For this
purpose, state diagrams are constructed for data se-

quences that are similar to those for the ZM sequences.
Later, the ZM state diagram is modified by splitting and
combining some of the states to make it fully isomorphic
to the data state diagram, thus establishing a one-to-one
correspondence between the transitions.

Let d, denote the present data bit and let d_, denote the
previous data bit in a data sequence; P(A4) is the look-
ahead one-sequence-parity function and P(B) is the
look-back zero-parity function, as defined in the previous
section. The function P(B 1), the look-back one-sequence
parity, is the parity of a sequence of ones looking back
from, and including d,; P(B1) is O if d, is 0 and can be
interatively computed as P(B1) = d, P(B1)_,, where
P(B1)_, is the value of P(B1) at the previous data bit. As
an example, in the data sequence 01011110, P(B1) is
one at the second, fourth, and sixth digits from the left.
The states in the data sequence are characterized by the
values of the functions P(4), P(B), P(B1), and the end-
ing bit d,. Table 6 identifies all the states in terms of these
parameters.

In any data sequence the state at every bit position can
be identified as shown in the following example.

Example States in data sequence

Data sequence 01 001 1 1 1 010
P(B) 11011 1110601
P(B1) 01 001 010010
P(4) 01 000101010
State o Boap, ¥y ou, Y, By a

Any data sequence can thus be traced on a state dia-
gram as transitions on a series of states. Note that when
d,= 1 the state transitions are dependent on the value of
P(A). All state transitions are listed in Table 7 and are
shown on the state diagram of Fig. 4.

e Isomorphism of state diagrams

It is obvious that, to establish a one-to-one correspon-
dence, the states B and C in the ZM state diagram must
be modified in accordance with the states u, and 8 in the
state diagram for data sequences. First, B is split into
two states E and F such that B mapping into D is called
E and B mapping into A or Y is called F. This split can
be identified by the next pattern, a,b, = 00 or a,b, # 00.
In particular, the transition to the state E assumed that
a,b, was known and that a,b, = 00. The modified state
diagram is given in Fig. 5. States C and F can be com-
bined, since the outgoing transitions are identical. The
resultant state diagram is given in Fig. 6.

The following assertions can now be made:

1. There is a one-to-one correspondence of the states
(including all possible transitions) between the state
diagrams of Figs. 4 and 6. The states «, 8, v, &;» ¥,,
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4, and ¥, in Fig. 4 are isomorphic to the states A, G,
Y, Z, X, E, and D, respectively, in Fig. 6.

2. Every data sequence of length » traces a distinct path,
given by a series of n states, on the state diagram of
Fig. 4 (starting from state y and ending in any state
other than ¢, or u,).

3. Corresponding to each path traced by n-digit data
sequence on state diagram of Fig. 4, there is an iso-
morphic path on the state diagram of Fig. 6 traced
by a 2n-digit binary pattern with ZM constraints.

4. Any two distinct paths of given length on Fig. 4 repre-
sent two distinct data sequences (with a restriction
that a path starts from state y and does not end in
state y, or u,).

5. Any two paths of given length in Fig. 6 represent two
distinct ZM sequences (with the restriction that a
path starts from state Y and does not end in state
XorE).

At this time the theorem can be stated for the unique-
ness of the mapping given by the ZM algorithm.

Theorem Every data sequence of length n can be uniquely
represented by a ZM pattern of length 2n digits, as given
by the ZM encoding algorithm.

It can be easily verified that the ZM encoding and de-
coding algorithms preserve the isomorphism of the state
diagrams of Figs. 4 and 6. The proof of uniqueness of the
mappings then follows from the above five assertions.

Note that P(B) represents only one bit of information
from the past and that P(A4) represents only one bit of
information from the future in the data sequence. Al-
though computation of P(4) requires an infinite look-
ahead in the data sequence, this look-ahead can be re-
duced to any finite number by simply introducing one-bit
redundancy. This was shown in the second section in the
discussion of the ZM algorithm with limited memory.

Error detection in ZM patterns

The patterns of digits generated by means of the ZM algo-
rithm satisfy various constraints, including the parity bit
on the data in the case of ZM with limited memory. These
constraints provide a powerful check capability for bit-
detection errors and synchronization errors at the re-
ceiver.

ZM patterns must possess run-lengths of one, two, or
three zeros between two ones in the ZM pattern. Two
consecutive ones or four or more consecutive zeros
in the ZM pattern indicate a “pick up” or a **drop out”
error, respectively, in the corresponding waveform. Let
agb, denote the pair of ZM digits to be decoded in the
sequential decoding process; a_,b_, denote the preceding
pair of ZM digits; and a,b, denote the following pair of
ZM digits. The error functions for the minimum run-
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10
a;b;#00

Figure 6 Isomorphic ZM state diagram, in which states C
and F of Figure S are combined into the new state G.

Table 7 All state transitions in the data sequences.

Present state when
Previous state d;=0 d,=1,P(4)=0 d,=1,P(4)=1

a B My My
B a Y Y
Y a 04 Y
¥ My
¥, B My

My B ¥,

My ¥,

length constraint and the maximum run length con-
straint are given by E, and E, as

E =ap,+ by,

E,=b_jab,a, + aba,b,.

The violation of charge constraint can be checked by
keeping a continuous count of the accumulated charge,
which must be within =3 units. A simple and convenient
check of this constraint, however, can be obtained in
terms of the functions P(B) and P(B1). Table 5 shows
that the charge constraint violation can occur without a
violation in the run-length constraint. This happens if and
only if the sequence received at d is in state A or X, with

the next transition a,b, = 00. Consider these two transi-
tions separately:

In state A at d; with a,b, = 00 The pattern in question
here is ab,a,b, = 1000. The decoder operates correctly
up to d_, with P(B) = 0 at d_,, indicating state 8 on the
data state diagram. The pattern ab,a,b, = 1000 is de-
coded as d,d, = 11, leaving P(B) = 0 at d,. This indi-
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cates an error, since 1000 occurs only when P(B) =1 for
state transitions A — E — D. The error function cor-
responding to this case is thus given by

E,= a,b,a,b,P(B).

In state X at d, with a b, = 00 The pattern in question
here is ab,a,b, = 0100. The decoder correctly decodes
a,b, = 01 into d,= 1, with P(B) = 1 and P(B,) =0, cor-
responding to the state ¢, on the data state diagram. The
pattern a,b, = 00, however, indicates an error, since
P(B) =1 and P(B1) =0 occur only on states X and D
and a,b, cannot be 00 from those states. Thus, the error
function for this case is

E,= a,b,P(B)P(BT).

This exhausts all possible violations of the charge
constraint and run-length constraints.

Next is a simple but effective check on synchroniza-
tion errors as well as random errors. The value of P(B)
is zero at every memory boundary of f+ 1 data bits. The
charge value is also zero at the memory boundary. These
two checks are equivalent since they check for the iso-
morphic states 8 and y on the data state diagram or G and
Y on the ZM state diagram, respectively. The check is
then given by the function

E,= P(B)(count=f+ 1).

The counter is set to zero at the beginning of every
section.

The complete check function E is obtained by combin-
ing all error functions as

E=E +E,+E,+E,+E,

Synchronization signal for ZM waveforms
The zero-modulated waveform at the receiver is de-
coded into a data sequence with the help of a clock,
which is usually derived from the waveform. A synchro-
nizing signal of sufficient length and recognizable ending
is required for the purpose of starting and synchronizing
the clock and marking the beginning of data. A synchro-
nizing signal may also be inserted at predetermined in-
tervals in the waveform (preferably at ZM memory
boundaries) to provide “‘resyncability” in case of tem-
porary loss of synchronization.

Following are some specifications for a synchroniza-
tion signal in a ZM waveform.

1. It must be distinct such that it may not be confused
with the normal data waveform in its original or
shifted position.

2. It must satisfy the ZM constraints of maximum and
minimum pulse widths.

3. Accumulated charge at the end must be zero (zero
dc) although the maximum accumulated charge at

any point may be more than three, say four, five, or
six units. (Note that this specification can even be
waived if the synchronization signal is short and in-
frequent.)

4. The basic synchronization signal should be reasonably
short and the endings compatible with the ZM al-
gorithm for insertion at the memory boundary with-
out modification.

These specifications can be easily satisfied if a known
sequence of binary data is inadmissible. This, however,
is impossible for serial data. Alternatively, one can
choose from the inadmissible sequences in ZM-coded
patterns. In that case, the ZM error indicator must be
modified to recognize the chosen inadmissible sequence
as a synchronization pattern and to exclude the occur-
rence of that exact pattern from indicating an error in
the data.

Theoremm Among the sequences that satisfy the ZM
run-length constraints, the sequence

w=00101000101000
and its reciprocal
w¥=00010100010100

are the shortest sequences that do not occur in any ZM
pattern.

Proof Consider the sequence w in relation with the clock
such that it forms seven pairs in the following manner:

1 2 3 4 5 6 7

Pattern =00 10 10 00 10 10 00
ab ab ab ab ab ab ab

Decoded data= 0 0 1 1 0 1 1.

The charge constraint is violated at either position 3
or position 6. This can be checked by the error function
E, of the previous section. Suppose it is not violated at
position 3, i.e., P(B) = 1 at position 3. This means that
P(B) = 0 at position 6 and, hence, is a violation accord-
ing to function E,.

Now consider the sequence w in a shifted position in
relation with the clock in the following manner:

1 2 3 4 5 6 7

=0 01 01 00 01 01 00 O
b ab ab ab ab ab ab a

Pattern

Decoded data =0 | 1 0 1 1 0

Again, the charge constraint is violated at position 3
or 6. This can be checked by the error function E, of
the previous section. Suppose it is not violated at posi-
tion 3. Then P(B) = 1, since a,b, = 00 and P(B1) =0
at position 3. However, this implies that P(B) = 0 at
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position 6 and, hence, is a violation according to function
E,, since a,b, = 00 and P(B1) = 0 at position 6.

This proves that the sequence w cannot occur in any
ZM pattern. The proof for w* follows in the same man-
ner. That w and w* are the shortest such sequences can
be proved by lengthy analytic arguments involving E,
and E,. Alternatively, an exhaustive check can be made
on all 13-digit sequences that satisfy ZM run-length con-
straints. They are all valid ZM patterns.

Thus, any pattern containing the sequence w (or w*)
can be used as a synchronizing pattern. Following are
two examples:

b w [
W,=010001001010001010001000101001,

|
W,=010001010001 0 10001,

w¥ ——s|

Note that W, and W, both contain w or w*. However,
specification 3 is satisfied by W, but not by W,. The end-
ings on both sides of W, and W, are 01 and can be padded
by any number of 01 digit pairs if desired for clocking.
These endings also allow placement of a synchronization
signal at the ZM memory boundary without modification.

In actual application, the synchronization pattern is
placed at predetermined intervals at ZM memory bound-
aries. In case of loss of synchronization, the clock gen-
erated by means of the read waveform as soon as the
defect (or any other cause) has passed. This clock
enables the signal detector to produce the binary pattern,
i.e., the ZM pattern. The decoding of the pattern how-
ever, cannot be started until the synchronization pattern
arrives and establishes the ZM pair relation with respect
to the clock by means of the sequence w or w*. If the
clock is found to be out of synchronization (which is
equivalent to a one digit shift), the complement of the
clock may be used for decoding. The start of the data,
then, occurs at the end of the synchronization signal
from which, once again, the ZM pattern can be decoded
into “good” data.

Directions for further work

The theory and results reported in the Appendix provide
a formalized method of investigation for a more gen-
eralized theory of constrained sequences and waveform
design. The method is applicable to any rate codes and
to nonbinary codes as well. Here we summarize the main
points of this theory.

1. Constrained sequences and data sequences of in-
definite length can be represented by state diagrams
having a finite number of states.

2. Isomorphism of state diagrams is an effective method
of establishing uniqueness of mappings, particularly
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in case of nonlinear and/or convolutional codes in
which the theory of linear algebra cannot be used.

3. The equality of growth rates of state transition ma-
trices is a necessary condition for isomorphism.

4. The eigenvalues and, in particular, the spectral radius
[8] of the state-transition matrix determines its
growth rate.

5. The theory of non-negative matrices [9] is applicable
in a constructive manner in modifying the state dia-
gram to alter its growth rate by small amounts in the
desired direction.

6. The state diagrams can be modified for equality of
growth rates and isomorphism by eliminating, merging,
or conditional splitting of various states or state-
transitions and adjusting for the relative growth at
each state by means of look-ahead or look-back
conditions.

7. The relation between convolutional coding and block
coding (as is evident in the case of ZM with limited
memory) signifies an interesting inherent structure
of constrained sequences.

In the Appendix we give growth rates of constrained
sequences with other run-length constraints, namely
d=2 and k=7 or k=28. The codes with these parameters
are potentially “good” codes.

Appendix: Growth rate of constrained sequences

e ZM sequences

Consider the growth, i.e., the number of constrained se-
quences as a function of their length, starting from a given
initial state. Using the state diagram of Fig. 3, determine
the sequences starting from the state Y after 1, 2, 3, etc.
catenations of two-digit symbols, as shown in Table A 1.
This table shows that the total number of sequences ap-
proximately doubles at every step as the length increases.
This process is now formalized mathematically.

Let V, denote a column vector in which the elements
V,(j) denote the number of sequences in the jth state
after ¢ catenations of two-digit symbols from initial state.
The vector V,,, can be obtained from V, as
Vil =3 a,; V,(),
where a;; denotes the number of distinct transitions from
state j to state i. The matrix 4 of elements q,; is termed
the transition matrix. Then V,,, = [4]V, Using this
equation iteratively, any state vector V, can be computed
as V, = [A]"VO, where [4]' represents the ith power of
matrix A4, and ¥, is a vector with zeros in all positions
except a single one in the position corresponding to the
starting state. The total number of sequences of n two-
digit symbols is then

N=3 V).
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The growth of N with » may be examined by studying
the eigenvalues and eigenvectors of the matrix 4. Con-
sider the example of the ZM state diagram of Fig. 3.
The states are arbitrarily ordered X, Y, Z,A,B,C,and D
from 1 to 7. Then, matrix 4 can be written as

001000 0]
0100110
1001000
0100110
0001001
0010000
(0000100

The eigenvalues of 4 can be obtained by solving the
characteristic equation |4 — Af| = 0. The vector ¥, can
be given as a linear combination of the basis vectors
forming eigenspaces [10] corresponding to the eigen-
values. Table A2 gives these basis vectors corresponding
to each eigenvalue and their relationship with 4. If Y
is the initial state, the initial state vector V' is [0, 1, 0, 0,
0, 0, 0]", which can be written in terms of the basis
vectors of Table A2 as

V,=1¢, — 4, + 3, —4y,=[0 1000 0 0]".

It is now easy to observe the growth of the vector V.
We have A€, = 2¢, Af, =— £, and A¢, =0, Ay, = &,
Thus,

V =AV,=2(75¢)) + 3, + 0 — 3¢,
and
V,=A"V,=2"({5¢,) — (—1)"4¢,, forn=2.

The elements of the vector V, represent the number of
sequences of n two-digit symbols in each state, as shown
in Table A1l. Using £, and £, of Table A2, we find

v,=[P,2"% Q,2"" Q,P, P,

where
P=@3) [2"" = (D"
and
o=@ 2"+ D"

The total number of sequences N of n two-digit sym-
bols is then

N=23 V()= '+ @) 2" = (-D".

The value of N depends on the starting state. Table A3
lists values of N corresponding to each state as a starting
state.

The growth rate GR of the constrained sequences may
be defined as ‘

GR = lim N"™.

The growth rate of ZM sequences, then, is equal to two.
The logarithm of the growth rate is similar to the channel
capacity [11]. In the limit, the largest positive eigen-
value of A dominates in determining the value of N/™;
and, in general, the growth rate is equal to this eigenvalue
of the matrix 4. This growth rate is independent of the
starting state, although the total number of sequences
depends on the starting state.

In the next section, we apply some of these ideas to
explore the growth rate of other run-length sequences.

s Other run-length sequences with charge constraint

All elements of the state transition matrix 4 for con-
strained sequences are non-negative, since they represent
the number of transitions from one state to another. Such
non-negative matrices possess a well defined growth rate
given by their spectral radii [9]. The following theorem

Table A1 Number of sequences in various states starting from state Y.
Length in terms
of two-digit symbols X Y Z A B C D Total
(Starting state —) 0 1 0 0 0 0 0
1 0 1 0 1 0 0 0 2
2 0 1 1 1 1 0 0 4
3 1 2 1 2 1 1 1 8+1
4 1 4 3 4 3 1 1 16 + 1
5 3 8 5 8 5 3 3 3243
6 5 16 11 16 11 5 5 64+ 5
7 11 32 21 32 21 11 11 128 + 11
8 21 64 43 64 43 21 21 256 + 21
9 43 128 85 128 85 43 43 512+ 43
10 85 256 171 256 171 85 85 1024 + 85
n P 2" 0 2" Q P P 2"+ P

P=42""= (=1)"] and Q =4[2"" + (-=1)"].
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from the Perron-Frobenius theory [9, 10] of non- Table A2 FEigenvalues and eigenspaces of matrix A.
negative matrices is stated here without proof. These

results are immediately useful in developing new codes Eigenvalues Basis vectors for the Relationship with A
. X i A corresponding eigenspace
and, in general, any nonlinear mappings by means of the
method of isomorphic state diagrams. 2 £=101,3,2,321,17 [4—-211¢=0
; : =[1,0,1,0,—1, 1,—1]" A—1]¢,=0
Theorem 1 Let A be a non-negative square matrix. Then ! &=1[10.1,0,-1,1,~1] . L 1¢,
-1 &,=101,0,—1,0,—1,1,1,] [A+11¢=0

A has a non-negative real eigenvalue equal to its spectral
radius p(A). To p(A) there corresponds a non-negative
eigenvector.

v, =[1,-2,0,-2,3, 1, =217 [4+ Iy, =&,
0 £,=101,00,—-1,0,0, 17 AE,=0

£ =1[1,-1,0,-1,0,1,1,]" A£=0
Theorem 2 Let A and B be two square, non-negative v,=10,-2.1,0,1,0,0] Ay, = ¢,
matrices such that each element of matrix B is smaller
than or equal to the corresponding element of matrix A4.
Then p(B) < p(4).

The growth rate of the charge-constrained sequences Table A3 Value of N from various starting states in ZM se-

is the spectral radius p(A) of the state transition matrix quences.
A. This is the largest real eigenvalue of the matrix 4. A
necessary condition for the existence of the code is that
the growth rate of the sequences is at least that of the
binary data sequences. Thus, p(4) < 2 implies that a X 1o (—1)" (%) +
mapping is not possible. However, p(4) > 2 indicates

Starting state Total number N of sequences of n
two-digit symbols

I

that the state diagram must be modified for a spectral Y 2" — (1%
radius of two before the isomorphic state diagram of 7z 265" 4 (—1)" <6n~ 17) 41
data sequences can be constructed. This may be done by ‘ 36
eliminating some of the transitions or states which de- A 30"+ (—-1)"2
crease the value of some elements of 4. The new transi- B 43" (—1)" (6,, + 7) .
tion matrix, according to Theorem 2, may have a smaller 36 36 4
but not larger spectral radius than that of the original C 182" — (-1
matrix 4.

The spectral radius p(A4) of the transition matrix A D '+ =" (6"3; 1) -1
can be computed using iterative analysis [9]. Many dif-
Table A4 Growth rate of charge-constrained sequences.

Run length Max accumulated States eliminated for Growth

min=d max =k charge ¢ reduction in rate rate

(charge, end-zeros)

1 3 3 2

1 4 3 21112
1 4 3 (2,0) and (2, 4) 2

2 7 7 1.9879
2 7 8 2.0029
2 7 8 0,7) 2.0003
2 7 8 (8,7) 2.0003
2 7 8 (8,7) and (0, 7) 1.9981
2 8 6 1.9820
2 8 7 2.0099
2 8 7 (2, 8) and (6, 1) 2.0037
2 8 7 (2, 8) and (6, 8) 2.0032
2 8 7 (6, 8) and (6, 1) 2.0024
2 8 7 (6,8),(6,1) and (2, 8) 1.9998
2 9 6 1.9903
2 9 7 2.0214
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ferent transition matrices were studied for other possible
0.5-rate codes. Among them, the most interesting and of
immediate importance to magnetic recording are those
with a minimum run-length of two, in particular, the
(2, 7) and (2, 8) run-length-limited sequences. These
codes can provide a higher density ratio of data to mag-
netic transitions.

The (2, 7) run-length sequences with various charge
constraints were examined to determine their growth
rate using two-digit symbols for a rate one-half code.
The (2, 8) and (2, 9) run-length sequences were also
examined in a similar manner. Table A4 presents the
results of this study. The conclusion is that any binary
rate one-half mapping into (2, 7) run-length sequences
will have charge accumulation of at least eight units in
either direction. Similarly, any binary rate one-half
mapping into (2, 8) or (2, 9) run-length sequences will
have charge accumulation of at least seven units in either
direction. Table A4 also shows that the growth rate can
be adjusted by elimination of some of the state transitions
or states. This is a trial-and-error effort to achieve a
growth rate of two, which may require an exhaustive
search. There are other ways to modify the state diagrams
and the state transition matrix, in particular, by means
of conditional splitting and merging of some of the states.
Such investigations may reveal more general structural
properties of constrained sequences and related band-
limited signaling waveforms.
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