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Zero-Modulation  Encoding  in  Magnetic  Recording 

Abstract: This  paper  deals with waveform  encoding methods in which binary data  are mapped into constrained  binary sequences  for 
shaping the  frequency  spectrum of corresponding waveforms. Short  and long pulse  widths in the waveform are limited by constraints 
on  the minimum and maximum  run-lengths  of  zeros in the  coded  sequences.  These  constraints  reduce  the intersymbol interference in 
magnetic  recording and  provide  an  adequate  rate of transition for  accurate clocking. Signal power  at low frequencies is limited by means 
of a constraint  on a parameter  that  corresponds  to  the maximum  imbalance in the  number of positive and negative pulses of the wave- 
form. This  constraint on the maximum accumulated  dc  charge  also eliminates the zero-frequency component. 

Zero modulation is one  such  code  that is especially suitable  for magnetic  recording channels.  The encoding and decoding  algorithm is 
presented, A one-to-one correspondence between  binary data  and  constrained  sequences is established by creating data  states  that  are 
isomorphic to  the  charge  states having the  same  growth rate. Sequences with other values of run-length and  charge  constraint  are  ex- 
amined as candidates  for  other  codes with zero dc component. 

Introduction 
In magnetic  recording, digital information is recorded 
as magnetic-flux transitions in predetermined, fixed- 
length partitions of the magnetic media. Unlike  the binary 
convention of “up”  and  “down”  states in data  trans- 
mission, the  intervals in which the magnetic  recording 
transitions  occur  are assigned the value “one”  and  those 
with no transition are assigned  the  value  “zero.” The 
readback  process  consists in detecting  these flux transi- 
tions with a transducer positioned over  these  intervals 
in a fixed time sequence,  thus producing  a read wave- 
form. 

If  clocking data  are derived from  the read  waveform, 
the  transitions  must  occur frequently  enough to provide 
synchronization  pulses  for  the free-running  clock. On 
the  other  hand,  consecutive  transitions  must be far 
enough apart  to limit the interference to  an  acceptable 
level for reliable detection.  For  this  purpose  we  encode 
binary data  into  coded binary sequences  that  correspond 
to waveforms in which the maximum and minimum dis- 
tances  between  consecutive  transitions  are  constrained 
by prescribed coding  rules. Phase  encoding (PE) , mod- 
ified frequency modulation (MFM),  synchronized NRZI 
(NRZI-S), and run-length-coded NRZI  (RLC-NRZI) 
are  some of the encoding methods used in digital mag- 
netic recording. Examples of their  use  are PE in IBM 
tape machines, MFM in the  IBM 3330 disk file, NRZI-S 
in the  IBM 13 11 and 1405 disk files, and RLC-NRZI in 
the  latest models of IBM 3420 tape machines. 

Another  reason  for  encoding  the binary data into 
binary sequences is the shaping of the  frequency spec- 
trum of the signal waveform. The maximum and mini- 
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respond to  the minimum and maximum pulse rates in the 
waveform, respectively.  This range of pulse rate in the 
highly nonlinear read-write  process of magnetic record- 
ing causes irregular  read signal amplitudes and  results 
in phase-shift errors.  For  any given data density it is 
desired to  constrain this range of pulse rate  to be as 
narrow  and  as low as possible. This,  however, is not  the 
only consideration if the channel  uses ac coupling  net- 
works  to  process read-write  signals. For  example, in 
the  IBM 3850 Mass  Storage  System,  the read-write 
function is performed  by  a  transformer-coupled rotary 
head, in which case signal waveforms  should not  have a 
dc  component. A dc  component in the waveform results 
in a nonzero  average value of the amplitude and  causes 
charge accumulation at  any  ac coupling element in the 
channel. A constraint  on  the maximum accumulated 
charge is an effective means of reducing the signal dis- 
tortion  caused by the  ac coupling networks.  The result 
is a reduction of errors in signal detection.  In a  wave- 
form corresponding to a binary coded  sequence,  the 
accumulated  charge  increases by one unit for a posi- 
tive  pulse  and  decreases by one unit for a negative 
pulse  from digit to digit in the waveform. Thus,  the ac- 
cumulated  charge at any digit in a binary coded  sequence 
is the difference between  the  numbers of positive and 
negative  pulses in the  corresponding waveform up  to  that 
digit. 

A data  encoding  method,  then, is in general  a  one-to- 
one mapping of binary data into constrained binary se- 
quences.  Such  coded  sequences may be denoted by the 
design parameters ( d ,  k ;  c )  corresponding  to  the follow- 
ing three  constraints: 
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1 .  The  shortest run-length (sequence) of zeros between 
any  two  consecutive  ones in the  coded  sequence is d 
digits. This  determines  the minimum distance between 
the recorded transitions  and  hence  the highest  transi- 
tion density. 

2 .  The longest  run-length (sequence) of zeros between 
any two  ones in the  coded  sequence is k digits. This 
determines  the maximum distance  between  the re- 
corded transitions and hence the lowest  transition 
density. 

sequence is bounded by k c  units. 

If,  on  the  average, x data bits require y binary  digits, 
where x i y ,  in a coded  sequence,  the ratio of m / n  is 
called the  rate of the  code.  The highest recorded  density 
of magnetic transitions  for given data density is de- 
termined  by x/y and  the minimum run-length constraint 
d. This density  ratio D R  is a measure of recording ef- 
ficiency and is given by 

3. The accumulated charge  at any digit position in the 

DR = 
data density 

highest recorded density = @ ( d  + 1). 

For given data  rate  and  density,  the  lower  rate  code re- 
quires  faster clock and  more complex detection circuits. 
On  the  other hand,  a  higher  density  ratio DR is desired 
to limit the intersymbol  interference to a reasonable de- 
gree. Codes with rates ranging from 0.5 to  one  are used 
in magnetic  recording. Codes with much lower  rates  than 
0.5 are usually  impractical. 

In this paper  we  present a theory  and the  implementa- 
tion of such  an encoding  method. In particular, we deal 
with 0.5-rate run-length-limited codes  that  produce wave- 
forms with no zero-frequency (dc)  component. A specif- 
ic code is presented called zero modulation (ZM), which 
is designed with parameters d = 1, k = 3, and c = 3 and is 
the first binary code in which the waveform possesses 
zero  dc  component and yet  has a  density  ratio  close to 
one.  Heretofore,  phase encoding was  the only  known 
binary code with the  zero-dc  property.  However, it  is 
characterized by a very low recording efficiency ( D R  = 

0.5). Delay  modulation [ I ]  or modified frequency 
modulation (MFM) provided high recording efficiency 
( D R  = 1 ) but the accumulated charge in the waveform 
often  increased indefinitely. Zero modulation  combines 
the  desirable properties of phase  encoding  and  delay 
modulation. Franaszek [ 2 ]  has  reported many (d ,  k )  run- 
length-constrained binary codes.  Other related results 
are reported by Tang [ 31, Gabor [4], and  Frieman and 
Wyner [ 51. Some dc-free ternary  codes were reported by 
Franaszek [6], who used a parameter called the digital 
sum variation. This  parameter is related to  our accumu- 
lated charge in binary codes.  Croisier [7] reported  com- 
pilation of many results  on  pseudoternary  codes with 
zero  dc  component.  These nonbinary codes  are widely 
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.used in data transmission  but are  not  as suitable  for mag- 
netic recording because of the highly nonlinear charac- 
teristics of the  magnetic  recording process.  Zero modula- 
tion was designed for, and is used  in,  magnetic  recording. 
It is however,  equally  suitable for transmission of binary 
data  over  other  types of channels. 

The second section  presents  the  ZM algorithm and in- 
cludes discussion of the waveform parameters and 
practical  implementation with limited memory. The 
third section provides the proof for  the algorithm US- 

ing a  method called “isomorphism of state diagrams.” 
The waveform sequences  are analyzed by means of 
state diagrams. The growth rate of constrained se- 
quences is compared with that of binary data  sequences. 
Isomorphic  state diagrams are  created  for  data  and con- 
strained  sequences which then  provide  the  one-to-one 
mapping between them. In  the  fourth section the con- 
straints  are exploited to provide detection of errors in 
zero modulation sequences  at  the receiver. A subse- 
quent  section provides  a  useful  result  regarding  syn- 
chronization sequences  for clocking of zero modulation 
patterns. 

The  appendix gives  a  mathematical derivation  for 
the growth rate of the  constrained  sequences.  It  is shown 
that  the growth rate of ZM  sequences is two,  the  same as 
that of binary sequences.  The appendix also includes 
some  results regarding other  0.5-rate charge-constrained 
codes with higher density ratios and  different  run- 
length-limit parameters. 

Zero-modulation algorithm 
In this  section we  present  the zero-modulation algorithm 
for mapping binary data  sequences into constrained se- 
quences with parameters d = 1, k = 3, and c = &3. This 
algorithm was the  outcome of a  multifaceted approach 
involving most desirable  parameters  for magnetic re- 
cording  and  the structure of constrained binary se- 
quences.  The initial approach was to look for “good” 
block codes of fixed-length constrained  sequences by 
means of a computer  search  and then generate a  one-to- 
one mapping using minimum logic. The results  showed  a 
rather surprising structure of constrained binary  se- 
quences which finally led to  the generalized mapping 
with a  convolutional algorithm which is presented  here. 
The background results  on block codes  are omitted for 
the  sake of brevity.  The  coded  sequences  generated by 
the  ZM algorithm with limited memory,  discussed in the 
latter part of this section, turned out  to be the same  as 
those obtained in the earlier results using block codes. 
The algorithm appears in  this section without  a  formal 
proof of uniqueness of the mapping. The proof is de- 
ferred  to  the third section, entitled “State diagrams,” 
where  the  data  sequences  and  constrained  sequences  are 
represented by state diagrams and  the proof of unique- 367 
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Data 0 1 0 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0  Data  with P bits P bit P bit 
at intervals of 

0 1 0 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0 1 1 1 "  eight  bits 
4 4 

P(A)  0 1 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0  

P ( B )  1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 1  P f A )  1 1 0 0 0 1 0 1 5 1 1 5 0 0 0 0 0 y , 0 0 1 0 1 "  

ZMpattern00010010100010001001001000100010001001010l0010010100 PfB) 

Waveform 3 ZMpattern 

1 1 0 1 1 1 l l 0 l l 0 0 0 0 0 0 0 0 1 1 1 1 "  

100010101---- 000100101000100010100l0001010l0l010l0 

ZM waveform 
+3  - 

A h  h - 
v \ / v  Charge 0 - 

-3  -3 
- 

( a )   ( b )  
Figure 1 Relations among  parameters of the data sequence and the corresponding ZM waveform. (a) Example of ZM waveform for 
the case of unlimited memory. (b) ZM waveform for the case of limited memory. 

ness is obtained  from  the isomorphism of these  state 
diagrams. 

The algorithm maps every  data bit into two binary 
digits in a  sequential manner.  The resulting  binary  se- 
quence is then  converted into  a  waveform using NRZI 
rules, i.e., a transition for  one  and  no transition for  zero 
in the binary sequence.  The mapping of the  data bit into 
a two-digit ZM pattern is a  nonlinear  function of the pre- 
ceding and following data  sequences  and  requires  an 
encoder with  memory. In a  practical  implementation, the 
amount of memory can  be limited tofbits,  wheref is any 
positive  integer, by adding  a small amount of redundancy. 
This  procedure is described later.  First,  the ZM algo- 
rithm is given in its functional  form  which, in general, re- 
quires unlimited memory. 

Z M  algorithm  with  unlimited  memory 
Let do denote the data bit to be encoded in the  sequential 
encoding process, d-, the preceding data bit, and d+, the 
following data bit. Similarly, let aobo denote  the ZM 
digits corresponding  to  the  data bit do, with a-,b-, de- 
noting the ZM digits corresponding  to  the  data bit d-,, 
and a+,b+, denoting the ZM digits corresponding  to  the 
data bit d+l. The algorithm is given in terms of these 
digits and  two parity  functions  requiring  look-ahead and 
look-back. These  functions  are  denoted by P ( A )  and 
P ( B ) ,  signifying 'look-ahead ( A )  and  look-back ( B ) ,  
respectively. The  two functions are defined as follows. 

P (  A )  : Look-ahead,  one-sequence-parity is  the modulo-2 
count of ones in the binary sequence from do to  the 
next  zero in the following data.  This is the parity of the 
sequence of ones looking ahead from do (including do) .  
For  example, in the  data  sequence 0101 1 1  10, P ( A  ) is 
1 at  the  second, fifth, and seventh digits from the left; 
P ( A )  is 0 if do is 0. 

P ( B )  : Look-back  zero-parity is the accumulated  modulo-2 
368 count of zeros  from  the  start of the  data up to  and in- 

cluding do. For  example, in the  data  sequence 0101 1 1  10, 
P ( B )  is one at the first, second,  and eighth  digits from 
the left. 

The encoding algorithm may be  described  as follows: 

d, + a,bo Condition 

0 + 10 d-, = 0 

0 + 10 d-, = 1 and a-,b-, = 00 

0 +oo  d-, = 1 and a-,b-, # 00 

1 4 1 0  d-, = 0 and P ( A )  = 0 and P ( B )  = 1 

1 + 10 ' d-, = 1 and a-,b-, = 00 

1 + o o  d-, = 1 and a-,b-, = 10 

1 +01  otherwise. 

The decoding algorithm may  be described  as follows: 

aob, + do  Condition 

10 + 1  a,b, = 00 

10 + 0 a,b, # 00 

00 + 1  a-,b-, = 10 

00 + o  a-,b-, + 10 

01 + 1 none. 

Alternatively,  the encoding rule for  the mapping of 
data  into a ZM sequence  can be given by the binary logic 
functions 

a, = dad-, + dad-, p(A) P ( B )  + d-,ii-,6-,, ( 1 )  

bo = d o [ P ( A )  a-, + P(B) + b-,I. (2) 

The decoding rule for mapping a ZM sequence  into 
data can be given by the binary logic function 

do = b,  + aoti,6, + ii0a-,6-,. (3  1 
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It  is convenient  to  use  the following boundary  con- 
ditions in the encoding and decoding process: d - ,  = 1 
and P(B) -, = 0 are  assumed  at  the first data bit, and d ,  
= 0 at  the  last  data bit. 

The  example, Fig. 1 (a),  illustrates the relationships 
among the  various  parameters of the  data  sequence  and 
the  corresponding ZM waveforms.  Note  that  the max- 
imum pulse width in terms of data bit width is two units 
and  the minimum pulse width is  one unit. Some  pulses 
are 1.5 units wide. 

The ZM waveform looks similar to  the well known 
MFM, or delay  modulation,  waveform [ 11. The impor- 
tant difference, however, is that  the MFM waveform 
contains  the  dc  component,  and the  accumulated charge 
often  increases indefinitely. The maximum accumulated 
charge in the ZM waveform is *3 units in terms of the 
coded digit intervals. 

The  functions P ( A )  and P(B)  represent information 
from the following and  previous  data  sequences, respec- 
tively; P(B)  is  the  accumulated parity of the number of 
zeros  and  hence  can be derived simply by updating the 
content of a  one-bit storage  as  the  data bits are  encoded; 
P(A),  however,  depends  on  the run  length of ones in the 
following data  sequence.  Thus, the  memory requirement 
for computation of P(A) is, in general,  unlimited. The 
section following describes  the ZM algorithm in which 
the memory requirement is limited to f bits, where f is 
any  positive integer. 

Z M  algorithm with limited  memory 
Consider  the functions in Eqs. (1 )  and ( 2 )  when P(B) ,  
the  accumulated look-back  zero-parity  value, is zero. 
These functions can be written  as 

The mapping is thus  independent of the look-ahead data 
sequence when the look-back  zero-parity is even. 

Now  consider a continuous  data  stream in which a 
digit P is inserted at fixed intervals off bits. This P-bit in 
the f + 1 position in the modified data  stream  sets P ( B )  
equal to  zero  at  the  end of each interval  section off + 1 
bits. This implies that the look-ahead  parity P ( A )  of the 
sequence of ones  at  the  end  and beginning of any  section 
has no effect on the ZM mapping in the modified data 
sequence.  [See Fig. 1 (b):  P(A)  is  denoted by 0, which 
is a DON’T CARE value when P (B)  = 0.1 The  only se- 
quences of ones affecting the mapping, then,  are  those 
which exist between two  zeros in the  same  section.  The 
longest such  one-sequence  has  lengthf- 1 digits,  with a 
zero  at  the beginning and a zero  at  the  end of an f + 1 
digit section. Thus,  the memory requirement  for computa- 
tion of P ( A )  is f - 1 bits. It will be observed  later  that 
P(B ) = 0 corresponds  to a zero  value of accuinulated 
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Table 1: Definition of accumulated charge 

Pattern and waveform  Value  of s 
- ~ _ _ _ _  

e;- 0 

0 1 0 0  2 

-2 
I 
O l O 0 O l r  
1 

charge in the  coded waveform. Consequently,  at  the  end 
of every section the accumulated charge is zero.  The ZM 
algorithm with limited memory  then has the following two 
important modifications: 
1. The  data  sequence is modified by  inserting an  extra 

P-bit  at  the end of every section off  data bits, where P 
is given by the value of P ( B )  at  positionf. 

2. The computation of the function P(A ) at any data bit 
is  truncated  beyond  the following f - 1 data bits. 

Implementation of the ZM algorithm  with eight bits of 
memory is shown in the following example. To limit the 
memory,  one bit of redundancy is added  for  every f bits 
of data.  The  percentage  redundancy  decreases with f and, 
hence,  the memory  size increases. 

The look-ahead one-sequence parity  function P(A)  is 
given by a binary logic function of the  data  stored in f 
bits of memory, 

P ( A  ) = d,d, + d,,dZd:% + dod2d4d5 +. . . 
. . . + d,d,d,. . . dt-4dt-3 + d,d,d4. . . dt-4dt-2, 

where t = f if f is even  and t = f - 1 iff is odd.  The look- 
back zero-parity P(B ) is given by the function P(B ) = 

P(B)-,Vdo,  where  P(B)-, is the value of P(B)  a t  the 
previous data bit and V represents  the binary EXCLUSIVE 

OR function. Note  that  the encoding process is delayed 
by f bit-periods in a continuous  stream of data.  The de- 
coding process is delayed by only a one bit-period. Thus, 
the decoding errors in ZM do not  propagate. 

State diagrams 

State  diagram of constrained  sequences 
The accumulated charge in a binary sequence is defined 
in the following manner. Every digit in the  coded se- 
quence  corresponds  to  one of the  two signal levels in the 
waveform,  starting at  the  center of the digit position and 
ending at the  center of the  next digit position. Let n, and 
n, denote  the  numbers of digits corresponding to  the two 
levels, respectively, in a waveform for a sequence of 
n, + n2 digit lengths. Then,  the accumulated charge s at 
the  end of this  waveform is given by s =-C-(nl - n z ) .  369 
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Table 2 Possible state transitions. 

Transition symbol 
(catenation) 

New  state  values 
SO YO 

Conditions for transition 

0 
1 

so = s - ~  + 1 ro = r-l + 1 
so = -s-l + 1 Yo = 0 

Table 3 State transitions, for 0.5-rate codes. 

Transition symbol 
aobo 

00 
01 
10 
1 1  

Present  state  values 
SO YO 

Conditions .for transition 

so = s-l + 2 ro = Y - ~  + 2 
s =”s 

so = -s-l + 2 Yo = 1 
yo  = 0 

so = SKI ro = 0 

s - ~  + 2 5 e,  r-l + 2 5 k 

2 - s - ~  5 c, d 5 r-l  
d Z r - , + l Z k  

d = O  

Table 4 State identification for all possible values of s and r in 
a ZM state diagram. 

s f  r 0 1 2 3 

Only the  absolute  value of s is important,  because  the 
sign of s changes with the  choice of starting the wave- 
form with a  positive or a  negative  level. For  convenience 
in iterative computation of s from digit to digit, the con- 
vention followed is that s is the  value of accumulated 
charge  associated with the waveform in which the last 
level is a  positive  level. The waveform patterns in Table 1 
illustrate  this convention. 

It is easily seen  that  the  value of s in any  pattern can 
be computed iteratively  from digit to digit. With the 
above  convention,  the  “present” value so of s depends 
only on  the “previous”  value of s - ~ ,  and  the  “present” 

Figure 2 Example showing how, in a binary sequence, the 
state  at every symbol can be identified by two parameters: the 
accumulated charge s and the run-length r. 

pattern 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 1  
Digit 

Waveform -1 n 1-1 r 
+3- 

Charge 0 1  
- 

Valueofs 1 2 3 -2-1 0 I 2 -1 0 1 2 -1 0 1 2-1  0 1 0 
/SI=/ charge I 

370 Valueofr 1 2 3 0 1 2 0 1 0 1 2 3 0 1 2 3 0 1 2 0  

digit being catenated  to  the pattern. For example, catena- 
tion of a one  or a zero  to a pattern  causes  the following 
changes in the  charge values: 

Catenation of 0 + so = s-l + 1, 

Catenation of 1 + so = - ( s - ~  - 1 ) .  

These  catenations can be  considered  as  state transi- 
tions in descriptions of the  constrained  sequences by 
means of state diagrams. The  states  can  be  characterized 
by two  parameters, namely, the accumulated charge s 
and the run-length r of zeros  at  the end of sequence, using 
the identifying pair (s; Y)  . The  constraints  on s and Y are 
1s I 5 c and d 5 r 5 k ,  respectively,  where k c  represents 
the  value of maximum accumulated  charge,  and d and k 
denote  the minimum and maximum  run-lengths of zeros. 
Table 2 gives the possible state transitions. In  any binary 
sequence,  the  state  at  every symbol can be identified as 
shown in the example, Fig. 2. Alternatively, the run- 
length sequences  can be represented  as a series of state 
transitions  on a state diagram. 

In general, the encoding of binary data  into  constrained 
sequences  requires n coded digits for  every x data bits, 
where x < y. It  is convenient  to use symbols of at least y 
digits in dealing  with such  x/y-rate  codes.  In particular, 
for a 0.5-rate  code, two-digit symbols denoted by a,b, 
are used as  state transitions. Zero modulation is a 0.5- 
rate  code. 

Table 3 represents  the  state  transitions  for  0.5-rate 
codes.  The new state  values (so, y o )  are given in terms of 
the previous state  values ( s - ~ ,  Y - ~ ) ,  using concatenations 
of two digits aobo at a time. This  table is constructed using 
the transition  information in Table 2.  

The  state diagram can now be constructed  for ZM pat- 
terns.  The (d, k ;  c) constraints in zero modulation are 
( 1 ,  3 ; 2 3 ) .  It is clear  from  Table 3 that  the  charge values 
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Table 5 All possible state transitions for ZM sequences, according to  Table 3 rules. (Note: S indicates  violation of the  charge con- 
straint; R indicates violation of the run-length constraint.) 

uobo = 0 I 
New  s tate:  (so, r,)  for  three conditions 

sob, = 10 

must be  an  even number at  the end of each pair aobo in 
the  coded  pattern, with the practical assumption  that s is 
zero  at  the starting  point. Thus, the  only  possible  values 
of s in ZM state diagram are 0, +2, and -2. Table 4 lists 
all possible states with the above  constraints.  It is seen 
later  that  the  states N (  l ) ,  N ( 2 ) ,   N ( 3 ) ,  and N ( 4 )  of 
Table 4 do not exist  and  that  the  states A and  A'  can be 
merged together.  Table 5 lists all possible state transi- 
tions  according  to  the rules of Table 3, using transition 
symbol a&,. 

None of the  states  maps  into  the  states N ( 1 ), N (2) ,  
and N(4) .  Also, only N (  1 )  maps into N(3) .  Since N (  1 )  
cannot be the initial state, it is  obvious  that  states N ( 1 ), 
N (2),  N ( 3 ) ,  and N (4) are  nonexistent.  The  states A and 
A'  can be  combined. This is true  because  both map into 
the  same  states, namely Z and B, when a,b, = 0 1 and 10, 
respectively, and 00 is an inadmissible  transition  from 
both.  The resulting state diagram is shown in Fig. 3. 
Inadmissible states  and transitions are not shown.  The 
state  A' is merged into  A. 

In  the Appendix we define the  growth rate of con- 
strained sequences  and  show how to  determine  the 
growth rate of the ( 1, 3 ; k 3 )  sequences  from  the eigen- 
values of the  state transition  matrix.  A necessary condi- 
tion for a one-to-one mapping is that the  growth rate be 
at  least  two, i.e., the  same  as  that of the binary data se- 
quences. If the growth rate is higher than  two,  then some 
states or state  transitions must be eliminated or modified 
to reject some of the  sequences. If the  growth  rate  is less 
than  two,  then, of course, a one-to-one mapping is not 
possible unless some of the  data  sequences  are rejected. 
It is shown  that  the ( 1 ,  3 ;  k 3 )  constrained  sequences 
possess a  growth rate of exactly two  (Appendix) with 
two-digit symbol catenations.  This satisfies the  necessary 
condition. The study of eigenvalues  and eigenvectors of 
the  state transition  matrix shows much of the information 
leading to  the  structure of the mappings. 

Table 6 Identification of states in the  data  sequences in terms 
of four  parameters. 

The  fact  that  the growth rate  turns  out  to be exactly two 
is an intriguing mathematical  coincidence. Or is it?  Could 
it not  be the manifestation of still unknown but  more 
general structural  properties of constrained  sequences 
and related band-limited signaling waveforms?  This 
question is open  for  future investigation. 

Figure 3 The ZM state diagram  (inadmissible states  and 
transitions  are  not  shown). 

X Z C 
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Figure 4 State diagram constructed for data sequences simi- 
lar to that for ZM sequences (the state transitions are listed 
in Table 7 ) .  

w 
10 
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Figure 5 Modified ZM state diagram, in  which states E and 
F are created by splitting state B. 

8 State diagram for data  sequences 
Next  to be presented is a sufficient condition for a one-to- 
one  correspondence  between  ZM  sequences  and  data 
sequences.  The  ZM  state diagram of Fig. 1 shows  the 
difficulty of encoding  binary data  into  sequences with the 
run-length and  charge  constraints.  There  are  two  exits 
from each of the  states  A, B, C, Y, and Z, and  thus  the 
two distinct  transitions  can  be used to  encode a binary 
one  and a binary zero. 

By contrast,  states D and X each  have only  a single 

quences  that  are similar to  those  for  the  ZM  sequences. 
Later, the ZM  state diagram is modified by splitting and 
combining some of the  states  to  make it fully isomorphic 
to  the  data  state diagram, thus establishing  a one-to-one 
correspondence between the transitions. 

Let do denote  the  present  data bit and let d-, denote  the 
previous  data bit in a data  sequence; P ( A )  is the look- 
ahead  one-sequence-parity function and P(B) is the 
look-back  zero-parity  function, as defined in the previous 
section. The function P (B   l ) ,  the look-back one-sequence 
parity, is the parity of a sequence of ones looking back 
from,  and including do; P(B1) is 0 if do is 0 and  can  be 
interatively computed  as P(B1) = do P(Bl)-, ,  where 
P(B 1 )-, is the  value of P(B  1) at  the previous data bit. As 
an example, in the  data  sequence 0101 1 110, P(B 1 ) is 
one  at  the  second,  fourth,  and sixth digits from the left. 
The  states in the  data  sequence  are  characterized by the 
values of the  functions P(A) ,   P(B) ,   P(Bl ) ,  and the end- 
ing bit do. Table 6 identifies all the  states in terms of these 
parameters. 

In  any  data  sequence  the  state  at  every bit position  can 
be identified as  shown in the following example. 
Example States in data  sequence 

Data  sequence 0 1 0 0 1 1 1 1 0 1 0 

P(B 1 1 1   0 1 1   1 1   1 0 0 1  

P(B 1)  0 1   0 0 1  0 1 0   0 1 0  

P(A 1 0 1  0 0 0  1 0   1 0 1 0  

State ff P1 P a P2 $2 P2 $2 P Y a. 

Any  data  sequence can thus be traced  on a state dia- 
gram as  transitions  on a series of states.  Note  that when 
do = 1 the  state  transitions  are  dependent  on  the  value of 
P ( A ) .  All state transitions are listed in Table 7 and  are 
shown  on  the  state diagram of Fig. 4. 

Isomorphism of state diagrams 
It is obvious  that,  to establish  a one-to-one  correspon- 
dence,  the  states B and C in the  ZM  state diagram must 
be modified in accordance with the  states p2 and P in the 
state diagram for  data  sequences.  First, B is split  into 
two  states E and F such  that B mapping into D is called 
E and B mapping into A or Y is called F. This split can 
be identified by the  next  pattern, a,b, = 00 or a,b, ,# 00. 
In  particular,  the transition to  the  state E assumed  that 
a$, was known and  that a,b, = 00. The modified state 
diagram is given in Fig. 5. States C and F can be com- 
bined,  since the outgoing transitions  are identical. The 
resultant  state diagram is given in Fig. 6. 

The following assertions  can now be made: 

exit,  and only one binary  number can be represented 1. There  is a one-to-one  correspondence of the  states 
when  the encoding operation is in these  states. For this (including all possible transitions)  between  the  state 

372 purpose,  state diagrams are  constructed  for  data se- diagrams of Figs. 4 and 6. The  states a,  P ,  y, p,, $,, 
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p,, and 4, in Fig. 4 are isomorphic to  the  states  A, G,  
Y ,  Z,  X, E,  and D, respectively, in Fig. 6. 

2. Every  data  sequence of length n traces a  distinct path, 
given by a series of n states,  on  the  state diagram of 
Fig. 4 (starting  from  state y and  ending in any  state 
other  than 4, or p,) . 

3 .  Corresponding  to  each  path  traced by n-digit data 
sequence  on  state diagram of Fig. 4, there is an iso- 
morphic path  on  the  state diagram of Fig. 6 traced 
by a 2n-digit binary pattern with ZM constraints. 

4. Any  two distinct paths of given length on Fig. 4 repre- 
sent  two distinct data  sequences  (with a restriction 
that a path  starts  from  state y and does  not  end in 
state 4, or p,). 

5 .  Any  two paths of given  length in Fig. 6 represent two 
distinct ZM sequences  (with  the  restriction  that a 
path  starts from state Y and does  not end in state 
X or E).  

At this  time the  theorem can  be stated  for  the unique- 
ness of the mapping given by the ZM algorithm. 

Theorem Every  data  sequence of length n can  be uniquely 
represented by a ZM pattern of length 2n digits, as given 
by the ZM encoding  algorithm. 

It  can be  easily verified that  the ZM encoding  and  de- 
coding  algorithms preserve  the isomorphism of the  state 
diagrams of Figs. 4 and 6. The proof of uniqueness of the 
mappings then follows  from the  above five assertions. 

Note  that P ( B )  represents only one bit of information 
from the past and  that P (A ) represents only one bit of 
information  from the  future in the  data  sequence. Al- 
though  computation of P ( A )  requires  an infinite look- 
ahead in the  data  sequence, this  look-ahead can be  re- 
duced  to  any finite number by simply introducing one-bit 
redundancy.  This was shown in the  second section in the 
discussion of the ZM algorithm with limited memory. 

Error detection in ZM patterns 
The  patterns of digits generated by means of the ZM algo- 
rithm  satisfy  various constraints, including the parity bit 
on  the  data in the  case of ZM with limited memory. These 
constraints provide  a  powerful check capability for bit- 
detection  errors and  synchronization errors  at  the re- 
ceiver. 

ZM patterns must possess run-lengths of one,  two,  or 
three  zeros  between  two  ones in the ZM pattern. Two 
consecutive  ones  or four or more consecutive  zeros 
in the ZM pattern indicate  a “pick up” or a “drop  out” 
error, respectively, in the  corresponding waveform. Let 
aobo denote  the pair of ZM digits to be decoded in the 
sequential  decoding process; a-,h-, denote  the preceding 
pair of ZM digits; and a,b, denote  the following pair of 
ZM digits. The  error  functions  for the minimum run- 
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Figure 6 Isomorphic ZM state diagram, in which states C 
and F of Figure 5 are combined into the new state G. 

Table 7 All state transitions in the data sequences. 

Present  stute  when 
Previous stute do = 0 d,, = 1, P ( A )  = 0 do = 1, P ( A )  = 1 

length constraint  and  the maximum  run  length  con- 
straint  are given by E ,  and E,  as 

E ,  = aobo + b,a,, 

E ,  = 6-li$oCl + C o ~ 0 5 1 ~ l .  

The violation of charge  constraint can be checked by 
keeping a continuous  count of the accumulated charge, 
which must be within -+3 units.  A simple and  convenient 
check of this constraint,  however, can be obtained in 
terms of the functions P ( B )  and P ( B  1 ). Table 5 shows 
that  the charge constraint violation  can occur  without a 
violation in the  run-length constraint.  This  happens if and 
only if the  sequence received at do is in state A or X, with 
the  next transition a$, = 00. Consider  these  two transi- 
tions  separately: 

In state A ut do with a,b, = 00 The  pattern in question 
here is ~,,b,a,6, = 1000. The  decoder  operates  correctly 
up to d-, with P ( B )  = 0 at d-,, indicating state j3 on  the 
data  state diagram. The  pattern a06,a,b, = 1000 is de- 
coded  as dodl = l l ,  leaving P ( B )  = 0 at d,. This indi- 373 
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cates  an  error,  since 1000 occurs only  when P ( B )  = 1 for 
state  transitions A -+ E + D. The  error function  cor- 
responding to this case is thus given by 

E ,  = ao6,Si,b1P(B). 

I n  state X at do with a,b, = 00 The  pattern in question 
here is a,b,a,b, = 0100. The  decoder  correctly  decodes 
a,bo = 01 into d, = 1, with P ( B )  = 1 and P ( B , )  = 0, cor- 
responding to  the  state  on  the  data  state diagram. The 
pattern a,b, = 00, however, indicates an  error, since 
P ( B )  = 1 and P ( B 1 )  = 0 occur only on  states X and D 
and a,b, cannot be 00 from those  states.  Thus,  the  error 
function for this case is 

E,  = Z,&,P(B ) F “ T 1 ) .  

This  exhausts all possible  violations of the  charge 
constraint  and run-length constraints. 

Next is a simple  but  effective check  on synchroniza- 
tion errors  as well as  random  errors.  The value of P ( B )  
is zero  at  every memory  boundary off + 1 data bits. The 
charge  value is also  zero  at  the memory boundary.  These 
two  checks  are equivalent  since  they check  for  the iso- 
morphic states j3 and y on  the  data  state diagram or G and 
Y on  the  ZM  state diagram, respectively.  The  check is 
then given by the function 

E,  = P ( B )  (count =f+ 1) .  

The  counter is set  to  zero  at  the beginning of every 
section. 

The  complete  check function E is obtained  by  combin- 
ing all error  functions  as 

E = E ,  + E, + E, + E, + E,. 

Synchronization signal for ZM waveforms 
The zero-modulated  waveform at  the receiver is de- 
coded  into a data  sequence with the help of a clock, 
which is usually derived  from the waveform. A synchro- 
nizing signal of sufficient length and recognizable ending 
is required for  the  purpose of starting and synchronizing 
the clock  and marking the beginning of data. A synchro- 
nizing signal may also  be inserted at predetermined in- 
tervals in the waveform (preferably  at  ZM memory 
boundaries)  to provide  “resyncability” in case of tem- 
porary loss of synchronization. 

Following are  some specifications for a synchroniza- 
tion signal in a ZM waveform. 

1. It must  be distinct  such  that it may not be  confused 
with the normal data waveform in its original or 
shifted position. 

2. It must  satisfy the  ZM  constraints of maximum and 
minimum pulse  widths. 

3.  Accumulated  charge  at  the end  must  be zero  (zero 
374 dc) although the maximum accumulated  charge  at 
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any point may be more  than three, say four, five, or 
six units. (Note  that this specification can  even be 
waived if the  synchronization signal is short and in- 
frequent.) 

4.  The basic synchronization signal should  be  reasonably 
short  and  the endings  compatible  with the ZM al- 
gorithm for insertion at  the memory boundary with- 
out modification. 

These specifications  can  be  easily satisfied if a known 
sequence of binary data is inadmissible. This,  however, 
is impossible for serial data. Alternatively, one can 
choose from the inadmissible sequences in ZM-coded 
patterns.  In  that  case,  the ZM error indicator  must  be 
modified to recognize the  chosen inadmissible sequence 
as a  synchronization pattern and to  exclude the occur- 
rence of that  exact  pattern from indicating an  error in 
the  data. 

Theorem Among the  sequences  that satisfy the  ZM 
run-length constraints,  the  sequence 

w = 0 0 1 0 1 0 0 0 1 0 1 0 0 0  

and its  reciprocal 

w * = 0 0 0 1 0 1 0 0 0 1 0 1 0 0  

are  the  shortest  sequences  that  do not occur in any ZM 
pattern. 

Proof Consider  the  sequence w in relation with the clock 
such  that it forms  seven pairs in the following manner: 

1 2 3 4 5 6 7  
Pattern = o o  1 0  1 0  0 0  1 0  1 0  0 0  

a b  a b  a b  a b   a b   a b   a b  
Decoded data = 0 0 1 1 0 1 1 .  

The charge constraint is violated at  either position 3 
or position 6. This  can  be  checked by the  error function 
E,  of the previous  section. Suppose it is not  violated at 
position 3,  i.e., P ( B )  = 1 at position 3. This  means  that 
P ( B )  = 0 at position 6 and,  hence, is a violation accord- 
ing to function E,. 

Now  consider  the  sequence w in a shifted position in 
relation with the clock in the following manner: 

1 2 3 4 5 6 7  

Pattern = o  0 1  0 1  0 0  0 1  0 1  0 0  0 
b a b  a b  a b   a b   a b   a b  a 

Decoded data = 0 1 1 0 1 1 0 . 
Again,  the charge  constraint is violated at position 3 
or 6. This  can be checked by the  error function E,  of 
the previous section.  Suppose it is not  violated at posi- 
tion 3. Then P ( B )  = 1 ,  since a,b, = 00 and P ( B 1 )  = 0 
at position 3. However, this implies that P ( B )  = 0 at 
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position 6 and,  hence, is a violation according  to function 
E,, since a,b, = 00 and P ( B 1 )  = 0 at position 6. 

This  proves  that  the  sequence w cannot  occur in any 
ZM pattern.  The proof for w* follows in the  same man- 
ner. That w and w* are  the  shortest  such  sequences can 
be  proved by lengthy analytic  arguments involving E, 
and E,. Alternatively,  an  exhaustive  check can  be made 
on all 13-digit sequences  that satisfy ZM run-length con- 
straints.  They  are all valid ZM patterns. 

Thus,  any  pattern containing the  sequence w (or w*) 
can be  used as a  synchronizing pattern. Following are 
two examples: 

1 t“ h ’  ) I  
w , = 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 ,  

w,=0 1 0 0 0  1 0  1 0 0 0  I 0 1 0 0 0  1 
I (  w* A I  

Note  that W ,  and W ,  both contain u’ or w*. However, 
specification 3 is satisfied by W ,  but  not by W,. The  end- 
ings on  both  sides of W ,  and W ,  are 01 and can  be padded 
by any  number of 01 digit pairs if desired for clocking. 
These endings also allow  placement of a  synchronization 
signal at  the ZM memory  boundary  without modification. 

In  actual application, the synchronization pattern is 
placed at predetermined  intervals at ZM memory bound- 
aries.  In  case of loss of synchronization,  the clock  gen- 
erated by means of the read waveform as soon as the 
defect (or any other  cause)  has  passed.  This clock 
enables  the signal detector  to  produce  the binary pattern, 
i.e., the ZM pattern.  The decoding of the  pattern how- 
ever,  cannot be started until the synchronization pattern 
arrives  and  establishes  the ZM pair  relation with respect 
to  the clock by means of the  sequence w or w*. If the 
clock is found to be out of synchronization (which is 
equivalent to a one digit shift),  the complement of the 
clock may be  used for decoding. The  start of the  data, 
then,  occurs  at  the  end of the  synchronization signal 
from  which, once again, the ZM pattern  can be decoded 
into “good” data. 

Directions for further work 
The  theory  and results reported in the Appendix  provide 
a  formalized  method of investigation for a  more  gen- 
eralized theory of constrained  sequences and  waveform 
design. The method is applicable to  any  rate  codes and 
to nonbinary codes  as well. Here we summarize the main 
points of this theory. 

1. Constrained  sequences and data  sequences of in- 
definite  length  can  be represented by state diagrams 
having a finite number of states. 

2. Isomorphism of state diagrams is an effective method 
of establishing uniqueness of mappings,  particularly 

in case of nonlinear and/or convolutional codes in 
which the  theory of linear  algebra cannot  be used. 

3 .  The equality of growth rates of state transition ma- 
trices is a necessary condition for isomorphism. 

4. The eigenvalues and, in particular, the  spectral radius 
[8] of the state-transition  matrix determines  its 
growth  rate. 

5. The  theory of non-negative matrices [9] is applicable 
in a constructive  manner in modifying the  state dia- 
gram to alter  its growth rate by small amounts in the 
desired  direction. 

6. The  state diagrams can be modified for equality of 
growth rates  and isomorphism by eliminating, merging, 
or conditional splitting of various states  or state- 
transitions and  adjusting for  the relative  growth at 
each  state by means of look-ahead or look-back 
conditions. 

7 .  The relation between convolutional coding and block 
coding (as is evident in the  case of ZM with limited 
memory) signifies an interesting  inherent structure 
of constrained  sequences. 

In  the Appendix we give growth rates of constrained 
sequences with other run-length constraints, namely 
d = 2 and k = 7 or k = 8. The  codes with these  parameters 
are potentially  “good” codes. 

Appendix: Growth rate of constrained sequences 

Z M  sequences 
Consider  the  growth, Le., the  number of constrained se- 
quences  as a  function of their  length,  starting  from a given 
initial state. Using the  state diagram of Fig. 3 ,  determine 
the  sequences starting  from the  state Y after 1, 2, 3, etc. 
catenations of two-digit symbols, as shown in Table A l .  
This table  shows that  the total number of sequences ap- 
proximately doubles  at  every  step  as  the length increases. 
This  process is now formalized  mathematically. 

Let V ,  denote a  column vector in which the  elements 
V,(j)  denote  the  number of sequences in the  jth  state 
after t catenations of two-digit symbols from initial state. 
The  vector V,,, can  be  obtained  from V,  as 

V,+,(i) =x aij V,(j), 

where ai j  denotes  the  number of distinct transitions from 
state j to  state i. The matrix A of elements ai j  is termed 
the transition  matrix. Then V,,, = [ A ] V t .  Using  this 
equation iteratively, any  state  vector V ,  can be computed 
as V ,  = [ A ] ” V , ,  where [ A I i  represents  the ith power of 
matrix A ,  and V,, is a vector with zeros in all positions 
except a single one in the position corresponding  to  the 
starting state.  The total number of sequences of n two- 
digit symbols is then 

N = x V,(i) .  
1 
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The  growth of N with n may be  examined by studying 
the eigenvalues and  eigenvectors of the matrix A .  Con- 
sider  the example of the ZM state diagram of Fig. 3. 
The  states  are arbitrarily ordered X, Y, Z ,  A, B, C ,  and D 
from 1 to 7. Then, matrix A can  be  written as 

A =  

- 0 0 1 0 0 0 0  
0 1 0 0 1 1 0  
1 0 0 1 0 0 0  
0 1 0 0 1 1 0  
0 0 0 1 0 0 1  
0 0 1 0 0 0 0  
0 0 0 0 1 0 0  - ~ 

The eigenvalues of A can  be obtained  by  solving the 
characteristic  equation IA - A l l  = 0. The  vector V ,  can 
be given as a  linear  combination of the basis vectors 
forming eigenspaces [ 101 corresponding  to  the eigen- 

where 

p =  (6) [2"- - (-1)"1, 

and 

Q = (4) [2"-' + (-l)"]. 

The total number of sequences N of n two-digit sym- 
bols is then 

N = V,(i) = 2" + (+) [2"-'- (-l)"]. 
1 

The value of N depends  on  the starting state.  Table  A3 
lists  values of N corresponding  to  each  state as a  starting 
state. 

The growth rate G R  of the  constrained  sequences may 
be defined as 

values. Table A2 gives these basis vectors corresponding G R  = lim ~ ( ' 1 " ) .  

to  each eigenvalue and  their relationship  with A .  If Y n - r m  

is the initial state,  the initial state  vector V ,  is 10, 1, 0, 0, The growth rate of ZM sequences, then, is to two. 

vectors of Table A2 as capacity [ 113. In  the limit, the largest  positive  eigen- 

o> ' 9  '1'9 which can be written in terms Of the basis The logarithm ofthe growth  rate is similar to the 

v o = i $ ~ 1 - + ~ 3 + & & - + y 5 =  [0 1 0 0 0 0 01'. value of A dominates in determining the value of N"'"); 

It  is now easy  to  observe  the  growth of the  vector V,. 
We have A t ,  = 25,, A t ,  = - t3, and A t 5  = 0, A y S  = 5,. 
Thus, 

and, in general, the growth rate  is equal to this  eigenvalue 
of the matrix A .  This growth rate is independent of the 
starting state, although the total number of sequences 
depends  on  the starting state. 

explore  the growth rate of other run-length sequences. 
V 1 = A V 0 = 2 2 h t 1 )  ++5,+o-+t5  In  the  next  section,  we apply some of these ideas to 

and 

V ,  = A"V, = 2"(&,) - (-l)"+t3, for n f 2. Other  run-length  sequences  with  charge  constraint 

The  elements of the  vector V ,  represent  the  number of All elements of the  state transition  matrix A for con- 

sequences of n two-digit symbols in each  state,  as  shown strained  sequences  are non-negative, since they represent 

in Table A l .  Using .$,, and 4, of Table  A2,  we find the  number of transitions from one  state  to  another.  Such 
non-negative  matrices possess a well defined growth rate 

V ,  = [ P ,  2"-', Q ,  2"-', Q ,  P ,  PI', given  by  their  spectral  radii [9]. The following theorem 

Table A1 Number of sequences in various states starting from state Y .  

Length in terms 
of two-digit symbols X Y Z A B C D Total 

(Starting  state +) 0 1 0 0 0 0 0 
1 0 1 0 1 0 0 0 2 
2 0 I 1 1 1 0 0 4 
3 1 2  1 2  1 1  1 8 + 1  
4 1 4 3 4 3 1  1 1 6 +  1 
5 3 8 5 8 5 3 3 32 + 3 
6 5 16 I 1  16  11 5 5 64 + 5 
7 1 1  32  21 32  21 11  11 I28 + 11 
8  21 64 43 64 43 21 21 256 + 21 
9 43 128  85 128  85 43  43 512 + 43 

10 85  256 171 256 171 85  85 1024 + 85 

n P 2n-2 Q 2n-2 Q P P 2" + P 

376 P = + [ 2 " - ' ~ ( - 1 ) " ]  a n d Q = b [ 2 " " t  (-1)"l. 
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from the  Perron-Frobenius  theory  [9, 101  of non- 
negative  matrices is stated here  without  proof. These 
results  are immediately useful in developing  new codes 
and, in general,  any nonlinear mappings by means of the 
method of isomorphic state diagrams. 

Theorem 1 Let A be  a  non-negative square matrix. Then 
A has  a  non-negative  real  eigenvalue  equal to  its  spectral 
radius p ( A ) .  To p ( A )  there  corresponds a  non-negative 
eigenvector. 

Theorem 2 Let A and B be two square, non-negative 
matrices such  that  each element of matrix B is smaller 
than  or equal to  the  corresponding  element of matrix A .  
Then p ( B )  5 p ( A ) .  

The growth rate of the charge-constrained sequences 
is  the  spectral radius p ( A )  of the  state transition  matrix 
A .  This is the largest real eigenvalue of the matrix A .  A 
necessary condition for  the  existence of the  code is that 
the growth rate of the  sequences is at  least  that of the 
binary data  sequences.  Thus, p ( A )  < 2 implies that a 
mapping is not  possible. However, p ( A )  > 2 indicates 
that  the  state diagram  must be modified for a spectral 
radius of two before the isomorphic state diagram of 
data  sequences can  be constructed.  This may be done by 
eliminating some of the transitions or  states which de- 
crease  the  value of some  elements of A .  The new transi- 
tion matrix, according to  Theorem 2, may have a  smaller 
but  not  larger  spectral  radius  than that of the original 
matrix A .  

The  spectral radius p ( A )  of the transition  matrix A 
can  be computed using iterative analysis  [9].  Many dif- 

Table A4 Growth rate of charge-constrained sequences. 

Table A2 Eigenvalues and eigenspaces of matrix A .  

Eigenvalues  Basis  vectors for the Relationship with A 
A corresponding  eigenspace 

Table A3 Value of N from various starting states in ZM se- 
quences. 

Starting  state Total  number N of sequences of n 
two-digit  symbols 

Run  length  Max  accumulated  States  eliminated  for  Growth 
min = d  max = k charge f c  reduction in rate  rate 

(charge,  end-zeros) 
-~ 

I 
1 4 3 2.1 112 
1 4 3  2 
2  7 7 1.9879 
2  7 8 2.0029 
2  7 8 2.0003 
2  7 8 2.0003 
2  7 8 1.998 1 
2 8 6 1.9820 
2 8 7 2.0099 
2 8 7 2.0037 
2 8 7 2.0032 
2 8 7 2.0024 
2 8 7 1.9998 
2  9 6 1.9903 
2  9 7  2.0214 

"" 

3  3  2 
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ferent transition matrices  were studied for  other possible 
0.5-rate codes. Among  them, the most  interesting and of 
immediate importance  to magnetic  recording are  those 
with  a minimum run-length of two, in particular, the 
(2, 7)  and (2, 8) run-length-limited sequences.  These 
codes  can  provide a higher  density  ratio of data  to mag- 
netic transitions. 

The (2,  7 )  run-length sequences with  various  charge 
constraints were  examined to  determine  their growth 
rate using two-digit symbols for a rate one-half code. 
The (2,  8) and (2, 9) run-length sequences  were  also 
examined in a similar manner. Table A4 presents  the 
results of this  study. The conclusion is that  any binary 
rate one-half mapping into (2, 7 )  run-length sequences 
will have charge  accumulation of at  least eight units in 
either  direction. Similarly, any binary rate one-half 
mapping into (2, 8) or ( 2 ,  9) run-length sequences will 
have  charge accumulation of at  least  seven units in either 
direction. Table  A4  also  shows  that  the  growth  rate can 
be adjusted by  elimination of some of the  state  transitions 
or  states.  This is a trial-and-error effort to  achieve a 
growth rate of two, which may require  an  exhaustive 
search.  There  are  other  ways  to modify the  state diagrams 
and  the  state transition  matrix, in particular, by means 
of conditional splitting and merging of some of the  states. 
Such investigations may reveal more general structural 
properties of constrained  sequences  and related  band- 
limited signaling waveforms. 
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