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Codes for Self-clocking, AC-coupled Transmission:
Aspects of Synthesis and Analysis

Abstract: We consider NRZI waveform codes that satisfy a given set of run-length constraints and the upper bound on the accumulated
dc charge of the waveform. These constraints enable the codeword to be self-clocking, ac-coupled, and suitable for data processing
tape and communication applications. Various aspects of synthesis and analysis of such codes, called (d, k, C) codes, are illustrated by
means of several examples. The choice of the initial state of the encoder is shown to influence the length of the data sequence over which

the encoder must look-ahead.

Introduction

In the transmission of binary data, whether on a com-
munication link or through a magnetic recording head
onto a tape, it is generally desirable to encode the data to
achieve self-synchronization. A widely accepted method
of obtaining this self-clocking property is to ensure that
the waveforms on the channel provide a guaranteed
minimum spacing between the detectable transitions.
With this method it is convenient to use ac coupling of
the waveform into the channel. In the case of rotating-
head magnetic recording, transformer coupling of the
signal becomes a necessity. The codes we describe here
are aimed at such applications. The object of this paper is
not to describe production of such codes per se, but
rather to introduce some methods of synthesizing and
analyzing these codes in order to achieve flexibility of
choice in the design of a system.

Various waveform coding methods are used in tape
applications; nonreturn to zero (NRZ), NRZ inverse
(NRZI), phase modulation (PM), frequency modulation
(FM), and modified FM (MFM) are some of the weli
known techniques. The NRZI method is widely used at
the encoder-channel boundary; it accepts the binary input
string and produces as output for the recording head a
oNE for transition at every bit interval. Kobayashi and
Tang [1] discuss the inherent potential of NRZI wave-
forms for some kinds of error detection. In this paper we
assume the use of the NRZI waveform for the sake of
conformity, even though the techniques are also appli-
cable to the direct-waveform NRZ method.
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In NRZI terms, the required maximum spacing be-
tween transitions in a system that uses self-clocking be-
comes the number of maximum allowable consecutive
zeros, k, in the codewords. In general, it is also desirable
to set a lower bound d, for the space between transitions,
which is the minimum allowable string of zeros in the
codewords. The waveform pulse width is then bound be-
tween the two limits (d + 1) and (k + 1), which are di-
rectly related to the upper and the lower cutoff frequen-
cies of the read-write head and the supporting circuitry,
respectively. The ratio d/k gives an indication of the
bandwidth of these circuits and therefore should be small
for design reasons. The lower bound d on the run of
zeros also influences the interference between recorded
transitions in saturation recording and limits the spec-
trum spread in frequency-shift keying [2].

Many run-length-limited codes with (d, k) constraints
have been reported [2-10]. Tang [4, 5], Gabor[6],and
Kautz [7] describe block-oriented, run-length-limited
codes for tape applications. Tang and Bahl [ 10] compute
the number of (d, k)-limited sequences of given block
length and the asymptotic information rate of such codes.
Franaszek [2, 3] uses a sequence-state approach in the
construction of block- or variable-length codes. Gilder [ 8]
reports on the successful use, in a Bell and Howell high-
density tape system, of a simple scheme that forces an
additional odd parity bit at small intervals of NRZ data,
thereby achieving a guaranteed transition in every two
such intervals.
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The ac-coupling requirement further imposes a charge
constraint. The waveform should have neither lengthy
nor high-magnitude dc components. Expanding on Tang’s
notation, we consider (d, k, C) codes, where C is an
upper bound on the accumulated charge of the waveform,
(fify " fifi=1o0r—1). The (4, k, C) codes have two
primary constraints,

d = run of zeros in code = k, and (1)

SH=c (2)

To be able to meet the run-length constraint, each in-
put bit cannot be mapped into just one code bit. On the
average, « bits of information map into N bits of code,
where a < N. This may seem to imply redundancy and
higher frequency response of the head. The actual band-
width requirement, however, depends primarily on the
run-length limits d and k as previously discussed, and
hence the ratio a/ N does not directly affect the system
frequency requirements. Gabor [6] shows that the ef-
ficiency of the code, also, is not directly related to the dif-
ference between « and N. In general, the (d, k) or
(d, k, C) constraints determine the channel capacity,
K bits per N channel digits, and the ratio between o/ N
and K/N determines the code efficiency. The implied
redundancy o/ N, nevertheless, can be used for error
detection, as was demonstrated by Kobayashi and
Tang [1].

The MFM code achieves (d, k) = (1, 3); i.e., the
transition width is bound between two and four units of
tape time by mapping one information bit onto a pair of
code bits for the tape. This is the so-called double-
window concept, the case when o = 1 and N = 2. For
most applications, the higher the values of « and N, the
more complex the encoder and decoder. The techniques
we discuss here are most effective at small values of
«a and N. They can be generalized to higher values but
are applied there with greater computational difficulty.
Therefore, we assume o = 1 and N =2 for the codes we
consider. Furthermore, we assume d = 1, i.e., no ad-
jacent transitions are allowed, for our examples.

Channel states and allowed transitions

Let a denote the two NRZI bits injected into the chan-
nel; r, the latest run length at the end of a; ¢, the total
accumulated charge at the end of «; and w, the channel
waveform level (*1) at the end of a. The quadruple
[a, r, c, w] sufficiently describes the state of the channel
at the end of each two-channel digit boundary. The
(d, k, C) constraints limit the transition from a given
state [a, r, ¢, w] to other states as follows, in whichd=1
limits a to 00, 01, and 10:
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[00, r +2, ¢ + 2w, w] only if
e +2w| = C (3)

and r + 2 = £; (4)
[a,r, ¢, w] =< [01,0,c,—w] only if r + 1 =< k (5)
and |c +w| = C; (6)

[10,1, c—2w,—w] only if a # 01 (7)

and |c — 2w| = C. (8)

After assuming that initially ¢ = 0 for the channel, the
incremental charge of 0 or 2 at all transitions implies
that only even ¢’s result. Also, any state with a = 01 has
r= 0, and any state with a= 10 has r=1. Conditions (5)
and (6) arise because a =01 increases the run length and
the charge by 1 in transit. Thus, for even C, C and C — 1
have the same effect, and we may assume C to be odd.
Consequently, condition (6) is redundant because |c| =
Cc—1.

From the viewpoint of the encoder, the a’s are the only
outputs to the channel and there is an obvious isomor-
phism between states [11] as

[a, r, c,w] < [a,r, —c,—w], 9)

which can be easily verified by inspecting all successors
of [a, r, ¢, w] and those of [a, r,—c, —w]. Therefore, we
need consider only half of the total channel states by
nominally choosing w = 1 and representing the states by
triplets, [a, r, c].

Consider transitions to a =10, i.e., [ 10, 1, ¢ — 2w, —w].
The two possible transition are either from [00, r, ¢, w]
or [ 10, 1, ¢, w]. For the case of transition from a = 00,
c=c" +2wand |c'| = C, hence |¢ — 2w| = C. For the
other case, ¢ = ¢’ — 2(—w) and |¢’| = C; hence, again,
|c — 2w| = C, where ¢’ denotes the charge of the grand-
father state. Therefore, the condition (8) is redundant.
Using the isomorphism, then, we can simplify the allowed
state transitions as follows. Notice the negative charge
designation for successor states with a=01 and 10 due to
the convention that w = 1.

[00,r+2,c+2]onlyifc+2=C

and r + 2= k; (10)
la, r, c] - [01, 0, —c] only if r + 1= k; (11)
[10, 1,2 — ¢] only if a # O1. (12)

Any state that is not reachable from the initial state
assumed by the encoder need not be considered at all. We
now estimate the total number of states that must be con-
sidered under the (1, k, C) constraints. Obviously,
[01, 0, c] states can have alleven c’sintherange 1 —C=
¢ = C — 1. Therefore, No.[01, 0, c] = C, where “No.”
denotes the number of possible states. For [10, 1, ¢]
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Table 1 The number of states for (1, k, C) constraints.

k, C Number k, C Number
2,3 7 2,5 13
3,3 8 3,5 16
4,3 9 4,5 19
o0, 3 9 w, 5 25

states, ¢ = 1 — C is not allowed because c=2—c¢'=1—C
implies ¢/ = C + 1 > C, where ¢’ is the charge of any
predecessor state. Therefore, No.[10, 1, c] = C — 1. For
states with a = 00, notice that » = 2 is the smallest al-
lowed value and that [00, 2, ¢] must come from [01, O,
¢— 2], [00, 3, c] must come from [10, 1, c—2]: and, for
r = 4, the state [00, r, ¢] exists if and only if [00, r— 2,
c— 2] exists. Fora given r= r,, then

c- B—ro] it2=r, <2C;

No.[00, r,, ¢] =
0 if2C=<r<k (13)

Summing for all r;, 2 = r = &,
No.[00, r, c]
(k—1DC—-—mm+1)+1 ifk=2m<2C;

= (k= 1)C—m(m+2)
(c—n*

ifk=2m+1 < 2C;
ifk=2C. (14)

Hence, the total number of states can be written as

No.[a, r, c]

(k+DC—m(m+1) if k=2m < 2C;

=< (k+1)C—-1—m(m+2) fk=2m+1<2C;
o if k= 2cC. (15)

For small k£ and C values the total number of states given
by Eq. (15) is within easily manageable range, as shown
in Table 1 for some (1, k, C) constraints.

Transition probability assignment
The encoder must know the current channel state and the
input bit to determine which allowed successor state
should be chosen. The encoder then injects the a value of
the chosen successor as an NRZI waveform into the
channel, which actually accomplishes the channel-state
transition. The encoder must route the input data se-
quence, in proportion to the transition probability, to the
allowed successors.

Given (1, k, C) constraints, we determine the number
of channel states and their transition rules. To find all
states and their transitions, one has merely to begin with
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any known existing state, say [a, r, ¢] = [01, 0, 0], and
iteratively find successors by the rules of Eqs. (10-12).
We show three examples here.

(d, k, C) =(1,2,3):

S{ ——Sy—» S —» Sy —— S5 —»S6——» 54

3 S7—-———+s5
where §, = [01, 0, 0], S, = [00, 2, 2], S,=[10, 1, 0],
s, =[10, 1, 21, S, = [01, 0, =21, S, = [00, 2, 0], and
S,=1[01,0,2].

(d, k,C)=1(1,3,3) and [(1, 4, 3):(1, 3, 3) does not in-
clude the dotted transitions]:

B 2 e 54
S > S, > Sy 55 & »Sg
\S \A \s

where §, = [01, 0, 0], S, =100, 2, 2], S, =[01, 0, 2],
s,=1[10, 1, 0], S, = [00, 2, 0], S, =[01, 0, 2], §, =
(00, 3, 2], 5,=[10, 1, 2], and S, = [00, 4, 2].

Since we are concerned with the « =1 and N =2 case,
we require transition probabilities that permit a channel
capacity per state of one bit. When the channel capacity
exceeds one bit (the upper bound being two bits when
d =0 and k= C = x), we prune away some states and/ or
transitions to obtain the one-bit capacity and assign
transition probabilities attaining that capacity. Following
Shannon [12] (see also [13] for a specific treatment of
this subject), we use the connection matrix A = [aq, j],
defined for n states as

a;=1 if the §; = §; transition is allowed, and

a;;= 0 otherwise.

It has been shown that (i) A has a maximum magnitude,
positive, real eigenvalue A, ; (ii) the channel capacity is
log,\, bits per state; (iii) the eigenvectors corresponding
to A, all consist of multiples of some vector X = (x,, x,,
-+, x,), where the x; are all positive; and (iv) transition
probability assignments of p, ;= a, ;x;/ \yx; attain the chan-
nel capacity log,A,.

Obviously, the code does not exist if A, < 2, which is
the case for (d, k, C) = (1, 2, 3) constraints, which re-
sults in A, = 1.802. For (d, k, C) = (1, 3, 3), A\,=2 and
the corresponding eigenvector is

X= (3, 35 2’ 47 39 1, 2, 3); alSO

pi; = a,%;/ 2x;; and
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For the case (d, k, C) = (1, 4, 3), we have A; > 2.
There are excess transitions in this case and we prune
those single transition states one at a time in some trial-
and-error order until A\, = 2 is obtained. This can be done
in this case by removing the two single transition states
S, and S,. After the removal A, becomes 2; S, and S, are
isomorphic, and we may rename the states as §, =
[01,0,0],S,=1[00, (20r3),2],5,=[01,0,—-2],8,=
[10,1,0],5,=[00,2, 0], and S,=[10, 1, 2]. The eigen-
vector corresponding to A, = 2 can be calculated as X =
(2,2,1, 3,2, 2), and the transition probabilities are

: L S
S S2 S4‘_—3—_’S2
%\‘52 %\»54 \%‘Ss
+ s
+ 48 /’3
Ss’/’ ! 56 Sy —L s,
T T,

Initial state consideration

The encoder starts with an assumed initial state and
forces the state transitions in the channel according to the
binary input sequence. Given an arbitrarily long input
sequence, the decoder must be able to divide all possible
input sequences in proportion to the transition probabili-
ties of its successor states. Suppose the initial state is
S iy Then the probability of channel sequence

S =8 -5 —»>--—>5
10 ll 12 lt
for some ¢ is

X, X, . X, _li’i

)‘oxio }‘O‘Xil A

-1 o

Now, if x, / X, # ¢/2" for some integers ¢ and h; the
number of input sequences the encoder routes to S, must
be proportional to 1/p of all possible binary input se-
quences for some prime p other than 2. However, to be

able to distinguish 1/p of an arbitrarily long (say, in-
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1-_ass (5) (00) x5, (1)
Sg (%:><: 00 _s, (%>/‘
o 0055 () 1o
ks <%>/'

10- (0) 001 T, ()
100

$1(5)

5
Sy b3Sy (3)—»54 (1)

\ 101
11- 1=y (4)
001 s < T o0

\ /VS3 (+)
o %2 ) \
100

1- 284 ($)

Figure 1 A (I, 3, 3), code assignment.

finite) binary sequence, one must look at the entire
length of the input sequence, i.e., an infinite look-ahead
of the input data is necessary.

Suppose the eigenvector X is normalized so that every
component x; is the smallest possible integer. Since all
the channel states we can use must be strongly connected
[11], the states can be divided into two categories ac-
cording to whether the given state used as an initial state
would require a finite or an infinite look-ahead encoder.
That is, S, is a finite encoder initial state if and only if the
greatest odd divisor of x; is also a divisor of all x;, j # i.
For the example (d, k, C) = (1, 3, 3), discussed above,
{5, S, 8., S} is the set of states that require infinite
look-ahead encoders when used as the initial state, and
{8, S,, S S} is the set of states that require finite look-
ahead encoders; for the (d, k, C) = (1, 4, 3) case, S, is
the only infinite look-ahead initial state.

Code construction: mapping inputs onto transitions

o Finite look-ahead case

If a state requiring a finite look-ahead encoder is chosen
as the initial state, the code construction amounts to
specifying the encoder (and decoder) function that maps
the binary input data to the channel transition. For ex-
ample, if S, of the (1, 3, 3) constraint design is the initial
state, the encoder could map the inputs to transitions
as follows.

S, (prob=13/8) iff I=000---or/=01--+
S, —><S, (prob=1/4) iff I=10--
S, (prob=3/8) iff /=001 rorf=11:"-

The whole mapping can be carried out using an encoder
tree such that all transitions appear just once. One fea-
sible assignment, which we call the (1, 3, 3), code, is
shown in Fig. 1. The leftmost input bits in the transition
branches are the current input to the encoder, and the
rest of the bits are future data bits. Some data bits in
parentheses are predetermined by the previous transi-
tions.
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No method is known for optimal transition assign-
ments. For practical encoder and decoder implementa-
tions, a trial process using the following guidelines is
recommended.

1. Always route the input sequences in proportion to the
transition probabilities.

2. Consider the decoding problem, so that it does not re-
quire too many code states for deciphering the data
bits from the code sequences.

3. Try, as much as possible, to assign transitions such
that the code-state to code-state [a, r, c] transitions
get consistent input data values. (Franaszek [ 3] calls
this the “‘state-independence” criterion for his (d, k)
codes.)

4. For all transitions to a given state, the prespecified
future data bits should be consistent, e.g., S, — §,,
S, — S, in Fig. 1.

After defining the mapping, the states must be coded
using binary-state variables. Three-state variables P P,P,
can be used to denote the states S, through §,. With time
denoted by superscripts, the (1, 3, 3), code encoder is a
combinational circuit with six inputs (P?PngI‘IZIS) and
five outputs (P,P,P,a,a,). An optional error output E
may be created using the same input variables. This signal
checks the encoder circuit by detecting any illegal com-
bination of states and inputs. The decoder requires three
code states to uniquely decipher the binary data. Thus
the decoder is a combinational circuit with nine inputs
(P(;Pnga;a;afa;a?ag) and four outputs (PiP;P;I‘) . Again,
an optional error function can be created using the same
inputs, providing powerful channel error detection. An-
other example of a transition assignment for the (1, 3, 3)
code and an example of a (1, 4, 3) code are given in the
Appendix.

The (1, 3, 3), code synthesized above requires a state
calculation in both encoding and decoding. The fact that
the state calculation is necessary in decoding raises a
question of error propagation. One can use a Viterbi-
type correction procedure en route if the probability of
the most likely true code values can be decided by the
engineer. Also, there is a high probability that most of the
errors will resynchronize back to the correct state after a
few miscalculations. The fact that the state-dependent
decoding is used can also be utilized as a powerful error
detection means for the transmitted message. There are
many more possible codes, some of which may provide a
better implementation. The objective here is simply to
demonstrate the method of construction.

e Infinite look-ahead case

When the initial state requires an infinite look-ahead, it is
necessary to provide an infinite look-ahead function that
distinguishes 1/ p of the binary sequence for some p # 2.
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For the (1, 3, 3) example, one-third of all binary se-
quences must be distinguished. One method of distin-
guishing one-third of an infinite sequence is to classify by
magnitude, i.e.,

0o 00 [00] 00| - | 00

Tpor ot o | ot &y
] > (3) =3
2 110 |10 10 10 - 0=

I I VI VU AT PR B Y

Hence, given that the current bit is 0, the sequence be-
longs to [0, ~;~) if and only if at least two consecutive 0’s

occur {including the current bit) before at least two con-
secutive 1’s occur.

Let Z be the variable which is 0 if the current data bit
is 0 and a O burst precedes a 1 burst, and is 1 otherwise.
For example, if the

data = 0010110001011000101 - -,
then Z=0111110011111002272- - -.

One possible assignment of transition is shown in Fig. 2
asa (1, 3, 3) code. In Fig. 2 the data bits in parentheses
denote past data bits for encoding and decoding. One ob-
serves that this code has a consistent assignment which
permits state-independent decoding.

Another way of distinguishing one-third of the infinite
sequences is by using either 1’s or 0’s parity on the data.
Let P be the look-ahead-1’s burst parity; i.e., P=1if and
only if the current data bit is a 1 and the consecutive
number of 1’s including the current bit, is odd.

10
=1\ 1
1110 (—)=—,
gl 4) =3
111110

etc.

A (1, 3, 3) code using this P function in the assignment
was originally discovered by Patel [ 14] and was called
the ZM (zero-modulation) code. For the detailed en-
gineering implementation and the merits of this code,
see [14].

Worst-case analysis

For an engineering application, an optimal selection has
to be made from a wide variety of codes that can be syn-
thesized by the techniques discussed above. Should an
infinite buffer be allowed for the sake of simpler decod-
ing? Is state dependency of decoding a hazard or a boon
for error detection in the application? What is the ex-
tent of minimization of the encoder and decoder cir-
cuits? These questions should be considered before a
choice is made.
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Another useful consideration in code design concerns
the data characters. Often the data stream is “padded”
with 0’s. Also, the data may consist of long bursts of I’s.
For these frequent data sequences, one may desire the
waveform on the tape to be the most reliable one, i.e., a
waveform with the smallest pulse width and charge drift.

The code sequences corresponding to either the zero
burst (0”) or the one burst (17) in the data can be easily
obtained by tracing the code tree as in Figs. 1 and 2. The
example codes (1, 3, 3), and (1, 3, 3). both exhibit
(10)” code sequences for the one burst in the input data
sequence. The (1, 3, 3), code also produces (10)~ for
the zero burst of the data. However, the (1, 3, 3) . code
produces a (1000)* code sequence for a zero burst data
sequence.

The code sequence (1000)” is, of course, a succession
of the widest pulses for (d, k) = (1, 3). If a special data
sequence is used for a synchronization marker, the cor-
responding code sequence is also desired to be the most
reliable one. Again, tracing the code tree at various points
with the given data sequence yields the code sequence
for such analysis.

The worst-case code output may provide another cri-
terion for code choice. We have seen that the (1, 3, 3),
code has (1000)” as its worst pattern. For the (1, 3, 3) ,
code, the worst-case code sequence (1000) ” corresponds
to the input data pattern 001(0001)~, starting from
state .

Run-length statistics

Once the transition probabilities P, ; are known, the sta-
tionary distribution of states can be calculated in the
usual manner from the transition probability matrix. For
(1, 3, 3) codes, the stationary probabilities of states be-
come

State 92 |‘S SV4iS5 ‘S" iS’ ‘S
- 1\1;1‘;‘_1{_1]_'\1
Probability 4181919112136/18138

The states §,, S,, S,, S,, and S, each contain one transi-
tion. Therefore the transition probability is

P,= P(S,) + P(S,) + P(S,) + P(S,) + P(S,) = 53/72.

On the average, there are P, transitions in the waveform
for each bit of input data. Since each transition marks the
boundary of a pulse, the average pulse width of the wave-
form is just the inverse of the transition probability
P ie.,

Average pulse width = 1/P, = 72/53 = 1.358 bit units
= 2.717 window units.

Similarly, one can obtain the probabilities of each of
the allowed run-length sequences in the channel by
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(1o

Encoder: (1)o 01 S S5
(0)1/. 51 /v ’
Sl 0 \ / Sl
/ (0)0 ™* S5
(11 T S
00 *S, 1
S1
> y 0z*
oz s ZOL,
0Z
(1)1 g g
(0)0 8 3
1- S
7 0z 4
*(0Z cannot occur here)
I
Decoder: a(l)ag _—————————p a} alz _’alzag
-1

01 —I—O 00
-1

~l

0l c—— 301
10 0r 00 ——2——— 01

1
10 ————=——> 00

10 or 00 -—-1—-—> 10 — 100r01

10 or 00 —0—-——-'10 — 00

Figure 2 A (1, 3, 3). code encoder and decoder assignment.

gathering the probabilities of transitions that produce the
given run-length. For the (1, 3, 3) codes, they are

Run-length NRZI Probability Percent
2 101 25/53 47
3 1001 18/53 34
4 10001 10/53 19

The average pulse width and the run-length distribution
can be important engineering criteria.

Summary
Various aspects of the synthesis and analysis of (d, &, C)
codes have been presented. Channel states and allowed
transitions for a given set of constraints have been enu-
merated, and it has been shown that the code synthesis
depends strongly on the assumption of a particular initial
channel state. A procedure for determining those initial
states that lead to encoders with infinite look-ahead re-
quirements has been given. The techniques of code con-
struction have been illustrated by means of examples.
The procedure used in this paper may be generalized
to non-NRZI cases, and «, N, and d may assume values
other than those used in the examples.

Appendix A: An alternate (1, 3, 3) code: (1, 3, 3);
Sometimes a code can be constructed for simpler imple-
mentation by splitting a state into two, such that a more
consistent input assignment may be carried out.
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Sa
(11)

L
Ss —¥ 53
001 M1 S 3
/ ms / 6
3
10-
s (0)

000
01=
_ (10 s 1
4 5, —s, (D10 5
k‘
01- }(1)0 001 *Ss
000 ~
M ——/”S1
00~ 0)

Sax —’54
101

o)
Sgy ———— g,

Figure Al A split-state (1, 3, 3), code.

In this example the state S, is split into two states
S,, and S, . The only modifications due to this split are

Si(3)
S1 » Sy (5) > S4(1)
Say () > S3(D)

A highly consistent assignment of transitions is now
possible, as shown in Fig. Al.

Since there are nine states, at least four state variables
are necessary to code the states. The « values (a,4,) and
two additional variables (7,T,) to differentiate §,,, Sy
S, and S, are selected. The encoder requires fewer out-
puts due to the high consistency of the (1, 3, 3); code.
Notice that the current input from S, and S, is always 0
and from S, is always 1. The encoder is a combinational
circuit with seven inputs (aja,T,T,1'I*I*) and four out-
puts (a,a,T,T,). The decoder can be identical with that of
the (1, 3, 3) , code because the states S, and S, need not

be distinguished.

Appendix B: Assignment of transitions for (1, 4, 3)
code

A (1, 4, 3) code assignment can be made as in Fig. B1,
where §, is chosen for the initial state. It is possible in
this case to assign inputs to transitions such that decod-
ing becomes almost state-independent. Data bits in
parentheses are past data bits.

Since there are only six states, we need only three
binary state variables. The a values (a,a,) and one addi-
tional variable b to distinguish states S,, S,, and S, from
the states S,, S,, and §, are selected. The encoder takes
six inputs (alayb°I'I°I') and generates four outputs
(aya,b'E), including the error function. The decoder re-

0112 2

. . 00
quires seven inputs (a,a,b a,a,a;a,) and generates three

outputs (IoblE). These combinational functions are ex-
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S >S5
4 ()1 ?I
1
S4
1 0- 10
11 0
Se
0 10
3 JV
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Figure B1 A (1, 4, 3) code assignment.

tremely simple and the minimized functions using the
error conditions as full DON'T CAREs are shown below
(+ denotes OR).
Encoder: a;, = ay(I' + I°I');

1

ay = @b I'T' + b° (@1’ + ajagl™');

b =01+ ayayl ') + ab'1’;
E can be similarly obtained.

0 1 ~0,0 1 2
Decoder: I' = a, + a,b a,d,;

— =0-070-1-1 0 0 1.1 0 1 070 1
E =a.a,b'a,a, + aja, + a,a, + a,a; + a,b a,.

In general, more relaxed (d, k, C) constraints bring a
larger choice of codes and simpler encoder-decoder
circuits. All of the (1, 3, 3) codes require much more
complex Boolean realizations than the above (1, 4, 3)
example.
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