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Aspects of Synthesis  and  Analysis 

Abstract: We consider NRZI waveform codes  that satisfy  a given set of run-length constraints  and  the  upper bound on  the accumulated 
dc charge of the waveform. These  constraints  enable  the  codeword  to be self-clocking,  ac-coupled, and  suitable  for  data processing 
tape and  communication  applications. Various  aspects of synthesis and  analysis of such codes, called ( d ,  k ,  C )  codes,  are illustrated by 
means of several  examples. The choice of the initial state of the  encoder is shown  to influence the length of the  data  sequence  over which 
the  encoder must  look-ahead. 

Introduction 
In  the transmission of binary data,  whether  on a com- 
munication link or through a magnetic  recording  head 
onto a tape, it is generally desirable  to  encode  the  data  to 
achieve self-synchronization. A widely accepted method 
of obtaining  this self-clocking property is to  ensure  that 
the waveforms on  the channel  provide  a guaranteed 
minimum spacing between  the  detectable  transitions. 
With this  method it is convenient to use ac coupling of 
the waveform  into the channel. In  the  case of rotating- 
head  magnetic  recording, transformer coupling of the 
signal becomes  a  necessity. The  codes we describe  here 
are aimed at such  applications. The object of this paper is 
not to  describe production of such  codes per se, but 
rather  to  introduce  some  methods of synthesizing  and 
analyzing these  codes in order  to  achieve flexibility of 
choice in the design of a system. 

Various waveform  coding  methods are used in tape 
applications;  nonreturn  to  zero (NRZ) ,   NRZ inverse 
(NRZI) ,  phase modulation (PM),  frequency modulation 
(FM)  , and modified FM  (MFM ) are  some of the well 
known techniques. The  NRZI method is widely used at 
the  encoder-channel  boundary; it accepts  the binary  input 
string  and produces  as  output  for  the recording  head  a 
ONE for transition at  every bit interval. Kobayashi and 
Tang [ 11 discuss  the  inherent potential of NRZI wave- 
forms  for  some kinds of error  detection.  In this paper  we 
assume  the  use of the  NRZI waveform  for the  sake of 
conformity, even though the  techniques  are  also appli- 
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In NRZI terms,  the required  maximum  spacing be- 
tween  transitions in a system  that uses self-clocking be- 
comes  the  number of maximum  allowable consecutive 
zeros, k ,  in the  codewords.  In general, it is also  desirable 
to  set a lower  bound d, for  the  space  between  transitions, 
which is the minimum allowable  string of zeros in the 
codewords.  The waveform  pulse width is then  bound  be- 
tween the  two limits ( d  + l )  and ( k  + l ) ,  which are di- 
rectly  related to  the  upper  and  the lower cutoff frequen- 
cies of the read-write  head and  the supporting circuitry, 
respectively. The ratio d l k  gives an indication of the 
bandwidth of these  circuits  and  therefore should be small 
for design reasons.  The lower bound d on  the run of 
zeros  also influences the interference between recorded 
transitions in saturation recording  and limits the  spec- 
trum spread in frequency-shift keying [ 21. 

Many run-length-limited codes with (d, k )  constraints 
have been reported [ 2 - 101. Tang [ 4 ,5 ] ,  Gabor [ 61, and 
Kautz [7] describe block-oriented, run-length-limited 
codes  for  tape applications. Tang and Bahl [ 101 compute 
the number of (d, k)-limited sequences of given block 
length and the  asymptotic information rate of such codes. 
Franaszek [ 2 ,  31 uses a sequence-state  approach in the 
construction of block- or variable-length codes.  Gilder [ 81 
reports  on  the successful use, in a Bell and  Howell high- 
density tape  system, of a simple scheme  that  forces  an 
additional odd parity bit at small intervals of NRZ  data, 
thereby achieving  a guaranteed transition in every  two 
such intervals. 
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The ac-coupling requirement  further imposes  a charge 
constraint.  The waveform should have neither lengthy 
nor high-magnitude dc  components. Expanding on Tang’s 
notation,  we  consider (d ,  k, C) codes,  where C is an 
upper bound on  the accumulated  charge of the waveform, 
ulf, . . . &:fi = 1 or -1). The ( d ,  k,  C) codes  have  two 
primary constraints, 

d 5 run of zeros in code 5 k ,  and (1 )  

lX&l 5 c. ( 2 )  

To be able  to meet the run-length constraint,  each in- 
put bit cannot be  mapped  into just  one  code bit. On  the 
average, a bits of information map into N bits of code, 
where a < N .  This may seem  to imply redundancy  and 
higher frequency  response of the  head. The actual  band- 
width requirement,  however,  depends primarily on  the 
run-length limits d and k as previously discussed, and 
hence  the  ratio a /  N does not  directly  affect the system 
frequency  requirements.  Gabor [6] shows  that  the ef- 
ficiency of the  code,  also, is not  directly  related to  the dif- 
ference  between a and N .  In  general,  the (d ,  k)  or 
(d, k, C )  constraints  determine  the channel capacity, 
K bits  per N channel  digits,  and the  ratio  between a /  N 
and K / N determines  the  code efficiency. The implied 
redundancy a / N ,  nevertheless,  can be  used for  error 
detection,  as was demonstrated by Kobayashi  and 
Tang [ 13. 

The  MFM  code  achieves (d ,  k) = ( 1, 3) ; i.e., the 
transition width is bound  between two and four units of 
tape time by mapping one information bit onto a  pair of 
code bits for  the tape. This is the so-called  double- 
window concept,  the  case when a = 1 and N = 2. For 
most applications, the higher the values of a and N ,  the 
more complex  the  encoder  and  decoder.  The  techniques 
we discuss  here  are most effective at small values of 
a and N .  They  can  be generalized to higher  values but 
are applied there with greater computational difficulty. 
Therefore,  we  assume a = 1 and N = 2 for  the  codes we 
consider. Furthermore, we assume d = 1, i.e., no  ad- 
jacent  transitions  are allowed, for our examples. 

Channel  states and  allowed  transitions 
Let a denote  the two NRZI bits  injected  into the chan- 
nel;  r,  the  latest run length at  the  end of a; c,  the total 
accumulated  charge  at  the end of a;  and w, the channel 
waveform level ( 2 1 )  at  the end of a. The  quadruple 
[ a ,  r, c ,  w] sufficiently describes  the  state of the channel 
at  the end of each two-channel digit boundary.  The 
(d, k ,  C) constraints limit the transition from a given 
state [ a ,  r, c ,  w] to  other  states  as follows, in which d = 1 
limits a to 00, 0 1, and 10: 
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[a, r, e, w] + 

[Oo, r +, 2, c + 2w, w] only if 
( c  + 2 4  5 c (3 )  

a n d r f 2 5 k ;  (4) 

[ O I ,  0,  c ,  -w] only if r + 1 5  k ( 5 )  

and I C  + wI 5 C ;  ( 6 )  

[ 10, 1, c - 2w, -w] only if a # 01 (7)  

and I C  - 2 4  5 C. (8) 

After assuming that initially c = 0 for  the  channel,  the 
incremental  charge of 0 or 2 at all transitions implies 
that only even c’s result. Also, any state with a = 0 1  has 
r = 0, and any state with a = 10  has r = 1. Conditions ( 5 )  
and (6) arise  because a = 0 1 increases  the run  length and 
the charge by 1 in transit. Thus,  for  even C, C and C - 1 
have  the  same effect, and we may assume C to  be odd. 
Consequently, condition (6)  is redundant  because I C I  5 
c- 1. 

From  the viewpoint of the encoder,  the a’s are  the only 
outputs  to  the channel and  there is an  obvious isomor- 
phism between  states [ 113 as 

[ a ,  r, c ,  wl [ a ,  r, -c, -wI, (9) 

which can  be  easily verified by inspecting all successors 
of [a, r, c,  w] and those of [a, r,  -c, -w]. Therefore, we 
need consider only half of the total  channel states by 
nominally choosing w = 1 and representing the  states by 
triplets, [a, r, c]. 

Consider transitions to a = 10, i.e., [ 10, I ,  c - 2w, -w] . 
The two  possible  transition are  either from [00, r ,  c,  w] 
or [ 10,  1, c ,  w] . For  the  case of transition from a = 00, 
c = c’ + 2w and Ic’I 5 C ,  hence I C  - 2wl 5 C.  For the 
other  case, c = c’ - 2(-w) and lc’l 5 C ;  hence, again, 
I c - 2wl 5 C,  where c’ denotes  the charge of the grand- 
father  state.  Therefore,  the condition (8) is redundant. 
Using the isomorphism, then,  we  can simplify the allowed 
state  transitions  as follows. Notice  the negative charge 
designation for  successor  states with a = 0 1  and 10 due  to 

tic 3n that w = 1. 

[oo, r + 2, c + 21 only if c + 2 4 C 

and  r + 2 5 k; ( 10) 

[ O l ,  0, -c] only if r + 1 5  k; (11)  

[ 10, 1, 2 - c] only if a # 01.   (12)  

Any  state  that is not reachable  from the initial state 
assumed by the  encoder need  not  be  considered at all. We 
now estimate  the total number of states  that  must be con- 
sidered under  the (1,  k, C )  constraints. Obviously, 
[ 0 1, 0, e]  states  can  have all even c’s in the range 1 - C 5 
c 5 C - 1. Therefore, No.[ 01, 0, c] = C,  where  “No.” 
denotes  the  number of possible states.  For [ 10, 1, c]  359 
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Table 1 The number of states for ( 1 ,  k ,  C )  constraints. 

k ,  C Number k ,  C Number 

states, c = 1 - C is not allowed because c = 2 - e’ = 1 - C 
implies e’ = C + 1 > C,  where c’ is the  charge of any 
predecessor  state.  Therefore, No.[ 10, 1, c] = C - 1. For 
states with a = 00, notice that r = 2 is the smallest al- 
lowed value and  that [ 00, 2, c] must come  from [ 0 l ,  0, 
e.- 21 ; [OO, 3, c] must come  from [ 10, 1, e -  21 ;and,  for 
r 5 4,  the  state [ 00, r,  e ]  exists if and only if [ 00, r - 2, 
c - 21 exists. For a given r = r,,, then 

{I - [+,I if 2 5 ro < 2 ~ ;  
No.[OO, r,, c ]  = 

if 2C f ro f k. (13) 

Summing for all r,, 2 5 r, f k, 

No.[OO, r ,  c] I ( k -  1 ) C - m ( m +  1) + 1 i f k = 2 m  < 2C; 

= ( k -   1 ) C -  m ( m  + 2) i f k = 2 m +  1 < 2 C ;  

( C -  1)2 if k 2 2C.  (14) 

Hence,  the total number of states  can be  written as 

No.[a, r ,  c ]  

( k  + 1)C  - m ( m  + 1) if k = 2m < 2C; 

= ( k +  l ) C -   1 - m ( m + 2 )   i f k = 2 m +  1 < 2 C ;  

IC2 if k 2 2C. (15) 

For small k and C  values the total number of states given 
by Eq. ( 15) is within easily  manageable  range, as  shown 
in Table 1 for some ( 1, k,  C) constraints. 

Transition probability assignment 
The  encoder  must know the  current channel state  and  the 
input bit to  determine which  allowed successor  state 
should be  chosen.  The  encoder  then injects the a value of 
the  chosen  successor  as  an NRZI waveform into  the 
channel, which  actually  accomplishes the  channel-state 
transition.  The  encoder must route  the input data se- 
quence, in proportion to  the transition  probability, to  the 
allowed successors. 

Given ( 1, k, C)  constraints,  we  determine  the  number 
of channel states  and  their transition  rules. To  find all 
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any known existing state, say [a, r,  e ]  = [Ol, 0, 01,  and 
iteratively find successors by the rules of Eqs. ( 10- 12).  
We  show three examples here. 

(d ,  k, C)  = (1, 2, 3): 

where S ,  = [ O l ,  0, 01, S, = [00, 2,  21, S,= [ lo ,  I ,  01, 
S,  = [ lo ,  1, 21, S, = [ O l ,  0, -21, S, = [00, 2, 01, and 
s, = [ O l ,  0, 21. 

(d,k,C)=(l,3,3)and[(l,4,3):(1,3,3)doesnotin- 
clude  the  dotted  transitions] : 

”” 

,.T sg +s4 

where S, = [Ol, 0, 01, S, = [00, 2, 21, S, = [ O l ,  0,-21, 

[ 0 0 , 3 , 2 ] , S , = [ l 0 , 1 , 2 ] , a n d S , = [ 0 0 , 4 , 2 ] .  
Since we are  concerned with the CY = ‘1 and N = 2 case, 

we  require transition  probabilities that permit  a  channel 
capacity per state of one bit.  When the  channel  capacity 
exceeds  one bit (the  upper bound being two bits when 
d = 0 and k = C = w) , we  prune away some  states  and/  or 
transitions  to  obtain  the one-bit capacity  and assign 
transition  probabilities  attaining that  capacity. Following 
Shannon [ 121 (see also [ 131 for a specific treatment of 
this subject),  we  use  the  connection matrix A = [aij], 
defined for n states  as 

uij = 1 if the Si + Sj transition is allowed, and 

aij = 0 otherwise. 

s, = [ lo ,  1, 01, S, = [OO, 2, 01, s, = [Ol, 0, 21, S, = 

It  has been shown  that ( i )  A has a maximum  magnitude, 
positive,  real  eigenvalue A,; ( i i )  the  channel  capacity is 
log2Ao bits  per state; ( i i i )  the eigenvectors corresponding 
to A, all consist of multiples of some  vector X = (x,,  x2, 
. . ., x n )  , where  the xi are all positive;  and ( i u )  transition 
probability  assignments ofp i j=  aijxj/A,,xi attain  the  chan- 
nel capacity log,h,. 

Obviously, the  code  does  not  exist if A,, < 2, which is 
the  case  for (d ,  k ,  C) = ( 1, 2, 3)  constraints, which  re- 
sults in A,, = 1.802. For (d ,  k, C) = ( 1, 3, 3),  A, = 2 and 
the  corresponding  eigenvector is 

X =  (3, 3, 2, 4, 3, 1, 2, 3); also 

pij = aijxj/ 23 ;  and 

1BM J .  RES. DEVELOP. 



For  the  case ( d ,  k ,  C )  = ( 1 ,  4, 3) ,  we  have A, > 2.  
There  are  excess  transitions in this case and we  prune 
those single transition states  one  at a time in some trial- 
and-error  order until A, = 2 is obtained. This can be done 
in this case by removing the  two single transition states 
S, and S,. After  the removal A, becomes  2; S, and S, are 
isomorphic, and  we may rename  the  states  as S, = 
101, 0, 03, S,= [OO, (2   or  3) ,  21, S,= [01, 0,-2],S,,= 
[ lo ,  1,0],S,=[O0,2,0],andS,=[lO,l,2].Theeigen- 
vector  corresponding  to A, = 2 can be  calculated as X = 

(2, 2 ,  1, 3, 2, 2 ) ,  and the transition  probabilities are 

Initial  state consideration 
The  encoder  starts with an  assumed initial state and 
forces  the  state  transitions in the  channel  according  to  the 
binary  input sequence.  Given  an arbitrarily long input 
sequence,  the  decoder must  be able  to divide all possible 
input sequences in proportion  to  the transition  probabili- 
ties of its successor  states.  Suppose  the initial state is 
S. . Then  the probability of channel  sequence 
'0 

Si, + S i ]  -+ S.  +. . . + Si 
'2 I 

for  some tis  
x. xi  
112.. ." - 

xi 1 x. 
- 3. 

'#io A g i ,  ~ o x i ~ - ~  ~ l ,  xi, 

Now, if xi / x i o  # e / 2 h  for  some integers e and h ;  the 
number of Input sequences  the  encoder  routes  to S. must 
be  proportional to l / p  of all possible  binary input se- 
quences  for  some prime p other  than 2. However, to be 
able  to distinguish 1/p of an arbitrarily long (say, in- 

t 
' t  
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Figure 1 A (1 ,  3,  3 I A  code  assignment. 

finite)  binary sequence,  one must look at  the  entire 
length of the input sequence, i.e., an infinite look-ahead 
of the  input  data is necessary. 

Suppose  the eigenvector X is normalized so that  every 
component xi is the smallest  possible  integer. Since all 
the  channel  states  we can use must  be  strongly connected 
[ 1 I ] ,  the  states can be divided into  two  categories  ac- 
cording to  whether  the given state used as  an initial state 
would require a finite or  an infinite look-ahead encoder. 
That  is, Si is a finite encoder initial state if and  only if the 
greatest odd  divisor of xi is also a divisor of all xj, j # i. 
For  the example ( d ,  k, C) = ( 1, 3, 3 ) ,  discussed  above, 
{SI, S,,  S,, S,} is the  set of states  that  require infinite 
look-ahead encoders when  used as  the initial state,  and 
{S3, S,, S,, S,} is the  set of states  that  require finite look- 
ahead  encoders;  for  the ( d ,  k ,  C )  = ( 1 ,  4, 3)  case, S, is 
the only infinite look-ahead initial state. 

Code construction: mapping inputs onto transitions 

Finite look-ahead  case 
If a state requiring a finite look-ahead encoder is chosen 
as  the initial state,  the  code  construction  amounts  to 
specifying the  encoder  (and  decoder) function that maps 
the binary input  data  to  the channel  transition. For  ex- 
ample, if S, of the ( 1 ,  3, 3)  constraint design is the initial 
state,  the  encoder could  map the inputs to  transitions 
as follows. 

I S , ( p r o b = 3 / 8 )   i f f I = O O O . . . o r f = 0 1 . . ~ ;  

S 4 +  S, (prob= 1/4) iff I =  lo . . . ;  

S ,  ( p r o b = 3 / 8 )   i f f Z = 0 0 1 ~ ~ ~ o r I = 1 1 . ~ ~ .  

The whole  mapping can be carried  out using an  encoder 
tree  such  that all transitions  appear  just  once.  One fea- 
sible  assignment,  which we call the ( 1 ,  3, 3)* code, is 
shown in Fig. 1. The leftmost input bits in the transition 
branches  are  the  current  input  to  the  encoder,  and  the 
rest of the bits are  future  data bits. Some  data bits in 
parentheses  are predetermined  by the previous  transi- 
tions. 361 
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No method  is  known for optimal transition assign- 
ments. For practical encoder and decoder implementa- 
tions, a trial process using the following  guidelines  is 
recommended. 

1.  Always route the input sequences in proportion to the 
transition probabilities. 

2. Consider the decoding problem, so that it does not re- 
quire too many code states for deciphering the data 
bits from the code sequences. 

3. Try,  as much as possible, to assign transitions such 
that the code-state to code-state [ a ,  P, c ]  transitions 
get consistent input data values. (Franaszek [ 31 calls 
this the “state-independence” criterion for his ( d ,  k )  
codes.) 

4. For all transitions to a given state, the prespecified 
future data bits should  be consistent, e.g., S, + S,, 
S ,  -+ S, in Fig.  1. 

After defining the mapping, the states must  be coded 
using binary-state variables. Three-state variables P,  P2P3 
can be  used to denote the states S, through S,. With  time 
denoted by superscripts, the ( 1 , 3 ,  3)* code encoder is a 
combinational circuit with  six inputs (P~P~P~Z’Z2Z3)  and 
five outputs (P:P:Pta:u:). An optional error output E 
may be created using the same input variables. This signal 
checks the encoder circuit by detecting any  illegal  com- 
bination of states and inputs. The decoder requires three 
code states  to uniquely decipher the binary data. Thus 
the decoder is a combinational circuit with  nine inputs 
( P ~ P ~ < u ~ u ~ u ~ u ~ u ~ u ~ )  and four outputs (P:PiPjI’). Again, 
an optional error function can be created using the same 
inputs, providing  powerful channel error detection. An- 
other example of a transition assignment for the ( 1, 3,   3 )  
code and an example of a ( 1,4,  3 )  code  are given  in the 
Appendix. 

The ( 1, 3, 3) A code synthesized above requires a state 
calculation in both  encoding  and decoding. The fact that 
the state calculation is necessary in decoding raises a 
question of error propagation. One can use a Viterbi- 
type correction procedure en route if the probability of 
the most  likely true code values can be decided by the 
engineer. Also, there is a high probability that most of the 
errors will resynchronize back to the correct state after a 
few miscalculations. The fact that the state-dependent 
decoding is  used can also be  utilized as  a powerful error 
detection means for the transmitted message. There  are 
many  more  possible codes, some of which  may  provide a 
better implementation. The objective here is  simply to 
demonstrate the method of construction. 

Infinite look-ahead  case‘ 
When the initial state requires an infinite look-ahead, it is 
necessary to provide an infinite  look-ahead function that 
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For the ( 1, 3,  3) example, one-third of  all  binary  se- 
quences must  be distinguished. One method of distin- 
guishing one-third of an infinite sequence is to classify by 
magnitude,  i.e., 

0 1 00 I 00 I 00 I . ’ .  I 00 . . .  

Hence, given that the current bit  is 0, the sequence be- 

longs to [ O ,  -1 if and only  if at least two consecutive 0’s 

occur (including the current bit) before at least two con- 
secutive 1’s occur. 

Let Z be the variable which  is 0 if the current data bit 
is 0 and a 0 burst precedes a  1 burst, and is 1 otherwise. 
For example, if the 

1 
3 

data = 00101 1000101 1000101. ., 

then Z = 01 11 11001 11 1 loo????. * .. 
One possible  assignment of transition is shown in Fig. 2 
as  a ( 1, 3, 3) code. In Fig. 2 the data bits in parentheses 
denote past data bits for encoding  and decoding. One ob- 
serves that this code has a consistent assignment which 
permits state-independent decoding. 

Another way of distinguishing one-third of the infinite 
sequences is by using either 1’s or 0’s parity on the data. 
Let P be the look-ahead-1’s burst parity; i.e., P = 1 if and 
only if the current data bit  is a 1 and the consecutive 
number of  1’s including the current bit,  is odd. 

10 

1110 E (+) i l  =3 ,  
111110 *=l 

etc. 

A (1, 3, 3) code using this P function in the assignment 
was originally discovered by  Pate1 [ 141 and  was  called 
the ZM (zero-modulation) code. For the detailed en- 
gineering  implementation  and the merits of this code, 
see [ 141. 

Worst-case analysis 
For an engineering application, an optimal selection has 
to be  made  from a wide variety of codes that can be syn- 
thesized by the techniques discussed above. Should an 
infinite  buffer  be  allowed for the sake of simpler decod- 
ing? Is state dependency of decoding a hazard or  a boon 
for error detection in the application? What  is the ex- 
tent of minimization of the encoder and decoder cir- 
cuits? These questions should  be considered before a 
choice is  made. 
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Another useful  consideration in code design concerns 
the  data  characters.  Often  the  data  stream is “padded” 
with 0’s. Also,  the  data may consist of long bursts of 1’s. 
For  these  frequent  data  sequences,  one may desire  the 
waveform on  the  tape  to  be  the most reliable one, i.e., a 
waveform  with the smallest  pulse width and charge  drift. 

The  code  sequences  corresponding  to either the  zero 
burst (0”) or  the  one  burst ( 1”) in the  data  can be  easily 
obtained by tracing the  code  tree  as in Figs. 1 and 2. The 
example codes ( 1, 3 ,   3 )*  and ( 1, 3, 3 ) c  both  exhibit 
( 10) 3i code  sequences  for  the  one  burst in the input data 
sequence.  The ( 1, 3, 3)  A code  also  produces ( I O )  for 
the  zero  burst of the  data.  However,  the ( 1, 3,  3) code 
produces a ( 1000) code  sequence  for a zero  burst  data 
sequence. 

The  code  sequence ( 1000) is, of course, a  succession 
of the widest  pulses for (d ,  k )  = ( I ,  3). If a  special data 
sequence is used for a  synchronization marker,  the  cor- 
responding code  sequence is also  desired to be the most 
reliable one. Again,  tracing the  code  tree  at various  points 
with the given data  sequence yields the  code  sequence 
for such analysis. 

The  worst-case  code  output may provide another cri- 
terion for  code  choice. We have  seen  that  the ( 1 ,  3,   3 ) ,  
code  has ( 1000)“ as  its  worst  pattern.  For  the ( I ,  3 ,   3 ) A  
code,  the  worst-case  code  sequence ( 1000) corresponds 
to  the  input  data  pattern 001 (0001) x, starting  from 
state S,. 

Run-length statistics 
Once  the transition  probabilities P i j  are known, the  sta- 
tionary  distribution of states can be calculated in the 
usual manner from the transition  probability  matrix. For 
( 1 ,  3, 3)  codes,  the  stationary probabilities of states be- 
come 

Stcrtr SI 
I 1  1 2 1 1  1 1  

s,  s, s, s, I s, s, s 2  

Prohubility 4 

The  states SI, S,, S,, S,, and S, each  contain  one transi- 

g 2 36 1 2  5 5 8 

tion. Therefore  the transition probability is 

P,  = P ( S , )  + P(S, )  + P ( S , )  + P ( S , )  + P ( S , )  = 53/72. 

On the average,  there  are P, transitions in the waveform 
for  each bit of input data.  Since  each transition marks  the 
boundary of a pulse, the  average pulse width of the wave- 
form is just  the inverse of the transition  probability 
P,; Le., 

Average pulse width = 1 /  P,  = 72/53 = 1.358 bit units 

= 2.717 window  units. 

Similarly, one can  obtain the probabilities of each of 
the allowed  run-length sequences in the  channel by 

Decoder: a y a i  -ai u i  + a : u i  
I“ 

I“ 
01 -00 

01  01 
“1 
1 

10 or 00 ____* 01 
0 

10 -00 
1 

10 or 00 1 10 _+ 10 or 01 

10or00 -10 ”---* 00 0 

Figure 2 A (1, 3, 31, code  encoder and decoder assignment. 

gathering the probabilities of transitions that  produce  the 
given run-length. For  the ( 1, 3,  3) codes, they are 

Run-length  NRZI Probability Percent 

2 101 251 53  47 
3 1001 1 8 / 5 3   3 4  
4 IO00 1 I O /  53 19 

The  average pulse width and the run-length distribution 
can  be important engineering criteria. 

Summary 
Various  aspects of the  synthesis  and analysis of (d ,  k ,  C) 
codes  have been presented.  Channel  states and allowed 
transitions  for a  given set of constraints  have been enu- 
merated, and it has been shown  that the code  synthesis 
depends strongly on  the  assumption of a  particular initial 
channel state. A procedure  for determining those initial 
states  that lead to  encoders with infinite look-ahead  re- 
quirements  has been  given. The  techniques of code  con- 
struction  have been  illustrated by means of examples. 

The  procedure used in this paper may be generalized 
to  non-NRZI  cases, and a,  N ,  and d may assume values 
other than those used in the  examples. 

Appendix A:  An alternate (1, 3, 3) code: (1, 3, 3IB 
Sometimes a code  can be constructed  for simpler imple- 
mentation by splitting  a state into  two, such  that a  more 
consistent input  assignment may be  carried out. 363 
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000 

2++ 

Figure A1 A split-state ( I ,  3, 3),  code. 

1 

In this  example  the state S, is split into  two  states 
S,, and S,,. The only modifications due  to this  split are 

s3(1) 

A highly consistent assignment of transitions is now 
possible, as shown in Fig. A l .  

Since there  are nine states,  at  least  four  state variables 
are  necessary  to  code  the  states.  The a values (ala,)  and 
two  additional  variables ( T , T , )  to differentiate S,,, S,,, 
S,, and S, are  selected.  The  encoder  requires  fewer  out- 
puts  due  to  the high consistency of the ( 1 ,  3,  3) code. 
Notice  that  the  current  input from S,, and S,, is always 0 
and  from S, is always 1. The  encoder is a combinational 
circuit  with seven  inputs (a,a,T,T,I I I ) and four  out- 
puts (a:a:T:Ti) .  The  decoder  can be identical with that of 
the ( 1 ,3 ,3 )  A code  because  the  states S, ,  and S,, need not 
be  distinguished. 

0 0  n 0 1 2 3  

Appendix B: Assignment of transitions for (1, 4, 3) 
code 
A (1, 4, 3)  code assignment can be made as in Fig. B1, 
where S, is chosen  for  the initial state.  It is possible in 
this case  to assign inputs to transitions  such that  decod- 
ing becomes almost state-independent.  Data bits in 
parentheses  are  past  data bits. 

Since  there  are only  six states,  we need  only three 
binary state variables. The u values ( a la2)  and  one addi- 
tional  variable h to distinguish states S,,  S,, and S, from 
the  states S,, S,, and S ,  are  selected.  The  encoder  takes 
six inputs ( a ~ a ~ b O I " I o I ' )  and generates  four  outputs 
(aiu:b'E), including the  error  function.  The  decoder  re- 
quires seven inputs (a,u,b a1a2a1u2) and generates  three 

364 outputs (IOb'E) . These combinational functions  are  ex- 

0 0 0 1 1 2 2  

Figure B1 A ( 1 ,  4, 3)  code assignment. 

tremely simple and  the minimized functions using the 
error conditions as full DON'T CARES are shown below 
(+ denotes O R ) .  

Encoder: at = iii(7 + I ' l l ) ;  

E can be similarly obtained. 

Decoder: Io  = a: + a,b ala2;  - 0 0 1 2  

b' = boa; + boa;; 

In general, more relaxed (d ,  k ,  C) constraints bring a 
larger choice of codes  and simpler encoder-decoder 
circuits. All of the (1,  3, 3 )  codes  require much  more 
complex Boolean realizations than the above (1, 4, 3 )  
example. 
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