
B. T. Bennett
V. J. Kruskal

LRU Stack Processing

Abstract: Stack processing, and in particular stack processing for the least recently used replacement algorithms, may present com-
putational problems when it is applied to a sequence of page references with many different pages. This paper describes a new tech-
nique for LRU stack processing that permits efficient processing of these sequences. An analysis of the algorithm and a comparison of
its running times with those of the conventional stack processing algorithms are presented. Finally we discuss a multipass implementa-
tion, which was found necessary to process trace data from a large data base system.

Introduction
Storage hierarchy evaluation is often accomplished by
simulating the hierarchy under loads determined by
“representative” address traces. Stack processing as
proposed by Mattson, Gecsei, Slutz, and Traiger [l]
allows efficient evaluation of multilevel hierarchies for a
class of replacement algorithms called stack algorithms.
Of these algorithms, least recently used (LRU) is the
most extensively simulated.

The original LRU stack processing algorithm proposed
by Mattson et al. calculates for one page size a histogram
of stack distances, which determines the frequency of
access to each level of a multilevel linear hierarchy for
any set of level capacities. The method involves the con-
version of each address to a page reference and the main-
taining of a list of pages called an LRU stack, wherein the
pages are in order of the most recent reference. For each
reference the stack distance, the position in the stack of
the current referenced page, is obtained.

To maintain the LRU stack and to obtain the stack
distance for each reference, Mattson et al. proposed a
concurrent search and update from the top down. The
current page is placed on top of the stack, and each page
in the stack is down-shifted by one until the current page
is encountered. That position in the stack is recorded as
the stack distance. If the current page is not found, i.e., if
it has not occurred before, then downshifting proceeds to
the bottom of the stack and a stack distance of infinity is
recorded.

The number of tests for a match with the current page
is equal to the stack distance or, for a new page, to the
number of distinct pages encountered so far. Thus, stack-
processing a trace that has a large number of distinct
pages or a large average stack distance may require ex-

JULY 1975

cessive computing time. Traiger and Slutz [2] showed
that for a little additional overhead this method could also
produce stack distances for page sizes that are successive
multiples of the basic page size. However, for some data
base reference traces and some program address traces
the method was found not to be feasible for the page sizes
of interest.

In this paper we describe a new algorithm for LRU
stack processing; this algorithm is much more efficient
for the analysis of trace data for a single page size when
the number of pages and the average stack distance are
large, but separate page sizes require essentially separate
calculations. Second, we present an analysis of the algo-
rithm and a comparison of running times. Finally, we
discuss a multipass implementation of the algorithm,
which we have found necessary in order to efficiently
process trace data from a large data base system.

New LRU stack processing algorithm
The purpose of the algorithm described here is to de-
termine the stack distance for each reference. Rather
than regarding the stack distance as the position in an
LRU stack, we observe that the distance is equal to one
plus the number of distinct pages that have been ref-
erenced since the current page was last referenced.

If we denote the page referenced at time t by xf and the
stack distance by d,, then we have

dl = 1 + c(xp+l , . . ., X t - l) ,

where p = max i < t such that xi = xt , i.e., p is the position
of the most recent past reference to page xt and C (S) is
the number of distinct pages in S. 353

LRU STACK PROCESSING

B3

B*

t
P

f

Figure 1 Partial sum hierarchy for m = 3 illustrating the ele-
ments changed (/) and the elements summed (-) to maintain
the hierarchy and to calculate the stack distance for a reference
at time t = 23 to a page previously referenced at time p = 2.

Let

B:(i) =
1 ifxi # x j (j = i + l;.., t) ,

0 otherwise,

and for any page x in the virtual address space, let

i max i 5 t such that xi = x ,

-1 if there is no xi = x (0 5 i 5 t) .
P,(X) =

Thus Bo is an array of Os and 1s whose positions cor-
respond to positions in the reference string, and a 1 in
position i means that page xi has not occurred since time i.
Array P contains for each referenced page the position of
its most recent reference.

Let p = P,-' (x,). The stack distance is one plus the
count of the Is in B:-l from p + 1 to t - 1,

t"l

i=p+l

because each 1 in Bo after position p uniquely represents
a page that has been referenced since X, was last ref-
erenced. In order to compute the sum efficiently, we
maintain in arrays B', . . ., BL a hierarchy of partial sums
of Bo. For some chosen interval size m the sum of the
first m elements of Bs is maintained in the first element of
Bs+', and the sum of the second m elements of BS is
maintained in the second element of B"+', and so on. With
zero-based indexing,

i=(j+l)m-l

B i - l (j) = 2 B:I: (i) = B;&)
i=(j+l)ms-l

i=jm i=jms

for each j , 0 5 j < mL+' /ms, and for each s, 0 5 s < L. In
array BL, where L is defined by mL < total number of
references 5 mL+', the sums of all elements of Bo are con-
tained in 5 m elements. To accumulate the surn of Bo
from p + 1 to t - 1 , this interval is considered to be a
sequence of intervals whose sums are obtained by sum- 354

B. T. BENNETT AND V. J . KRUSKAL

ming partial sums from increasing levels of the hierarchy.
The elements of Bo from p + 1 to (L p / m + 1) m - 1 must
be summed, the elements of Bo from (Lp/m + 1) m to
(Lp/mz + 1) m2 - 1 may be summed by summing the
e lementsofB ' f romLp/m+1to(Lp/m2+l)m-1 ,and
so on until level r - 1 is reached, where

r = min j such that (Lp/rnJ = Lt/mJ). (2 1
Then the elements of Bo from (Lp/ mr-' + 1) mr" to t
are summed using elements of BT-' to sum up to (k t / mr-'
+ 1)mr-' + 1 . It is assumed that B;-,(i) = 0 for i 2 t.
Note that

(Lp/mS+' + 1)mS+' 2 (Lp/mS + l) m S 2 p + 1

for all p , s nonnegative integers and rn a positive integer.
A negative range of summation indicates that no summa-
tion need be made.

The sum (1) may be expressed as
t-1 (I p / m + l) n r l

1 + x B;-,(i) = 1 + B;-,(i)
i = p + l i = p + l

Then, representing each term as a surn of partial sums,
we obtain

+ B;I:(i).
-_, ...

i=Lp/m"'+I

Processing each reference involves obtaining the value
of p, the position of the previous reference, and then cal-
culation of the sum (4) and updating of arrays Bo, . . .,
B ~ , viz.,

B , S (L P / ~ ') = B : _ , (L P / ~ ~) - 1 ,

B:(Lt/ms) = B:-,(Lt/ms) + 1,

f o r s = O ; . . , r - l .

Thus an algorithm for processing reference x, is as
follows:

1 . Obtain the value of p = Pt-, (x ,) and set P, (x ,) = t .
If p = 0 (new page), go to step 6, else set s = 0, d, = 0.

2. Update B:(Lp/ms) = B;.'(Lp/ms) - 1 and Bs(L t / m s)
= B ~ _ , (L t / m ") + 1; note that when s = 0, Lp/mS=p,
and I t / m s = t.

3. Calculate [p/mstl and [t /mS+' . If equal, go to step 5.

IBM J. RES. DEVELOP.

4. S e t d , = d , + ~ ; (i) f o r i = L p / m ' + I;.., (Lp/mS+'
+ 1) m - I 1 . T h e n s e t s = s + I , a n d g o t o s t e p 2 .

5 . Setd,=d,+B",(i) for i=Lp/mS+f; . . ,Lt /ms.Pro-
cessing is complete. [The additional I in sum (4) has
been included by updating B:(Lt/rn') prior to this
step.]

6. Sets=O,d,=m.
7 . Update B;(Lt/m') = B;- , (LI /~ ') + 1.
8. Set s = s + 1 . If s i L, then go to step 7, else proces-

sing is complete.

Figure 1 illustrates the hierarchy of partial sums, the
elements changed (/), and the elements summed (-)
for a reference at time t = 23 to page previously ref-
erenced at time p = 2. The bottom level B:-, contains the
binary array. The next level contains the sums of three
consecutive values in B:-], and so on. Changes made at
levels 0, 1 , and 2, respectively, are a decrease by 1 for
p = 2, Lp/3 = 0, and Lp/9 = 0, and an increase by 1 for
t = 23, Lr/3 = 7, Lt/9 = 2. The summations are from
p + 1 = 3 to (Lp/3 + l) 3 - 1 = 2, thus nothing on level
0, from Lp/3 + 1 = I to (Lp/9 + 1)3 - 1 = 2 on level
1 , and from Lp/9 + 1 = I to Lt/9 = 2 on level 2.

Analysis
This section demonstrates that the average amount of
processing for a reference to a previously referenced
page is approximately a linear function of the logarithm
of the inter-reference distance n:

n = t - p .

In performing the algorithm, step 1 is carried out once
for each reference, step 2, r times, and step 3, r + 1 times,
where r is determined by Eq. (2).

Step 4 is performed r - 1 times; the number of addi-
tions to calculate the distance is

m - I - (L p / m S m o d m) f o r e a c h s = 0 ; ~ ~ , r - 2 . (5)

Step 5 is performed once and requires

Ltlm"' - Lp/m"' additions. (6)

Thus, the amount of computation is a function of both
p and n. We shall show that averages of r and the num-
ber of additions over a range of values of p are approx-
imately linear functions of log n.

Let L log,n = c , i.e., n = nomC + n,, where 1 5 no < m,
0 i n, < mc. Equation (2) implies that

c + 1 5 r 5 log,t+ 1

and that for each positive integer q, 1 5 q 5 (log,t) - e,
r > q + c whenever kmq+' - n 5 p < kmq+' for some posi-
tive integer k . Therefore, in the range 1 i p 5 ma for
integer a > c, r > c + q for nma-'c+q' distinct values of p
fo reachq , 1 5 q 5 ~ - c , a n d r > a i m p l i e s r = u + 1 .

J U L Y 1975

Thus, in this range the average value of r is

= I + C + n / m r + L + n / m r + 2 . . . + n / m a

= Iog,n - Iog,(n/m") + 1

+ [n (1 - m c - a)] / [m c (m - I)] , (7)

the predominant term of which is log,n.
The number of additions in step 5 is given by (6) ,

which is one if Y > c + 1, and if r = c + 1, is r n / m c if
there exists integer q, qm' - n, 5 p < qmc, or h / m c
otherwise.

If r = c + I , i.e., if there is no k , km''' - n 5 p < kmr+',
but there exists q, qmr - n , 5 p < qmc, then 0 < q mod
m < m - no. Thus, in the range 1 5 p 5 ma, the number
of additions in step 5 is one for nma-(c+l ' values of p,
is no + 1 for n,m (m - 1 - no) values of p, and is
n, for all others. Thus, the average number of additions
in step 5 is

u - w + l l

The number of additions to the distance d in step 4
depends on s, the level in the hierarchy. For s = 0,. . .,
c - 1, expression (5) takes each value 0, . . ., m - I ex-
actly ma-' times for p, 1 5 p 5 ma. For s = e, . . ., r - 2,
additions occur only if r > s + 1 , i.e., for p such that there
exists an integer k , kms+' - n 5 p < km'". Then L(km
- n / m S) 5 Lp/ms < km; thus Lp/m" mod m 1 tn -
r n / m S , and m- I - (Lp/ms mod m) 5 r n / m s - 1. Thus,
for s = c the maximum number of additions is r n / mc - I ,
and there are no additions for s 1 c + 1.

For s = c there are additions if there exists an integer
k such that p = kmc+' - i, 1 i i 5 n, and the number of
additions is

m - l - (~ (k m c + ' - i) / m C m o d m)

= (r i / m " mod m) - 1

- - ~ n o i f n , m c + l ~ i ~ n , m ' + n , ,

~ ~ , - , j i f (, ~ o - , ~) m r + 1 5 i i (n , - j + l) m r

for I 5 ,; 5 nu.

Thus, in the range 1 5 p 5 ma there are n,m values
of p with no additions for s = c and ma" values ofp with
no - j additions for eachj, 1 i j 5 n,.

a- (c+ l l

355

LRU STACK PROCESSING

Table 1 Timing results for the three stack distance algorithms for processing 100 000 references to a large data base.

Experiment Page size Number of Average
in data number

Execution time (seconds)
distinct stack Original Modified New

base blocks pages distance algorithm algorithm algorithm

16384 185 12.53 6.5 7.0
1367 60.29

5.7
24.6 22.2 6.3

151.13 85.1 49.4
9996 237.56 234.5

6.5
72.2 6.8

328.53 >450 94.4 7.5

512

8
2

64 4709

14262

The average number of additions in step 4 is

{m(m - 1)cm"- ' /2 + nonlma-(c+l)

+ m a - ' [r i , 2 - n o (n o + 1)/2]}/ma

= c (m - 1) / 2 + n 0 n , / m c + ' + (n , 2 - n 0 ~ / 2 m . (9)

Combining (8) and (9) we obtain the average total
number of additions necessary to calculate the stack
distance as

c (m - ~) / 2 + n o - (~ , 2 - n o) / 2 m + n l ~ m - n o) / m C + '

= [(m- I)Iog,n]/2+ [(m- l)Iog,(n/mc)]/2

+ no - (n," - no) / 2m + n,(m - no) /me+'. (10)

The predominant term is [(m - 1) log,n] / 2.

Performance Comparison
In this section the new algorithm described in this paper
is compared with the original algorithm proposed by
Mattson et al. Included in the comparison is an impor-
tant modification of the original algorithm, which has
been used by Hempy [31 to process data base traces.

In the original algorithm each new page resulted in a
costly, unsuccessful search of the complete stack. The
modified algorithm avoids the unsuccessful searches by
maintaining a directory in which it records for each page
whether it has previously been referenced. Most often
the set of page names is such that a search technique
(see Knuth [41) is required to map the page names to
directory entries. For this comparison we have used a
hash table with linear probing and a division hash func-
tion. However, consecutive references to the same page
are checked for without looking up the hash table.

The array P in the new algorithm records the previous
reference position for each page in the virtual address
space. Unless the virtual address space is small, or the
trace has been preprocessed to number the pages from
one to the total number of distinct pages, it will be more
efficient to use a search technique and a table of ob-
served page names to map the page names to the loca-
tions in which the previous reference positions are stored. 356

B . T. BENNETT AND V. J. KRUSKAL

For the comparison we used a hash table identical to
that used by the modified algorithm and checked for
consecutive references to the same page. These ref-
erences do not require reference to the hash table or to
the B arrays. For efficiency the binary array Bo is stored
in bit strings of length m = 8. Since the sum of the bits
is a function of the binary number represented by the
string, the values of B' and the partial sums of Bo are
obtained by table lookup. For programming convenience
the arrays B2, . . ., B" are treated as levels in m-ary trees
(Knuth [5], p. 401). For the comparison m = 10 was
chosen. Optimal choice of m depends on the implementa-
tion of the algorithm, on the speed of division of the com-
puter, and on the proportion of references to new pages.
The number of divisions is roughly 2 + 2 log,n, and the
number of other operations is roughly proportional to m
log,n plus a constant for references to previously refer-
enced pages; otherwise the number of divisions and other
operations is proportional to log& plus a constant (N is
the total number of references). In assembly language
shifting may be substituted for division if m is a power
of 2.

Timing results are presented in Table 1 for 100000
references to a large data base. By varying the page size
a range of numbers of distinct pages and average stack
distances is obtained. The algorithms were coded in
P L / I , compiled under the most optimization option of
the PL/I Optimizing Compiler, and executed on an IBM
System/370 Model 168. Average stack distance was
calculated in each program.

These results show that the new algorithm requires
much less computing time, particularly when the number
of distinct pages and the average stack distance are large.
Note, however, that the storage requirements of the
faster algorithms are greater than that of the original
algorithm. Whereas the original algorithm requires stor-
age only for a stack of page names whose maximum size
is the number of distinct pages, the modification requires
storage for a hash table of page names. To be efficient
the length of the hash table should be significantly larger
than the maximum number of distinct pages. For the

IBM J. RES. DEVELOP.

comparison the length was chosen as 3 2 599. The new
algorithm has the hash table and array P of the same
length and so also the arrays Bo . . ., BL. For traces of
data base systems these tables may reqhire so much
space that the use of secondary storage must be con-
sidered.

Implementation for data base systems
Traces from data base systems may have many ref-
erences and large numbers of distinct pages. Techniques
for resolving the storage problems created by these
qualities are discussed in this section.

The binary array Bo has length r (N + 1) / 8 bytes,
where N is the number of references, and partial sum
arrays B2, . . ., BL have lengths r (N + 1) / Sm, . . ., r (N
+ 1) / 8mL”, respectively. For large N these arrays may
occupy many pages of virtual memory. To ensure a
minimum of paging Bo is divided into, for example, sec-
tions of 8m3 bits and stored contiguously with the cor-
responding sections of Bz and B3.

The hash table and array P contain page names and
the positions of the last reference to each page. To be
efficient the lengths of the tables must be significantly
larger than the maximum number of distinct pages. If
this number is too large, then the algorithm should be
performed in two passes of the data. In the first pass the
hash table and array P are used to convert the trace of
page names to a trace of positions of previous references.
Then, on the second pass, the B arrays are used to cal-
culate the stack distances.

If the number of distinct pages is sufficiently large,
then the one pass to obtain the previous reference posi-
tion trace may itself best be replaced by a multipass
scheme. If from prior knowledge it is known how to
partition the set of page names into approximately equal-
size groups, then the following scheme is suggested.

1. Add the reference number to each record and partition
the trace into subtraces, one for each page name group.

2 . Use a hash table and P array to create for each sub-
trace a previous reference position subtrace.

3. Merge the previous reference position subtraces.

J U L Y 1975

Concluding remarks
We have described a new algorithm for LRU stack pro-
cessing with a single page size and have shown by timing
results that it is much more efficient than previously
suggested algorithms for processing a trace with a large
average stack distance. Efficient use of virtual storage
and ways of utilizing secondary storage to make up for
the increased storage required by the new algorithm have
been discussed. The amount of computation for each
reference has been analyzed for the new algorithm, and
the average for a fixed inter-reference distance over a
range of previous reference positions is shown to be
approximately a linear function of the logarithm of the
inter-reference distance.

Acknowledgment
The authors appreciate the useful discussions held with
A. C. McKellar, M. A. Auslander, M. C. Easton, and
P. G. Capek.

References
I . R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger,

“Evaluation Techniques for Storage Hierarchies,” IBM -
Syst. J . 9, (1970).

2. I. L. Traiger and D. R. Slutz. “One-Pass Techniaue for
the Evaluation of Memory Hierarchies,” Research keport
RJ 892, IBM Research Laboratory, San Jose, CA, July
28, 1971.

3. Private communication from H. Hempy of the IBM Gen-
eral Products Division Laboratory, Boulder, CO.

4. D. E. Knuth, Sorting and Searching; The Art of Computer
Programming, Vol. 3, Addison-Wesley Publishing Co.,
Reading, MA, 1973.

5. D. E. Knuth, Fundamental Alxorithms. The Art of Com-
puter Programming, Vol. 1, Addison-Wesley Publishing
Co., Inc., Reading, MA, 1968.

Received September 6, 1974; revised March 10. 1975

The authors are located at the IBM Thomas J . Watson
Research Center, Yorktown Heights, New York 10598.

357

LRU STACK PROCESSING

