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LRU Stack Processing 

Abstract: Stack processing, and  in particular  stack processing for the least recently used replacement algorithms, may present com- 
putational problems when it is applied to a sequence of page references with  many  different pages. This paper describes a new tech- 
nique for LRU stack processing that  permits  efficient processing of  these  sequences. An analysis of the algorithm  and a comparison of 
its running times with those of the conventional stack processing algorithms are presented. Finally we discuss a multipass implementa- 
tion, which was found necessary to process trace data  from a large  data base system. 

Introduction 
Storage hierarchy  evaluation is often  accomplished by 
simulating the hierarchy  under  loads  determined by 
“representative”  address  traces.  Stack processing as 
proposed by Mattson,  Gecsei,  Slutz, and Traiger [ l ]  
allows efficient evaluation of multilevel hierarchies for a 
class of replacement algorithms called stack algorithms. 
Of these algorithms, least recently  used (LRU) is the 
most  extensively  simulated. 

The original LRU stack processing algorithm proposed 
by Mattson  et al. calculates for  one page size  a  histogram 
of stack distances, which determines  the  frequency of 
access to each level of a multilevel linear  hierarchy for 
any  set of level capacities. The method  involves the  con- 
version of each  address  to a page reference and the main- 
taining of a list of pages called an LRU stack, wherein the 
pages are in order of the most recent reference. For  each 
reference  the  stack  distance,  the position in the  stack of 
the  current referenced page, is obtained. 

To maintain the  LRU  stack and to obtain the  stack 
distance  for  each  reference,  Mattson  et al. proposed a 
concurrent  search  and  update from the  top down. The 
current page is placed on  top of the  stack, and each page 
in the  stack is down-shifted  by one until the  current page 
is encountered.  That position in the  stack is recorded as 
the  stack distance. If the  current page is not found, i.e., if 
it has not occurred before,  then  downshifting proceeds  to 
the bottom of the  stack and a stack  distance of infinity is 
recorded. 

The  number of tests  for a  match with the  current page 
is equal to  the  stack  distance  or,  for a new  page, to  the 
number of distinct  pages encountered so far.  Thus,  stack- 
processing a trace  that has a large  number of distinct 
pages or a large average  stack  distance may require ex- 
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cessive computing  time. Traiger  and  Slutz [ 2 ]  showed 
that  for a little additional overhead this  method  could  also 
produce  stack  distances  for page  sizes that  are  successive 
multiples of the basic  page  size. However,  for  some  data 
base  reference  traces and some program address  traces 
the method  was  found  not to be  feasible for  the page  sizes 
of interest. 

In this paper we describe a new algorithm for  LRU 
stack processing;  this algorithm is much more efficient 
for  the analysis of trace  data  for a single page size  when 
the number of pages and  the  average  stack  distance  are 
large,  but separate page sizes require essentially separate 
calculations. Second, we present an analysis of the algo- 
rithm and a  comparison of running  times.  Finally, we 
discuss a multipass  implementation of the algorithm, 
which we  have found necessary in order  to efficiently 
process  trace  data from  a large data  base  system. 

New LRU stack processing algorithm 
The  purpose of the algorithm described here is to  de- 
termine  the  stack  distance  for  each reference. Rather 
than regarding the  stack  distance  as  the position in an 
LRU  stack, we observe  that  the  distance is equal  to  one 
plus the number of distinct pages that  have  been ref- 
erenced  since  the  current page was last referenced. 

If we  denote  the page referenced at time t by xf and  the 
stack  distance by d,, then we have 

dl = 1 + c(xp+l , .  . ., X t - l ) ,  

where p = max i < t such  that xi = xt ,  i.e., p is the position 
of the most recent  past  reference  to page xt  and C ( S )  is 
the number of distinct pages in S. 353 
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Figure 1 Partial sum hierarchy  for m = 3 illustrating the ele- 
ments changed ( / )  and the elements summed (-) to maintain 
the  hierarchy and to calculate  the  stack  distance  for a reference 
at  time t = 23 to a page previously  referenced  at time p = 2. 

Let 

B:(i) = 
1 ifxi # x j ( j = i +  l;.., t ) ,  

0 otherwise, 

and  for  any page x in the virtual address  space, let 

i max i 5 t such  that xi = x ,  

-1 if there is no xi = x (0  5 i 5 t ) .  
P,(X)  = 

Thus Bo is an  array of Os and 1s whose  positions cor- 
respond to positions in the  reference string,  and a 1 in 
position i means  that page xi  has  not  occurred  since time i. 
Array P contains  for  each referenced  page the position of 
its most recent reference. 

Let p = P,-' (x,). The  stack  distance is one plus the 
count of the Is in B:-l from p + 1 to t - 1, 

t"l 

i=p+l  

because  each 1 in Bo after position p uniquely represents 
a page that  has been  referenced since X, was last ref- 
erenced.  In  order  to  compute  the sum efficiently, we 
maintain in arrays B', . . ., BL a hierarchy of partial sums 
of Bo. For  some  chosen interval  size m the  sum of the 
first m elements of Bs is maintained in the first element of 
Bs+', and  the  sum of the  second m elements of BS is 
maintained in the  second element of B"+', and so on. With 
zero-based  indexing, 

i=(  j+l)m-l 

B i - l ( j )  = 2 B:I: (i) = B;&) 
i=( j+l)ms-l 

i=jm  i=jms 

for  each j ,  0 5 j < mL+' /ms,  and for  each s, 0 5 s < L. In 
array BL, where L is defined by mL < total  number of 
references 5 mL+', the  sums of all elements of Bo are con- 
tained in 5 m elements. To  accumulate  the surn of Bo 
from p + 1 to t - 1 ,  this  interval is considered to  be a 
sequence of intervals  whose  sums  are obtained by sum- 354 
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ming partial sums  from increasing  levels of the hierarchy. 
The  elements of Bo from p + 1 to ( L p / m  + 1 ) m  - 1 must 
be  summed, the  elements of Bo from (Lp/m + 1 ) m  to 
( Lp/mz + 1 )  m2 - 1 may be  summed by summing the 
e lementsofB ' f romLp/m+1to(Lp/m2+l)m-1 ,and  
so on until level r - 1 is reached,  where 

r = min j such  that (Lp/rnJ = Lt/mJ).  (2 1 
Then  the  elements of Bo from (Lp/ mr-' + 1 )  mr" to t 
are summed using elements of BT-' to  sum up to ( k t /  mr-' 
+ 1)mr-' + 1 .  It  is assumed that B;-,(i) = 0 for i 2 t. 
Note  that 

( Lp/mS+' + 1)mS+' 2 (Lp/mS + l ) m S  2 p + 1 

for all p ,  s nonnegative  integers  and rn a  positive integer. 
A negative range of summation  indicates that  no summa- 
tion  need  be  made. 

The sum ( 1 )  may be expressed  as 
t-1 ( I p / m + l ) n r l  

1 + x B;-,(i) = 1 + B;-,(i) 
i = p + l  i = p + l  

Then, representing each  term  as a surn of partial sums, 
we obtain 

+ B;I:(i). 
-_, ... 

i=Lp/m"'+I 

Processing each  reference involves  obtaining the value 
of p, the position of the previous reference,  and then  cal- 
culation of the  sum (4) and updating of arrays Bo, . . ., 
B ~ ,  viz., 

B , S ( L P / ~ ' )  = B : _ , ( L P / ~ ~ )  - 1 ,  

B:(Lt/ms) = B:-,(Lt/ms) + 1, 

f o r s = O ; . . , r - l .  

Thus an algorithm for processing reference x, is as 
follows: 

1 .  Obtain  the  value of p = Pt-, ( x , )  and  set P, ( x , )  = t .  
If p = 0 (new  page),  go to step 6, else  set s = 0, d, = 0. 

2. Update B:(Lp/ms) = B;.'( Lp/ms) - 1 and Bs( L t / m s )  
= B ~ _ , ( L t / m " )  + 1; note  that when s = 0,  Lp/mS=p, 
and I t / m s  = t. 

3. Calculate [p/mstl and [ t /mS+' .  If equal, go to  step 5. 
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4. S e t d , = d , + ~ ; ( i ) f o r i = L p / m ' +  I;.., (Lp/mS+' 
+ 1 ) m - I 1 . T h e n s e t s = s + I , a n d g o t o s t e p 2 .  

5 .  Setd,=d,+B",( i ) for i=Lp/mS+f; . . ,Lt /ms.Pro-  
cessing is complete. [The additional I in sum (4) has 
been  included by updating B:( Lt/rn')  prior to this 
step.] 

6. Sets=O,d,=m. 
7 .  Update B;(Lt/m') = B;- , (LI /~ ' )  + 1. 
8. Set s = s + 1 .  If s i L, then go to  step 7, else  proces- 

sing is complete. 

Figure 1 illustrates the hierarchy of partial sums,  the 
elements changed ( / ), and  the  elements summed (-) 
for a reference  at time  t = 23 to page previously ref- 
erenced  at time p = 2. The bottom level B:-, contains  the 
binary array.  The  next level contains  the  sums of three 
consecutive values in B:-], and so on.  Changes made at 
levels 0, 1 ,  and 2, respectively,  are a decrease by 1 for 
p = 2, Lp/3 = 0, and  Lp/9 = 0, and an  increase by 1 for 
t = 23, Lr/3 = 7, Lt/9 = 2. The  summations  are  from 
p + 1 = 3 to  (Lp/3 + l ) 3  - 1 = 2, thus nothing on level 
0, from Lp/3 + 1 = I to  (Lp/9 + 1)3  - 1 = 2 on level 
1 ,  and from Lp/9 + 1 = I to  Lt/9 = 2 on level 2. 

Analysis 
This section demonstrates  that  the  average  amount of 
processing for a reference  to a  previously referenced 
page is approximately a linear  function of the logarithm 
of the  inter-reference  distance n: 

n = t - p .  

In performing the algorithm, step 1 is carried  out  once 
for  each  reference,  step 2, r  times,  and step  3, r + 1 times, 
where r is determined by Eq. (2).  

Step 4 is performed  r - 1 times; the number of addi- 
tions to calculate the  distance is 

m - I - ( L p / m S m o d m ) f o r e a c h s = 0 ; ~ ~ , r - 2 .  (5)  

Step 5 is performed once and requires 

Ltlm"' - Lp/m"' additions. (6) 

Thus,  the  amount of computation is a  function of both 
p and n. We shall show  that  averages of r  and the num- 
ber of additions over a range of values of p are  approx- 
imately  linear functions of log n. 

Let L log,n = c ,  i.e., n = nomC + n,, where 1 5 no < m, 
0 i n, < mc. Equation ( 2 )  implies that 

c + 1 5  r 5  log,t+ 1 

and  that  for  each positive  integer q, 1 5 q 5 (log,t) - e, 
r > q + c whenever kmq+' - n 5 p < kmq+' for  some posi- 
tive  integer k .  Therefore, in the range 1 i p 5 ma for 
integer a > c,  r > c + q for nma-'c+q' distinct values of p 
fo reachq ,  1 5  q 5  ~ - c , a n d r > a i m p l i e s r = u + 1 .  
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Thus, in  this  range the  average value of r is 

= I + C + n / m r + L + n / m r + 2 . . . + n / m a  

= Iog,n - Iog,(n/m") + 1 

+ [ n ( 1  - m c - a ) ] / [ m c ( m -  I ) ] ,  ( 7 )  

the predominant term of which is log,n. 
The number of additions in step 5 is given by (6) ,  

which is one if Y > c + 1, and if r = c + 1, is r n / m c  if 
there  exists integer q, qm' - n,  5 p < qmc, or h / m c  
otherwise. 

If r = c + I ,  i.e., if there is no k ,  km''' - n 5 p < kmr+',  
but there  exists q, qmr - n ,  5 p < qmc, then 0 < q mod 
m < m - no. Thus, in the  range 1 5 p 5 ma, the number 
of additions in step 5 is one  for nma-(c+l '  values of p, 
is no + 1 for n,m ( m  - 1 - no)  values of p, and is 
n, for all others.  Thus,  the  average number of additions 
in step 5 is 

u - w + l l  

The number of additions to  the  distance d in step 4 
depends on s, the level in the hierarchy. For s = 0,. . ., 
c - 1, expression ( 5 )  takes  each value 0, .  . ., m - I ex- 
actly ma-' times for  p, 1 5 p 5 ma. For s = e,  . . ., r - 2, 
additions  occur only if r > s + 1 ,  i.e., for p such  that  there 
exists an integer k ,  kms+' - n 5 p < km'". Then L(km 
- n / m S )  5 Lp/ms < km; thus  Lp/m" mod m 1 tn - 
r n / m S ,  and m-  I - (Lp/ms mod m )  5 r n / m s -  1. Thus, 
for s = c the maximum number of additions is r n /  mc - I ,  
and there  are  no additions for s 1 c + 1. 

For s = c there  are  additions if there  exists  an integer 
k such  that p = kmc+' - i, 1 i i 5 n, and the  number of 
additions is 

m - l - ( ~ ( k m c + ' - i ) / m C m o d m )  

= ( r i / m "  mod m )  - 1 

- - ~ n o i f n , m c + l ~ i ~ n , m ' + n , ,  

~ ~ , - , j i f ( , ~ o - , ~ ) m r + 1 5 i i   ( n , - j + l ) m r  

for I 5 ,; 5 nu.  

Thus, in the range 1 5 p 5 ma there  are n,m values 
of p with no additions for s = c and ma" values ofp  with 
no - j  additions for  eachj, 1 i j 5 n,. 

a- (c+ l l  
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Table 1 Timing results for the three stack distance algorithms for processing 100 000 references to a  large  data base. 

Experiment  Page  size  Number of Average 
in data number 

Execution  time  (seconds) 
distinct  stack  Original  Modified New 

base  blocks  pages  distance  algorithm  algorithm  algorithm 

16384 185 12.53  6.5  7.0 
1367 60.29 

5.7 
24.6  22.2  6.3 

151.13  85.1  49.4 
9996  237.56  234.5 

6.5 
72.2  6.8 

328.53  >450  94.4  7.5 

512 

8 
2 

64  4709 

14262 

The  average  number of additions in step 4 is 

{m(m - 1 )cm"- ' /2  + nonlma-(c+l) 

+ m a - ' [ r i , 2 - n o ( n o +  1)/2]}/ma 

= c ( m -   1 ) / 2 + n 0 n , / m c + ' + ( n , 2 - n 0 ~ / 2 m .  (9) 

Combining (8) and (9) we obtain the  average total 
number of additions necessary to calculate the  stack 
distance  as 

c ( m -  ~ ) / 2 + n o - ( ~ , 2 - n o ) / 2 m + n l ~ m - n o ) / m C + '  

= [(m- I)Iog,n]/2+ [(m-  l)Iog,(n/mc)]/2 

+ no - (n," - no) / 2m + n,(m - no) /me+'. ( 10) 

The  predominant term is [ ( m  - 1) log,n] / 2. 

Performance Comparison 
In this  section the new  algorithm  described in this paper 
is compared with the original algorithm  proposed by 
Mattson  et al.  Included in the  comparison is an impor- 
tant modification of the original algorithm, which has 
been  used by Hempy [ 31 to  process  data base traces. 

In  the original algorithm each new page  resulted in a 
costly, unsuccessful  search of the  complete  stack.  The 
modified algorithm avoids  the unsuccessful searches by 
maintaining a directory in which it records  for  each page 
whether it has previously  been referenced.  Most often 
the  set of page names is such  that a search  technique 
(see  Knuth [ 41) is required to map the page names  to 
directory entries. For this comparison  we  have used a 
hash table with linear  probing and a division hash func- 
tion. However,  consecutive  references  to  the  same page 
are  checked  for without looking up the hash  table. 

The  array P in the new algorithm records  the previous 
reference position for each page in the virtual address 
space. Unless  the virtual address  space is small, or  the 
trace  has been preprocessed  to  number  the pages from 
one  to  the total  number of distinct pages, it will be more 
efficient to  use a search technique  and  a  table of ob- 
served page names  to map the page names  to  the loca- 
tions in which the previous reference positions are  stored. 356 
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For  the  comparison we used a hash table identical to 
that used by the modified algorithm  and checked  for 
consecutive  references  to  the  same page. These ref- 
erences  do not require  reference  to  the hash table  or  to 
the B arrays.  For efficiency the binary array Bo is stored 
in bit strings of length m = 8. Since  the  sum of the bits 
is a  function of the binary number  represented by the 
string, the values of B' and the partial sums of Bo are 
obtained by table lookup. For programming convenience 
the  arrays B2, . . ., B" are treated as levels in m-ary trees 
(Knuth  [5], p. 401). For the comparison m = 10  was 
chosen. Optimal choice of m depends  on  the implementa- 
tion of the algorithm, on the  speed of division of the  com- 
puter,  and  on  the proportion of references  to new pages. 
The  number of divisions is roughly 2 + 2 log,n, and the 
number of other operations is roughly  proportional to m 
log,n plus a constant  for  references to previously  refer- 
enced pages;  otherwise  the  number of divisions and  other 
operations is proportional to log& plus a constant ( N  is 
the total  number of references). In assembly language 
shifting may be substituted  for division if m is a  power 
of 2. 

Timing results  are  presented in Table 1 for 100000 
references  to a large data base. By varying the page size 
a  range of numbers of distinct pages and average stack 
distances is obtained. The algorithms were coded in 
P L / I ,  compiled under  the  most optimization option of 
the PL/I Optimizing  Compiler,  and executed on an IBM 
System/370 Model  168. Average stack distance  was 
calculated in each program. 

These  results  show  that  the new algorithm requires 
much less  computing  time,  particularly  when the  number 
of distinct  pages  and the  average stack distance  are large. 
Note,  however,  that  the  storage  requirements of the 
faster algorithms are  greater than that of the original 
algorithm. Whereas  the original algorithm requires stor- 
age  only for a  stack of page names whose maximum size 
is the number of distinct pages, the modification requires 
storage  for a hash  table of page  names. To  be efficient 
the length of the hash  table  should  be significantly larger 
than the maximum number of distinct pages. For  the 
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comparison  the length was  chosen  as 3 2  599. The new 
algorithm has  the  hash table  and array P of the  same 
length and so also  the  arrays Bo . . ., BL. For  traces of 
data  base  systems  these tables may reqhire so much 
space  that  the use of secondary  storage must  be  con- 
sidered. 

Implementation for data  base systems 
Traces from data  base  systems may have many ref- 
erences  and large numbers of distinct  pages. Techniques 
for resolving the  storage problems created by these 
qualities are  discussed in this  section. 

The binary array Bo has length r (  N + 1) / 8 bytes, 
where N is the number of references,  and partial sum 
arrays B2, . . ., BL have lengths r ( N  + 1) / Sm, . . ., r ( N  
+ 1 )  / 8mL”, respectively. For large N these  arrays may 
occupy many pages of virtual memory. To ensure a 
minimum of paging Bo is divided  into,  for example, sec- 
tions of 8m3 bits  and  stored  contiguously  with the cor- 
responding  sections of Bz and B3. 

The hash table  and  array P contain  page names and 
the positions of the last reference  to  each page. To  be 
efficient the lengths of the tables  must be significantly 
larger than the maximum number of distinct pages. If 
this number is too large, then the algorithm should  be 
performed in two  passes of the  data. In the first pass  the 
hash table  and array P are used to  convert  the  trace of 
page names  to a trace of positions of previous  references. 
Then, on the second pass,  the B arrays  are used to cal- 
culate the  stack  distances. 

If the  number of distinct pages is sufficiently large, 
then the  one  pass  to  obtain  the previous reference posi- 
tion trace may itself best  be replaced by a  multipass 
scheme. If from prior  knowledge it is known how to 
partition the  set of page names into  approximately  equal- 
size groups, then the following scheme is suggested. 

1. Add  the  reference  number  to  each record and partition 
the  trace  into  subtraces,  one  for  each page  name group. 

2 .  Use a hash table and P array  to  create for each sub- 
trace a  previous reference position subtrace. 

3. Merge  the previous reference position subtraces. 
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Concluding remarks 
We have described  a new algorithm for LRU stack pro- 
cessing with a single page size and  have  shown by timing 
results  that it is much more efficient than  previously 
suggested  algorithms for processing  a trace with  a large 
average stack distance. Efficient use of virtual  storage 
and  ways of utilizing secondary storage to make  up for 
the increased storage required by the new algorithm have 
been discussed.  The  amount of computation for  each 
reference  has been  analyzed for  the new algorithm,  and 
the  average  for a fixed inter-reference  distance  over a 
range of previous reference positions is shown to be 
approximately  a  linear  function of the logarithm of the 
inter-reference distance. 
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