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Central Server  Model  for Multiprogrammed Computer 
Systems  with Different Classes of Jobs 

Abstract: A computer  system  can usually be interpreted as a  closed  network with two different types of servers. It is then  possible 
to convert  the  network  into a single server  system with state-dependent arrivals. This  paper investigates the  stationary behavior of a 
single server  queue with  different classes of jobs. I t  is assumed  that  the  input  process  has  state-dependent exponential  inter-arrival times 
and preemptions at  the  server  are not  allowed. The  exact solution is obtained by finding the relationship  between the time  average  prob- 
ability  distribution  and  the departure  average probability  distribution. The  latter  can  be  derived, based  upon an imbedded Markov  Chain. 

Introduction 
To study  the  stochastic behavior of computer  systems, 
queuing  networks are frequently  used. In many cases, 
one  can possibly describe  these  networks by two dif- 
ferent  types of servers,  for example,  a computer with a 
set of terminals, or a CPU with a finite number of 1 / 0  
processors.  It is therefore convenient to consider one 
type of server  as  the “input source”  and  the  other  as 
the  “service facility.” If the  number of jobs in the net- 
work is fixed, the  arrival rate  to  the  service facility is in 
general a nonincreasing  function of the  queue length. On 
the  other hand, if the  jobs  are  not identical,  distinguish- 
able  distributions  for  the successive  service  times may 
be expected, contingent  upon the queuing discipline. 
Consequently, a queuing  system with state-dependent 
arrival and  service  processes will be very helpful for 
practical use. Problems with a single class of jobs in 
this area  have previously  been studied  as a  generalized 
M / G /  1 queue by means of renewal equations by Cour- 
tois and  Georges [ 1 1. 

In this paper,  the  stationary behavior of a single server 
queue is investigated. Based upon the so-called “Re- 
newal Reward  Theorem” [2], we  show a simple way to 
treat  the single-class-job problems  and attempt to solve 
problems with two classes of jobs.  The  techniques used 
in this paper can  be extended  to  the  cases of more  than 
two  classes. Because of the  tedious  derivations, however, 
we do not discuss  these problems. 

We assume  that  the inter-arrival  times are indepen- 
dently exponentially distributed  (not necessary  identical- 
ly),  and preemptions  at  the service facility are not al- 
lowed. 

For  the M / G /  1 FIFO queue, it  is  well known that 
31 4 Aj ,  the proportion of departures  that  have j jobs left be- 

hind, is equal to  the  proportion of time there  are j jobs 
in the  system, Pj .  In  the  case of state-dependent arrivals, 
however, this property  is no longer true. A frequently 
used  technique is to  compute { A j }  first, and  to  evaluate 
{ P j }  by expressing  each Pj as a function of { A j }  [ 1,3,4]. 
This  approach is adopted  here. 

Notation 
M i  = the total  number of type i jobs,  or the waiting room 

capacity  (including the  one in service, if any)  for 
type i jobs [5] 

i-arrival = an arrival that belongs to  type i 
i-departure = a departure  that belongs to  type i 
Aji = the arrival rate of i-arrival when there  are j type i 

xni = the  number of type i jobs remaining in the  system 
jobs in the system 

when the nth departure  occurs 

S‘ = the  service time of a type i job 
S,, = the nth service time 

G‘(tlj,  k )  = P [ S i 5  t lX ,  = ( j ,  k ) ]  

d(X,) = P[S,,+, = S’JX,] 

T’(u1j) = the ( u  - j )  th i-arrival time given that  there 

T (  u. ul j ,  k )  = the first passage  time to  the  state (u ,  u ) ,  
given that X,, = ( j ,  k )  at the  last  departure 
epoch 

are j type i jobs in the system at t = 0 

F U i ( t J j )  = P [ T i ( u J j )  5 t ]  

Fu,(tlj, k )  = P [ T ( u ,  ulj, k )  5 tl 
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= the  departure  average probability of the  state ( j ,  k )  
Pjk = the  time average probability that  the system is in 

state ( j ,  k )  

1, if S I O ,  

0, if S < 0. 
U ( S )  = 

Renewal  reward process 
Before our  discussions,  we  state  the Renewal Reward 
Theorem  as follows: 

Let { N ( t ) ,  t 1 0) be a  renewal process with inter- 
arrival  times TI, T,, . . .. Suppose  that a  reward Y ,  is 
earned  during  the nth inter-arrival  time, and  the pairs 
( T,, Y,) are independently and identically distributed. 

Define Y (  t )  = 2::; Y,, if E[ Y,] and E[ T, ]  are both 
finite,  then with probability one, we have 

The proof of the  theorem can be found in [2]. 

According to  the theorem, it is  clear  that  the time 
average probability of a certain  state  can be obtained 
by taking the  ratio of the  expected length of time that 
the system is in the  state during  a recurrent cycle to  the 
mean length of the cycle. 

Customer averaged probability 
For  an M / G / l  FIFO queue with state-dependent ex- 
ponential  inter-arrival times, a Markov chain is usually 
defined by looking at the departure  epochs.  Let X ,  be 
the number of jobs remaining in the  system  just  after the 
nth departure  epoch.  Then  the  stationary distribution 
Aj  = P [ X m  = j ]  can be  obtained by using 

where Y,+, is the  number of arrivals  during the  (n + 1 )th 
service  time, and S,= 1 ,  if X ,  > 0; 6, = 0, otherwise. 

For  two  classes of jobs, X ,  is expressed by a vector, 
Le., X ,  = (x , ' ,  x n 2 ) ,  where x,' is the  number of type i jobs 
left behind by the nth departure.  Then a Markov  chain 
is given by 

where Y,+, = the arrival pattern,  and  its ith  element 
indicates  the number of i arrivals during Sn+,; 

null vector, if X ,  = (0, 0 )  ; 

the ith  unit vector, if S,+, = Si  and x,' > 0. 
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The distribution of the (n  + 1 )th service  time, S,,,, 
depends upon the  state, X,, and  the queuing  discipline. 
One may define S,+, = Si, with  probability di(X,)  and 
d ' (X , )  + d 2 ( X n )  = 1 .  If X ,  = (0, 0) ,  then d'(X,)  is in- 
terpreted  as  the probability that  an i-arrival follows the 
idle period immediately. For non-preemptive  priority 
queues, then 

d' ( X , )  = 1 ,  if x,, > 0; 

(?(X, , )  = 1, if x,' > 0, x,' = 0. 
Some other  examples  can be set by letting d ' (X , )  be 
constant  (i.e., independent of the  state X , ) ,  or having 

The transition  probabilities of the  Markov chain 
S(X,) = xni/(,Knl + Xn2) ,  i = 1 ,  2 .  

defined by ( 2 )  is then given by 

P[X,+, = (., u)lX, = G, k ) l  

= P[Y,+, = ( u  - j  + 1, u - k ) l S , + ,  = S', x, 
= ( j ,  k ) l d l k  k )  

= ( j ,  k ) 1 d 2 ( j ,  k ) .  (3)  

+ P[Y,+, = ( U  - j ,  u - k + 1 )  IS,,, = S2, X ,  

Although we have implicity assumed  that Si  is not 
dependent upon X,, it is clear that  one can  easily gen- 
eralize  this  assumption. 

The conditional  distribution of Y ,  can be  obtained by 
using the convolutions of a set of independent exponential 
distributions. If the arrival processes of different types 
of jobs  are  independent, i.e., if the inter-arrival  time of 
type i jobs  depends  upon  the  queue size of their own kind 
only,  then 

where 

For  the machine-repairman  problem  (e.g., a computer 
serves M' + terminals), A,' is a linear  function of u,  
i.e., A u i = h i ( M i - u ) , u = 0 ,  I,. . . ,". Thus, 31 5 
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For another  example, we may have a single CPU with 
(N' + N2) 1 / 0  processors servicing M' + M2  jobs  (each 
type of job  forms a single 1 /0  queue), then Aui is a 
piecewise  linear  function of u,  that  is,  for N' 2 M i ,  i =  1, 2; 

Aui= [ . 
AiMi , ~ ~ N ~ - - z M " :  

A'(Ni - u ) ,  if Ni - u 5 Mi. 

It can be seen  that if Ni - u 5 Mi ,  the number of type 
i jobs in 1 / 0  processors is less than  the  number of 1 /0  
processors;  therefore,  the arrival rate  to  the CPU is 
linearly decreasing in u. The distribution of the number 
of i-arrivals during each CPU service time can be com- 
puted by using the  standard  techniques  derived  for 
G I / M / R  queuing systems  [3]. 

Once  the transition  probabilities are  obtained, we use 
the equilibrium equations  to  evaluate  the  stationary 
probability  distribution. Thus,  we  have 

where 

Define z (z , ,  z 2 )  = 2 2 zluz2uAuv, 
u v  

E i ( z l ,  z 2 )  = z l u z ~ A u v d ( u ,  u ) ,  and 
u v  

C"'(s) = ? d C i ( t ) .  I 
It  can be shown that 

N 

.1 (zl, z2)  = - 
[A1 + A2 
" c'[A'(l -zl) f A ' ( 1  - z2 ) ]  

31 6 

f- 
A' + A' ~ z [ A 1 ( l - z l ) + ~ 2 ( l - z ~ ) ] ] ( 1 - p )  

+ ~ ~ [ A ' ( l - ~ l ) + A 2 ( l - ~ 2 ) ] - [ ~ ' ( ~ , , ~ 2 )  1 

- E ' ( 0 ,  z,)] + c2[A'( 1 - z l )  + A'( 1 - z , ) ]  

21 

x - [ B 2 ( Z 1 ,  z2 )  -D2(z1, 011, 
1 

22 

where 

p =  1 - A'E[S'] - A2E[S2]. 

A single class of jobs 
The Renewal Reward  Theorem is now used to obtain 
the time average probability  distribution. First,  we study 
the problem with a single class of jobs. We say that a 
renewal occurs i f j  jobs  are left behind in the system by 
a departure. Let 

Cj = the time  interval between  successive renewals or 

Rj = the  number of departures during Cj or the number 

D = the  inter-departure time. 

the  recurrent time. 

of jobs completed  during Cj. 

Because  among Rj  departures during the  recurrent 
time,  exactly one  departure  can  have j jobs left behind, 
it  must  be  the  case, by using the  theorem,  that 

A . = A  
3 E[Rj] ' 

For Cj = Zzl D,, then 

E[Cj] = E[D]E[Rj]. 

Note that 

S, if X ,  > 0, 

S , + I i f X , = O ,  
D = [  

where I is the idle period of the  service facility. 

E[D] = E[Su] + - A O .  

Equations ( 7 ) ,  (8) and (9) imply that 

1 
A, 

We still have  to  evaluate  the  expected length of time 
that  the  system is in the  state j during a recurrent  cycle, 
Cj. This  can  be  done by introducing  a "dual" system [6]. 
We  say that a pair of queuing systems  are  dual  systems; 
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if 1 :here is an arrivz d (or a departure) in one  system, then 
a departure (or an  arrival)  occurs accordingly in the 
other.  Clearly, the  inter-arrival  time and the service 
time are interchanged in the dual queue. Moreover, if 
one  system is in the  statej,  then we let the corresponding 
state of its dual  system be M - j so that a  transition  from 
the  state M - j  - 1 to  the  state M - j  becomes a  renewal 
(see Fig. 1) .  As  to our problem, it is not difficult to  see 
that  the dual system  has a state-dependent exponential 
service time, and it is operated  under LIFO rule with 
preemptive resume discipline.  When this dual system 
is in the  state M - j  and a job, namely J ,  is preempted by 
a new arrival, then  correspondingly  a departure  occurs 
in the original system  (which is now in the  state j - 1 ). 
As soon as the number of jobs in the dual  system is re- 
duced  to M - j ,  job J is resumed and its  service  time is 
still exponentially  distributed with a rate Aj (due  to  the 
memoryless property).  This is then  equivalent to saying 
that  the original queue is in the  statej and the next  inter- 
arrival  time is exponentially  distributed with the  rate 
Aj. Note  that  the dual queue can be in the  state M - j 
(hence  the original system is in the  state j )  if and  only 
if job J is being serviced and  exactly  one  such  job  exists 
during each  cycle.  Since  the work is conserved,  the  ex- 
pected length of time that  the original system is in the 
state j is equal to  the mean service time of job J in the 
dual  queue,  that is, 1 /Aj .  

Applying the  theorem,  we  have 

Pj  = Ai"/E[Cj] 

This result has been  obtained in [ 1 1 .  
Equation ( 10) indicates that Pj  is proportional to A j / A j  

V j < M .  For a homogeneous  arrival process (Le., Aj = A, 
V j )  and M = m, A ,  = 1 - AE[S,]. Consequently, (10) 
becomes Pj  = Aj V j ,  the well known property of M /G / 1 
FIFO queues. 

Two classes of jobs 
It is a  little  complicated to  evaluate  the probability dis- 
tribution of {X,, = ( j ,  k ) } .  Although the mean recurrent 
time can be  obtained in a similar way by letting a de- 
parture  that finds the  state ( j ,  k )  be a renewal, it is not 
easy to  compute  the mean length of time that  the  system 
is in the  state ( j ,  k )  during  this recurrent cycle. In  the 
following, we  consider  the  interdeparture time as a  cycle. 
(This idea was mentioned in [ 1 1 . )  Let 

T ( u ,  u l j ,  k )  = the first  passage  time from  the  event 
{X,= 6, k ) }  to  the  state ( u ,  u ) ;  

Ti ( k l j )  = the ( k  - j ) t h  arrival  time of an i-arrival 
given that  there  are j type i jobs in the 
system initially. 
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Original  queue 
non-preemptive 

I 

M-i-1 
Dual  queue 
LIFO preemptive 

Timc r 

Figure 1 Comparison of states, plotted vs time. 
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The  above  equation  is reduced to  the  case of a single 
class if we let the  type-2 arrival rate Aj2 = 0. Then T' 610) 
= m, V j  > 0, and 

0 i f s > O o r k > O ;  

1 i fk=O.  
F i ( s 1 0 )  = 

In  the  case  that Aj' = A', A i  = A', the  events Z and B 
are mutually  independent. This  can be  shown as follows. 

[ e-"F;(tlj)  dF;(tlk) 

m=u-j m )( A ' + A ' + s  A' )"( A ' + A ' + ~  A' ) v -k  
' 

Using the  above  equation  and ( 12),  we  have 

which implies that 

where T ( t l n ,  A )  is the distribution  function of a  gamma 
random  variable with a  mean A-n. 

We now come back to  our problem. Let 
'un = the  duration  of time that  the system is in the 

state ( u ,  u )  during an  inter-departure time. 
Rn+l(r)  = the remaining service time of the (n + 1)th 

job given that  the  job has  received r units of 
service time. 

Tki = the inter-arrival  time of a type i job, given that 
there  are k such  jobs in the  system. 

E[e,,lX,= ( j ,  k ) l  = f E[O,,IT(u, u l j ,  k )  = rl 
0 

x dFu,(rlj, k )  (14) 

E[B,,IT(u, ulj, k )  = rl 

= E[min (Ru+l(r) ,  T~', 7,')lry S,+,I f'rr-5 Sn+]I, 

because  for r > S,,,, the  system will never  reach  the 
state ( u ,  u )  and Ouv = 0. 

Define G(tl j ,  k )  = X:=, Gi(t l j ,  k )  d ( j ,  k ) ,  and r = 

31 8 min (T,,, 7,') ; then 
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Thus, 

E[O,,lT(u, u l j ,  k )  = r ]  = e-Auut [ l  - G ( t  + r l j , k ) ]  dt, 

where 

A,, = A,' + A,'. 

Substituting  this equations  into (14) and interchanging 
the integrations, we  have 

I 

E[',,IX, = o', k ) l  

x dG(YIj, k ) .  (15) 

j - 1 5 u u , k - 1 5 u , a n d j + I - 1 5 u + u .  

The  above  equation  shows  that E[8,,(Xn = ( j ,  k ) ]  is 
equal to the  product of the  expectation of inter-arrival 
time forthe  state ( i , k )  andP[T(u, u b , k )  +rPS,+,(X,= 
o', k ) l .  

If Aj' = A' and ARB = A', it can  be shown that 

For an exponential  server with  a rate p, i.e., G ( t l j ,  k )  
- 1 - e-wt - , Eqs. (15) and  (16) give 

X 
A' v-k 1 

(A' + A' + p) A' + A' + p . 
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Remove  the condition that { X ,  = (j, k ) >  from ( 15) ; 
then 

u u  

E[O,,I = E E[O,,lx, = (j, k ) l A j k  (17) 
j = O  k=O 

can  be evaluated. 
The mean inter-departure time is obtained by 

A 2  

A00 
E[S'] + E[S'l)a, 

+ {E[S']d'Cj, k )  + E[S2]d2(j,  k))Ajk. (18 )  
(j, k )  

Finally, the time average  stationary probability, 

P,,=E[O,,]/E[D],V ( u , u ) 3 ~ + u < M ' + M ~ .  (19)  

The probability that  the service facility is idle can  also 
be  obtained  directly by letting the starting  point of each 
busy  period  be a renewal. Define 

R = the  number of jobs completed  during each recurrent 

B = the length of a  busy  period, and 
I = the length of an idle period. 

cycle, 

Since 

A,, = - 1 
E[R]' 

E[I] + E[B] = E[R]E[D], and 

E[I] =-, 1 
A00 

it follows that, 

ELI1 
E[I] + E[B] 

-~ A 00 

A,,E[DI ' 
- 

where E  [D] is obtained in ( 18) .  

given by 
Therefore,  the utilization of the service facility is 

If only the marginal distribution is of interest,  the 
arguement in the last section is valid. Let  the  event  that 
an  i-departure  has u type i jobs left behind be a  renewal, 
and define 
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A,' =,)i_m_P[X,' = u,  S, = S i ] ,  and 

P,' = the time average probability that  there  are LI type i 
jobs in the  system,  for i = 1, 2. 

Then 

For n + a, we have 

and 

1 A '  
A,' E[D]' 

p,' = - 2. 

the conditional probability of X,,, is given by (4), and 

For  type 2 jobs, the  similar results hold by replacing 
E[Dl by (18). 

the  superscripts. 

Conclusions 
When  a computer  system is considered as a single central 
server  queue,  the  stationary  stochastic behavior  can be 
evaluated if the inter-arrival  times are  independent, ex- 
ponential  random  variables. The results in this paper 
show  the relationship  between the  departure  average 
distribution  and the time average distribution. For a 
single class of jobs, a simple relation is obtained. If there 
are  two different classes of jobs,  the distribution {Pjk} is 
given as a function of {Ajk} by (15 ) - (   19 ) .  It  seems not 
difficult to extend these  results  to  the  cases of more  than 
two  classes. 

If both of the arrival processes  are homogeneous (i.e., 
Aj' = A' and A t  = A'), then the  event Z and the first 
passage  time T ( r ,  ml j ,  k )  , V r 1 u,  m 2 u,  are  independent. 
This  fact is shown by equations (13) and (16). Unfor- 
tuantely, this is not true in the  case of state-dependent 
arrival processes.  It can be seen  that if we let u = 1 and 
u = 0, T (  I ,  l , lO,  0)  does  depend upon Z .  Thus, from a 
practical point of view, the major difficulty is in comput- 
ing the transition  probabilities {P[X,+,  = ( u ,  u ) l X ,  = 

( j ,  k )  11 or equivalently F,'(tJj).  
If the arrival rate is a  linear  function of its  own  state 

variable for  each  class of jobs,  one can  use  a binomial 
law to  evaluate  these probabilities. For arbitrary func- 
tions,  however, much computational effort may be re- 
quired. Consequently,  an efficient method is most de- 
sirable. 31 9 
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