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We-Min Chow

Central Server Model for Multiprogrammed Computer
Systems with Different Classes of Jobs

Abstract: A computer system can usually be interpreted as a closed network with two different types of servers. It is then possible
to convert the network into a single server system with state-dependent arrivals. This paper investigates the stationary behavior of a
single server queue with different classes of jobs. It is assumed that the input process has state-dependent exponential inter-arrival times
and preemptions at the server are not allowed. The exact solution is obtained by finding the relationship between the time average prob-
ability distribution and the departure average probability distribution. The latter can be derived, based upon an imbedded Markov Chain.

Introduction

To study the stochastic behavior of computer systems,
queuing networks are frequently used. In many cases,
one can possibly describe these networks by two dif-
ferent types of servers, for example, a computer with a
set of terminals, or a CPU with a finite number of I/0
processors. It is therefore convenient to consider one
type of server as the “input source” and the other as
the “‘service facility.” If the number of jobs in the net-
work is fixed, the arrival rate to the service facility is in
general a nonincreasing function of the queue length. On
the other hand, if the jobs are not identical, distinguish-
able distributions for the successive service times may
be expected, contingent upon the queuing discipline.
Consequently, a queuing system with state-dependent
arrival and service processes will be very helpful for
practical use. Problems with a single class of jobs in
this area have previously been studied as a generalized
M/G/ 1 queue by means of renewal equations by Cour-
tois and Georges [1].

In this paper, the stationary behavior of a single server
queue is investigated. Based upon the so-called “Re-
newal Reward Theorem” [2], we show a simple way to
treat the single-class-job problems and attempt to solve
problems with two classes of jobs. The techniques used
in this paper can be extended to the cases of more than
two classes. Because of the tedious derivations, however,
we do not discuss these problems.

We assume that the inter-arrival times are indepen-
dently exponentially distributed (not necessary identical-
ly), and preemptions at the service facility are not al-
lowed.

For the M/G/1 FIFO queue, it is well known that
A;, the proportion of departures that have j jobs left be-
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hind, is equal to the proportion of time there are j jobs
in the system, P,. In the case of state-dependent arrivals,
however, this property is no longer true. A frequently
used technique is to compute {4;} first, and to evaluate
{P,} by expressing each P; as a function of {4, (1,3, 4].
This approach is adopted here.

Notation

M' = the total number of type i jobs, or the waiting room
capacity (including the one in service, if any) for
type i jobs [5]

j-arrival = an arrival that belongs to type i

i-departure = a departure that belongs to type i

}\ji = the arrival rate of i-arrival when there are j type i
jobs in the system

xni = the number of type i jobs remaining in the system
when the nth departure occurs

X, = (x,, x,7)
S’ = the service time of a type i job
S, = the nth service time

G'(tlj, k) = P[S'= 11X, = (j. O]
d'(X,) = P[S,,, = S'1X,]

T'(ulj) = the (u — j)th i-arrival time given that there
are j type { jobs in the system at t =0
T(u. v|j, k) = the first passage time to the state (u, v),
given that X, = (J, k) at the last departure
epoch

Fl(t)j) = PIT'(ulj) = 1]

F o (tj, k) = P[T(u, vlj, k) < 1]
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Ay =PLX, = (. k)]

= the departure average probability of the state (J, k)
P, = the time average probability that the system is in
state (j, k)

1,if § =0,
U(s) =
0,if § <0.

Renewal reward process
Before our discussions, we state the Renewal Reward
Theorem as follows:

Let {N(r), t = 0} be a renewal process with inter-
arrival times T, T,, - Suppose that a reward Y, is
earned during the nth inter-arrival time, and the pairs
(T,, Y, are independently and identically distributed.

Define Y(1) = 3/ v, if E[Y,] and E[T,] are both

finite, then with probability one, we have

| Y() _ ELY]
O =~ &7

o YL LB

,ast—>x

The proof of the theorem can be found in [2].

According to the theorem, it is clear that the time
average probability of a certain state can be obtained
by taking the ratio of the expected length of time that
the system is in the state during a recurrent cycle to the
mean length of the cycle.

Customer averaged probability

For an M/G/1 FIFO queue with state-dependent ex-
ponential inter-arrival times, a Markov chain is usually
defined by looking at the departure epochs. Let X, be
the number of jobs remaining in the system just after the
nth departure epoch. Then the stationary distribution
A; = P[X_= ] can be obtained by using

X, ,=X,—8,+Y,.. (1)

where Y., is the number of arrivals during the (n + 1)th
service time, and 8, = 1, if X, > 0;8,=0, otherwise.

For two classes of jobs, X, is expressed by a vector,
i.e, X,=(x,',x,), where x,’ is the number of type i jobs
left behind by the nth departure. Then a Markov chain

is given by
X1 =X, =0, + Y, (2)

where Y,,, = the arrival pattern, and its ith element
indicates the number of / arrivals during S ,;

[null vector, if X, = (0, 0);
A= :

the ith unit vector, if S,,, = §' and x,’ > 0.
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The distribution of the (n + 1)th service time, S, ,,
depends upon the state, X,, and the queuing discipline.
One may define §,,, = §', with probability d'(X,) and
d'(Xx,) + &(Xx,) = 1. If X, = (0, 0), then d'(X,) is in-
terpreted as the probability that an i-arrival follows the
idle period immediately. For non-preemptive priority
queues, then

d(x,)=1ifx>0;

dz(X") =1, ifx"2 > 0, xnl =0.
Some other examples can be set by letting d (X .) be
constant (i.e., independent of the state X, ), or having
d(X,)=x,/(x'+x1),i=12.

The transition probabilities of the Markov chain
defined by (2) is then given by

PlX,,, = (u, 0)X, = (k)]

n+t

=P[Y =w—j+1,v—k)I|S S X

= (j, K)1d"(j, k)
+PlY,  =w—jv—k+1IS, =5X,

= (j, k)1d*(j, k). (3)

Although we have implicity assumed that §' is not
dependent upon X, it is clear that one can easily gen-
eralize this assumption.

The conditional distribution of Y, can be obtained by
using the convolutions of a set of independent exponential
distributions. If the arrival processes of different types
of jobs are independent, i.e., if the inter-arrival time of
type i jobs depends upon the queue size of their own kind
only, then

n+1 n+1 n

P(Y,,, = (u,0)IS,, =58, X,= (G, 0],
- J;w PIT (ulj) < s = T'(u + 1)), T (wlk)
< 5= T*(v+ 11k)1dG (s1j. k),
=f: (FlL(slj) = F,, (sW)IIF, (slk)
— F,,(slk)1dG (sj, k), (4)
where

F/(s|j) = P[T'(ulj) = 5],

t i .
f [1— e dF_ (s]j). if u > J
0

U(s), ifu=j (5)

For the machine-repairman p_roblem (e.g., a computer
serves M' + M® terminals), X, is a linear function of «,

e, A\ =N(M —u),u=0,1,- M. Thus,
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i v M i i miop
Fist= 3 () (1= ey,
k=y—j
For another example, we may have a single CPU with
(N'+ N*) 1/0 processors servicing M* + M” jobs (each
type of job forms a single 1/0 queue), then )\ui is a
piecewise linear function of u, that is, for N=M i= 1,2;

A=

u

M JiE N —u = M
NN — ), ifE N —u= M.

It can be seen that if N' — u < Mi, the number of type
i jobs in 1/0 processors is less than the number of 1/0
processors; therefore, the arrival rate to the CPU is
linearly decreasing in u. The distribution of the number
of i-arrivals during each CPU service time can be com-
puted by using the standard techniques derived for
GI/M/R queuing systems [3].

Once the transition probabilities are obtained, we use
the equilibrium equations to evaluate the stationary
probability distribution. Thus, we have

A= PIX,,, = (u,v)|X, = (j, k)14,

()
and
3 A, =1, (6)
U, k)

Ji=0,1,- M k=0,1,-, M andj+k < M' + M.
In the case that ' = A, \,* = \* V j, k, then
1 2
A =a 'A —)—\——-i-a 4 A

uv uy © 700 )\1 + )\2 uv 700 )\1 + A2
?
1 Ao
+ > Ay jerpidnd U k) +

u
+ 33 kdnd U k),

e dGi(r).

i = (\1)" At ()"
¢ v!

u!

Define 4(z,, z,) = >3 224,
v

D'(zp2) =3 3 2,"2,’4,,d (u, v), and
G'(s) = f sdG (1),
0

It can be shown that

1

/7(zl,zz)=[ G'IN(1—2) +N(1—2)]

A+ A
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P G IN(1—z) + 2 —zz)]](l —p)

A
+E N (1=2) + N (1—2,)] zll (D' (z,, 2,)
—D'(0,2,)]1 + G\ (1—2) + A (1—2,)]
le—z [52(21, z,) —IN)Z(zl, 0)],

where

p=1—MNE[S']— NE[5"].

A single class of jobs

-The Renewal Reward Theorem is now used to obtain

the time average probability distribution. First, we study
the problem with a single class of jobs. We say that a
renewal occurs if j jobs are left behind in the system by
a departure. Let

C; = the time interval between successive renewals or
the recurrent time.

R; = the number of departures during C; or the number
of jobs completed during C;.

D = the inter-departure time.

Because among R; departures during the recurrent
time, exactly one departure can have j jobs left behind,
it must be the case, by using the theorem, that

1

A4;= E[R]" (7)
For C; = Sw, D,, then

E[C,] =E[DIE[R/]. (8)
Note that

[sn if X, > 0,
D=

S, +1if X,=0,

where [ is the idle period of the service facility.
E[D] =E[S,] +}\ivo. (9)

Equations (7), (8) and (9) imply that
A 1
Elc;) = (ELS,) *1;) T

We still have to evaluate the expected length of time
that the system is in the state j during a recurrent cycle,
C;. This can be done by introducing a “dual” system [6].
We say that a pair of queuing systems are dual systems;
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if there is an arrival (or a departure) in one system, then
a departure (or an arrival) occurs accordingly in the
other. Clearly, the inter-arrival time and the service
time are interchanged in the dual queue. Moreover, if
one system is in the state j, then we let the corresponding
state of its dual system be M — j so that a transition from
the state M — j — 1 to the state M — j becomes a renewal
(see Fig. 1). As to our problem, it is not difficult to see
that the dual system has a state-dependent exponential
service time, and it is operated under LIFO rule with
preemptive resume discipline. When this dual system
is in the state M —j and a job, namely J, is preempted by
a new arrival, then correspondingly a departure occurs
in the original system (which is now in the state j — 1).
As soon as the number of jobs in the dual system is re-
duced to M — j, job J is resumed and its service time is
still exponentially distributed with a rate A, (due to the
memoryless property). This is then equivalent to saying
that the original queue is in the state j and the next inter-
arrival time is exponentially distributed with the rate
;. Note that the dual queue can be in the state M —
(hence the original system is in the state j) if and only
if job J is being serviced and exactly one such job exists
during each cycle. Since the work is conserved, the ex-
pected length of time that the original system is in the
state j is equal to the mean service time of job J in the
dual queue, that is, I/Aj.
Applying the theorem, we have

P,=)\""/E[C}]

-1

S AO AJ‘ .
_<E[ n]+)\—0) )\—jVJ<M. (10)

This result has been obtained in [1].

Equation {10) indicates that P; is proportional to 4,/ A,
Vj < M. For a homogeneous arrival process (i.e., A=A,
vj)and M =, 4, = 1 — \E[S,]. Consequently, (10)
becomes P;=A; V], the well known property of M/G/ 1
FIFO queues.

Two classes of jobs

It is a little complicated to evaluate the probability dis-
tribution of {X, = (j, k)}. Although the mean recurrent
time can be obtained in a similar way by letting a de-
parture that finds the state (j, k) be a renewal, it is not
easy to compute the mean length of time that the system
is in the state (j, k) during this recurrent cycle. In the
following, we consider the interdeparture time as a cycle.
(This idea was mentioned in [1].) Let

T(u, v|j, k) = the first passage time from the event
{X,= (j, k)} to the state (u, v):

= the (k — j)th arrival time of an j-arrival
given that there are j type i jobs in the
system initially.

T'(k|j)
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non-preemptive

i+1
i 1
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Recurrent cycle

M=

M —i
M—i—1

Dual queue
LIFO preemptive

Time ¢

Figure 1 Comparison of states, plotted vs time.

The necessary and sufficient condition that the system
will reach the state (u, v) from the state (j, k) is

Z={T"(ulj) = T*(v + 1}k), T*(vlk) = T"(u + 1)) }.
Thus,
F, (tlj, k) = P[T(u, vlj, k) = 1]

= P[max (T (ulj), T*(vlk)) = ¢, Z].

Define
B = {max (T'(ulj), T*(vlk)) = 1},
B,=BNZ

B,=B N {T'(u+ 1]j) < T*(v[k)}, and
B,=B N {T*(v+ 1lk) < T*(ulj)},

Since T2 (v + 1]k) > T?(vlk) and T (u+ 1]j) > T (ulj), it
is clear that

B=B, U B, U B, and
B, NB, =0, forr#m, r,m=123.
Consequently,
F,(t]j, k) = P[B,]
= P[B]— P[B,] — P[B,]
= P[T"(ulj) = t, T*(vlk) = (]
— P[T" (u+ 1|j) < T*(vlk) = 1]
—~ P[T*(v+ 1k) < T'(ulj) = t];

£

F. (i, k) = F, lj) F (k) = f F'_(slj) dF 2(slk)

0

—f F2 (slk) dF,}(s7). (12)
o 317
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The above equation is reduced to the case of a single
class if we let the type-2 arrival rate )\j2= 0. Then T°(j|0)
=00, Vj > 0, and

. 0 ifs>0o0rk>0;
F, (s]0) =
1 ifk=0.

In the case that \;' = X', ,” = \* the events Z and B
are mutually independent. This can be shown as follows.

r e "F,'(t|f) dF *(t|k)

]

N ) WO ) (WPt YN
‘foe {2 ¢ }(v—k—l)!e Adt

m=u—j

=i<m+v—k—1)( A )’"( A )”‘k
5 m M+ +s) WA+

m=u-j

Using the above equation and (12), we have

f e dF o
Q

=<u—j+v—k)< Al )"‘f( A )H
u—j M+ +s/ WA+

which implies that

F, (tlj, k)

_<u—j+v—k)< A )““f( A )”"f
u=j AMEA W

XT(tlu—j+v—k, A"+, (13)

where I'(¢z|n, \) is the distribution function of a gamma

random variable with a mean A ™",

We now come back to our problem. Let

0,, = the duration of time that the system is in the
state (u, v) during an inter-departure time.

R, (r) = the remaining service time of the (n + 1)th
job given that the job has received r units of
service time.

Tki = the inter-arrival time of a type i job, given that
there are k such jobs in the system.

E6,, 1, = G, &)1 = [ EI6,/Tw,olj, k) = 1]

x dF, (rlj, k) (14)
E[6,,T (u, v|j, k) = r]

= E[min (R, (), 7', 7})|r=S, ., ]1P[r<S§

n+1 n+1]’

because for r > §,,,, the system will never reach the
state (u, v) and 0,,=0.

Define G (t|j, k) = 32, G'(1]j, k) d'(j, k), and 7 =
min (7', 7,°); then
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Plr=8_1=1—-G(rlj, k),

n+1
— a2
Plr>t]=e M ™ and

1= Gt +rlj, k)

PIR =Gl k)

(ry >1]=

n+l1

Thus,

0

E[0,,|T (u, vlj, k) = r] =f e [1— Gt +rlj k)] di,

0

where
A =N+

Substituting this equations into (14) and interchanging
the integrations, we have

E[6,,1X,= (, k)]
_—_f f e_}\uvt [I_G(t-i—rlj,k)]
o 0
X dF,,(rlj, k) dt
= 1 ) ] ! —Ayply—mr)
=5 ) [=GOLLOT | Ae
uv 0 0
X dF,,(rlj, k) dy
® Y
=%f [1-GOli,k)1d U [1 = ¢~utr-n]
uv YO 0
< dr 1.0

Y
= =y a0
}\uv 0 ]

x dG (y|j, k). (15)
Jm1Zu,k~1=v,andj+[1—1=u+v.

The above equation shows that E[6,,|X, = (j, k)] is
equal to the product of the expectation of inter-arrival

time for the state (j, k) and P{T (u,vlj, k) +7=S,  |X, =
U, k1.

If A = A" and A,” = \%, it can be shown that

Y
[ 0= ey ar, 017 k)

0

{2 )

u—j A+ A NS
XT (ylu+v—j—k+1,\ +2). (16)

For an exponential server with a rate pu, i.e., G (¢lj, k)
=1—¢™, Egs. (15) and (16) give

. e )\1 u—j
E[Ouv|Xn=(J’k)]=<u+v J k><1 2 )
u—j AN+

( )\2 )v—k 1
M+ +p/ NN+
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Remove the condition that {X, = (j, k)} from (15);
then

El0,] =3 3 E[6,/X,= (j, k)14, (17)
j=0 k=0

can be evaluated.
The mean inter-departure time is obtained by

E[D] = E E[Danz (J, k)]Ajk

G, k)
1 >\01 1 )\02 2
=|—+>E[S']+—E[S ])A
<}\00 )\00 [ )\00 0
+ 3 {E[S"]d"(j, k) + E[S* 1 (j, k) }4;,. (18)
(k)

Finally, the time average stationary probability,
P,=E[0,1/E[D],V (u,v) Du+v <M +M. (19)

The probability that the service facility is idle can also
be obtained directly by letting the starting point of each
busy period be a renewal. Define

R = the number of jobs completed during each recurrent
cycle,

B = the length of a busy period, and

I = the length of an idle period.

Since

_ 1
00 E[R]’

E[/]+ E{B] = E[R]E[D], and

A

E[/] =+,
00

it follows that,

E[/]

Pow=EuT+E[B]

_ Ago
AoEID]’

where E[D] is obtained in (18).
Therefore, the utilization of the service facility is
given by

| p _MEID] =4y
© " AoE[D]

If only the marginal distribution is of interest, the
arguement in the last section is valid. Let the event that
an i-departure has u type i jobs left behind be a renewal,
and define
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A/ =limP[X, =u,S,=S5, and

Pui = the time average probability that there are u type i
jobs in the system, for i = 1, 2.

Then
Au1 = 2 P[Xn+1 = (u’ U)’ Sn+1 = Sl]

=3 Y PX,,,= w0)S,,, =5, X,=(, k]

T
X P[S,.,=S"1X,= (j, DIPLX,= (j, k)]

For n — «, we have

A= S S P, = 018, =S X, = ()

(G k) v
X d'(j, k) Ay,
and
LA
“ A E[D]

the conditional probability of X, is given by (4), and
E[D] by (18).
For type 2 jobs, the similar resuits hold by replacing

the superscripts.

+1

Conclusions

When a computer system is considered as a single central
server queue, the stationary stochastic behavior can be
evaluated if the inter-arrival times are independent, ex-
ponential random variables. The results in this paper
show the relationship between the departure average
distribution and the time average distribution. For a
single class of jobs, a simple relation is obtained. If there
are two different classes of jobs, the distribution {ij} is
given as a function of {Ajk} by (15)-(19). It seems not
difficult to extend these results to the cases of more than
two classes.

If both of the arrival processes are homogeneous (i.e.,
)\jx =" and )\kz = \?), then the event Z and the first
passage time T (r, m|j, k), ¥ ¥ = u, m = v, are independent.
This fact is shown by equations (13) and (16). Unfor-
tuantely, this is not true in the case of state-dependent
arrival processes. It can be seen that if we let ¥ = 1 and
v=0, T(1, 1,]0, 0) does depend upon Z. Thus, from a
practical point of view, the major difficulty is in comput-
ing the transition probabilities {P[X,,, = (4, V)]X, =
(j, k)]} or equivalently F '(11/).

If the arrival rate is a linear function of its own state
variable for each class of jobs, one can use a binomial
law to evaluate these probabilities. For arbitrary func-
tions, however, much computational effort may be re-
quired. Consequently, an efficient method is most de-
sirable.

n+i
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