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Approximate Analysis of Central Server Models

Abstract: Service time distributions at computer processing units are often nonexponential. Empirical studies show that different pro-
grams may have markedly different processing time requirements. When queuing disciplines are first come, first served, preemptive
priority or nonpreemptive priority, models reflecting these characteristics are difficult to analyze exactly. Available approximate tech-
niques are often too expensive for parametric analysis. Inexpensive approximate techniques for solution of central server models with
the above characteristics are presented. The results of these techniques are validated with simulation results.

1. Introduction

Central server queuing network models have been
widely used in the analysis of computing systems [ 1-5].
In these models it is assumed that a fixed number of cus-
tomers (programs) traverse a closed network consisting
of the central processor (CPU) and the input/output
(I/0) devices. A customer alternately receives service
from the CPU and one of the 1/ 0O devices. A customer
may have to wait in a queue if the server is busy. After
completing service at the CPU, a customer selects an
1/0 device according to probabilities associated with
that device and the given customer. These probabilities
are independent of the state of the system. The service
time of a customer on a device may depend upon the
device, the customer, and the queue lengths for that de-
vice, but is otherwise independent of the state of the sys-
tem. Figure 1 illustrates a central server model with
three 1/ 0 devices.

Often the models used are such that solutions for the
equilibrium behavior can be determined using the tech-
niques of local balance [6, 7]. If the model is to have
first come, first served (FCFS) queuing disciplines, and
if the techniques of local balance are to be used in the
solution of the model, then it must be assumed that, at
the servers with FCFS disciplines, the service distribu-
tions are exponential and independent of the customer
being served. Local balance techniques do not allow
priority queuing disciplines.

Empirical studies on real computing systems show that
CPU service distributions are often hyperexponential
(the standard deviation is greater than the mean) and
that 1/0 device service distributions may be hypo-
exponential (the standard deviation is less than the
mean). Studies [8] have shown that mean service times
and service distributions are dependent on the customer
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being served. When one makes assumptions that distri-
butions are exponential and all customers have the same
distributions, significant inaccuracy may be introduced
into the model. Clearly, distinctions must be made be-
tween customers if priority CPU distributions are con-
sidered. Therefore, 1) many realistic problems do not
satisfy local balance, and 2) customer differentiation is
often required for realistic models.

Chandy, Herzog, and Woo [9] have developed very
good approximate iterative techniques for analysis of
general queuing networks with nonexponential service
distributions and distributions dependent on customer
class. The iterative techniques of Wallace and Rosen-
berg [ 10] may also be used to obtain exact solutions for
models with nonexponential distributions. The tech-
niques of Crane and Iglehart [ 11, 12] may be used to
obtain confidence intervals for simulation results for
these models and thus to obtain accurate simulation re-
sults. However, these techniques are relatively expen-
sive to apply. In many instances it will not be practical
to survey a large variety of models using these tech-
niques.

Figure 1 Central server model.
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Figure 2 CPU queue and composite 1/0 queue.

1/0

We present here approximate solution techniques spe-
cifically intended for, but not limited to, central server
models of computing systems. Qur techniques are con-
siderably less expensive to apply than the above men-
tioned techniques, but are sufficiently accurate for the
initial stages of computer system design. Our techniques
complement the previous techniques in that ours can be
used to study and compare a large variety of models,
and then more accurate, more expensive techniques may
be used to study more carefully a small subset of the
original group of models.

In Section 2 of the paper we summarize central server
models in local balance and give examples of inaccura-
cies of “local balance assumptions.” In Section 3 we
describe “Norton’s theorem”™ on locally balanced
queuing networks [ 13] as applied to central server mod-
els. Our approximations are based on the results of Nor-
ton’s theorem. In Section 4 we present the approxima-
tions for models with nonexponential distributions, in
Section 5 we present techniques for class dependent
service distributions, and in Section 6 we present tech-
niques for models with priority CPU disciplines based
on customer class. In Section 7 we compare the results
of our techniques with results of simulations; our tech-
niques are validated by comparison with over 125 dif-
ferent simulations.

2. Local balance

A central server model will be in local balance [6] if 1)
branching probabilities are dependent only on the device
and the customer class, 2) all queuing disciplines are
FCFS, processor sharing (PS), or last come, first served
preemptive resume (LCFSPR), 3) servers with FCFS
discipline have exponential distributions independent of
customer class, and 4) servers with PS or LCFSPR dis-
ciplines have differentiable service distributions (which
may be dependent on customer class). In these models
the equilibrium state probabilities will have the “product
form” and are easily calculated [6]. From the state
probabilities one can determine model statistics such as
throughput, server utilization, queue length distributions,
and waiting time distributions.

The following example illustrates the inaccuracy
which may be introduced by using local balance solu-
tions for models violating local balance assumptions.
This example is by no means a worst case, but illustrates
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that results of assuming local balance are likely to be
unsatisfactory.

Suppose that a system to be modeled has one 1/0
device and two classes of customers, with one customer
per class. Further, both service disciplines are FCFS, all
service distributions are exponential, the mean CPU
service time for class one is 2, the mean CPU service
time for class two is 0.2, and the mean I/ O service time
for both classes is 1. Suppose we are interested in the
overall throughput of customers through the CPU. This
model is small enough that exact solution of the Markov
balance equations is practical, and from the solution of
these equations the throughput is 0.5941. If we assume
that the results for a similar model with PS CPU disci-
pline will be accurate enough, the value we get for
throughput is 0.84, an error of more than 40 percent. If
we apply the techniques of Section 5, the value we get
for throughput is 0.6375, an error of about seven per-
cent.

Other examples illustrating the inaccuracy introduced
by local balance assumptions are found in [9].

3. Norton’s theorem applied to central server
models

In this section we review earlier work on Norton’s theo-
rem (Subsection 3.1) and present two examples: in
Subsection 3.2 we present a multiclass problem and in
Subsection 3.3 we work out a single-class example.

e 3.1 Norton’s theorem: a discussion

Norton’s theorem [ 13] may be used to transform a cen-
tral server model in local balance into one with a single
“composite” I/ O which represents the combined effects
of the I/ O devices in the original model at steady state.
See Fig. 2. Values determined for equilibrium through-
puts, server utilizations, and CPU queue length and
waiting time distributions of the two-queue model will be
the same as those calculated for the original model. The
transformation is independent of the CPU parameters,
so if a variety of CPU parameters is to be studied,
effort may be saved by applying Norton’s theorem and
studying the reduced model as the CPU parameters are
varied. The approximation technique presented here is
also especially well suited for parametric analysis of the
CPU.

In describing Norton’s theorem we shall assume with-
out loss of generality that there are m classes of cus-
tomers and exactly one customer of each class. The
composite I/ O processes all customers in parallel in the
two-queue, CPU-composite I/ O model. The composite
1/ O service rate for the customer of any given class / at
any given time depends upon i and upon the number of
customers N, of class j (NJ.= Qorl),j=1,-++, m,in the
composite I/O queue at that time. These composite.
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I/ 0O service rates are determined by analyzing a modi-
fied version of the original network in which the CPU
has been “shorted,” i.e., the mean CPU service time for
all customers is set to zero. See Fig. 3. The composite
I1/0 service rate of a customer of any given class I,
when there are N, customers of class j (Nj =0orl),j=
1,- -+, m, in the composite I/ O queue, is set equal to the
throughput of the customer in class / through the shorted
CPU when there is a population of N; customers of
classj,j= 1, -+, min the shorted CPU model. The solu-
tions of the two-queue, CPU-composite 1/0 model,
with the same CPU parameters as in the original model
and these queue-dependent composite I/0O service
rates, will be identical to those of the original model for
the equilibrium statistics mentioned above.

e 3.2 Example 1

Consider the following two-class example of a locally
balanced central-server model with a processor-shared
CPU and two I/Os labeled 1 and 2, two nonidentical
customers, one of class A and the other of class B. The
class A customer uses I/Os 1 and 2 with equal probabil-
ity, while the class B customer uses 1/0 1 exclusively.
The mean service time for each [/ O is independent of
customer class. The mean service times for I/Os 1 and
2 are 1 and 2, respectively. All I/O service times have
negative-exponential distributions.

Both class A and B customers are assumed to be ser-
viced in parallel in the composite I/ O queue. The ser-
vice rates for class A and B customers depend upon the
numbers of class A and B customers in the composite
I/0 queue. We next discuss the computation of these
rates by analyzing the modified version of the original
network in which the CPU has been shorted (Fig. 3).
When only the class A customer is present in the CPU-
shorted network, the throughput of the class A customer
through the shorted CPU is %s; when only the class B
customer is present the throughput is 1; and when both
are present, the throughputs for classes A and B are Y2
and ¥4, respectively. The composite 1/0O service rates
when there is one customer of class A and none of class
B in the composite I/0O queue is set to %3 for class A
(and O for class B); when there is one customer of class
B and none of class A the rate is set to 1 for class B
(and O for class A); and when there is one customer of
each class the rates are set to Y2 for class A and ¥a
for class B. The solution of the CPU-composite 1/0
model with the same CPU parameters as in the original
model and these queue-dependent composite 1/ O ser-
vice rates will be identical to the solutions of the original
model for the equilibrium statistics mentioned above.

s 3.3 Example 2
Consider the following single-customer-class example. A
locally balanced central server model has two identical
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Figure 3 Central server model with shorted CPU.

customers and two I/ O devices labeled 1, 2. The proba-
bilities that a customer will branch to the ith I/ O device,
i= 1,2, are 0.5 and 0.5, respectively. The mean service
times for I/ Os 1 and 2 are 4.0 and 2.0, respectively. All
1/0 queues have the FCFS discipline. With the CPU
shorted and j customers in the shorted network, j= 1, 2,
the throughputs through the shorted CPU are Y5 and
%7, respectively. In the two-queue, CPU-composite
1/0 model, the total service rates of the composite 1/0
when there are j customers in the composite I/0 queue,
j=1, 2, are set to ¥Ya and ¥, respectively. Equivalent-
ly, with all customers served in parallel, the rate for each
customer when there are j customers in the queue is ¥s
forj=1and (Y2) X (¥7) = %14 for j= 2.

The equilibrium statistics computed for the CPU-
composite I/ O model with the same CPU parameters as
in the original model, and these queue-length-dependent
composite T/0 service rates, will be identical to the
equilibrium statistics computed for the original model.

4. FCFS central server models with nonexponential
service times

We first discuss the overall technique generally (4.1),
then study composite 1/O representations (4.2), pre-
sent the detailed algorithm (4.3), and work out an exam-
ple (4.4).

s 4.] Overview

We now restrict our attention to central server models
with all customers identical, FCFS disciplines at all
servers, and arbitrary service distributions having ration-
al Laplace transforms. Even though this class of models
is not in local balance except when all service distribu-
tions are exponential, we shall apply Norton’s theorem
and show that the composite I/ O model yields solutions
close to those of the original model. (In making the
composite I/ O transformation we assume that the 1/ O
devices have exponential distributions with the same
means as the actual distributions. See example below.)
Chandy, Herzog, and Woo [9] use an approximate ap-
plication of Norton’s theorem in their iterative method.
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‘ Mean=d/2p

‘ Mean=d/2 (1—p)

Figure 4 Hyperexponential distribution model.

In order to compensate for the inaccuracy introduced,
we adjust the distributions for the composite I/0 to
reflect the nonexponential character of the actual distri-
butions.

After applying Norton’s theorem and adjusting the
distributions, we have a central server model with a sin-
gle composite 1/0, with both service distributions non-
exponential. This model is solved by an efficient recur-
sive technique which is an application of the technique
developed by Herzog, Woo, and Chandy [14]. Their
technique assumes distributions of the generalized Er-
lang form developed by Cox [ 15]. This generalized form
includes arbitrary distributions with rational Laplace
transforms. Our technique assumes that both the CPU
and the I/0 distributions are of this general form. De-
tails of our two-queue analysis are given in [16].

Our adjustment for the nonexponential nature of the
1/0 distributions is simple and effective. More sophis-
ticated adjustments could potentially increase the ac-
curacy of the final results. We characterize each 1/0
distribution by its mean and coefficient of variation (stan-
dard deviation divided by the mean). For the means of
the composite 1 /0 distributions we use the queue-length-
dependent values as shown earlier. We assume that the
composite 1/0 coefficient of variation is the weighted
sum of the coefficients of variation of the individual dis-
tributions, with the weights being the I/0O branching
probabilities. The composite 1/0 coefficient of variation
is a constant, independent of queue length. Of course,
the mean and coefficient of variation do not completely
specify the distribution. If the composite I/0O coefficient
of variation is greater than one, we assume that the
composite /0 service time is a standard two-stage
hyperexponential as in Fig. 4. If the coefficient of varia-
tion is one, we assume the service time is exponential. If
the coefficient of variation is less than one, we assume
the service time is of the generalized Erlang form with
the minimum number of stages necessary to obtain the
given coefficient of variation, all stages having the same
mean, and all branching probabilities zero, with the pos-
sible exception of the branch after the first stage, as in
Fig. 5.
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» 4.2 Composite 1/ O distribution

We desire the composite 1/0 distribution to represent
the aggregate of all the individual I/0O distributions. In-
tuitively, we expect the distribution of a given 1/0 to
influence the composite I/0 distribution more than dis-
tributions of other 1/0s, if the given I/O processes
more customers than other I/Os. We decided to restrict
attention to the first two moments to keep computation
simple. The means of composite 1/0 service times are
obtained by aggregating individual 1/0 mean service
times via Norton’s theorem. The composite coefficient
of variation is obtained by aggregating individual coeffi-
cients of variation, weighting each 1/0 by its branching
probability since 1/0 branching probabilities are direct-
ly proportional to I/0 throughputs. Note that although
the mean composite service time is queue-length-depen-
dent, the coefficient of variation is not dependent on
queue length. Note also that if all the 1/Os have the
same coeflicient of variation, then the composite 1/0
will have that coefficient of variation as well.

The first two moments do not completely specify a
distribution. We decided to model composite service
times using either two-stage hyperexponential (Fig. 4)
or generalized Erlang (Fig. 5) random variables, since
these are common ways of representing service times in
computing systems. Note that the particular forms of the
hyperexponential and generalized Erlang random vari-
ables are such that the first two moments uniquely speci-
fy the distributions. The selection of these particular
composite I/0 distributions was made with modeling
convenience and reasonability in mind; clearly other
choices could also have been made. However, note that
if the original model satisfies local balance, then our
technique gives exact results, since the composite 1/0
distribution obtained via our technique is the same as
that obtained via Norton’s theorem.

Hyperexponential Let k, be the coefficient of variation
of the composite 1/0. We shall use a standard hyperex-
ponential random variable to model composite I/O ser-
vice times if k, > 1. The relationship between &, and
parameter p (Fig. 4) of the hyperexponential is as fol-
lows:

kP4 1— (k= 1)

p=-- . (1)

2(k2+1)
Note that k, uniquely specifies p. The means for each
stage of this hyperexponential are uniquely specified by
p and the mean composite service time, d.

Mean of stage 1 =d/2p. (2)

Mean of stage 2 = d/2(1 — p). (3)
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Generalized Erlang Consider the Erlang random variable
(Fig. 5) with n stages, n=2, 3, 4,---. After a customer
completes the first stage, he may finish service with
probability p, or he may continue through the remaining
n — 1 stages with probability 1 — p. All stages have the
same mean time, and all stage holding times are inde-
pendent exponential random variables. By varying p
from 0 to 1 the coefficient of variation ranges from 1/n2
to 1. We wish to keep the number of stages small to
minimize computation. Hence, we s‘hall use n stages if
and only if 1/(n — 1) > k, = 1/n2. The value of n is
directly determined from k.. Together n and &, uniquely
specify p. See Eq. (4) below. The means for each stage
are uniquely specified by n, k,, p, and the means of the
composite I/0O service times.

2nkE+n—2— (n+ 4— 4nk®)?

4
2k + 1) (n—1) @

p

Mean of each stage=d/[(n—p(n—1)]. (5)

In conclusion, the generalized Erlang and hyperexpo-
nential random variables shown in Figs. 4 and 5 are
completely specified by the first two moments and have
a wide range of coefficients of variation. The parameters
p are independent of composite I/O mean service times
and the mean times for all stages in both distributions
are directly proportional to the composite 1/0 mean
service time; this simple relationship is an advantage in
modeling queue-dependent service rates.

o 4.3 Algorithm

We now present the algorithm after explaining some
notation. Let there be R /0 queues indexed 1,--+, r, -,
R. We shall use the subscript r to denote the rth 1/0 in
the original model and the subscript ¢ to denote the
composite 1/0 in the CPU-composite 1/0 model. Let
p, be the probability that a customer branches to the rth
1/0 device after finishing CPU service. Let k denote
the coefficient of variation: k, for the composite 1/0 and
k. for the rth 1/0 device. We shall use the subscript 0
(zero) for the CPU. Let U, be the utilization and ¢, the
throughput for the rth queue, r =0, 1,---, R. Let A, be
the service rate for the rth 1/0O device. Let g and w be
the mean CPU queue length and wait times and let a,
and o, be the corresponding standard deviations.

Algorithm A

Step 1 Composite 1/0 service rates. Consider the given
(nonlocally balanced) model. Construct the shorted-
CPU model in which all I/ O service times are assumed
to be independent exponential random variables and the
CPU service time is set to zero. The shorted-CPU mod-
el satisfies local balance and can be analyzed easily.
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Figure 5 Generalized Erlang distribution model for n stages.

Determine queue-dependent composite I/O service
rates by analyzing the shorted-CPU model.

Step 2 Composite 1/0 coefficient of variation. Compute

R
k,=> k - p,

r=1
Step 3 Determine exponential stage representations for
composite 1/0 service times from k, and composite
I/0 mean service times. If k, > 1, use standard hyper-
exponential random variable (Fig. 4). If k, = 1, use ex-
ponential random variable. If k, < 1, use generalized
Erlang random variable (Fig. 5).

Step 4 Solve the two-queue, CPU-composite /0 mod-
el. The CPU parameters in this model are set to the
same values as in the original model. The composite
I1/0 parameters are completely and uniquely specified
by step 3. The two-queue model is completely specified.
Analyze this model to determine U, ¢, g, o, W, and 0.

Step 5 1/0 utilizations. Compute ¢, =1, X p _for r =1,

R, U=t /N forr=1, - R. Stop.

o 4.4 Example

Consider Example 2 (Subsection 3.3) except that 1/0 1
has an exponential service time, I /0O 2 has a generalized
Erlangian service time with a coefficient of variation of
0.414, and the CPU has a standard hyperexponential
service time with a coefficient of variation of 2 and a
mean of 2. We shall follow through the five steps of the
algorithm.

Step 1 The composite 1/0 service rates (from Subsec-
tion 3.3) when there are j customers in the composite
I/0 queue are 1/3 and 3 /7, respectively.

Step 2 k.= (0.5 X 1.0) + (0.5 X0.414) =0.707.

Step 3 Since k, < 1 the generalized Erlang representa-
tion is used. In this case n will be 2 and p will be zero.
(The rate for each stage is clearly twice the composite
1/0 service rate.)

Step 4 We now have a two-queue model where the CPU
service time is a two-stage hyperexponential and the
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composite 1/0 service time is a two-stage Erlang. The
balance equations for the resulting Markov states are
solved to obtain U,= 0.571, t,=0.286, g,= 0.837, W, =
2.93.

Step 51, =1, X05=0.143, 1,=1,X05=0.143, U, =
t,/A=0571, U,=1,/x,=0.286. Stop.

5. FCFS central server models with class-dependent
service rates

This section is divided into three subsections. In 5.1 we
discuss the technique generally, in 5.2 we present the
algorithms, and in 5.3 we present an example.

e 5.1 Discussion

In this subsection we restrict ourselves to models with
several classes of customers, FCFS, all service distribu-
tions exponential, all 1/0O service rates independent of
customer class, and the CPU service rates dependent on
customer class [17). The assumption of class-indepen-
dent I/O service rates can be justified by observing that
the largest portion of most I/0 services is spent on pri-
marily program-independent operations such as acquir-
ing channels, positioning disk arms, and waiting for de-
vice rotation. The techniques presented here have been
extended to nonexponential CPU distributions and can
also easily be extended to nonexponential I/0 distribu-
tions. They are extended to priority disciplines in the
next section, using the techniques of the current sec-
tion. Our techniques may also be extended to other
more general models.

When we consider such central server models, even
the reduced model obtained by applying the Norton’s
theorem approximation to the I/O subnetwork is diffi-
cult to analyze. As the number of classes and/or the
numbers of customers per class attain even moderate
values, e.g., 4, the analysis becomes too complex to be
of practical value.

To reduce the complexity of analysis, we transform
the more general original model to an approximately
equivalent one with only two classes of customers: a
designated class with only one customer and a compos-
ite class representing all of the other customers in the
network. This further reduced model can be analyzed
relatively easily, by applying the Norton’s theorem ap-
proximation. By designating each class in the original
model and in turn analyzing the corresponding reduced
model, we can obtain approximate values for the inter-
esting statistics for each customer class in the original
model.

In transforming the original model to the one with
only two classes, the customer of the designated class is
given the same I/O branching probabilities and CPU
service distribution as in the original model. For each
1/0 device, the composite class branching probability is
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determined as a weighted sum of the branching probabil-
ities of the classes being “‘coalesced” from the original
model. The weights used are the relative throughputs of
the corresponding customers in a model identical to the
original model, except that the CPU is processor-
shared; this PS model satisfies local balance and is easily
analyzed. The CPU service distribution for the compos-
ite class is chosen to be the standard two-stage hyperex-
ponential distribution with mean and second moment
determined from weighted sums of the means and sec-
ond moments of the CPU service distributions of the
classes being coalesced from the original model.

After this transformation is applied, the Norton’s
theorem approximation is applied. The resulting model,
with the composite class and composite 1/0 queue, is
analyzed by techniques similar to those used in Section 4.

e 5.2 Algorithms

In this subsection we describe two algorithms: the main
program, algorithm B, and a subprogram, algorithm C,
which approximates an N-class problem by a two-class
problem.

Algorithm B

Assume that there are N classes of customers. For pur-
poses of exposition, we assume (without loss of
generality) that there is only one customer in each class.

Step | For each class i in turn, i = 1,---, N, do steps 2i
through 5i and thus compute the throughputs and utiliza-
tions for all queues for class i, and also the means and
variances of CPU queue lengths and wait times for class
i. The algorithm stops after all N classes have been
considered.

Step 2i Use algorithm C to approximate the given N-
class problem by a two-class problem where the two
classes are the designated class and a “coalesced class”
which represents all customers except those in the desig-
nated class. We refer to the original central server model
as model A and this two-class approximation as model
B. Note that B and A have exactly the same central
server network structure; only the number of classes is
changed. The parameters for the designated class are the
same in A and B. For the coalesced class CPU service
time is assumed to be hyperexponential in B. In A and
B, I /O service times are identical.

Step 3i Compute composite 1/0O service rates for the
designated and coalesced classes of model B in the usual
manner (i.e., by computing throughputs through the
shorted CPU of model B and assuming all 1/0 service
times are exponential).

Step 4i Consider the resulting two-queue, two-class
network consisting of the CPU and 1/0 queues and the

IBM J. RES. DEVELOP.




designated and coalesced classes; we refer to this net-
work as model C. Solve Markov balance equations to
determine steady state probabilities of model C. Deter-
mine CPU throughput 7, utilization U, mean and vari-
ance of CPU queue length, and wait time for designated
class i from the equilibrium state probabilities of model
C. Statistics for the coalesced class are not computed.

Step 5i Determine 1/O throughputs ¢, and utilizations
U, foreach1/O r,r=1,- -+, R, for the designated class
i. Let p,, be the probability that a customer of class i
branches to /O r after CPU service. Then ¢, =1 X p,,
forr=1,--+,Rand U,=1,/\ for r=1,- -, R. Statistics
for the coalesced class are not computed.

Figure 6 shows the relationships between models A,
B, and C.

Algorithm C

In this algorithm we determine CPU service distribu-
tions and 1/0 branching probabilities for the coalesced
class.

Step 1 Consider a network identical to the given network
(model A) except that the CPU is processor-shared; we
shall refer to this network as model D. Model D satis-
fies local balance and is easily analyzable. For the pur-
poses of algorithm C only, we shall approximate the
CPU throughputs of model A by those of model D.
Compute & the CPU throughput of class j in model D,
forj=1,--+, N.

Step 2 Compute the conditional probability V; that a
random customer who finishes 1/0 service in model D
is in class j, given that he is not in designated class i:

Vj=tj'/zth’forj;éi;

h=i

=0 forj=1i.

Step 3 Compute the first two moments of the CPU ser-
vice time for the coalesced class. Let E[S"] and E[Sj"]
be the nth moments of the CPU service time for the
coalesced class and class j, respectively, j =1, N.
Then

E[(S] =3 E[S] - V,, E[8"] =3 E[S/] -V,

J

Represent CPU service time for the coalesced class by
a standard hyperexponential random variable (Fig. 4)
with the above first two moments.

Step 4 Approximate I1/O branching probabilities for the
composite class by

Pre= 2 Py Ve
j

Stop.
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Model A
given network
N classes

_____________________ Transformation achieved
by algorithm C

Model B
given network
2 customer classes

_____________________ Transformation achieved via
composite 1/0 technique

Model C
2-queue network
2 customer classes

Figure 6 Relationships among models A, B, and C.

s 5.3 Example
Consider a model with two 1/0s and three classes of
customers. The mean service times for I/0O 1 and I/0 2
are both 2 time units. The branching probabilities for the
first /0 are 1, 0, 0.5 for classes 1, 2, and 3, respectively,
and 0, 1, 0.5 for the second I/0O. CPU mean times for
classes 1, 2, 3 are 1, 2, 3, respectively. All service times
are assumed to be independent, exponential random
variables.

Algorithm B, step 1. We shall carry out steps 2i
through 5i for i = 1.

We first call algorithm C to obtain the two-class ap-
proximation.

Algorithm C, step 1. Analyzing model D we get ¢,/ =
0.159, t,/=0.111.

Algorithm C, step 2. V, =0, V, = 0.589, V/, = 0.411.

Algorithm C, step 3.

E[S] =(2x0.589) + (3 x0.411) =241,
E[$%] = (8 X 0.589) + (18 X 0.411) = 12.12.

The hyperexponential representation for the CPU service
time has parameter p = 0.398.
Algorithm C, step 4.

P = (0 X0.589) + (0.5 X 0.411) = 0.206,
P = (1 X0.589) + (0.5 X 0.411) = 0.795.

We now have a two-class problem. The CPU service
time for the coalesced class is hyperexponential with
mean 2.41; the I/ 0O branching probability for device 1 is
0.206 and for device 2 is 0.795.

Algorithm B, step 3i. The composite I/0O service
rates for class 1 and the coalesced class for different
queue conditions are shown in Table 1.

Algorithm B, step 4i. Model C is analyzed to obtain 7,
=0.173, U, = 0.173, g, = 0.59, w, = 3.43, 0y, = 0.49,
o, = 3.09.
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Table 1 Different queue conditions and service rates.

Total Total rate

Number of Number of coalesced rate for for coalesced
class I customers class customers class 1 class
t 0 Q0.5 Q
0 1 0 0.5
0 2 0 0.598
| 1 0.415 0.415
| 2 0.386 0.556

Table 2 Hyperexponential CPU, exponential 1/0O.

Number of customers 2 4 8 12
CPU utilization 0.590 0.713 0.802 0.846
(simulation ) 0.588 0.715 0.835 0.864
(local balance) 0.623 0.783 0.884 0.921
CPU mean queue length 0912 185 3.66 5.51
0.894 1.82 3.79 565
CPU standard deviation of 0.851 1.56 2.83 4.26
queue length 0.840 1.54 280 4.10
CPU mean wait time 1.54 259 456 6.52
1.50 2.57 4.55 6.49
CPU standard deviation of 290 402 571 7.4
wait time 2.73 407 553 7.24
I/0 1 utilization 0.590 0.713 0.802 0.846
0.606 0.730 0.824 0.864
1/ 0 2 utilization 0.148 0.178 0.201 0.212
0.147 0.176 0.214 0.212
1/0 3 utilization 0.036 0.045 0.050 0.053
0.036 0.043 0.054 0.056
CPU mean service 1.0
Coefficient of variation 2.134
[/O | mean service .
Coefficient of variation 1.0
Branching probability 0.5
/0 2 mean service 1.0
Coefficient of variation 1.0
Branching probabitity 0.25
1/0 3 mean service 0.25
Coefficient of variation 1.0
Branching probability 0.25

6. Approximations for models with priority CPU dis-
ciplines

Now we consider central server models with the same
characteristics as in the previous section, except that the
CPU discipline will be a priority discipline with priority
based on customer class. We will restrict consideration
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to preemptive and nonpreemptive priorities based on cus-
tomer class, but these techniques are directly applicable
to other priority disciplines.

Again, we do not try to apply the Norton’s theorem ap-
proximation directly, but rather coalesce the classes of
customers in the original model to simplify the analysis.
The reduced model we consider has three classes of cus-
tomer: a designated class, which we do not restrict to a
single customer as in the FCFS model, and two compos-
ite classes, one of a higher priority than the designated
class and one of lower priority. The coalescing of classes
into these three classes is similar to the technique used
in the previous section. The coalescing is done separate-
ly for each of the two composite classes. The CPU dis-
tribution used for each of the composite classes is an
exponential distribution with mean taken as the weight-
ed sum of the means of the classes being coalesced in-
to that composite class. The weights are the relative
throughputs of classes within the composite class. In
other respects, the analysis is essentially the same as
that already described.

7. Validation, implementation and performance
We have constructed a simulator which employs the
confidence interval techniques of Crane and Iglehart
[11, 12]. This simulator can be used with general queuing
networks with a variety of disciplines, heterogeneous
classes of customers, and generalized Erlang service dis-
tributions. The simulator determines confidence inter-
vals during the simulation, and continues the simulation
until satisfactory intervals are obtained. Details of the
simulator are found in [16]. This simulator has been
used to determine results for the various models de-
scribed below. Crane and Iglehart show how to obtain
confidence intervals for results of simulations of Markov
models with finite or countable state spaces. In general,
the confidence intervals obtained are as follows: For uti-
lization, the 90 percent intervals are at most 0.05 wide.
For those cases where queue lengths and waiting times
are obtained, the 90 percent intervals for the means are
at most = 6 percent of the point estimates, and the 80
percent intervals for the standard deviations are at most
+16 percent of the point estimates. In many of the cases
the intervals are considerably tighter. However, we were
unable to obtain confidence intervals for the FCFS
models with six classes of customers. For these models
the state space is very large, and we were unable to se-
lect a state that the system would return to frequently;
this is necessary to apply the Crane and Iglehart tech-
niques. We used predetermined simulation run lengths
for the six-class FCFS models, with the run lengths based
on experience with four-class FCFS models.

We have implemented our approximation techniques
as a set of FORTRAN programs for a CDC 6600. Over 125
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Table 3 Exponential CPU, Erlang 1/0.

Table 4 Hyperexponential CPU, Erlang 1/0.

Number of customers 2 4 8 12
CPU utilization 0.646 0.813 0.906 0.937
(simulation) 0.652 0.821 0914 0.940
(local balance) 0.623 0.783 0.884 0.921
CPU mean queue length 0.881 1.83 3.78 577
0.917 190 388 599
CPU standard deviation of 0.759 1.28 239 352
queue length 0.778 1.31 237 3.62
CPU mean wait time 1.36 225 418 6.16
234 423 642
CPU standard deviation of 1.26  1.83 297 4.12
wait time 292 429
1/0 1 utilization 0.646 0.813 0.906 0.937
0.629 0.801 0.904 0.921
1/ 0 2 utilization 0.162 0.203 0.227 0.234
0.165 0.213 0.228 0.232
1/0 3 utilization 0.040 0.051 0.057 0.059
0.040 0.051 0.057 0.060
CPU mean service 1.0
Coefficient of variation 1.0
I/0 1 mean service 2.0
Coefficient of variation 0.707
Branching probability 0.5
1/0 2 mean service 1.0
Coefficient of variation 0.707
Branching probability 0.25
1/0 3 mean service 0.25
Coefficient of variation 0.707
Branching probability 0.25

Number of customers 2 4 4 12
CPU utilization 0.604 0.730 0.815 0.857
(simulation) 0.604 0.751 0.851 0.893
(local balance) 0.623 0.783 0.884 0.921
CPU mean queue length 0.904 881 3.58 542
0912 1.88 375 592
CPU standard deviation of 0.828 1.52 289 421
queue length 0.834 1.50 273 3.99
CPU mean wait time 1.50 248 439 6.33
1.51 257 444 6.68
CPU standard deviation of 289 4.00 567 7.10
wait time 2.86 4.15 531 6.89
1/0 1 utilization 0.604 0.730 0.815 0.857
0.610 0.732 0.845 0.874
I/0 2 utilization 0.151 0.183 0.204 0.214
0.187 0.206 0.232
1/0 3 utilization 0.038 0.046 0.051 0.054
0.038 0.045 0.053 0.056
CPU mean service 1.0
Coefficient of variation 2.134
1/0 1 mean service 2.0
Coeflicient of variation 0.707
Branching probability 0.5
[/ O 2 mean service 1.0
Coeflicient of variation 0.707
Branching probability 0.25
I/0O 3 mean service 0.25
Coefficient of variation 0.707
Branching probability 0.25

models have been validated to assure a thorough sam-
pling of problems.

Fifty-six of the models validated are of the class
described in Section 4, i.e., single-class, nonexponential.
These models included from 2 to 12 customers, 1 or 2
CPUs, from 3 to 8 I/0O devices, and a wide variety of
combinations of distributions, with coefficients of varia-
tion ranging from 0.577 to 5.0. In general the models were
fairly well balanced, but some of the models were strongly
CPU bound or 1/0 bound. Error tolerances were de-
termined in the manner used in [9] for utilizations, CPU
queue lengths, and CPU waiting times. Results are said to
be within a tolerance z if 1) the difference in utilization is
not more than z, 2) the differences in the means and
standard deviations of queue length are not more than z
times the number of customers in the network, and 3)
the differences in the means and standard deviations of
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the wait times are not more than z times the cycle time.
For the 56 models studied, the results are generally
within a tolerance of 0.05, with a maximum tolerance of
0.18. In [9] a tolerance of 0.05 is considered to be good,
and a tolerance of 0.10 is considered adequate. By these
standards the results are good or adequate for 51 of the
56 models. For these models, the computer time re-
quired per model was negligible, approximately 75 .ms
per model. Tables 2, 3, and 4 show results for 12 of
these models.

Forty-four models of the class described in Section 5,
i.e., FCFS with different classes of customers, including
four with hyperexponential CPU distributions, have been
validated. These models include from 2 to 8 customers,
with from 2 to 6 classes of customers, and 3 or 4 1/0
devices. Utilizations and throughputs, both overall and
by class, were validated for all of these models. For eight
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Table 5 FCFS, 4 classes, 1 customer/class, 3 1/0 devices.

Table 6 FCFS, 4 classes, 1 customer/class, 3 I/O devices.

Class 1 2 3 4 All Class 1 2 3 4 All
CPU throughput 0.182 0.192 0.110 0.168 0.652 CPU throughput 0.111 0.182 0.162 0.152 0.607
(simulation) 0.144 0.156 0.122 0.126 0.548 (simulation) 0.118 0.142 0.130 0.128 0.518
(local balance) 0.230 0.272 0.090 0.208 0.800 (local balance) 0.093 0.239 0.216 0.230 0.778
CPU utilization 0.091 0.048 0.552 0.084 0.775 CPU utilization 0.555 0.091 0.081 0.038 0.765

0.072 0.039 0.612 0.063 0.786
0.115 0.068 0.451 0.104 0.738

CPU mean queue length 0.36 0.35 0.59 0.35
(simulation) 0.51 0.49 0.65 048

CPU standard deviation 0.48 0.48 049 048
of queue length 0.50 050 048 0.50

CPU mean wait time 197 182 532 208
3.45 322 544 3.67

CPU standard deviation 3.95 3.87 494 4.08
of wait time 463 458 5.13 470

I/0 1 utilization 0.219 0.154 0.044 0.067
0.176 0.121 0.047 0.053

1/0 2 utilization 0.058 0.123 0.071 0.054
0.047 0.095 0.077 0.044

1/0 3 utilization 0.097 0.103 0.118 0.268
0.080 0.081 0.128 0.214

CPU mean service 0.500 0.250 5.00 0.500
Coefficient of variation 1.00 1.00 1.00 1.00

1/0 1 probability 0.6 0.4 0.2 0.2
(mean service = 2.00)

1/0 2 probability 0.2 0.4 0.4 0.2
(mean service = 1.60)

1/0 3 probability 0.2 0.2 0.4 0.6
(mean service = 2.67)

0.590 0.071 0.065 0.032 0.758
0.465 0.119 0.108 0.058 0.750

CPU mean queue length 0.61 0.39 037 0.36
(simulation) 0.64 052 050 0.48

CPU standard deviation 0.49 0.49 048 0.48
of queue length 048 050 0.50 0.50

CPU mean wait time 5.51 2,13 230 237
5.28 3.69 375 3.68

CPU standard deviation 5.08 6.90 7.25 7.56
of wait time 9.48 8.67 8.83 8.89

1/0 1 utilization 0.133  0.145 0.064 0.061
0.145 0.115 0.053 0.050

I/0 2 utilization 0.036 0.116 0.103 0.049
0.040 0.089 0.086 0.041

1/0 3 utilization 0.059 0.097 0.172 0.245
0.062 0.077 0.149 0.209

CPU mean service 5.00 0.500 0.500 0.250
Coefficient of variation 2.00 2.00 2.00 2.00

1/0 1 probability 0.6 0.4 0.2 0.2
(mean service = 2.00)

1/0 2 probability 0.2 0.4 0.4 0.2
(mean service = 1.60)

1/0 3 probability 0.2 0.2 0.4 0.6
(mean service = 2.67)

of the models, queue lengths and wait times for each class
were also validated. We did not explicitly determine tol-
erances as in the single-class models, but in general the
results showed good accuracy for utilization and
reasonable accuracy overall. Tables 5 and 6 give results
for two of the models. For the 44 models, the programs
required approximately 400 ms of computation per model.

Thirty-six priority models were validated, 24 preemp-
tive and 12 nonpreemptive. These models included from
4 to 6 customers, with from 3 to 6 classes, and 3 or 4
1/0 devices. Again, utilizations and throughputs were
validated for all models. Central processing unit queue
lengths and mean CPU wait times were validated for 12
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preemptive models and all nonpreemptive models. Tables
7 and 8 show results for two models. For the 36 models,
the computation per model was approximately 400 ms.

In addition to providing reasonable accuracy for mod-
els not in local balance, these programs give exact re-
sults for models in local balance where class coalescing
is not necessary. Though the coalescing techniques do
not necessarily give exact results for locally balanced
models, the results are very close. In the above valida-
tion process, for all FCFS models requiring coalescing,
the coalescing process was applied to a locally balanced
model similar to the nonlocally balanced model being
studied. Individual class throughputs and utilizations
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Table 7 Preemptive, 6 classes, 1 customer/class, 3 I/0 devices.

Class

CPU throughput
(simulation)
(local balance)

CPU utilization

CPU mean queue length
(simulation)
CPU standard deviation of queue length
CPU mean wait time
1/0 1 utilization
[/0O 2 utilization

1/0 3 utilization

CPU mean service
I/0 1 probability {(mean service = 2.00)
1/0 2 probability (mean service = 1.60)

1/0 3 probability {mean service = 2.67)

0.119 0.166 0.149 0.138 0.143 0.138 0.873
0.148 0.162 0.141 0.126 0.114 0.102 0.793
0.104 0.195 0.169 0.161 0.172 0.172 0.973

0.396 0.055 0.050 0.023 0.048 0.046 0.618
0.493 0.054 0.047 0.021 0.038 0.034 0.687
0.347 0.065 0.056 0.027 0.057 0.057 0.609

0.40 0.29 0.25 0.21 0.25 0.27
0.49 0.34 0.34 0.31 0.37 0.38

0.49 0.45 0.44 0.41 0.44 0.45
0.50 0.47 0.47 0.46 0.48 0.49

3.33 1.76 1.70 1.53 1.78 1.99
3.39 2.06 2.44 2.54 3.16 3.59

0.143 0.133 0.060 0.055 0.095 0.092
0.169 0.129 0.056 0.047 0.077 0.067

0.038 0.106 0.096 0.044 0.076 0.073
0.047 0.102 0.087 0.037 0.062 0.062

0.063 0.088 0.159 0.220 0.127 0.122
0.076 0.093 0.146 0.202 0.101 0.093

3.33 0.333 0.333 0.167 0.333 0.333

0.6 0.4 0.2 0.2 0.333 0.333
0.2 0.4 0.4 0.2 0.333 0.333
0.2 0.2 0.4 0.6 0.333 0.333

were compared for the locally balanced model with and
without coalescing. The differences were never more
than one percent and usually were less than that.

These programs are more than an order of magnitude
faster than existing implementation of other techniques.

8. Conclusions

We have presented approximate solution techniques for
several classes of models which are very important in
the modeling of computing systems. These techniques
are computationally very inexpensive and of great prac-
tical value. They complement previous techniques which
may be more accurate but are computationally more
expensive, and may be used directly in conjunction with
previous techniques.

Our techniques give exact results for several interest-
ing classes of models, and are reasonably accurate for
typical models of computing systems. Our techniques
have been validated extensively. Our methods may be
extended to consider more general networks. Our tech-
niques are compatible with the techniques of Keller and
Chandy [18] for including the effects of passive re-
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sources in central server models. Williams and Bhandi-
wad [19] have also used approximations of Norton’s
theorem in analyzing three-class, preemptive, exponential
models.

Three sets of programs were used in constructing and
validating these models: 1) programs to approximate
central server models by two-queue networks, 2) pro-
grams to analyze the resulting two-queue networks, and
3) the Crane-Inglehart simulator. Four variations of the
two-queue analysis technique were programmed: 1)
single class nonexponential, 2) multiple class FCFS, 3)
multiple class preemptive priority, and 4) multiple class
nonpreemptive priority. Each of these cases (except the
last two) required slightly different programs to construct
two-queue approximations of the given central server
problem. The simulator handles arbitrarily interconnect-
ed networks, a large number of customer classes and
customers, and a variety of disciplines.
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Table 8 Nonpreemptive, 6 classes, 1 customer/class, 4 1/0 devices.

Class 1 2 3 4 5 6 All
CPU throughput 0.211 0.354 0.435 0.384 0.327 0.326 2.036
(simulation) 0.239 0.381 0.408 0.348 0.288 0.270 1.934
(local balance) 0.184 0.334 0.529 0.438 0.368 0.373 2.226
CPU utilization 0.211 0.236 0.036 0.032 0.027 0.022 0.564

0.239 0.254 0.034 0.029 0.024 0.018 0.598
0.184 0.223 0.044 0.037 0.031 0.025 0.544

CPU mean queue length 0.23 0.33 0.25 0.19 0.16 0.16
(simulation) 0.29 0.36 p.27 0.26 0.24 0.25
CPU standard deviation of queue length 0.42 0.47 0.43 0.39 0.37 0.36
0.46 0.48 0.44 0.44 0.43 0.43
CPU mean wait time 1.08 0.963 0.508 0.478 0.487 0.480
1.24 0.946 0.641 0.737 0.857 0.897
1/0 1 utilization 0.263 0.071 0.087 0.096 0.163 0.163
0.305 0.067 0.083 0.081 0.146 0.128
1/0 2 utilization 0.026 0.106 0.174 0.048 0.082 0.081
0.030 0.112 0.177 0.046 0.070 0.074
1/0 3 utilization 0.013 0.053 0.087 0.024 0.041 0.041
Q0.015 0.057 0.082 0.024 0.038 0.035
1/0 4 utilization 0.026 0.106 0.043 0.240 0.082 0.081
0.028 0.114 0.041 0.216 0.067 0.070
CPU mean service 1.00 0.667 0.083 0.083 0.083 0.067
I/0 1 probability (mean service = 2.00) 0.625 0.100 0.100 0.125 0.250 0.250
1/0 2 probability (mean service = 1.00) 0.125 0.300 0.400 0.125 0.250 0.250
1/0 3 probability (mean service = 0.50) 0.125 0.300 0.400 0.125 0.250 0.250
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