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Approximate  Analysis of Central Server  Models 

Abstract: Service time  distributions at  computer processing  units are often  nonexponential.  Empirical  studies show  that different pro- 
grams may have  markedly  different  processing  time  requirements.  When  queuing  disciplines are first come, first served, preemptive 
priority or nonpreemptive  priority, models reflecting these  characteristics  are difficult to  analyze  exactly. Available approximate tech- 
niques are often too expensive for parametric  analysis. Inexpensive  approximate techniques for solution of central server models with 
the above  characteristics  are  presented.  The results of these techniques are validated with simulation  results. 

1. Introduction 
Central  server queuing  network  models have been 
widely used in the analysis of computing systems [ 1-51. 
In these models it is assumed that a fixed number of cus- 
tomers  (programs)  traverse a  closed network consisting 
of the central processor (CPU)  and the  input/output 
( I /O)  devices. A customer alternately  receives service 
from the  CPU and one of the 1 / 0  devices. A customer 
may have  to wait in a queue if the  server is busy. After 
completing service  at  the CPU, a customer  selects  an 
1 / 0  device according to probabilities  associated with 
that  device and the given customer.  These probabilities 
are independent of the  state of the  system.  The  service 
time of a customer  on a device may depend upon the 
device,  the  customer, and the  queue lengths for  that de- 
vice, but is otherwise  independent of the  state of the  sys- 
tem.  Figure 1 illustrates  a central  server model with 
three 1 / 0  devices. 

Often  the models used are  such  that solutions for  the 
equilibrium behavior  can  be  determined using the tech- 
niques of local balance [ 6, 71. If the model is to  have 
first come, first served (FCFS)  queuing  disciplines,  and 
if the techniques of local balance are  to be used in the 
solution of the model, then it must  be  assumed that,  at 
the  servers with FCFS disciplines, the  service distribu- 
tions are exponential  and  independent of the  customer 
being served. Local balance techniques do not allow 
priority queuing  disciplines. 

Empirical studies on real computing systems show that 
CPU service distributions are often  hyperexponential 
(the  standard deviation is greater than the  mean) and 
that 1 / 0  device  service  distributions may be hypo- 
exponential (the  standard deviation is less  than the 
mean).  Studies [ 81 have  shown  that mean  service  times 
and service distributions are  dependent  on  the  customer 
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being served. When one makes  assumptions that distri- 
butions are exponential  and all customers  have  the  same 
distributions, significant inaccuracy may be  introduced 
into  the model. Clearly, distinctions  must  be made be- 
tween customers if priority CPU distributions are con- 
sidered.  Therefore, 1 )  many  realistic  problems do not 
satisfy local balance,  and 2) customer differentiation is 
often  required for realistic models. 

Chandy,  Herzog, and  Woo [9] have developed  very 
good approximate iterative techniques  for analysis of 
general  queuing networks with nonexponential service 
distributions  and  distributions dependent on customer 
class.  The iterative  techniques of Wallace and Rosen- 
berg [ IO]  may also  be  used to obtain exact solutions for 
models with nonexponential  distributions. The tech- 
niques of Crane  and Iglehart [ 1 1 ,  121 may be used to 
obtain  confidence  intervals  for  simulation results  for 
these models  and thus  to obtain accurate simulation re- 
sults. However,  these techniques are relatively expen- 
sive to apply. In many instances it will not be practical 
to  survey a large variety of models using these tech- 
niques. 

Figure 1 Central  server model. 

301 

APPROXIMATE  ANALYSIS 

L m  / 

CPU 

I/O 3 



CPU 1 /o 

Figure 2 CPU queue and composite 1/0 queue. 

We  present  here  approximate solution techniques spe- 
cifically intended for, but  not limited to,  central  server 
models of computing systems.  Our techniques are con- 
siderably  less expensive  to apply  than the  above men- 
tioned techniques, but are sufficiently accurate  for  the 
initial stages of computer  system design. Our techniques 
complement the previous  techniques in that  ours  can be 
used to  study  and  compare a large variety of models, 
and then more accurate, more expensive  techniques may 
be  used to  study more  carefully  a small subset of the 
original group of models. 

In Section  2 of the  paper  we summarize central  server 
models in local balance  and  give  examples of inaccura- 
cies of “local balance  assumptions.” In Section  3 we 
describe  “Norton’s  theorem”  on locally balanced 
queuing networks [ 131 as applied to  central  server mod- 
els. Our  approximations  are based on  the  results of Nor- 
ton’s theorem. In Section 4 we  present  the approxima- 
tions for models with nonexponential distributions, in 
Section  5 we  present  techniques  for  class  dependent 
service  distributions,  and in Section 6 we present tech- 
niques for models  with  priority CPU disciplines  based 
on  customer class. In Section  7 we compare  the results 
of our  techniques with results of simulations; our  tech- 
niques are validated by comparison with over 125 dif- 
ferent simulations. 

2. Local balance 
A central  server model will be in local balance [6] if 1) 
branching  probabilities are  dependent only on  the  device 
and the  customer  class, 2 )  all queuing  disciplines are 
FCFS,  processor sharing (PS),   or last come, first served 
preemptive  resume  (LCFSPR) , 3)  servers with FCFS 
discipline have exponential distributions  independent of 
customer  class, and 4) servers with PS  or  LCFSPR dis- 
ciplines have differentiable service distributions (which 
may be dependent  on  customer  class).  In  these models 
the equilibrium state probabilities will have  the  “product 
form”  and are easily  calculated [6].  From  the  state 
probabilities one can determine model statistics  such as 
throughput,  server utilization, queue length distributions, 
and waiting time  distributions. 

The following example illustrates the  inaccuracy 
which may be introduced by using local balance solu- 
tions for models violating local balance  assumptions. 
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that  results of assuming local balance are likely to be 
unsatisfactory. 

Suppose  that a system  to be modeled has  one 1 / 0  
device and two  classes of customers, with one  customer 
per class. Further,  both  service disciplines are  FCFS, all 
service  distributions  are exponential, the mean CPU 
service time for class one is 2, the mean CPU service 
time for  class  two is 0.2,  and the mean I /  0 service  time 
for  both  classes is 1. Suppose we are interested in the 
overall throughput of customers through the  CPU.  This 
model is small enough that  exact solution of the  Markov 
balance equations is practical,  and  from the solution of 
these  equations  the throughput is 0.5941. If we  assume 
that  the  results  for a  similar model with PS  CPU disci- 
pline will be accurate enough, the  value  we  get  for 
throughput is 0.84, an  error of more  than 40 percent. If 
we apply the  techniques of Section 5, the  value  we  get 
for throughput is 0.6375,  an  error of about  seven per- 
cent. 

Other  examples illustrating the  inaccuracy introduced 
by local balance assumptions  are found in [ 91. 

3. Norton’s theorem  applied to central  server 
models 
In this  section we review  earlier  work on  Norton’s  theo- 
rem (Subsection  3.1)  and  present  two examples: in 
Subsection  3.2 we present a  multiclass  problem and in 
Subsection 3.3  we work out a single-class example. 

3.1 Norton’s theorem: a discussion 
Norton’s  theorem [ 131 may be  used to transform  a  cen- 
tral server model in local balance into one with a single 
“composite” I /  0 which represents  the combined  effects 
of the 1 / 0  devices in the original model at  steady  state. 
See Fig. 2. Values determined for equilibrium  through- 
puts,  server utilizations, and CPU  queue length and 
waiting time  distributions of the two-queue model will be 
the  same  as  those calculated for  the original model. The 
transformation is independent of the CPU parameters, 
so if a  variety of CPU parameters is to be studied, 
effort may be saved by applying Norton’s theorem  and 
studying the reduced model as  the  CPU  parameters  are 
varied. The approximation technique  presented  here is 
also especially well suited for  parametric analysis of the 
CPU. 

In describing Norton’s  theorem we shall assume with- 
out loss of generality that  there  are m classes of cus- 
tomers and exactly  one  customer of each class. The 
composite I /  0 processes all customers in parallel in the 
two-queue,  CPU-composite I /  0 model. The  composite 
I /  0 service  rate  for  the  customer of any given class i at 
any given time depends upon i and upon  the  number of 
customersNjofclassj(Nj=0orl),j=1;.~,m,inthe 
composite 1 / 0  queue  at  that time. These  composite 
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1 /0  service  rates  are determined by analyzing  a modi- 
fied version of the original network in which the  CPU 
has been “shorted,” i.e., the mean CPU service time for 
all customers is set  to  zero.  See Fig. 3. The  composite 
1/0 service  rate of a customer of any  given class i, 
when there  are N j  customers of classj  ( N j  = 0 or 1) , j  = 

1; . ., m,  in the  composite 1 / 0  queue, is set equal to  the 
throughput of the  customer in class i through the  shorted 
CPU when there is a population of N j  customers of 
class j , j  = 1; . ., m in the  shorted CPU model. The solu- 
tions of the two-queue, CPU-composite 1 / 0  model, 
with the  same CPU parameters as in the original model 
and  these  queue-dependent  composite 1 /0  service 
rates, will be identical to  those of the original model for 
the equilibrium statistics mentioned above. 

3.2 Example I 
Consider  the following two-class example of a locally 
balanced central-server model with a processor-shared 
CPU and two I /Os labeled 1 and 2, two nonidentical 
customers,  one of class A and the  other of class B. The 
class A customer uses I /  Os 1 and 2 with equal probabil- 
ity, while the  class B customer uses 1 / 0  1 exclusively. 
The mean service time for  each 1 / 0  is independent of 
customer class. The mean service times for I / O s  1 and 
2 are 1 and 2, respectively. All 1/0 service times have 
negative-exponential  distributions. 

Both class A and B customers  are assumed to be ser- 
viced in parallel in the  composite 1 / 0  queue.  The ser- 
vice rates  for  class A and B customers depend  upon the 
numbers of class A and B customers in the  composite 
1 / 0  queue. We  next discuss  the computation of these 
rates by analyzing the modified version of the original 
network in which the CPU has been shorted  (Fig. 3 ) .  
When  only the  class A customer is present in the  CPU- 
shorted  network,  the throughput of the  class A customer 
through the  shorted CPU is 2/3; when only the  class B 
customer is present  the throughput is 1 ;  and when  both 
are  present,  the throughputs for  classes A and  B are l/2 

and 3/4, respectively. The composite 1 / 0  service rates 
when there is one  customer of class A and none of class 
B in the  composite 1 / 0  queue is set  to 2/3 for  class A 
(and 0 for  class B ) ;  when there is one  customer of class 
B and  none of class A the  rate is set  to 1 for  class B 
(and 0 for  class A ) ;  and when there is one  customer of 
each class the  rates  are  set  to ‘Iz for  class A and 3/4 

for  class B. The solution of the  CPU-composite 1 / 0  
model with the  same CPU parameters  as in the original 
model and these  queue-dependent  composite 1 / 0  ser- 
vice rates will be  identical to  the solutions of the original 
model for  the equilibrium statistics mentioned above. 

3.3 Example 2 
Consider  the following single-customer-class  example. A 
locally balanced  central server model has two identical 
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Figure 3 Central server model with shorted CPU. 

customers and two I /  0 devices  labeled 1 ,  2. The proba- 
bilities that a customer will branch to  the ith I /  0 device, 
i= 1 ,  2, are 0.5 and 0.5, respectively. The mean service 
times for I / O s  1 and 2 are 4.0 and 2.0, respectively. All 
1 / 0  queues  have  the  FCFS discipline. With the  CPU 
shorted and j customers in the  shorted  network, j = 1 ,  2, 
the  throughputs through the  shorted CPU  are l/3 and 
3/7, respectively. In  the two-queue, CPU-composite 
1 / 0  model, the total service  rates of the  composite 1 /0  
when there  are j customers in the  composite I / 0 queue, 
j = 1 ,  2, are  set  to l/3 and 3/7, respectively.  Equivalent- 
ly, with all customers  served in parallel, the  rate  for each 
customer when there  are j customers in, the  queue is ‘/3 

for j = 1 and ( V 2 )  X (3/7) = 3/14 for j = 2. 
The equilibrium statistics computed for  the  CPU- 

composite 1 / 0  model with the  same CPU parameters  as 
in the original model,  and these queue-length-dependent 
composite 1 / 0  service  rates, will be identical to  the 
equilibrium statistics computed for  the original model. 

4. FCFS central  server models with nonexponential 
service  times 
We first discuss  the overall  technique  generally (4.1) , 
then study  composite 1 / 0  representations (4 .2) ,  pre- 
sent  the detailed  algorithm (4.3),  and  work out  an exam- 
ple (4.4).  

4.1 Overview 
We now restrict  our  attention  to  central  server models 
with all customers identical, FCFS disciplines at all 
servers,  and  arbitrary service  distributions having ration- 
al Laplace transforms. Even though  this class of models 
is not in local balance except when all service  distribu- 
tions are exponential, we shall apply Norton’s  theorem 
and show  that  the  composite I /  0 model yields solutions 
close  to  those of the original model. (In making the 
composite 1 / 0  transformation we assume  that  the 1 /0  
devices  have exponential  distributions with the  same 
means  as  the actual  distributions. See example  below.) 
Chandy,  Herzog, and Woo [9] use an  approximate  ap- 
plication of Norton’s  theorem in their iterative  method. 303 
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Figure 4 Hyperexponential distribution model. 

In  order  to  compensate  for  the inaccuracy introduced, 
we  adjust  the distributions for  the  composite 1 / 0  to 
reflect the nonexponential character of the  actual distri- 
butions. 

After applying Norton’s  theorem  and adjusting the 
distributions, we  have a central  server model with  a sin- 
gle composite I / O ,  with  both service distributions  non- 
exponential. This model is solved by an efficient  recur- 
sive technique  which is an application of the  technique 
developed by Herzog,  Woo,  and  Chandy [ 141. Their 
technique  assumes distributions of the generalized Er- 
lang form  developed by Cox [ 151. This generalized  form 
includes arbitrary distributions with rational Laplace 
transforms.  Our technique assumes  that  both  the CPU 
and the 1 / 0  distributions are of this  general  form. De- 
tails of our two-queue  analysis are given in [ 161. 

Our  adjustment  for  the nonexponential nature of the 
1 / 0  distributions is simple and effective. More sophis- 
ticated adjustments could potentially increase  the ac- 
curacy of the final results.  We characterize  each 1 / 0  
distribution by its mean and coefficient of variation (stan- 
dard deviation  divided by the  mean).  For  the  means of 
the composite  I /O distributions we use  the queue-length- 
dependent values as  shown earlier.  We assume  that  the 
composite I / O  coefficient of variation is the weighted 
sum of the coefficients of variation of the individual dis- 
tributions, with the weights being the 1 / 0  branching 
probabilities. The  composite I / 0 coefficient of variation 
is a constant, independent of queue length.  Of course, 
the mean and coefficient of variation do  not completely 
specify the distribution. If the  composite I /O coefficient 
of variation is greater than one,  we  assume  that  the 
composite 1 / 0  service  time is a standard two-stage 
hyperexponential  as in Fig. 4. If the coefficient of varia- 
tion is one, we assume  the service  time is exponential. If 
the coefficient of variation is less  than one, we assume 
the  service time is of the generalized  Erlang  form with 
the minimum number of stages  necessary  to  obtain  the 
given coefficient of variation, all stages having the  same 
mean,  and all branching  probabilities zero, with the pos- 
sible exception of the  branch  after  the first stage,  as in 
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4.2 Composi te  I /  0 distribution 
We desire  the  composite 1 / 0  distribution to  represent 
the aggregate of all the individual 1 / 0  distributions. In- 
tuitively, we expect  the distribution of a given 1 / 0  to 
influence the composite 1 / 0  distribution  more  than  dis- 
tributions of other  I/Os, if the given 1 / 0  processes 
more customers than other I /Os. We  decided to  restrict 
attention  to  the first  two moments  to  keep  computation 
simple. The  means of composite 1 / 0  service times are 
obtained  by aggregating individual 1 /0  mean service 
times via Norton’s  theorem.  The  composite coefficient 
of variation is obtained by aggregating individual coeffi- 
cients of variation, weighting each 1 / 0  by  its  branching 
probability  since  I /O branching  probabilities are  direct- 
ly proportional to 1 /0  throughputs.  Note  that although 
the mean composite  service time is queue-length-depen- 
dent,  the coefficient of variation is not dependent  on 
queue length. Note  also  that if all the I / O s  have  the 
same coefficient of variation, then the composite 1 / 0  
will have  that coefficient of variation as well. 

The first two  moments  do not  completely specify a 
distribution.  We  decided to model composite  service 
times using either two-stage  hyperexponential (Fig. 4) 
or generalized  Erlang (Fig. 5) random  variables,  since 
these  are  common ways of representing service times in 
computing systems.  Note  that  the particular forms of the 
hyperexponential  and  generalized  Erlang  random  vari- 
ables are  such  that  the first two  moments uniquely  speci- 
fy the distributions. The selection of these particular 
composite 1 / 0  distributions  was made with modeling 
convenience  and  reasonability in mind; clearly other 
choices could also have  been  made. However,  note  that 
if the original model satisfies local balance, then our 
technique gives exact results, since the  composite 1 / 0  
distribution  obtained via our technique is the  same  as 
that obtained via Norton’s  theorem. 

Hyperexponential Let kc be  the coefficient of variation 
of the  composite I /O. We shall use a standard  hyperex- 
ponential  random  variable to model composite 1 / 0  ser- 
vice  times if kc > 1 .  The relationship  between kc and 
parameter p (Fig. 4) of the hyperexponential is as fol- 
lows: 

kc2 + 1 - (kc4 - 1 )+ 

2(kc2  + 1) 
P =  

Note  that kc uniquely  specifies p .  The  means  for  each 
stage of this  hyperexponential are uniquely specified by 
p and  the mean composite service  time, d. 

Mean of stage 1 = d / 2 p .  (2) 

Mean of stage 2 = d / 2 (  1 - p ) .  ( 3 )  
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Generalized  Erlang  Consider  the Erlang  random  variable 
(Fig. 5 )  with n stages, n = 2 ,  3, 4, .  . .. After a customer 
completes  the first stage, he may finish service with 
probability p, or  he may continue through the remaining 
n - 1 stages with probability 1 - p. All stages  have  the 
same mean time,  and all stage holding times are inde- 
pendent exponential random variables. By varying 7 
from 0 to 1 the coefficient of variation  ranges  from 1 /nT 
to I .  We wish to keep the number of stages small to 
minimize computation. Hence, we shall use n stages if 
and only if 1 / ( n  - 1) > kc E 1 / n t .  The value of n is 
directly determined from kc. Together n and k, uniquely 
specify p.  See Eq. (4) below. The  means  for  each stage 
are uniquely specified by n, kc, p,  and  the  means of the 
composite I / O  service  times. 

2nkc2 + n - 2 - (nz + 4 - 4nk2)4 

2 ( k c 2 +  I )  ( n -  I )  
P =  ( 4 )  

Meanofeachstage=d/[n-p(n-  l ) ] .  ( 5 )  

In conclusion,  the  generalized  Erlang and hyperexpo- 
nential random  variables  shown in Figs. 4  and 5 are 
completely specified by the first two  moments  and have 
a wide range of coefficients of variation. The  parameters 
p are independent of composite 1 / 0  mean service times 
and  the mean times for all stages in both  distributions 
are directly  proportional to  the  composite 1 / 0  mean 
service  time; this simple relationship is an  advantage in 
modeling queue-dependent service rates. 

4.3 Algorithm 
We now present the  algorithm after explaining some 
notation. Let  there be R I / O  queues indexed 1; . ., r; . ., 
R .  We shall use  the  subscript Y to  denote  the rth 1 / 0  in 
the original model and  the  subscript c to  denote  the 
composite 1 / 0  in the  CPU-composite 1 / 0  model. Let 
p, be  the  probability that a customer  branches  to  the rth 
1 / 0  device  after finishing CPU service. Let k denote 
the coefficient of variation: kc for  the  composite I / O  and 
k,  for  the rth I / O  device.  We shall use  the subscript 0 
(zero)  for  the  CPU.  Let U ,  be  the  utilization  and t, the 
throughput for  the rth queue, r = 0, 1 ,  . . ., R .  Let A, be 
the  service  rate  for  the  rth 1 / 0  device.  Let ij and Wbe 
the mean CPU queue length and wait times and let uq 
and u, be the corresponding  standard  deviations. 

Algorithm A 

Step 1 Composite I / O  service rates. Consider  the given 
(nonlocally  balanced) model. Construct  the  shorted- 
CPU model in which all 1 / 0  service times are assumed 
to be independent  exponential random variables and  the 
CPU service  time is set  to zero. The  shorted-CPU mod- 
el satisfies local balance  and  can  be  analyzed  easily. 
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Figure 5 Generalized Erlang  distribution model for n stages. 

Determine  queue-dependent composite I /  0 service 
rates by analyzing the  shorted-CPU model. 

Step 2 Composite 1 / 0  coefficient of variation. Compute 

x 
kc = k ,  . P,. 

Step 3 Determine exponential  stage representations  for 
composite 1 / 0  service times  from k, and  composite 
I / O  mean service times. If kc > 1, use standard hyper- 
exponential  random  variable (Fig. 4).  If kc = 1, use ex- 
ponential  random  variable. If kc < 1, use generalized 
Erlang  random  variable (Fig. 5).  

r= 1 

Step 4 Solve the two-queue, CPU-composite 1 / 0  mod- 
el. The  CPU  parameters in this model are  set  to  the 
same values as in the original model. The  composite 
1 / 0  parameters  are completely  and  uniquely specified 
by step 3. The  two-queue model is completely specified. 
Analyze this model to  determine U,, to, i j ,  up, W, and u,. 

Step 5 1 /0  utilizations. Compute t, = to x p, for r = 1, 
. ' ., R ,  U , =  t,/A, for r = 1; . ., R .  Stop. 

4.4 Example 
Consider Example 2 (Subsection  3.3)  except  that 1 / 0  1 
has an exponential  service  time, 1 / 0  2 has a generalized 
Erlangian  service  time with a coefficient of variation of 
0.414, and  the  CPU has  a standard hyperexponential 
service time with a coefficient of variation of 2 and a 
mean of 2.  We shall follow through the five steps of the 
algorithm. 

Step 1 The composite 1 / 0  service  rates (from Subsec- 
tion 3.3) when there  are j customers in the  composite 
1 / 0  queue  are 1 / 3  and 3 /7 ,  respectively. 

Step 2 k, = (0.5 X 1.0) + (0.5 X 0.414) = 0.707. 

Step 3 Since k, < 1 the generalized  Erlang representa- 
tion is used. In this case n will be 2 and p will be  zero. 
(The  rate  for each  stage is clearly  twice the  composite 
I / O  service  rate.) 

Step 4 We now have a two-queue model where  the CPU 
service time is a  two-stage  hyperexponential and  the 
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composite 1 / 0  service time is a two-stage  Erlang. The 
balance equations  for  the resulting Markov  states  are 
solved to obtain U ,  = 0.571, to= 0.286, %= 0.837,F0= 
2.93. 

S t e p 5 t , = t o x 0 . 5 = 0 . 1 4 3 , t ~ = t o x 0 . 5 = 0 . 1 4 3 , U l =  
t , /h l  = 0.571, U ,  = t ,/h, = 0.286. Stop. 

5. FCFS central  server models with class-dependent 
service rates 
This section is divided into  three  subsections.  In 5.1 we 
discuss  the technique  generally, in 5.2 we present  the 
algorithms,  and in 5.3 we present  an example. 

5.1 Discussion 
In this subsection  we  restrict  ourselves  to models with 
several classes of customers,  FCFS, all service distribu- 
tions exponential, all 1 / 0  service  rates independent of 
customer  class,  and  the CPU service  rates  dependent on 
customer  class  [17].  The assumption of class-indepen- 
dent 1 / 0  service  rates can  be justified by  observing that 
the largest  portion of most 1 / 0  services is spent  on pri- 
marily program-independent operations  such  as acquir- 
ing channels, positioning  disk arms, and waiting for  de- 
vice rotation. The techniques presented  here  have been 
extended  to nonexponential CPU distributions and  can 
also easily be  extended  to nonexponential 1 / 0  distribu- 
tions. They  are  extended  to priority  disciplines in the 
next section, using the techniques of the  current sec- 
tion. Our  techniques may also be extended  to  other 
more  general models. 

When we consider such  central  server  models,  even 
the reduced model obtained by applying the  Norton’s 
theorem  approximation to  the 1 / 0  subnetwork is  diffi- 
cult to  analyze.  As  the  number of classes  and/or  the 
numbers of customers  per  class  attain even moderate 
values,  e.g., 4, the analysis  becomes too complex to be 
of practical value. 

To  reduce  the complexity of analysis, we transform 
the  more general original model to  an approximately 
equivalent one with only  two classes of customers: a 
designated  class with only one  customer and  a  compos- 
ite class representing all  of the  other  customers in the 
network. This  further reduced model can be  analyzed 
relatively  easily,  by  applying the  Norton’s  theorem ap- 
proximation. By designating each  class in the original 
model and in turn analyzing the  corresponding reduced 
model, we can  obtain approximate values for  the inter- 
esting statistics  for  each  customer class in the original 
model. 

In transforming the original model to  the  one with 
only two  classes,  the  customer of the designated class is 
given the  same 1 /0  branching  probabilities and CPU 
service  distribution as in the original model. For  each 
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determined  as a weighted sum of the branching probabil- 
ities of the  classes being “coalesced”  from  the original 
model. The weights  used are  the relative  throughputs of 
the corresponding customers in a model identical to  the 
original model, except  that  the CPU is processor- 
shared; this PS model satisfies local balance  and is easily 
analyzed. The  CPU  service distribution for  the  compos- 
ite class is chosen  to be the standard  two-stage hyperex- 
ponential  distribution  with  mean and  second moment 
determined  from weighted sums of the  means  and  sec- 
ond  moments of the  CPU  service distributions of the 
classes being coalesced from  the original model. 

After this  transformation is applied, the  Norton’s 
theorem approximation is applied. The resulting model, 
with the  composite  class  and composite l / O  queue, is 
analyzed  by  techniques similar to  those used in Section 4. 

5.2 Algorithms 
In this  subsection we  describe  two algorithms: the main 
program,  algorithm B, and  a  subprogram,  algorithm C, 
which approximates  an  N-class problem by a two-class 
problem. 

Algorithm B 
Assume  that  there  are N classes of customers.  For pur- 
poses of exposition, we assume  (without loss of 
generality)  that  there is only one  customer in each class. 

Step I For  each  class i in turn, i = 1,.  . ., N ,  do  steps 2i 
through 5i  and  thus  compute  the throughputs  and utiliza- 
tions for all queues  for  class i, and  also  the  means  and 
variances of CPU queue lengths  and wait times for  class 
i. The algorithm stops  after all N classes  have been 
considered. 

Step 2i Use algorithm  C to  approximate  the given N- 
class problem by a two-class  problem where the two 
classes  are  the designated class and  a  “coalesced class” 
which represents all customers  except  those in the desig- 
nated  class.  We  refer to  the original central  server model 
as model A  and  this  two-class  approximation as model 
B. Note  that B and A have exactly the  same  central 
server  network  structure; only the  number of classes is 
changed. The  parameters  for  the designated class  are  the 
same in A and B. For  the  coalesced  class  CPU  service 
time is assumed  to be  hyperexponential in B. In A and 
B, I /O service times are identical. 

Step  3i Compute  composite 1 / 0  service rates  for  the 
designated and coalesced classes of model B in the  usual 
manner (i.e., by computing throughputs through the 
shorted CPU of model B and  assuming all 1 / 0  service 
times are  exponential). 

Step 4i Consider  the resulting two-queue, two-class 
network  consisting of the CPU and 1 / 0  queues  and  the 
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designated and coalesced classes; we refer to this  net- 
work as model C. Solve Markov  balance  equations  to 
determine  steady  state probabilities of model C.  Deter- 
mine CPU throughput t,, utilization UOi,  mean and vari- 
ance of CPU queue length,  and wait time for designated 
class i from  the equilibrium state probabilities of model 
C.  Statistics  for the  coalesced class  are  not  computed. 

Step 5i Determine 1 / 0  throughputs tri, and utilizations 
U,, for each 1 / 0  r,  r = 1; . ., R ,  for  the designated class 
i. Let pri be the probability that a customer of class i 
branches  to I /  0 r after CPU service. Then tri = tOi X pVi 
f o r r = l ; ~ ~ , R a n d U , = t , / h , f o r r = l ; ~ ~ , R . S t a t i s t i c s  
for  the  coalesced class are  not  computed. 

Figure 6 shows  the relationships between models A, 
B, and C. 

Algorithm C 
In this  algorithm we determine CPU service distribu- 
tions and 1 / 0  branching  probabilities for  the coalesced 
class. 

Step I Consider a network  identical to  the given network 
(model A )  except  that  the  CPU is processor-shared;  we 
shall refer to this  network as model D. Model  D  satis- 
fies local balance and is easily  analyzable. For  the pur- 
poses of algorithm C only,  we shall approximate  the 
CPU throughputs of model A by those of model D. 
Compute tj', the CPU throughput of class j in model D,  
f o r j =  l ; . . ,  N .  

Step 2 Compute  the conditional  probability Vj that a 
random customer who finishes 1 / 0  service in model D 
is in class j ,  given  that he is not in designated class i :  

5 = 5' E th' for j # i ;  

= O  f o r j  = i. 

hfi 

Step 3 Compute  the first two moments of the CPU ser- 
vice  time for  the coalesced  class. Let  E[S"]  and E[Sj"] 
be the nth moments of the  CPU service time for the 
coalesced class and class j ,  respectively, j = 1, . . ., N .  
Then 

E[ S] = E[ Sj] . Vj ,  E[ S'] = E E[Sj'] . Vj .  

Represent CPU service  time for  the coalesced class by 
a standard hyperexponential  random  variable (Fig. 4) 
with the  above first two moments. 

Step 4 Approximate 1 / 0  branching  probabilities for  the 
composite  class by 

j  j 

P,, = P ' . Vj. 
j 

0 

stop. 
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L Model A 
given network 
N classes 

t Transformation achieved 
by algorithm C 

""_"""""""" 
Model B 
given network 
2 customer classes 

""_"""""""" Transformation achieved via 
composite 1/0 technique 

Model C 
2-queue network 
2 customer classes 

Figure 6 Relationships among  models A, B, and C. 

5.3 Exumple 
Consider a model with  two I/Os and  three  classes of 
customers.  The mean service times for 1 /0  1 and I /O 2 
are both 2 time  units. The branching  probabilities for  the 
first I / O  are 1,0,0.5 for  classes 1,2, and 3, respectively, 
and 0,  1, 0.5 for  the second I /O.  CPU mean times for 
classes 1, 2, 3 are 1, 2, 3, respectively. All service  times 
are assumed to be independent, exponential  random 
variables. 

Algorithm B,  step 1. We shall carry  out  steps 2i 

We first call algorithm  C to  obtain  the two-class  ap- 

Algorithm C,  step 1. Analyzing model D we get f,' = 

Algorithm C,  step 2. VI = 0, V, = 0.589, V ,  = 0.41 1. 
Algorithm C,  step 3. 

through 5i for i = 1. 

proximation. 

0.159, t,'=0.111. 

E[S] = ( 2  x 0.589) + (3 X 0.411) = 2.41, 

E[S'] = (8  X 0.589) + (18 X 0.41 1 )  = 12.12. 

The hyperexponential representation  for  the CPU service 
time has  parameter p = 0.398. 

Algorithm C,  step 4. 

p,, = (0 X 0.589) + (0.5 X 0.41 1) = 0.206, 

pzc= ( 1  X 0.589) + (0.5 X 0.411) = 0.795. 

We now have a two-class  problem. The  CPU  service 
time for  the coalesced class is hyperexponential  with 
mean 2.41 ; the I /  0 branching probability for  device 1 is 
0.206 and  for  device 2 is 0.795. 

Algorithm B, step 3i. The composite 1 / 0  service 
rates  for  class 1 and  the coalesced class  for different 
queue conditions are shown in Table 1. 

Algorithm B, step 4i. Model  C is analyzed to  obtain to, 

= 0.173, U,, = 0.173, q1 = 0.59, w1 = 3.43, uql = 0.49, 
uW1 = 3.09. 307 
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Tal. )le 1 Different queue conditions and  service  rates. 

Totul Totcrl rute 
Number of Numberojcoulesced rutefor j iw  coalesced 

class I customers class customers class 1 clnss 
~~~ ~~~~ - -~ ~.~ ~~~~ ~~ 

I 0 0.5 
0 

0 
1 

0 
0 

2 0 
0.5 
0.598 

I 1 0.415 0.415 
1 2 0.386 0.556 

Table 2 Hyperexponential CPU, exponential 1 / 0  

Number of customers 
~~~ ~ 

CPU utilization 
(simulation j 
(local  balance j 

CPU mean queue length 

CPU standard deviation of 
queue length 

CPU mean wait  time 

CPU  standard deviation of 
wait time 

1 / 0  1 utilization 

1 / 0  2 utilization 

1 / 0  3 utilization 

CPU mean service 
Coefficient of variation 

1 / 0  I mean  service 
Coefficient of variation 
Branching probability 

1/0 2 mean service 
Coefficient of variation 
Branching probability 

1 / 0  3 mean service 
Coefficient of variation 
Branching probability 

2 4 8 12 

0.590 0.713 0.802 0.846 
0.588 0.715 0.835 0.864 
0.623 0.783 0.884 0.921 

0.912 1.85 3.66 5.51 
0.894 1.82 3.79 5.65 

0.851 1.56  2.83 4.26 
0.840 1.54 2.80 4.10 

1.54  2.59 4.56 6.52 
1.50 2.57  4.55  6.49 

2.90 4.02 5.71 7.14 
2.73  4.07  5.53 7.24 

0.590 0.713 0.802 0.846 
0.606 0.730 0.824 0.864 

0.148 0.178 0.201 0.212 
0.147 0.176 0.214 0.212 

0.036 0.045 0.050 0.053 
0.036 0.043 0.054  0.056 

1 .o 
2.134 

2.0 
I .o 
0.5 

I .o 
1 .o 
0.25 

0.25 
1 .o 
0.25 

~~~~~ ~ 

6. Approximations for models with priority CPU dis- 
ciplines 
Now we consider  central server models with the  same 
characteristics  as in the previous section,  except  that  the 
CPU discipline will be a  priority  discipline with priority 
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to preemptive and nonpreemptive  priorities  based on cus- 
tomer  class, but these  techniques  are directly  applicable 
to  other priority disciplines. 

Again, we do not try to apply the  Norton’s theorem  ap- 
proximation directly,  but  rather  coalesce  the  classes of 
customers in the original model to simplify the analysis. 
The reduced model we consider  has three classes of cus- 
tomer:  a  designated class, which we do not restrict  to a 
single customer  as in the FCFS model,  and two compos- 
ite classes,  one of a  higher  priority  than the designated 
class and one of lower priority. The coalescing of classes 
into  these  three  classes is similar to  the technique  used 
in the previous  section. The coalescing is done  separate- 
ly for  each of the  two  composite classes. The  CPU dis- 
tribution  used for  each of the composite  classes is an 
exponential  distribution with mean taken as  the weight- 
ed sum of the means of the  classes being coalesced in- 
to  that  composite class. The weights are  the relative 
throughputs of classes within the  composite  class. In 
other  respects,  the analysis is essentially the  same  as 
that already described. 

7. Validation, implementation  and  performance 
We have  constructed a  simulator which employs the 
confidence  interval techniques of Crane  and Iglehart 
[ 1 I ,  121. This simulator  can  be  used with general  queuing 
networks with a  variety of disciplines,  heterogeneous 
classes of customers,  and generalized  Erlang  service  dis- 
tributions. The simulator determines confidence  inter- 
vals during the simulation,  and continues  the simulation 
until satisfactory  intervals are obtained. Details of the 
simulator are found in [ 161. This simulator  has  been 
used to  determine results for the  various  models de- 
scribed below. Crane and  Iglehart  show how to obtain 
confidence  intervals for results of simulations of Markov 
models with finite or countable  state  spaces. In general, 
the confidence  intervals  obtained are  as follows: For uti- 
lization, the  90  percent intervals are  at most 0.05 wide. 
For  those  cases  where  queue lengths  and waiting times 
are  obtained,  the  90  percent intervals for  the means are 
at most 2 6 percent of the point estimates, and the  80 
percent intervals for  the  standard deviations are  at most 
k 16 percent of the point estimates. In many of the  cases 
the intervals are considerably tighter. However, we were 
unable to obtain  confidence  intervals for  the FCFS 
models with six classes of customers.  For  these models 
the state  space is very  large,  and we were unable to se- 
lect a state  that  the system would return  to  frequently; 
this is necessary  to apply  the Crane and  Iglehart tech- 
niques. We used  predetermined simulation run lengths 
for  the six-class FCFS models, with the  run  lengths  based 
on  experience with four-class FCFS models. 

We  have  implemented our approximation  techniques 
as a set of FORTRAN programs for a CDC 6600. Over 125 
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Table 3 Exponential CPU, Erlang I /O.  

Number ~ j ~ u s t ~ m e r s  
~~~~~ ." 

CPU utilization 
(simulation) 
(local balance) 

CPU mean queue length 

CPU standard deviation of 
queue length 

CPU mean  wait  time 

CPU standard deviation of 
wait  time 

1 / 0  1 utilization 

1 / 0  2 utilization 

1 / 0  3 utilization 

CPU mean service 
Coefficient of variation 

I / 0 I mean service 
Coefficient of variation 
Branching  probability 

I / O  2 mean service 
Coefficient of variation 
Branching  probability 

1 / 0 3 mean service 
Coefficient of variation 
Branching  probability 

2 4 8 I2 

0.646 0.813 0.906 0.937 
0.652 0.821 0.914 0.940 
0.623 0.783 0.884 0.921 

0.881 1.83 3.78 5.77 
0.917 1.90 3.88 5.99 

0.759 1.28 2.39 3.52 
0.778 1.31 2.37 3.62 

1.36 2.25 4.18 6.16 
1.43 2.34 4.23 6.42 

1.26 1.83 2.97 4.12 
1.30 1.86 2.92  4.29 

0.646 0.813 0.906 0.937 
0.629 0.801 0.904 0.921 

0.162 0.203 0.227 0.234 
0.165 0.213 0.228  0.232 

0.040 0.051 0.057 0.059 
0.040 0.05 I 0.057 0.060 

I .0 
1 .o 
2.0 
0.707 
0.5 

1 .0 
0.707 
0.25 

0.25 
0.707 
0.25 

~ ~~~~~~~~ ~~~ ~~ 

Table 4 Hyperexponential CPU, Erlang 1/0.  

Number of custotners 
~~~ ~~~~~~ 

CPU utilization 
(simulation) 
(local balance) 

CPU mean queue length 

CPU standard deviation of 
queue length 

CPU mean  wait  time 

CPU standard deviation of 
wait  time 

1 / 0  1 utilization 

1 / 0  2 utilization 

1 / 0  3 utilization 

CPU mean service 
Coefficient of variation 

I /  0 1 mean service 
Coefficient of variation 
Branching probability 

I / 0 2 mean service 
Coefficient of variation 
Branching  probability 

I / O  3 mean service 
Coefficient of variation 
Branching  probability 

2 4 4 12 

0.604 0.730 0.815 0.857 
0.604 0.75 I 0.851 0.893 
0.623 0.783 0.884 0.921 

0.904 8.81 3.58 5.42 
0.912 1.88 3.75 5.92 

0.828 1.52 2.89 4.21 
0.834 1.50 2.73 3.99 

1.50 2.48 4.39 6.33 
1.51 2.57 4.44  6.68 

2.89 4.00 5.67 7.10 
2.86 4.15 5.31 6.89 

0.604  0.730 0.815 0.857 
0.610 0.732 0.845  0.874 

0.151 0.183 0.204  0.214 
0.150 0.187 0.206 0.232 

0.038 0.046 0.051  0.054 
0.038 0.045 0.053 0.056 

1 .0 
2. I34 

2.0 
0.707 
0.5 

1 .0 
0.707 
0.25 

0.25 
0.707 
0.25 

~~~~ ~~ 

models  have  been  validated  to  assure a thorough  sam- 
pling of  problems. 

Fifty-six of the  models  validated  are of the  class 
described in Section 4, i.e., single-class,  nonexponential. 
These  models  included  from 2 to 12 customers, 1 or  2 
CPUs,   f rom 3 to 8 1 / 0  devices,  and a wide  variety of 
combinations  of  distributions,  with  coefficients of varia- 
tion  ranging  from 0.577 to 5.0. In  general  the  models  were 
fairly well balanced,  but  some  of  the  models  were  strongly 
C P U  bound  or 1 / 0  bound.  Error  tolerances  were  de- 
termined in the  manner  used in [ 91 for  utilizations, C P U  
queue  lengths,  and  CPU  waiting  times.  Results  are  said  to 
be  within a tolerance z if 1 )  the  difference in utilization is 
not  more  than z ,  2 )  the  differences in the  means  and 
standard  deviations  of  queue  length  are  not  more  than z 
times  the  number of customers in the  network,  and 3 ) 
the  differences in the  means  and  standard  deviations of 

the  wait  times  are  not  more  than z times  the  cycle  time. 
For  the 56 models  studied,  the  results  are  generally 
within a tolerance  of 0.05, with a maximum  tolerance of 
0.18. In [9] a tolerance of 0.05 is considered to be  good, 
and a tolerance of 0.10 is considered  adequate. By these 
standards  the  results  are  good  or  adequate  for 51 of the 
56 models.  For  these  models,  the  computer  time  re- 
quired  per  model  was  negligible,  approximately 7 5  ms 
per  model.  Tables 2, 3, and 4 show  results  for 12 of 
these  models. 

Forty-four  models of the  class  described in Section 5, 
i.e., FCFS with  different  classes of customers,  including 
four  with  hyperexponential C P U  distributions,  have  been 
validated.  These  models  include  from 2 to 8 customers, 
with  from 2 to 6 classes of customers,  and 3 or  4 1 / 0  
devices.  Utilizations  and  throughputs,  both  overall  and 
by  class,  were  validated  for all of these  models.  For  eight 309 
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Table 5 FCFS, 4 classes, 1 customer/class, 3 1 / 0  devices. 

Class 1 2 3 4 All 

CPU throughput 0.182 0.192 0.110 0.168 0.652 
(simulation) 0.144 0.156 0.122 0.126 0.548 
(local balance) 0.230 0.272 0.090 0.208 0.800 

CPU utilization 0.091 0.048 0.552 0.084 0.775 
0.072  0.039  0.612  0.063 0.786 
0.115 0.068 0.451 0.104 0.738 

CPU mean queue length 0.36 0.35 0.59 0.35 
(simulation) 0.51 0.49 0.65 0.48 

CPU  standard deviation 0.48 0.4X 0.49 0.4X 
of queue length 0.50 0.50 0.48 0.50 

CPU mean  wait  time 1.97 1.82 5.32 2.08 
3.45 3.22 5.44 3.67 

CPU standard deviation 3.95 3.87  4.94  4.08 
of wait time 4.63 4.58 5.13 4.70 

1 / 0  1 utilization 0.2  19 0.154 0.044 0.067 
0.176 0.121 0.047 0.053 

1 /O 2 utilization 0.058 0.123 0.071 0.054 
0.047 0.095 0.077 0.044 

1 / 0  3 utilization 0.097 0.103 0.118 0.268 
0.080 0.081 0.128 0.214 

CPU mean service 0.500 0 . 2 5 0  5.00 0.500 
Coefficient of variation 1.00 1.00 1.00 1.00 

1 / 0  1 probability 0.6 0.4 0.2 0.2 
(mean  service= 2.00) 

1 / 0  2 probability 0.2 0.4 0.4  0.2 
(mean  service = 1.60) 

1 / 0  3 probability 0.2 0.2 0.4 0.6 
(mean service = 2.67) 

of the models, queue lengths  and wait times for  each  class 
were also validated.  We did not explicitly determine tol- 
erances  as in the single-class models,  but in general the 
results  showed good accuracy  for utilization  and 
reasonable accuracy overall. Tables 5 and 6 give results 
for  two of the models. For  the 44 models, the programs 
required  approximately 400 ms of computation per model. 

Thirty-six priority  models were validated, 24 preemp- 
tive and 12 nonpreemptive. These models  included  from 
4 to 6 customers, with from 3 to 6 classes, and 3 or 4 
1 / 0  devices. Again,  utilizations  and  throughputs were 
validated for all models. Central processing  unit queue 

31 0 lengths and mean CPU wait times were validated for 12 

Table 6 FCFS, 4 classes, 1 customer/class, 3 1 / 0  devices. 

Cluss 1 2 3  4 All 
~~ 

CPU throughput 0.111 0.182 0.162 0.152 0.607 
(simulation) 0.118 0.142 0.130 0.128 0.518 
(local  balance) 0.093 0.239 0.216 0.230 0.778 

CPU utilization 0.555 0.091 0.081 0.038 0.765 
0.590 0.071 0.065 0.032 0.758 
0.465 0.1 19 0.108 0.058 0.750 

CPU mean queue length 0.61 0.39 0.37 0.36 
(simulation) 0.64 0.52 0.50 0.48 

CPU standard deviation 0.49 0.49 0.48 0.48 
of queue length 0.48 0.50 0.50 0.50 

CPU mean wait  time 5.51 2.13  2.30 2.37 
5.28 3.69 3.75  3.68 

CPU standard deviation 5.08 6.90 7.25 7.56 
of wait time 9.48 8.67  8.83 8.89 

1 / 0  1 utilization 0.133 0.145 0.064 0.061 
0.145 0.1 15 0.053 0.050 

1 / 0  2 utilization 0.036 0.1 16 0.103 0.049 
0.040 0.089 0.086 0.041 

1 / 0  3 utilization 0.059 0.097 0.172 0.245 
0.062 0.077 0.149 0.209 

CPU mean  service 5.00 0.500 0.500 0.250 
Coefficient of variation 2.00 2.00 2.00 2.00 

1 / 0  I probability 0.6 0.4 0.2 0.2 
(mean service = 2.00) 

1 / 0  2 probability 0.2 0.4 0.4 0.2 
(mean  service = 1.60) 

1 / 0  3 probability 0.2 0.2 0.4 0.6 
(mean  service = 2.67) 

preemptive  models and all nonpreemptive models. Tables 
7 and 8 show  results  for  two models. For  the 36 models, 
the computation per model was  approximately 400 ms. 

In addition to providing reasonable  accuracy  for mod- 
els  not in local  balance, these programs give exact re- 
sults  for models in local balance  where  class coalescing 
is not  necessary.  Though  the coalescing techniques  do 
not necessarily  give exact results for locally balanced 
models,  the  results  are very  close. In  the  above valida- 
tion process,  for all FCFS models  requiring  coalescing, 
the coalescing process  was applied to a locally  balanced 
model similar to  the nonlocally  balanced model being 
studied.  Individual class  throughputs  and utilizations 
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Table 7 Preemptive, 6 classes, 1 customer/class, 3 1 / 0  devices. 

Cluss I 2 3 4 

CPU throughput 
(simulation) 
(local balance) 

CPU utilization 

CpU mean queue length 
(simulation) 

CPU  standard deviation of queue length 

CPU mean wait time 

1 / 0  I utilization 

I / 0 2 utilization 

I / O  3 utilization 

CPU mean service 

1 / 0  1 probability (mean  service = 2.00) 

1 / 0  2 probability (mean  service = 1.60) 

1/0 3 probability  (mean service = 2.67) 

were compared  for  the locally  balanced model with and 
without  coalescing. The differences  were never  more 
than one  percent and usually were  less  than that. 

These programs are more  than an  order of magnitude 
faster  than existing  implementation of other techniques. 

8. Conclusions 
We have presented approximate solution  techniques for 
several classes of models which are very  important in 
the modeling of computing  systems. These  techniques 
are computationally  very  inexpensive  and of great  prac- 
tical value. They complement  previous techniques which 
may be more accurate but are computationally more 
expensive,  and may be  used  directly in conjunction with 
previous  techniques. 

Our techniques give exact results for several interest- 
ing classes of models, and  are reasonably accurate  for 
typical  models of computing  systems. Our  techniques 
have been validated  extensively. Our methods may be 
extended  to  consider  more general networks.  Our tech- 
niques are compatible with the techniques of Keller  and 
Chandy [ 18 J for including the effects of passive re- 
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0.1 19 
0.148 
0.104 

0.396 
0.493 
0.347 

0.40 
0.49 

0.49 
0.50 

3.33 
3.39 

0.143 
0. I69 

0.038 
0.047 

0.063 
0.076 

3.33 

0.6 

0.2 

0.2 

0.166 
0. I62 
0.195 

0.055 
0.054 
0.065 

0.29 
0.34 

0.45 
0.47 

1.76 
2.06 

0.133 
0.129 

0.106 
0.102 

0.088 
0.093 

0.333 

0.4 

0.4 

0.2 

0.149 0.138 
0.141 0.126 
0.169 0.161 

0.050 0.023 
0.047 0.02 1 
0.056 0.027 

0.25 0.21 
0.34 0.31 

0.44 0.41 
0.47 0.46 

1.70 1.53 
2.44 2.54 

0.060 0.055 
0.056 0.047 

0.096 0.044 
0.087 0.037 

0. I59 0.220 
0.146 0.202 

0.333 0.167 

0.2 0.2 

0.4 0.2 

0.4 0.6 

5 
~- 

0.143 
0.1 14 
0.172 

0.048 
0.038 
0.057 

0.25 
0.37 

0.44 
0.48 

1.78 
3.16 

0.095 
0.077 

0.076 
0.062 

0. I27 
0.101 

0.333 

0.333 

0.333 

0.333 

6 
__ 
0.138 
0.102 
0. I72 

0.046 
0.034 
0.057 

0.27 
0.38 

0.45 
0.49 

1.99 
3.59 

0.092 
0.067 

0.073 
0.062 

0.122 
0.093 

0.333 

0.333 

0.333 

0.333 
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0.873 
0.793 
0.973 

0.618 
0.687 
0.609 

sources in central server models. Williams and Bhandi- 
wad [19] have also used  approximations of Norton’s 
theorem in analyzing  three-class,  preemptive,  exponential 
models. 

Three  sets of programs  were  used in constructing and 
validating these  models: 1 )  programs to  approximate 
central  server models by two-queue networks, 2 )  pro- 
grams  to  analyze  the resulting  two-queue networks,  and 
3 )  the  Crane-Inglehart simulator. Four variations of the 
two-queue analysis technique were  programmed: I ) 
single class nonexponential, 2 )  multiple class FCFS, 3)  
multiple class preemptive  priority,  and 4) multiple class 
nonpreemptive priority. Each of these  cases  (except  the 
last two) required slightly different programs to  construct 
two-queue  approximations of the given central  server 
problem. The simulator  handles  arbitrarily interconnect- 
ed  networks, a large number of customer  classes  and 
customers, and  a  variety of disciplines. 
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Table 8 Nonpreemptive, 6 classes, 1 customer/class, 4 1 / 0  devices. 

Class 

CPU throughput 
(simulation) 
(local  balance) 

CPU utilization 

CPU mean  queue  length 
(simulation) 

CPU standard  deviation of queue  length 

CPU mean  wait  time 

I / 0 1 utilization 

I / O  2 utilization 

I / O  3 utilization 

I / O  4 utilization 

CPU mean  service 

1 / 0  1 probability  (mean  service = 2.00) 

1 / 0  2 probability  (mean  service = I .OO) 

1 /O 3 probability  (mean  service = 0.50) 

1 / 0  4 probability  (mean  service = 1.00) 

I 

0.21 1 
0.239 
0.184 

0.2 I I 
0.239 
0. I84 

0.23 
0.29 

0.42 
0.46 

I .08 
1.24 

0.263 
0.305 

0.026 
0.030 

0.013 
0.01 5 

0.026 
0.028 

1 .oo 
0.625 

0.125 

0. I25 

0.125 

~ ~~ ~ 

2 3 

0.354 0.435 
0.381 0.408 
0.334 0.529 

0.236 0.036 
0.254 0.034 
0.223 0.044 

0.33 0.25 
0.36 p.27 

0.47 0.43 
0.48 0.44 

0.963 0.508 
0.946 0.641 

0.07 1 0.087 
0.067 0.083 

0.106 0.174 
0.1 12 0.177 

0.053 0.087 
0.057 0.082 

0. I06 0.043 
0.1 14 0.041 

0.667 0.083 

0.100 0.100 

0.300 0.400 

0.300 0.400 

0.300 0.100 

4 
__ 
0.384 
0.348 
0.438 

0.032 
0.029 
0.037 

0.19 
0.26 

0.39 
0.44 

0.478 
0.737 

0.096 
0.08 1 

0.048 
0.046 

0.024 
0.024 

0.240 
0.2 I6 

0.083 

0.125 

0. I25 

0.125 

0.625 

5 6 

0.327 0.326 
0.288 0.270 
0.368 0.373 

0.027 0.022 
0.024 0.018 
0.03 1 0.025 

0.16 0.16 
0.24 0.25 

0.37 0.36 
0.43 0.43 

0.487 0.480 
0.857 0.897 

0.163 0.163 
0.146 0.128 

0.082 0.08 1 
0.070 0.074 

0.041 0.041 
0.038 0.035 

0.082 0.08 1 
0.067 0.070 

0.083 0.067 

0.250 0.250 

0.250 0.250 

0.250 0.250 

0.250 0.250 

A / /  
__ 
2.036 
1.934 
2.226 

0.564 
0.598 
0.544 
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