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Solution of Queuing  Problems by a Recursive  Technique 

Abstract: A recursive  method  for efficient computational  analysis of a  wide  class of queuing  problems is presented.  Interarrival  and 
service  times  are  described by multidimensional  Markovian  processes while arrival  and  service  rates are allowed  to  be  state  dependent. 

Introduction 
Traditional  solution  techniques [ 1-51 for queuing prob- 
lems typically deal with a limited class of queuing  models: 
Poisson, or general  input with infinite waiting room,  or 
finite source input as in the classical machine  repairman 
model (e.g., [6] ) .  However, queuing problems of prac- 
tical importance are often  more  complex:  arrival and 
service  times may be state  dependent,  the number of 
sources  and/or waiting room may be limited,  etc.  More- 
over,  the traditional solution is usually presented by 
means of Laplace  transforms and generating  functions. 
In evaluating mean value or  standard deviation of a 
random variable from such expressions by computer,  a 
great  deal of computing  time and/or memory might be 
necessary. 

We demonstrate below how an efficient solution to 
many queuing  problems is possible via a new recursive 
technique.  Interarrival and service  times are assumed to 
be general provided they  possess rational Laplace trans- 
forms (e.g., hyperexponential, hypoexponential,  Erlan- 
gian, general Erlangian). Arrival and service rates  are 
allowed to be state  dependent, i.e., dependent on the 
number of customers in the queue. Therefore,  the re- 
pairman model is included as  a special case. 

The equilibrium state probabilities are obtained by a 
recursive  technique. This allows us to  determine  other 
important  performance characteristics such as  queue 
length distribution, mean waiting time, waiting time  dis- 
tribution, etc. 

Principle of the  recursive  technique 

Generul verncrrks 
Many  distribution  functions (d.f.) of practical interest 
(e.g., hyperexponential,  Erlangian,  general Erlangian) 
can be interpreted as  a combination of several fictitious 
stages of service,  each having exponentially  distributed 

duration. In  other  words,  processes with such  a d.f. can 
be described  exactly by means of a multidimensional 
random  variable. This "phase" concept was  introduced 
by Erlang [ 21 and  generalized by Cox [ 71. Cox showed 
that  any distribution with a rational Laplace  transform 
can be represented by a single sequence of fictitious 
phases of exponential service.  The phases may have dif- 
ferent mean service  rates and are passed  through  with a 
certain  branching probability h, as shown in Fig. 1. Fur- 
thermore, any given distribution  function of general  type 
(e.g.,  constant  d.f.,  step  functions, . . .) can be approxi- 
mated with arbitrary  accuracy by means of such a "phase" 
process.  Thus many queuing  problems can be,  either  ex- 
actly or approximately, modeled by means of a multidi- 
mensional Markovian  process (Le.,  a Markovian process 
described by a multidimensional random  variable [ 51 ) . 
The main problem is the solution of the  system of equa- 
tions for such a  process. 

The technique  presented in the following sections takes 
advantage of the special recursive structure of the sys- 
tems of equations.  Compared with other known methods 
(such  as matrix  inversion,  iterative procedures,  etc.) the 
recursive method is easy to program  and is superior with 
respect  to computing  time and/or memory. 

Principles of solution 
As mentioned  earlier, all queuing  problems  can  be  repre- 
sented by means of a  one-  or multidimensional Marko- 

Figure 1 Representation of distributions with a rational 
Laplace  transform by means of fictitious  stages. 
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Figure 2 The  investigated system H,/M/  l / A i ,  pi ( i  is the 
number of customers in the system). 

vian process.  Markovian  processes can  be described by 
means of the so-called  Chapman-Kolmogoroff system of 
equations [ 3-51. 

All these  systems of equations  possess  the following 
typical feature:  There  exists a subset of the  state proba- 
bilities which we define as boundaries, and if the values of 
the  boundaries  are known, the  recursive solution of the 
total system of equations  can be carried  out efficiently. 

Therefore,  the main ideas of our  method  are 

To  determine  the boundaries and to derive  expressions 
for all remaining state probabilities as  functions of the 
boundary  values. 
To solve a  reduced system of equations  for  these (un- 
known) boundaries. 
To  determine all interesting state probabilities, and 
other performance  values as well, by means of the 
(now known)  boundaries. 

Accordingly, the algorithm is characterized by the fol- 
lowing three  steps: 1 )  reduction step, 2 )  solution step, 
3 )  evaluation  step. 

Reduction  step Consider,  as  an example,  a  two-dimen- 
sional state  space with the  states ( i ,  j )  where i = 1 ,  2, 
. . ., N and j = 1, 2 ,  . . ., K .  Each  state  occurs with the 
(yet  unknown)  state probabilities Pi, ( i  = 1 ,  2 , .  . ., N ;  

j = 1 ,  2 ,  . . ., K ) .  Furthermore,  assume  that  the  states 
( N ,  y )  where y = 1, 2, . . ., K are  the boundary states. 
We  introduce  the following substitution 

The  number of steady  state equilibrium equations is 
N . K.  However,  for  every fixed y ( y  = 1 ,  2; . ., K ) ,  the 
coefficients Clj can  be  determined by solving recur- 
sively a subsystem of ( N  - 1 ) . K linear equations by 
assuming PN, = 1 and.PN, = 0 for 5 # y.  After obtaining 
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stitution ( 1 ) to  the remaining ( K  - 1 ) independent equa- 
tions  as well as to the normalizing condition 

2 P i , j =  1 .  ( 2  1 
i j  

These K equations  represent  the reduced  system of equa- 
tions with K unknown state probabilities P , ,  rather than 
N ' K unknowns. 

Solution  step When solving the reduced  system of K 
equations,  one of the common techniques  (such  as ma- 
trix  inversion)  can be  applied and a remarkable saving of 
computer time and/or memory is obtained. 

In many cases,  however, a more  elegant and still more 
efficient solution is possible by a second  (third, ...) re- 
duction  step, i.e., by a second  (third, ...) substitution. 
This multistep  reduction technique is a powerful tool for 
the straightforward  solution of queuing problems  (for  an 
example,  see  the  subsection  on substitutions, below). 

Evaluation  step Having solved the reduced system of 
equations,  one  can find from  the original system of equa- 
tions all state probabilities of interest. In addition, all 
performance values of interest such as probability of 
waiting, moments,  and distribution of the  queue length 
and waiting time, etc.  can be determined. 

Remark If only  special performance  values  rather than 
all state probabilities are of interest,  these  values  can be 
determined in parallel with the reduction and solution 
steps, i.e., without determining explicitly all state prob- 
abilities. 

Application of the recursive technique 
In  order  to  demonstrate  the  procedure of the new  tech- 
nique, two examples of basic  queuing systems  have been 
chosen. 

As a  first  example, H,/M/ l /h i ,  pi (for definition 
see below) is presented in detail. In  addition, a numerical 
example  for this  problem is given in the Appendix. Then 
the  approach  to  the problem  with  general  distribution is 
outlined by dealing with the M /G / 1 / h i  queuing  system. 

The  system H ,  / M / I / h i ,  pi 
Figure 2 shows  the main characteristics of the investi- 
gated  system:  hyperexponential  interarrival  times of 
second order with a state-dependent arrival rate Ai(hi,, 
hi,), finite waiting room  with ( N  - 1 )  waiting places, and 
one  server.  The  service times are exponentially  distrib- 
uted with the  state-dependent  service  rate pi. The  sys- 
tem is assumed to be in statistical  equilibrium, i.e., it is 
assumed that it is stationary. 

State  space  and  transition  coeficients Figure 3 illustrates 
all states  as well as all possible transitions  for  the con- 
sidered system.  State ( i ,  j )  denotes  that  there  are i de- 
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mands in the  system ( i =  0; . ., N )  and the arrival process 
is in phase j ,  corresponding to a  hyperexponential  dis- 
tribution of second  order ( j  = 1 ,  2 ) .  

Remark In describing the arrival process, the  common 
representation of hyperexponential  distributions by 
parallel phases  has been  used rather  than  the general 
method of Cox  (cf.  the  subsection  on general remarks, 
above). 

Equations of state For stationarity the  Chapman- 
Kolmogoroff equations give the following recurrence 
relations: 

where i = 0, 1 , .  . ., N ;  j = 1 ,  2 if we define Pi,j = 0 for 
i < 0 or i > N ,  Ai,j = 0 for i = N ,  and pi = 0 for i = 0. 

Method of solution Consider  the  state diagram  and the re- 
currence formula: Let  the boundaries be  the  states (0, 1) 
and (0, 2 ) ;  if the values of Po,l and Po,, are  known, a l l  re- 
maining state probabilities Pi,j can be determined re- 
cursively from (3 ) .  

Remark Notice  that in the  recurrence formula the vari- 
ables Pi,j are  expressed  as linear  combinations of P,,( 
where s < i. This  makes  the substitution  straightforward. 
In  the more  general case  (when s 5 i )  the solution is still 
possible. However,  one  must then  solve a subsystem to 
obtain the  recurrence relations. Here  we  introduce  the 
substitution 

The main procedure of the algorithm is to  determine all 
coefficients Cl j  ( y  = 1 ,  2 )  and  to  solve  the reduced sys- 
tem of equations of two  unknowns.  More precisely, all 
coefficients C l j  can be determined by using 2N of the 
2 ( N  + 1)  linear equations ( 3 )  and substituting all state 
probabilities  according to (4). Hence, 

with Ckl = C i z  = 1 ;  C i l  = CkZ = 0; Clj  = 0 for i < 0. 
Now  the reduced  system of equations is obtained by sub- 
stituting (4) into  one of the  two remaining equations,  say, 

= P N  ’ ‘ , l  - ’1 ’ ’N-1,l ’ ‘N-1,l 

- 
’1 ’ ’N-1,Z ’ ‘N-l,,? 

Figure 3 State space and  transition coefficients for the system 
H, /M/  l / k j ,  pi (hi is the arrival rate; pi is the service rate; i is 
the number of customers in  the system; branching  probabilities 
b,, b, are assumed to be the same for all i; b, + b, = 1 ) .  

as well as into the normalizing condition 

x Pi,j = 1 .  
i j  

This  leads directly to  the following two relations for  the 
boundary values: 

‘$1 LPN ’ “N,l - ’1 ’ *N-l,l ’ ‘k-l,l 

- bi ’N-1,2 . CN-,, l l  

+ ‘0,Z [ P N c i , l  - ’1 ’ ’N-I,l ’ ‘;-l,l 

- 6, . XN-l,2 . C;-,,,] = 0, (8)  

PO,, x 2 c:,j + PO,, C , j =  1 .  ( 9 )  
i j  i j  

Equation ( 8 )  can  be solved for Po,, in terms of Po,l. If we 
represent  the solution as 

Po,, =&Po,l’ (10) 

the solution of the  state probability P,, is given by the 
normalizing condition ( 9 ) ,  

-1 

p o , 1 = ( x x C t j + f z x x C : j )  i j  i j  . ( 1 1 )  

Algorithm 

Reduction  step Solve the system of equations ( 3 )  with 
the  boundary values Po,l = 1 and P,, = 0. This  procedure 
yields all coefficients Ck j .  Sum up all values Ci j; store 297 
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Figure 4 State  space and possible  transitions for the  system 
M / G / l / h , .  

only this  sum SI as well as  the coefficients CA,, and Ci,-l, 
( j  = 1, 2) .  Correspondingly,  solve the  system of equa- 
tions (3)  with the boundary  values P ,I l = 0 and P o,2 = l .  
Store sum S, and the coefficients Ci., and Ci-l, j, as well. 

Solution  step Determine  the boundary  value P,,,, ac- 
cording to (1 1 ) .  Notice  that  the summations  already 
have been  performed and all necessary coefficients are 
stored. Determine  the second  boundary value Po,, 
using (10). 

Evaluation  step Determine all state probabilities Pi, of 
interest according to ( 3 ) .  Determine all performance 
values of interest by means of the known state proba- 
bilities. 

The  system M / G /  I / h i  
Consider  the queuing  system M / G /  1 / h i ,  i.e.,  Markovian 
input with the  state-dependent  rate hi, general  service 
time with service rate p, and a single server. If  the  con- 
cept of Cox is followed (cf.  the subsection on general 
remarks,  above),  the general service time  distribution 
can  be approximated with arbitrary  accuracy by  means of 
a  phase  process  described by the  state  rates py and  the 
branching  probabilities b, for  each phase y ( y  = I ,  2, 
. . ., K ) .  

State  space  and  transition  probabilities Using the phase 
298 representation of the service  time, the queuing process 
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can be described exactly by a  two-dimensional  Marko- 
vian process.  The  state  space  and possible  transitions are 
outlined in Fig. 4. 

Equutions of state The Chapman-Kolmogoroff equations 
give the following set of recurrence relations. For 0 < 
i 5  N ,  1 < j 5  K ,  

i f w e d e f i n e h i = O f o r i = N a n d P , j = O f o r j = 2  ; . . , K .  
For 0 5 i 5 N ,  

c P c j . ~ j ( l - b j )  + P i - , , l ~ ~ i " 2 = P i " l , l ~    hi-,+^,) 
x 

j = 1  ( 1 3 )  

if we define f"l,l = 0. 

Substitution The boundary states  are  the  states ( i ,  1 ) ,  
i = 0,  . . ., N as shown in Fig. 4. ( I t  is also possible to 
choose  other boundaries. Then,  however, a second  sub- 
stitution leading to a  more efficient solution step  is not 
possible.) In  order  to  reduce  the  system of equations, 
the following substitution can be made: 

Pi, = q j  . P , ,  + C; . f , , ,  +. ' ' 
+ c;,j . P i , ,  = q j  ' fy,l. 

i 

y=n 

Note  that all coefficients C:,j = 0 fa 
stituting ( 14) into ( 1 3 ) ,  

i ti i-2 

lr y > x, all j .  Sub- 

i - 1  

Y=o 

Note  that Pi,1 occurs only in the first term; all other  terms 
are linear  combinations of Ps, ,  where s < i. Note  also  that 
the second  term  can  be extended  because C:-%l = 0. 
Therefore. 

X 
K 

and, if we represent the denominator by gi and  the numer- 
ator by&', 

y=n 

Second  substitution From  the  recurrence relation ( 151, 
one  can  determine all Pi , ,  in terms off, , ,  recursively; Le., 
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Pi, , = di . Po, 1. (16) 

Therefore, starting with do = 1, one has 
i-1 

di = dy . ( $ " / g , ) .  ( 1 7 )  
.y=o 

Finally, the normalizing condition 

.\ ti .s ti I 

i=O j = 1  i = n  j = 1  y=O 

,s ti s 

leads to 

Algorithm 

Reduction  step Determine all coefficients C,yj, i.e., solve 
the system of equations ( 12) recursively by putting 
P y , ,  equal to  one and all other  boundary values P i , ]  
( i  # y) equal to  zero ( y  = 0, I ,  2 ;  . ., N )  . Remember that 
C: = 0 for y > i. Store only fiy, gi and Zi Zj C: 

Solution step Determine all coefficients di ( i=  I ,  2; . ., N )  
according to  Eqs. (15) and (16) .  Then  determine  the 
actual value of Po, ,  by means of Eq. ( 18). 

Evullration step Determine all state probabilities P i , j  of 
interest according to  Eqs. ( 16) and ( 14). respectively. 
Determine  other performance  values of interest using the 
known state probabilities. 

Summary 
A new and efficient recursive  technique that is suitable 
for solving a wide class of queuing  problems is presented 
above.  The procedure of the recursive algorithm is de- 
scribed  and  illustrated via two basic queuing  problems. 
Furthermore, a  detailed  numerical  example is given in the 
Appendix. 

The general applicability and efficiency of the recursive 
technique  has  been  found to be valid for a wide class of 
queuing  problems, including 

M/H,/  1 / h i ,  pi, k = I ,  2 ,  3. 
H 2 / E k / l / h i ,  pi, k =  1, 2 ; . .  . 
G I / M / n / h i , p i .  
G I / G / l / h i , p i .  
M /  M/n/h i ,  pi with preemptive  priorities. 
Two- and multi-queue models. 
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Figure 5 State  space and transition  coefficients for the  example 
in the  Appendix. 

Obviously the first three  cases  are included in the GI/ 
G /  1 system. However, they have been  studied separate- 
ly because their special structures allow more efficient 
computation in comparison with the general case. 

Appendix: Numerical  example for the queuing sys- 
tem H,/M/l/hi, p i  

General  remarks  and  parameters 
The following sections  demonstrate  the application of 
the algorithm presented in the  subsection on the system 
H , / M /  1 /hi, pi. The  state  space  as well as  the  cor- 
responding equations of the  state  are first described. The 
algorithm is then  performed in a step-by-step manner. 

As  a numerical example,  the following parameter 
values are  chosen: 

Maximum  number of customers in the  system: 

State-dependent arrival rates: A,,, = 0.8 s-I, 

A,,, = 0.4 s-', 
A,,] = 0.4 s-l, 
Al, ,  = 0.2 s-l. 

N = 2 .  

Probabilities of branching: b, = b, = 0.5. 
Service  rates: pi = p = 1 s-l. 

State  space See Fig. 5 .  

Equations of state The  equations of state, generally de- 
scribed by ( 3 ) ,  are, in this case, 
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(e) 0 = p,,, - bl . !h~! . p , ,  - b,  . hi,z . 
P 

( f )  0 = 

Evaluation step Suppose  that all state probabilities as 
well as  the mean queue length are of interest.  Then,  the 
numerical values of state probabilities are obtained by 
evaluating once  more  Eqs. (a) - (d) with the  actual 
boundary values Po,, = 0.1794, Po,, = 0.4187. This leads 
directly to P1, ]  = 0.1435, = 0.1675, P2,,  = 0.0455, 
P,,, = 0.0455. Finally, the  mean value of jobs in the  sys- 
tem  is given by 

The normalizing condition is 

(8) 1 = Po,, + Po,, + PI,] + Pl, ,  + P, , l+  PZ,,. 

Therefore,  by introducing the substitution ( 4 ) ,  the coef- 
ficient f, is given by the following expression: 

Algorithm 

Reduction  step Solve Eqs. (a) - (d)  for  the  boundary 
values E , ,  = 1 and P a p  = 0. The calculated values  cor- 
respond  to  the coefficients Ct  j .  The numerical values  are 
Chi= 1 ,  C k , = O ,   C i , , = O . 8 ,   C ~ , , = O , C ~ , , = 0 . 7 2 , C : , =  
-0.4. 

Therefore,  the  sum SI of  all coefficients Crj  is S, = 2.12. 
Solve Eqs.  (a) - (d) for  the boundary values P ,  , = 0 and 
P = 0. Correspondingly,  one  obtains  the coefficients 

0.28, S, = 1.48. 

Solution step The coefficient f, is given by 

C , , = O ,  2 C ; , =  1 ,  C ~ , , = 0 , C ~ , , = 0 . 4 , C ~ l = - 0 . 2 , C ~ , 2 =  

f =- 0.72 - 0.2, X 0.8 - 0.1 X 0 = 2 . 3 3 3 3 .  
-0.2 - 0.2 X 0 - 0.1 X 0.4 

Therefore,  the  actual boundary  values are 

Po,, = (SI -t f ,  * S,)  = 0.1794 

and 

Po,, =f, . Po,, 0.4187. 

which is, numerically, L = 0.4930. 
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