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Solution of Queuing Problems by a Recursive Technique

Abstract: A recursive method for efficient computational analysis of a wide class of queuing problems is presented. Interarrival and
service times are described by muitidimensional Markovian processes while arrival and service rates are allowed to be state dependent.

Introduction

Traditional solution techniques [1-5] for queuing prob-
lems typically deal with a limited class of queuing models:
Poisson, or general input with infinite waiting room, or
finite source input as in the classical machine repairman
model (e.g., [6]). However, queuing problems of prac-
tical importance are often more complex: arrival and
service times may be state dependent, the number of
sources and /or waiting room may be limited, etc. More-
over, the traditional solution is usually presented by
means of Laplace transforms and generating functions.
In evaluating mean value or standard deviation of a
random variable from such expressions by computer, a
great deal of computing time and /or memory might be
necessary.

We demonstrate below how an efficient solution to
many queuing problems is possible via a new recursive
technique. Interarrival and service times are assumed to
be general provided they possess rational Laplace trans-
forms (e.g., hyperexponential, hypoexponential, Erlan-
gian, general Erlangian). Arrival and service rates are
allowed to be state dependent, i.e., dependent on the
number of customers in the queue. Therefore, the re-
pairman model is included as a special case.

The equilibrium state probabilities are obtained by a
recursive technique. This allows us to determine other
impdrtant performance characteristics such as queue
length distribution, mean waiting time, waiting time dis-
tribution, etc.

Principle of the recursive technique

o General remarks

Many distribution functions (d.f.) of practical interest
(e.g., hyperexponential, Erlangian, general Erlangian)
can be interpreted as a combination of several fictitious
stages of service, each having exponentially distributed
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duration. In other words, processes with such a d.f. can
be described exactly by means of a multidimensional
random variable. This ‘“‘phase” concept was introduced
by Erlang [2] and generalized by Cox [7]. Cox showed
that any distribution with a rational Laplace transform
can be represented by a single sequence of fictitious
phases of exponential service. The phases may have dif-
ferent mean service rates and are passed through with a
certain branching probability b, as shown in Fig. 1. Fur-
thermore, any given distribution function of general type
(e.g., constant d.f., step functions, . . .) can be approxi-
mated with arbitrary accuracy by means of such a ‘‘phase”
process. Thus many queuing problems can be, either ex-
actly or approximately, modeled by means of a multidi-
mensional Markovian process (i.e., a Markovian process
described by a multidimensional random variable [5]).
The main problem is the solution of the system of equa-
tions for such a process.

The technique presented in the following sections takes
advantage of the special recursive structure of the sys-
tems of equations. Compared with other known methods
(such as matrix inversion, iterative procedures, etc.) the
recursive method is easy to program and is superior with
respect to computing time and/or memory.

e Principles of solution

As mentioned earlier, all queuing problems can be repre-
sented by means of a one- or multidimensional Marko-

Figure 1 Representation of distributions with a rational
Laplace transform by means of fictitious stages.
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Interarrival times: (N-1) Single server
hyperexponential waiting exponential
and state-dependent places service times

Figure 2 The investigated system H,/M/1/\, u, (i is the
number of customers in the system).

vian process. Markovian processes can be described by
means of the so-called Chapman-Kolmogoroff system of
equations [ 3-5].

All these systems of equations possess the following
typical feature: There exists a subset of the state proba-
bilities which we define as boundaries, and if the values of
the boundaries are known, the recursive solution of the
total system of equations can be carried out efficiently.

Therefore, the main ideas of our method are

¢ To determine the boundaries and to derive expressions
for all remaining state probabilities as functions of the
boundary values.

e To solve a reduced system of equations for these (un-
known) boundaries.

e To determine all interesting state probabilities, and
other performance values as well, by means of the
(now known) boundaries.

Accordingly, the algorithm is characterized by the fol-
lowing three steps: 1) reduction step, 2) solution step,
3) evaluation step.

Reduction step Consider, as an example, a two-dimen-
sional state space with the states (i, j) where i = 1, 2,
-+, Nand j=1, 2, -+, K. Each state occurs with the
(yet unknown) state probabilities P, (i=1,2,--+, N;
j=1, 2,---, K). Furthermore, assume that the states
(N, v) where y = 1, 2, -+, K are the boundary states.
We introduce the following substitution

=

P ;=3 Ci;Pyy (n
y=1

The number of steady state equilibrium equations is
N - K. However, for every fixed y (y=1, 2,- -+, K), the
coeflicients CZ ; can be determined by solving recur-
sively a subsystem of (N — 1) - K linear equations by
assuming P, , = 1 and P, , = O for ¢ # . After obtaining
all coefficients CZ ; it is a simple matter to make the sub-
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stitution (1) to the remaining (K — 1) independent equa-
tions as well as to the normalizing condition

SIS P,=L 2)

These K equations represent the reduced system of equa-
tions with K unknown state probabilities P, , rather than
N - K unknowns.

Solution step When solving the reduced system of K
equations, one of the common techniques (such as ma-
trix inversion) can be applied and a remarkable saving of
computer time and/or memory is obtained.

In many cases, however, a more elegant and still more
efficient solution is possible by a second (third, ...) re-
duction step, i.e., by a second (third, ...) substitution.
This multistep reduction technique is a powerful tool for
the straightforward solution of queuing problems (for an
example, see the subsection on substitutions, below).

Evaluation step Having solved the reduced system of
equations, one can find from the original system of equa-
tions all state probabilities of interest. In addition, all
performance values of interest such as probability of
waiting, moments, and distribution of the queue length
and waiting time, etc. can be determined.

Remark If only special performance values rather than
all state probabilities are of interest, these values can be
determined in parallel with the reduction and solution
steps, i.e., without determining explicitly all state prob-
abilities.

Application of the recursive technique

In order to demonstrate the procedure of the new tech-
nique, two examples of basic queuing systems have been
chosen.

As a first example, H,/M/1/\, u, (for definition
see below) is presented in detail. In addition, a numerical
example for this problem is given in the Appendix. Then
the approach to the problem with general distribution is
outlined by dealing with the M/G/1/A, queuing system.

* The system Hy,/M/1/\;, u,

Figure 2 shows the main characteristics of the investi-
gated system: hyperexponential interarrival times of
second order with a state-dependent arrival rate A,(A,,
A, ), finite waiting room with (N — 1) waiting places, and
one server. The service times are exponentially distrib-
uted with the state-dependent service rate u,. The sys-
tem is assumed to be in statistical equilibrium, i.e., it is
assumed that it is stationary.

State space and transition coefficients Figure 3 illustrates
all states as well as all possible transitions for the con-
sidered system. State (i, j) denotes that there are i de-
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mands in the system (i=0,- -+, N) and the arrival process
is in phase j, corresponding to a hyperexponential dis-
tribution of second order (j =1, 2).

Remark In describing the arrival process, the common
representation of hyperexponential distributions by
parallel phases has been used rather than the general
method of Cox (cf. the subsection on general remarks,
above).

Equations of state For stationarity the Chapman-
Kolmogoroff equations give the following recurrence
relations:

p #’i+>‘i,jP b }‘i-—l,lp
i+, PRt
A
—b,—2P_,, (3)
Misa

where i =0, 1,-++, N;j =1, 2 if we define Pi,j=0for
i<OQori>N, }\“=0fori=N,and,u,i=0fori=0.

Method of solution Consider the state diagram and the re-
currence formula: Let the boundaries be the states (0, 1)
and (0, 2); if the values of P, and P, are known, all re-
maining state probabilities P, ; can be determined re-
cursively from (3).

Remark Notice that in the recurrence formula the vari-
ables P, are expressed as linear combinations of P,
where s < i. This makes the substitution straightforward.
In the more general case (when s < i) the solution is still
possible. However, one must then solve a subsystem to
obtain the recurrence relations. Here we introduce the
substitution

1 2
Pz,jchjPo,1+Ci,jPo,z' (4)

The main procedure of the algorjthm is to determine all
coefficients C Z ; (=1, 2) and to solve the reduced sys-
tem of equations of two unknowns. More precisely, all
coefficients CZ ; can be determined by using 2N of the
2(N + 1) linear equations (3) and substituting all state
probabilities according to (4). Hence,

v _Mi+)\i»jcv _b}\ Cv
S
A Y
_bj C:+12 (5)

i+1
with Cy, = C3, = 1; Co, = Cy, = 0; C} ;=0 for i < 0.
Now the reduced system of equations is obtained by sub-
stituting (4) into one of the two remaining equations, say,

O=py - Pyy—by My Pyyy
—b - Ayoyz PN—I,Z’ (6)
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Figure 3 State space and transition coefficients for the system
H,/M/1/X, u; (A, is the arrival rate; u, is the service rate; i is
the number of customers in the system; branching probabilities
b,, b, are assumed to be the same for all i; b, + b, = 1).

as well as into the normalizing condition
22P;=1 (7)
i
This leads directly to the following two relations for the
boundary values:
1 1

Po,l |:.“1v ' C —b, 1,1 CN—l,l

—b;- }‘N— N-l 2

2
+po,z [/"“ CNI bl “ Ay CN—l,l

;12

—b,- Ay_ys (8)
POJEi; C:’j—l— ; (9)

Equation (8) can be solved for Py in terms of P, . If we
represent the solution as

Poy=1Poss (10)

the solution of the state probability P, is given by the
normalizing condition (9),

-(¥sc,+nzza) an
v L

Algorithm

”ML.__:

Reduction step Solve the system of equations (3) with
the boundary values Po,1 1 and P, = 0. This procedure

yields all coefficients C .. Sum up all values Cl, 5+ store
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Figure 4 State space and possible transitions for the system
M/G/1/\,

only this sum S, as well as the coefficients C,'w. and C;\,_LJ.

(/ = 1, 2). Correspondingly, solve the system of equa-

tions (3) with the boundary values P,,=0and P ,=1.
2

Store sum S, and the coefficients C'i.‘j and C,_, ;,as well.

Solution step Determine the boundary value P, ac-
cording to (11). Notice that the summations already
have been performed and all necessary coefficients are
stored. Determine the second boundary value P,
using (10).

Evaluation step Determine all state probabilities P, of
interest according to (3). Determine all performance
values of interest by means of the known state proba-
bilities.

* The system M/ G/ 1/\,;

Consider the queuing system M/ G/ 1/\,, i.e., Markovian
input with the state-dependent rate A,, general service
time with service rate u, and a single server. If the con-
cept of Cox is followed (cf. the subsection on general
remarks, above), the general service time distribution
can be approximated with arbitrary accuracy by means of
a phase process described by the state rates w, and the
branching probabilities b, for each phase y (y =1, 2,

State space and transition probabilities Using the phase
representation of the service time, the queuing process
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can be described exactly by a two-dimensional Marko-
vian process. The state space and possible transitions are
outlined in Fig. 4.

Equations of state The Chapman-Kolmogoroff equations
give the following set of recurrence relations. For 0 <
iSN,1<j=K,

Byt b A

P .=P,, =+p_, -
ij i j-1 )\i + I-’y' i—1,j }\i + lu‘j

(12)

if we define A, =0 fori=Nand P ;=0for j=2,- - K.
For0=i= N,

P
2 Py 'U“j(l - bj) + Pi—2,l N =P Aoy T 1y)
Jj=1 (13)

if we define P_ = 0.

Substitution The boundary states are the states (i, 1),
i=0, -, N as shown in Fig. 4. (It is also possible to
choose other boundaries. Then, however, a second sub-
stitution leading to a more efficient solution step is not
possible.) In order to reduce the system of equations,
the following substitution can be made:

P..=C'.-P  +C;

i i, J 0,1 4

P

1,1

+...
+C:,j'Pi,1=EOCZj'Py,1' (14)
=

Note that all coefficients C, ;= 0 for y > x, all j. Sub-
stituting (14) into (13),
i K i-2 y
2 Py,l 2 “’J‘(l _bj) ’ CZ;‘ + 2 Py,l "y C%—z,l
4 =,

y=0

.

i-1
= E Py.l : Cilil.l (N Ty
y=0

Note that Pi’1 occurs only in the first term; all other terms
are linear combinations of P, , where s <i. Note also that
the second term can be extended because C i_m = 0.
Therefore,

i-1

Pi,1=2py,1

y=0

K
{Cf—l,l Ay Ty C;I—2,l AT 2 Myt (l_bj) ’ Ciyj}

j=1

X

>

K :
Z:lf‘j(l —b) - Cy

and, if we represent the denominator by g, and the numer-
ator by f%,

i1
Pi,l = 2 Py,l ‘fiy/gi' (15)
y=0

Second substitution From the recurrence relation (15),

one can determine all P, , in terms of Py recursively;i.e.,
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P o=d P, (16)

Therefore, starting with d, = 1, one has
i—1

di=7%d,- (£'/g). (17)
y=0

Finally, the normalizing condition

Il
M >
M=
Ap]
Q;U

i=0 j=1 y=0
N K N

— Yy
E 2 E Ci,J dy Pys Figure 5 State space and transition coefficients for the example
i=0 j=1 y=0

in the Appendix.
leads to

: N .

Py = (i dyz i cg].)—'.

y=0 i=0 j=1

(18)

Obviously the first three cases are included in the GI/
G/ 1 system. However, they have been studied separate-
ly because their special structures allow more efficient
computation in comparison with the general case.

Algorithm

Reduction step Determine all coefficients ij, i.e., solve
the system of equations (12) recursively by putting
P,, equal to one and all other boundary values P,
(i # v) equal to zero (y=0, 1, 2,- -+, N). Remember that

C{;=0for y > i. Store only f;’, ¢g; and ¥, 3, C{

Appendix: Numerical example for the queuing sys-
tem H,/M/1/Ai, M,

o General remarks and parameters
The following sections demonstrate the application of
the algorithm presented in the subsection on the system
H,/M/1/X,, w,. The state space as well as the cor-
responding equations of the state are first described. The
algorithm is then performed in a step-by-step manner.
As a numerical example, the following parameter
values are chosen:

Solution step Determine all coefficients d, (i=1,2,-- -, N)
according to Eqgs. (15) and (16). Then determine the
actual value of P, by means of Eq. (18).

Evaluation step Determine all state probabilities P, ; of
interest according to Eqgs. (16) and (14), respectively.
Determine other performance values of interest using the

known state probabilities. . .
¢ Maximum number of customers in the system:

Summary , N =2

A new and efficient recursive technique that is suitable » State-dependent arrival rates: A, = 0.8 -

for solving a wide class of queuing problems is presented Aoy = 0.4 SA]’

above. The procedure of the recursive algorithm is de- Ay = O‘: S_l’

scribed and illustrated via two basic queuing problems. . . Ap=02s

. . .o . ¢ Probabilities of branching: b, =b,=0.5.

Furthermore, a detailed numerical example is given in the : 1 2 L

* Service rates: w =p=1s".

Appendix.

The general applicability and efficiency of the recursive
technique has been found to be valid for a wide class of
queuing problems, including

State space See Fig. 5.

Equations of state The equations of state, generally de-

scribed by (3), are, in this case,

« M/H,/1/N .  k=1,2.3,

. HZ/Ek/l/Xl.,p,i, k=1,2,-"" -

* GI/M/n/ N, ;. (a) P ,= ,u, Py,

* GI/G/1/ N, 1,

e M/M/n/\,, n; with preemptive priorities. (b) P = Ay p

¢ Two- and multi-queue models. 12, ey 299
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(¢) P, _ET A P, - b,% “P,,—b, %‘2 - P,

@ P =2l p oy Jerp oyt g
(e) 0 = Pz,l—bl-%'Pl’l—bl~%-Pl,2
(0 o0 = Pz,z—bz-%—‘-Pl,l—bz-%g-Pl_z.

The normalizing condition is
g1 = Po’1 + Po,z + P1,1 + P1,2 + Pz’1 + P2,2'

Therefore, by introducing the substitution (4), the coef-
ficient f, is given by the following expression:
1 1 1
k- C2,1_b1 : )\1,1 : Cl,l_bl : )‘1,2 : C1,2
2 2 2 °
M CZ,l_bl ' }‘1,1 ' Cl,l_bl : )‘1,2 ' C1,2

fi=

Algorithm

Reduction step Solve Eqgs. (a) —(d) for the boundary
values P, = 1 and P, = 0. The calculated values cor-
respond to the coefficients C : ;- The numerical values are

1 1
Cy,=1,C,,=0,C,,=08,C,,=0,C,,=0.72,C,,=
—0.4.

Therefore, the sum §, of all coefficients C;, jis 8, =2.12.
Solve Egs. (a) - (d) for the boundary values P, , =0 and
P,, = 0. Correspondingly, one obtains the coefficients
Cy,=0,C,,=1,C, =0,C:,=04,C; =—0.2,C; ,=
0.28, 5, = 1.48.

Solution step The coeflicient f, is given by

_072—-0.2%X08—0.1X0
—0.2—-02Xx0-0.1X04

f,= =2.3333.

Therefore, the actual boundary values are
Py, = (8, +1,-S,)=0.179%4
and

P,,=f," P,, = 0.4187.

HERZOG, W00, AND CHANDY

Evaluation step Suppose that all state probabilities as
well as the mean queue length are of interest. Then, the
numerical values of state probabilities are obtained by
evaluating once more Eqgs. (a)-(d) with the actual
boundary values Py, = 0.1794, P, = 0.4187. This leads
directly to P, , = 0.1435, P, , = 0.1675, P,, = 0.0455,
P, , = 0.0455. Finally, the mean value of jobs in the sys-
tem is given by

L= 2 E i- P“,
i
which is, numerically, L = 0.4930.
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