M. Reiser
H. Kobayashi

Queuing Networks with Multiple Closed Chains:
Theory and Computational Algorithms

Abstract: In this paper a recent result of Baskett, Chandy, Muntz, and Palacios is generalized to the case in which customer transi-
tions are characterized by more than one closed Markov chain. Generating functions are used to derive closed-form solutions to sta-
bility, normalization constant, and marginal distributions. For such a system with N servers and L chains the solutions are considerably
more complicated than those for systems with one subchain only. It is shown how open and closed subchains interact with each other
in such systems. Efficient algorithms are then derived from our generating function representation.

Introduction
For some ten years, the most general class of queuing
networks for which an analytical solution was known is
that treated by Jackson [1]. However, applications of
such queuing networks to modeling of multiprogrammed /
multiprocessor computer systems have been drawing
increasing attention in the past few years [2, 3]. Note-
worthy progress in extending the class of analytically
solvable queuing networks has been reported recently
by Baskett, Chandy, Muntz, and Palacios [4, 5]. These
authors have succeeded in casting into a unified theory
previously known but unconnected results such as queue-
size distributions for M/ M/ 1 with FCFS, M/ G/ 1 with
processors sharing, M/ G/ queues, preemptive-resume
LCFS discipline, and queuing systems with various
classes of customers.

The constribution of the present paper is threefold,
namely:

1. To generalize the results represented in [5] to the
case of several closed subchains and to give a con-
structive derivation of the product-form solution.

2. To exploit the probability generating function method
as a device to obtain a concise representation of such
expressions as normalization constants and distribu-
tions in the complex network model treated in this
paper.

3. To present computationally efficient algorithms for
the general class of networks.
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Solutions for a queuing network with classes of
customers, multiple subchains, and generalized
servers

In this section we define the class of queuing network
models and present its solution. We generalize the result
of [5] to a queuing network in which customer routing
transitions are characterized by a Markov chain decom-
posable into multiple subchains. We also take a more
constructive approach than the previous work so that
the reader may follow more easily the derivation of the
product-form solution. Networks with closed subchains
are introduced as a limiting case of a suitably chosen
open network. This technique leads to a unified presenta-
tion of the final results. In the last section, several ag-
gregate states and their marginal distributions are in-
troduced.

~ Definition of the queuing network

The queuing system .4 is defined in terms of the follow-
ing parameters: 1) system configuration, 2) routing
probabilities, 3) arrival processes, and 4) service rate and
work demand distribution and queue discipline at the in-
dividual service centers. In more detail:

1. There are N service centers, R classes of customers,
and L disjoint routing chains (or subchains) . Through-
out the rest of the paper, indices n, r, and [ refer to
service center, class, and subchain, respectively, and
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Figure 1 Example of a mixed network with two closed sub-
chains and one open subchain. The routing transition prob-
abilities are p, =1, Py @o= % Pes, un™ 1 Pus, s = (1 —a);

Pany an = L Pay an =1 Puay a2y = 1 Pzy = 1> Puagy a0y = s
Pgsy, azy = 1- All other probabilities are zero. Due to the class

change at service center 3, customers proceed through .#, in a
figure eight pattern.

their values range overn=1,2,---,N,r=1,2,-- 4 R,
and /=1,2,---, L. We assume R = L = ] without loss
of generality.

2. Jobs (customers) proceed through the network .4
according to a first-order Markov chain .#. The tran-
sition matrix is NR X NR with elements p,., (n'r'),
which are the probabilities of state transitions (nr) —
(n'r') in #, namely, the probability that a job of class
r completing service at center n will next go to center
n' and change its class membership to r'. The Markov
chain .# is in general decomposable into L subchains
M, My, My, Which are all irreducible.

3. The subchains .#, are either open or closed. Open
subchains are driven by independent Poisson arrival
streams whose rates, A,, may be functions of the pop-
ulation size K, of .#, i.e., A\,=\,(K)); K, is the number
of jobs in ., at a given system state .. A newly ar-
riving class r customer of stream [ will first join ser-
vice center n with probability p, ... Similarly, a class
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r’ customer completing service at center n' departs
the network with probability p,,., ,. In a closed sub-
chain A,, the number of jobs is held constant at K,*.
Furthermore, p; (,,)= Py, 1= Oforall (nr) € 4,

4. Service center n is described by a continuous-time
Markov chain whose state is given by the ordered set
of customers, their associated class membership,
and possibly an additional integer (denoting the stage
in a cascade of exponential servers at which the cus-
tomer is). The parameters of this Markov chain may
be state-dependent. The following queues have a suit-
able Markov chain representation:

First-come, first-served (FCFS)

The server has a queue-dependent rate u,(k,). Each
customer has an associated work demand whichi is as-
sumed to be drawn from an exponential distribution.
Note: All classes must have the same distribution. The
mean work demand is w,.

Processor sharing (PS) [6] or preemptive-resume
LCFS

The server has a queue-dependent rate wu,(k,). The
work demand of customers is assumed to be drawn
from a general distribution. Note: The distribution
may be a different one for different classes. The mean
work demand of a class rjobis w,,.

Infinite Server (1S) [7]

Jobs have service (or delay) times which may have a
general distribution with mean w, . Formally we set
r, =1

Note that in our definition the term service rate refers
to the actual speed of the server in work units/s. Each
job has associated with it a work demand in work units.
A job stays at a service center until all work is done. Suc-
cessive work demands are independent and identically
distributed random variables. If we assume constant
rates and an FCFS discipline, then the definition of ser-
vice times is simply work demand divided by rate. It is
convenient to express queue-dependent service rates in
the form

pa () = w1, b, () (n

where p,° is a suitably chosen normalization value and
b,(j) is a dimensionless scaling function. Similarly, for
the arrival rate we put

NG =\a()). (2)

An example of a network in the above class is given
in Fig. 1.

¢ Relative workload intensity
The following set of quantities e,, plays an important
role in the solution of the network .4#". The quantities are
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defined by L sets of simultaneous linear equations, one
set for each subchain .#:

Cor = P, ur) + E enr’p(n‘r’),(nr)’ (nr)
(n'rYEMA,

forn=1,2,-,N;r=1,2,---, R. (3)

Note that e,, = 0 if (nr)>.4, A physical interpretation
of Eq. (3) is that ¢,, is the average number of times that
the service center n is visited with class membership
by a job which belongs to a subchain .#,. The solution of
(3) is uniquely given only if subchain .#, is open, i.e.,
Pynn # O for at least one (nr) € 4, and similarly p,,.. ,
# 0 for at least one (n'r') € #4,. If subchain .#, is closed,
then the solution of (3) is determined only up to a con-
stant factor 7,
We define the relative workload intensity by

pnr = enrAlwnr/lu‘nO (4)

where p,’ and A" are the normalization values of (1) and
(2) and / is such that (nr) € 4,

e Qutline of the solution

It is known [8] that if the Laplace transform of a given
service time distribution is a rational function, then the
distribution can be represented by a set of exponential
servers (or stages) combined in serial and parallel man-
ner. The system behavior can be treated as a birth-and-
death process by introducing an appropriate state space.
The equilibrium probability distribution is then deter-
mined by a system of linear equations, also known as
balance equations. These equations are difference equa-
tions which relate the steady state probability of a given
state with the probabilities of the adjacent states. The
size of the state space is such that a numerical solution of
the balance equations is impossible for ail but the most
simple examples.

Solutions of a general nature, therefore, depend on the
existence of a so-called product-form solution. Such
solutions are known to exist only for a restricted class
of networks. The notion of individual balance or local
balance [9] is useful in the search for product-form
solutions of more and more generality. A brief review of
this method is given in the Appendix.

In the “method of stages™ representation of general
service-time distributions, only one stage can accom-
modate a job at a given time. Therefore, if the service
discipline is FCFS, a customer waiting at the head of the
line is not allowed to enter the first stage until the job
currently in service completes its last stage and departs
from this service center. This is equivalent to saying that
the entrance stage is blocked as long as a job exists in
some stage. Only without blocking, however, does the
steady state distribution always take a simple form, i.e.,
it is given in a product form. Once blocking is introduced,
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the solution is rather complicated even for the simplest
queuing system [ 10]. This is why we were forced to as-
sume that the service center is a queue-dependent ex-
ponential server if that center is under FCFS discipline.

If the queue discipline is either PS or IS, then the
problem of blocking in the fictitious exponential servers
disappears. In an infinite-server queue, there are always
more servers available than jobs and no waiting line de-
velops; thus blocking is nonexistent. A single server with
processor sharing is, in effect, an infinite server queue in
which service rate is lowered according to the number
of jobs in the center, i.e., the service rate of the fictitious
exponential server in the individual stage is divided by
k,» which is the number of jobs in this center at a given
time. Blocking is not an issue in a PS center either, since
no queue exists, just as in an IS center.

A service center under preemptive-resume LCFS can
be viewed as consisting of sufficiently many parallel
servers, each of which is described as stages of expo-
nential servers. Each time a new job arrives at this sta-
tion, it immediately enters the first stage of the server
provided to it. The job that entered the system just prior
to it and has been served by its own server is then frozen
on the spot. Any job which has been frozen at some stage
resumes receiving service when it becomes the youngest
among those remaining in the system. Since the product-
form solution exists, any newly arrived job enters the
service center without being blocked.

Under the IS, PS, and LCFS queue disciplines dis-
cussed above, the system state can be completely de-
scribed by specifying service stages of the jobs present
in that center.

We now discuss in some detail the solution of a net-
work .4 with N FCFS service centers and L open sub-
chains. The state . of such a network is described by
an array of N FCFS stacks, viz.,

I =188, Syl (5)

with S, = [r,(1), r,(2), -~ r,(k,)], where r (/) is the
class membership of the jth job queuing for service at
center n. Let #({nr]”) denote a state which is the same
as .% except that the last entry of the stack S, is missing.
Thus a transition & ({nr]”) — . takes place upon arrival
of a class r job at service center n.

By applying the principle of local balance, we now
equate

rate of transitions rate of transitions
F([nr]7) - £ due to = ¥ — other states due to
arrivals departures of customers

and obtain the simple recurrence equation
MK e, P{7([nr] ) )= p, (k) P{F}, (6)
where P{%} is the equilibrium probability for state .7;
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P{%} may now be obtained by applying (6) repeatedly
to a sequence of transitions leading from . down to the
empty system %, = [0, 0, -+, 0]. This procedure yields

P{#}=C [H B"(kn)] MAG I e @
n=1 =1

(nr)EM,

j j-1

where B, (j) =[] b, (i), 4,(j) =]] 4,(i), and C= P{Z,}
i=1 i=0

is determined by normalization.

» Solution for closed subchains

If ¥ is closed with respect to the subchain .#,, then the
recurrence equation (6) is not directly applicable since
a direct transition & ([nr]”) — ¥ is not possible. We
can, however, view /" as the limiting case of a suitably
chosen open network .#°. The solution of .4, then, is
obtained directly from Eq. (7).

The treatment of 4" is further complicated by the fact
that for closed subchains .#, the quantities ¢, are defined
only up to an arbitrary factor #, which is reflected by the
nonuniqueness of .4 with respect to .#. However, Eq.
(7) reveals that 7, appears as anl in the solution. There-
fore, since K, = K * is a fixed value in #°, w,"*" is a con-
stant factor which can be absorbed in the normalization
constant.

In summary, we find that the solution of a network with
closed subchains is formally the same as that given by
Eq. (7) if we set A, = 1 and 4,(K,) = 8§(K,, K*)=1Iif
K,= K*, 0 otherwise.

s Aggregate states and marginal distributions

In many practical cases, we may not necessarily be in-
terested in P{¥}, the distribution of system state .%.
Instead, we may want to obtain a marginal distribution,
such as the total queue-size distribution. Marginal dis-
tributions are, by definition, the probability distribution
of aggregate states, an aggregate state being a subset of
the state space %. The following is a list of important
aggregate states:

1. % = [k ky, - ky] withk, = [k, k5. k] where
k,, is the number of class r jobs at center n and the
specific orderings of the individual FCFS stacks are
ignored.

2. k= [k, k,,- -, k] where k, represents the total num-
ber of jobs at center n, i.e., k, =3 k,,.

3. k,; we are interested in the queue-size distribution
at a specific center n only.

4. K= [K,, K,,- -+ K,] where K, is the total number of
jobs in subchain .#,, i.e.,

K=Y ky
(nr)EM,

Since P{%} is invariant to permutations of the elements

in the FCFS stacks, we obtain P{%"} easily as
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P} = [IN:] kn!(]lj km!>_l]P{5”}, 8)

where the factorial term represents the total number of
distinct permutations and is a product of multinomial
coefficients. N

o Summary of the general results for the queuing net-
works N
It is an interesting result that at the level of detail de-
scribed by the aggregate state %, only mean work de-
mands enter into the solution.

The distribution P{%} for the queuing network .#" can
be expressed in a unified way as

N
P{%}=C - AK) [] g,(k, p,): 9)

with

pn = [pnl’ pnz’ Y pnll] and

L
A(K) =T] 4,(K), (10)
= R p kpr
g”(kn’ P,,) =Bn(kn)k"' HL'—s (11)
r=1 nr’
j
JH b,"'(i)  for FCFS, PS, and LCFS;
B"(j) — i=1
ji! [16.7'(0) for Is; (12)
j-1
a,(i) for open ,;
4,0) = H) ’ : (13)
8(j, K;*) for closed 4, with K;* customers.

The quantities p,, are defined by (4), where we sub-
stitute unity for A, if .#, is closed. As defined earlier,
k,, is the number of class r jobs at center n and k, = [k,,,,
koo ki k, is the total number of jobs at center n,
K, is the total number of jobs in subchain .#,, and K * is
the fixed number of jobs in a closed subchain .#,.

Generating functions

In this section we introduce the probability generating
function (p.g.f.) for the queue-size distribution. The
p.g.f. method allows a simple evaluation of the normaliza-
tion constant and of marginal distributions. It also pro-
vides important theoretical results, e.g., stability criteria
and asymptotic behavior.

The first step is the derivation of the p.g.f. for an open
system with constant arrival rates. We obtain simple
explicit expressions for the normalization constant and
for the marginél distributions. We find that, as far as the
queue size distribution is concerned, we can treat the
servers as though they were mutually independent and
behaved exactly like separate single servers, subject to
an equivalent traffic intensity.
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Mixed networks, i.e., networks with open and closed
subchains, are treated next. An important connection
with the p.g.f. for the open system is found via the mar-
ginal distribution of subchain populations. Closed sub-
chains interact in a complicated way and we can no
longer treat the servers as being mutually independent.
Consequently, there exists no simple closed-form ex-
pressions for the p.g.f. Nevertheless, we obtain results
concerning how open and closed subchains interact with
each other and also how to calculate marginal dis-
tributions.

In the final part of this section we discuss the stability
problem for mixed networks, and we show that the stabil-
ity is unaffected by the presence of closed chains.

~ Open networks with constant arrivals

Let ./ be open with respect to all subchains .4, which are
driven with separate Poisson streams of constant arrival
rate A,. We define the p.g.f. for P{%} by

N R
G*(Z)=E [H Hznfnr]=c-a(g), (14)
k=1 r=1
where & is the array of transformation variables [z,
z,, 7 Zy] wWithz, = [2,,, 2,,." 23], 1 £ n= N. The
improper generating function G (%) is defined by a sum
over the product-form terms, viz.,

y £ (P 2,,)""
G =3 [] B,(k)k,! ]

H20 n=1 1 Kt
N
=3 1] s.(k,, [p,2,,]), (15)
XZ=0 n=1

where [0,,2,,] = [P 1%m PraZnzs” " > PuzZar)- The structure
of (15) allows us to switch sum and product, yielding
G (Z) asaproduct of N terms G (z,, p,), namely,

N N
G =1 3 &k onza]) =[] Gulz p), (16)

n=1 k220

where p, = [p,» Pugs "> Pur)- Here G, (z,, p,) is ex-

plicity given by

R

Gn(zn’ pn) = 2 Bn(kn)kn' H [(pnrznr)knr/knr!]’ (17)
k,Z0 r=1

which we recognize as a power series in R dimensions.

Therefore, we obtain the simple result

G,(z,.p)=3 B,(D(p, 2) =®p," 2,), (18)
=0
where p, - z, is the ordinary inner product of two vectors
and @, ({) is an analytic function defined by the power
series » B, (i) ¢'. Since G*(1) = 1 from the definition of
i=0
p.g.f., we obtain the normalization constant as C =
1/G (1), where 1 is an N X R array of all entries one.
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Since C itself may be written as a product on N terms,
N

viz., C = I_Il G,'(1, p,), we find finally for the p.g.f.

G*(2)=1] ®,(p, " 2,)/®P(p,), (19)

where p, = 2 p,is the total traffic intensity at center n.
For non-queue-dependent service centers, the function
®, () is of the following form:

1/(1 —¢) for PS, LCFS, and FCFS,
®, (L) = (20)
exp (¢) for IS.

For practical applications, the case of a limited queue-
dependent service center is of special interest. By limited
queue-dependence we mean that the scaling function
b{(j) is such that b(j) = B = const. for j = r; in other
words, the server has constant rate if the queue size
exceeds r. Parallel servers of multiplicity r fall into this
class with 5(j) = min{}j, r}. It is not difficult to see that
for a limited queue-dependent service center, ®, () can
always be written as

®,(0) =9,0/(1=10), (21)

where ¢,({) is a polynomial of degree r — 1.

We obtain the p.g.f. of marginal distributions by
equating certain transform variables and setting others
to unity. For example:

1. The p.g.f. for P{k} is obtained by setting in (19)

2y T2y~ =z =2, foralln=1,2,--+, N.

2. The p.gf. for P{k,} is obtained by setting in (19)
2y = Zp == 2,, = 2, and all other z variables to
unity.

3. The p.g.f. for P{K}, i.e., for the number of customers
in each subchain .#,, is obtained by substituting z,
for all z,, such that (n)€.4#, and forall = 1,2, L.

The solution is particularly simple for the case of
P{k,}, the marginal queue-size distribution. Because
G*(Z) is a product of independent terms for each server,
we find that the marginal queue-size distribution at center
n is identical to that of a single server with workload in-
tensity p, =2 p, . For service centers with constant rates,
the queue size distribution is given by

P{k,} = (1—p,)p, "™, (22)

which is the familiar expression for an M/M/ 1 system.
Similarly, for an IS service center,

Pk} = (p,/k,!) exp (—p,), (23)

the result for an M /G /> system. The joint distribution
P{k} is simply the product of the marginal distributions
Plk,}, ie.,

P{k} =[] Pik,}. (24)

n=1
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e Mixed networks with closed chains and constant ar-
rivals

Let us assume that .4" has L, closed subchains which, for
notational convenience, are labeled .#,, #,, - ", //ZLC.
The remaining L — L_ open subchains are driven by
Poisson streams with constant arrival rates \,. The state
space of such networks is the set

F={%;k, =0and K, = K*}. (25)

The p.gf G*(Z) = EP{%”}znrk"f is defined by a sum
over the state space #. This sum is more complicated
than the one in (16) and does not split into a simple
product of N terms, each dependent on one server only.

We can derive the p.g.f. G*(Z) from the simple func-
tion G(Z) of Eq. (17) by following steps similar to
those applied in obtaining the marginal distribution of
subchain populations. We introduce new variables
0 =4, 6, 6,,) which we associate with closed
subchains. We next define G(%, ©®) as the function
which is obtained by setting A = 1 and substituting 6,z,,
for z,, in the original expression G (2) for all (nr) € 4,
and 1 = [ = L. Let us assume for convenience that the
classes in closed subchains are numbered as 1, 2,---, R
with R, = L . Then we may write G (Z, @) as

[

N R
G(f{,@):HdJn( E Py
n=1

r=Ro+1

Le  Re

=1 r=1

For the sample network of Fig. 1 we have & = [z,,, 2,,,
2100 Zoar %310 %390 233> 243]’ 0= [01’ 6,1, L=3, L,=2,R=4,
R.=3,and

1
1=1[p2 t 0,02, + 0,p152,,]
1 x 1
I=pyzy, 11— P3[01231 + 02(232 + 233)]

G(Z,0)=

X

exp (p0,2,,). (27)

The p.g.f. is then found as the coefficient of 6,16,"2"

KE . . . . K
6, "< in a multivariate power series expansion of

G (Z,0) in 6, symbolically written as
G*(Z)=C - 0o(K*, K,*, "+, KLC*) -G(Z,0). (28)

This power series expansion of G (%', @), however, does
not lead to simple analytical expressions for G*(Z). Its
numerical computation is discussed in the next section.

¢ Normalization constant and related quantities

The normalization constant, marginal distributions, and
average queue sizes can be obtained as described in the
subsection on open networks with constant arrivals.
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The normalization constant is given by

C=1[3(K* K,*, -~ K, *) - G(1,0)]™ (29)
with

N
G(1,0) =[] ®,(p,'+ 0 -p,, (30)

n=1

R
where p,’= ¥ p,, is the total workload intensity due
r=R.+1

to the open subchains and p,° = [p,,", Pre’s* " P ] 1S
c
an L -vector whose element

pnlc= E pnr (31)
(nr)EMy

is the total workload intensity in the closed subchain

A,. To separate the effects of the open and closed chains,

we expand ®(p,”+ p,° - @) into a Taylor series around

P, viz.,

@, (p, +p, - O)=V(p°O) (32)
with
(2 % ®,“(p,)¢ (in general)
i=o **
W (£) =+ 1 . 1 (fixed rates)
n 1— P,
1 - o
1—p,
Lexp (p,’) exp ({) (IS server). (33)
From (29) and (33) it follows that
N
c= [a(_,(K*) IR @)]—1. (34)
n=1

Equations (29) to (33) find an interesting interpretation.

1. For fixed-rate or IS service centers, an ‘“‘open-system
term” p,’/ (1 — p,’) resp. exp (p,’) can be factored
out of the expression for the normalization constant.

2. A fixed-rate service center which is in open and closed
subchains contributes to the closed subchain term in
the same manner as a similar service center with
adjusted traffic rates o, = p,,°(1 — p,”) . In other
words, the effect of an open subchain with traffic rate
p,” on the closed subchains is to increase the traffic
intensity by a factor (1—p,") 7"

3. Open subchains and closed subchains do not interact
at an IS service center.

The p.g.f. for the marginal distribution P{k,} of the

(total) queue size of service center m is

G (2,) = Coo (K*) - (@, (2,[0," + p, - ©])

N
I @000+ p,° - @)). (35)
n=1
n#m
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The mean queue size E[k,] is found in the usual way,
i.e.,by 0G / 9z, at z,,= 1. This procedure yields

E[km] = Ca® (K) . |:me+ pmc . ®]®l(pmu+ pmc . @)

[IRATAR @)]. (36)
n=1
n#*Em

For fixed-rate service centers, we find the special form

_Pa €

0 o

1-p, 1-—p,

N
x| (0, ©)¥,.(0," - ©) ] V,(0," @],
n=1
(37)

Elk,] =

3y (K*)

and similarly for IS service centers we have

E[k,] =p,’ + Cexp (p,) 36(K*)
N
<[, 0 [ V0, O] 68

The first term in Eqs. (34) and (38) is the mean queue
size of service center n, subject to “open” traffic with
workload intensity p_°. Note that in the last two ex-
amples, the product IT'¥, is the same as found in the ex-
pression for the normalization constant.

s Stability of mixed networks

A network is said to be stable if its servicing capacity
can handle the arriving traffic and therefore all queues
remain finite. More precisely, /" is stable if the balance
equations have a nonzero solution. In terms of the pro-
duct-form solution, the sums defining 9, (K*) - G (1, 0)
converge. We investigate this convergence by a new
generating function which we obtain from G(Z, ®) by
substituting ¢ for all z,, with (nr) in an open chain and
z,, = 1 for all (nr) in closed subchains, viz.,

N
G(,0)= H @, (lp,"+p, - 0). (39)
n=1
The transform variable { is associated with the total
population in all open subchains. Now ./ is stable if

G(0) = 94(K*) - G(L, ®) (40)

is analytic inside the unit circle in the complex { plane.
By a Taylor series expansion of (39) we obtain

N o
Gt 8 =[] 32", Al @1)
n=1i=0 '
within the region of convergence. Apparently G ({) is
a linear combination of all ®,“'({p,”) forn=1,2,--+ N
and i = 1, 2,--, ZK/*, and therefore G ({) is analytic
inside [{|=<1 only if all the ®, and their derivatives are
analytic. Since ®, is defined by the power series (19), all
the derivatives are analytic whenever @, is analytic.
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Therefore, for stability of the center n it suffices to re-
quire that ®_({p,”) be analytic for [{|<1 for all n =1,
2,-++, N. This is the stability condition of service center
n alone. For example, in the case of fixed-rate FCFS,
PS, or LCFS we have ®,({p,") = [1 —p,"]”", which
is analytic inside [{|<1 if and only if p,’ = 1. Similarly
for IS service centers ®,({p,’) = exp ({p,’) which is
always analytic on the entire {-plane.

We conclude by recapitulating that in order for a mixed
network to be stable, it is only required that each service
center n be stable with respect to the open chain work-
load intensity pn". Closed subchains do not contribute to
instability.

Numerical solution of mixed networks

To evaluate numerically the normalization constant,
marginal distributions, and moments of the queue-size
distribution, we have to sum the product-form terms over
appropriate regions in the state space. A simple term-by-
term summation, however, is out of question for all but
the most simple models, since the number of terms in
these sums grows combinatorially with the size of the
problem (i.e., with N and K*). Hence, more efficient
algorithms are required for pi‘ﬁéiical use of our network
model. Such algorithms w&& previously reported for
networks with only one closed subchain [11-14]. In the
present section we further extend the previous work and
discuss computational algorithms applicable to the gen-
eral class of queuing networks.

The generating function method not only sets the
earlier algorithms into perspective but also leads quite
naturally to the general result discussed below. The
problem, we recall, is a power series expansion of a mul-
tivariate function Q(®) = G (1, ®) which is a product of
N terms Q,(0) = ‘I’n(pnc - ®). Two methods are avail-
able, namely:

1. Partial fractions if @ (®) is a rational function of only
one variable @ (i.e., only one closed subchain).
2. Basic coeflicient muitiplication of power series.

The first approach was applied to a limited class of queu-
ing network models by Moore [ 11]. The second method
is essentially equivalent to the recursive algorithms dis-
cussed by Buzen [12] and by Reiser and Kobayashi
[13, 14]. Below we generalize the partial fraction method
to the case of mixed networks with one closed subchain
and also remove several constraints forced in [11]. We
then give a general algorithm which is based on multipli-
cation of power series and which, in the light of generat-
ing functions, becomes remarkably simple.

s Partial fraction method for a mixed network with only
one closed subchain
Let ./ be a network with only one closed chain and
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let us further assume that there is no IS service center
and that all queue-dependent FCFS service centers are
of the limited queue-dependent type. For this network,
the function Q(®) for which we seek a power series
expansion is of the form

v 0
=55 @

n=1

0(0)=G(1, 0)

where w, = p,’(1 — p,’) " is the adjusted traffic intensity
and ¢, (L) = é,(p,” + {) is the polynomial of Eq. (21).
Note that §, = 1 for fixed rate service centers. It is easy
to write (42) in partial fractions, viz.,

00) =y,(0)+3 a,/(1-w,0). (43)

where ,(8) is the quotient of the polynomial division
[II¢,(w,6)]/I1(1 — w,0) and the a, are residues. If all
o, are distinct, these residues are

N
a, = (0,) ] (0-w/0,)”, (44)
i=1, i=n
with s being the remainder of the above division. From
(43) follows immediately the desired power series ex-
pansion of Q(®); in particular, we find

3o (K*)Q(@) = q(K*)

N N -1
+ 2 (d’rwn—lwnk*)[ H(l - wi/m")] ?
n=1 i=1, i#n
where g(K*) is the coefficient of 6" * in the polynomial
U, (#). Equation (45) gives rise to the following algo-
rithm for computing 3 (K*) - Q(0):

Step 1 Compute quotient and remainder of the poly-
nomial equation in 6,

[H w,,(wnm]/i[l (1—a,0).

Step 2 Compute residues «, for n=1, 2,- -, N by (44).
Step 3 For given K* compute d¢g (K*) - Q=q(K*)

*

N

K

+> aqo, .
n=1

The polynomial division and the required polynomial
evaluations are conveniently done using Horner’s rule.
Once step 2 is completed, step 3 can be repeated for
various values of K* at little extra cost. Most computa-
tional effort is spend at step 2 which has an operation
count of @(N?). It is not difficult to remove the restric-
tion on w,.

The partial fraction method, when applicable, is usually
the more efficient algorithm. It has, however, two draw-
backs, namely:
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1. The sum in (45) has alternating signs and may be
subject to round-off errors in some cases.

2. The method cannot be generalized to the case with
more than one closed chain.

~ Multiplication of multinomial power series

We start with mathematical formulas pertinent to the
general algorithm discussed in the next section. Let
Q,(0®) and Q,(0®) be functions in m variables @ = [4,,

6,, -+ 6,] which are defined by power series with

coefficients g,(i) = ¢q,(i,, i, -~ i,) and g, (i), respec-

tively, viz.,

0,(0)=3 ¢,()0,10,2-- 0, in, (46)
i>0

and similarly for Q,(®). The product Q = Q,Q, has coef-
ficents ¢(i) which can be obtained from those of Q,
and Q, by

=3 F ¥ qiau-i, (47)

whereK=[K,,K,," -~ K,}andi={i, i, - i,] are index
vectors. Equation (48) is an m-dimensional convolution.
Note that in order to evaluate g(K) at a point K in the
index space, only coefficients g, (i) and g, (i) at points i
closer to the origin are required, i.e., 0 =i= Kor 0=/,
=K,0=i,=K,, 0=, =K, Wecaninterpret (47)
as a multidimensional linear filtering [15] with g, (i) as
input, g, (i) as filter coefficients, and ¢ (i) as output. Then
the filter we discuss here is a causal one [ 16] in the sense
that the output is dependent only on the past input, i.e.,
those ¢,(i) with 0 = i = K. We observe that the filter
0, acts on the entire past history of ¢, (i); hence O[(K,,
K,, - Km)2] operations are required to compute the
output g(i) at all points 0 = i = K.

A significant reduction in the operation count is pos-
sible if the filter function Q,(®) is a rational function
in O, viz.,

0:(0)

QZ(G)zm’

(48)
where 0, (®) is a polynomial of degree d. with coef-
ficients ¢, (i) defined on the index set I = {i > 0 and
(i, + iy +---+1i,) = d.} and similarly Q (@) is a poly-
nomial of degree d; with coefficients g,(i) for i in the
index set 7, ={i;i>0and (i, +i,+ - -+1i,) =d;}. Note
that Q, has no constant term. It is a well known fact
that the filter function (48) can be realized by a feed-
forward/feed-back filter as shown in Fig. 2. The input-
output relation is therefore given by

gK)=73 q,(i)g,(K—i) + > g,(Hg(K—1i).  (49)

€7, €7,
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Feed-Forward

q,(i) —m-— gD
Input

Input '8 (1'1,1'2) iy

q1(ipig)

q(i)

Output
gD
Feed-Back
Output q(iy,iy) iy
® e
o—

qlipiy)

(b)

Figure 2 (a) Schematic representation of a feed-forward/feed-back filter, (b) Computation diagram for a spatial (i.e., m = 2) feed-
forward / feed-back filter with d,. = 3 and d; = 2. The circles symbolize multipliers which act on the underlying grid values.

The process g(i) can also be viewed as a multidimen-
sional analogue of an autoregressive moving-average
process [ 17]: The first term represents the moving aver-
age of the input ¢, (i) and the second, the autoregressive
term. The operation count of (49) is O[ (d,” +d,") K K,
-+ K,J. Of special interest to us is d, =0 and d; =1, in
which case we have an operation count of 0 (K K, - - K, ).

e General algorithm

From the preceding discussion, it is clear that the desired
coefficient g(K) = 3, (K) - Q (®) is the impulse response
evaluated at i = K of a cascade of N linear filters with
transfer functions Q, (@) = ¥ _(p,” - ©) (see Fig. 3).
Since we are not interested in the output for any i > K,
we can always write Q,(®) in the form of a feed-
forward /feed-back filter with a feed-forward part Q. (9)
of the form

MAY 1975

1 for PS, LCFS, and fixed rates

tl/n(pnc - @) for limited queue-dependent rates

0:(0) = h
S (/i) (p, - @) for 18, (50)

Figure 3 Signal flow diagram of the general algorithm to com-
pute normalization constant, server utilization, and mean queue
sizes.

1——{ 01(8) 4 0,(8) -—a=i 0,\(8) - g)c;lrsr:::ﬂzation

Unit input

Utilization of

server m
03 ) 0,,(8) Mean queue-

size at server m
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with K = K, + K, +--+ K _and ¢,(0) = ¢,(p,” + 0.
The feed-back part Q,(®) similarly becomes

_ {(p," - ©) for fixed rates,
2:(©) {1 for IS, (51)
Apparently, for an IS service center, we have a feed-
forward filter only which extends over the entire past
history.
We summarize this procedure in algorithmic notation:

Step 1 Set up the m-dimensional arrays Q and Q, with
index bounds 0 = i< K.

Step 2 Initialize Q < (1 for i = 0, 0 otherwise) and

n< 1.
Step 3 0, < Q.

Step 4 Compute filter coefficients and store them in O
and QO [Egs. (51) and (52)].

Step 5 Compute filtered output for the input in Q, and
store it in Q [Eq. (50)].

Step 6 n < n+ 1. If n > N then stop; else go to step 3.

After completion of the algorithm, 3y (K) - Q(@®) is
found in array location Q(K). The signal flow diagram of
this algorithm is given in Fig. 3.

The operation count is [ (N,IIK, + N,)TIK,], where
N, is the number of general queue-dependent service
centers and N, is the number of fixed-rate rate-limited
queue-dependent-rate service centers. The storage re-
quirement is ¢(2I1K,) if there are queue-dependent ser-
vice centers, O(11K,) otherwise. Both computational ef-
fort and storage requirement grow rapidly with the
number of closed subchains and also with the population
therein. It should be noted that the sums for the convolu-
tion are over positive terms only and therefore are nu-
merically stable.

The high computational effort can often be reduced by
taking advantage of special properties of ./". For example:

1. The filtering can be restricted to lower dimensional
subspaces of the index space if all N service centers
are not visited by every subchain,

2. More than one IS service center can be easily lumped
together by Iexp (p,” - ®) =exp [(Zp,’) - O] where
product and sum are over all IS service centers. The
combined exponential function should be applied to
the unit input, i.e., to the corresponding filter used first
in the cascade of N filters. Then the high computa-
tional effort of the general convolution (48) can be
totally avoided.

3. If results are required for several different subchain
populations K, these are computed simultaneously
for all K = K where K, is the original K value.

M. REISER AND H. KOBAYASHI

s Fast computation of marginal queue-size distributions
and their moments

We showed in the previous section that the marginal
queue-size distribution at service center m and its mo-
ments can be obtained by expressions of the form 0(_) (K)

N
- 0,%(0) n 0,0). In terms of linear filtering,
n=1, n#m
we apply a filter with transfer function Q,* (@) [18] to the
N

output of II  Q,(®). For the service center labeled

n=1, n#m

n = N this output is part of the computation of the nor-
malization constant, and therefore little additional effort
is needed to obtain the desired resuits.

In general, however, the output of the filter with trans-
N
I Q,(0) has to be computed sepa-

n=1, n#m

rately for each m. An efficient way to perform this com-
putation is to apply the inverse filter Qm”l(G)) to the
N

fer functions

output of I Q,(®), which we have obtained as a by-
n=1

product of the evaluation of the normalization constant
C. The inverse filter is again a feed-forward/feed-back
filter with transfer function

01— 0,(0)]
0) = . 53
& O i— g @ (53)

Note that the inverse filter Eq. (53) must be used with
caution because it may be numerically unstable. Fixed-
rate service centers always have stable inverse filters of
the simple feed-forward form Q,”'(®) = 1 — p,°@.

The computation of the mean queue size becomes
especially simple for a fixed-rate service center. In this
case, we have 0,*(0) =Q,'(0) = Qm2(®). Therefore,
we simply apply the filter Q,,(®) to the output of the

N

entire filter cascade with transfer function Il Q,00).In
n=1

the case of an IS service center, the computation of the
mean queue size is even simpler, since 0,*(0) =0, (09),
and therefore additional filtering is not required.

Appendix

Let #([nr]7), L([nr]"), and L ([nr]", [n'F]7) be
states such that the following state transitions are pos-
sible between them:

1. Z([nr]") — & upon arrival of a class r customer at
service center n.

2. Z([nr]") — & upon departure of a class r customer
from service center n.

3. L([nr)', [n'F]7) = & upon departure of a class r
customer from service center n and his subsequent
arrival at service center n’ after a class change to r'.

With these definitions, the overall balance equations for
a network of FCFS service centers are
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3
i
-
3
If
-
<
i
-
3
il
-

X P{#([n'r']", [nr] )}, (A1)

where we assume that all / are such that (nr) € 4, The
principle of local balance or individual balance equations
[9] is simply to equate a subset of the left-hand terms in
(A1) with a subset of the right-hand terms. For example,
if A+ B+ C= D+ E + F is a global balance equation,
then A = D, B = E, C = F are local balance equations.
Clearly a set of local balance equations is a sufficient
condition for the global balance equation but it is not
a necessary condition. In the general case the local bal-
ance equations may be contradictory to each other. We
use the principle of local balance with great care in the
subsequent derivation.

First we equate the rate with which the system leaves
the state . due to customer arrivals with the rate with
which the system enters the state . due to customer
departures, viz.,

2 )\I(Kl) P{y} = 2 E 'u'n(kn+ 1) p(nr), l P{Y([nr]+)}

=1

L
=5 3 wlh,+ 1) Py, PLF (0]} (A2)
=1 (nr)EHA,
This relation is a balance between 4" and the outside.
We next use local balance again and separate (A2) into
L individual equations,

MEIP{FY =Sk, + Dpg, L[]} (A3)

(nr)EH,

By multiplying the left side of (A3) by E p, ("T))\,(Kl)
(nr)EMH,
= 1 and by substituting the relations

2 p(nr), (n'r’)
(n'r)EH,

Pury, 1 =1—

and

Z Cnr P, )
(n'r)EH,

pl, (nr) =€

[see Eq. (3)] into (A3) we partition the resultant equa-
tion into the following set of local balance equations, for
all (nr) € A,

M(K) e, P{F}=p,(k,+ DP{F([nr]7)} (A4)

and
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)\l (Kl) E en'r’p(nr), (n'r’)P{y}
(n'r)e,

=1 S Py P[]} (AS)
(n'rEMA,
Evidently (A4) is equivalent to (AS5).

We now turn our attention to the second set of terms
in (A1), namely the balance between the rate of system
transition out of state . due to service completion and
the rate of transition into.¥ due to customer arrivals from
outside or due to interval transitions:

E 2 :u’(kn)[l T Py, (nr)]P{'y;}

n=1

i
M=
M=

MK = D)py P ([nr] )}

2
Il
-
-
Il
—-

R

E 'un’(kn’ + 1) p(n’r’), (nr)

r'=1
X P{Z([n'r']", [ar])}. (A6)
We first split (A6) into NXR balance equations. We then

proceed in the same manner as in the derivation of (A4)
and obtain

+
0 =
M=
M=

’

=
Il
-
-
|
-
b
il
-

MK, = Ve, P{Z([ar] )} = p,(k,) P{F} (A7)
and
MK — De,, P{L({nr] ")}

=k, + 1) P{Z([n'r']", [ar] )} (A8)

We now have three equations which are, surprisingly
enough, equivalent to each other. Thus, if one of them,
say (A4), is satisfied forall /= 1,2,---, Land (nr) € A,
then the overall balance equations are also met. Note
that if we let the rate be class-dependent, u, (k,.) say,
then the three equations are contradictory and no prod-
uct-form solution exists. Finally, it remains to be shown
that the recurrence equations (A4) and (A7 -A8) also
hold for the boundary, an exercise which we do not
carry out in detail.
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