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Queuing  Networks with Multiple Closed  Chains: 
Theory and Computational  Algorithms 

Abstract: In this  paper a recent result of Baskett,  Chandy,  Muntz, and  Palacios is generalized to the case in which customer transi- 
tions are characterized by more than one closed Markov chain. Generating functions are used to  derive closed-form  solutions to sta- 
bility, normalization constant,  and marginal distributions. For such  a system with N servers  and L chains  the solutions are considerably 
more complicated  than those  for  systems with one subchain  only.  It is shown how open and closed subchains interact with each  other 
in such  systems. Efficient algorithms are then  derived  from our generating  function  representation. 

Introduction 
For some ten years, the most  general class of queuing 
networks  for which an analytical  solution  was  known is 
that  treated by Jackson [ I ] .  However, applications of 
such queuing networks  to modeling of multiprogrammed/ 
multiprocessor computer  systems  have been drawing 
increasing attention in the past few years [2,  31. Note- 
worthy  progress in extending the  class of analytically 
solvable  queuing networks has  been  reported  recently 
by Baskett, Chandy,  Muntz, and  Palacios [ 4, 51. These 
authors  have  succeeded in casting  into  a unified theory 
previously known but  unconnected results  such  as  queue- 
size  distributions  for M / M /  1 with FCFS,   M/G/  1 with 
processors sharing, M /   G / a  queues, preemptive-resume 
LCFS discipline,  and  queuing systems with various 
classes of customers. 

The  constribution of the  present  paper is threefold, 
namely: 

1. To generalize the  results  represented in [ 51 to  the 
case of several  closed subchains  and  to give  a  con- 
structive derivation of the product-form  solution. 

2. To exploit the probability generating  function  method 
as a device  to obtain a concise  representation of such 
expressions  as normalization constants and  distribu- 
tions in the complex  network model treated in this 
paper. 

3. To present computationally efficient algorithms for 
the general class of networks. 
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Solutions for a  queuing network with classes of 
customers, multiple subchains, and  generalized 
servers 
In this  section we define the  class of queuing network 
models  and present its  solution.  We  generalize the result 
of [ 51 to a  queuing  network in which customer routing 
transitions are  characterized by a Markov chain  decom- 
posable into multiple subchains.  We also  take a more 
constructive  approach  than  the previous  work so that 
the  reader may follow more  easily the derivation of the 
product-form  solution. Networks with closed subchains 
are introduced as a limiting case of a  suitably chosen 
open network. This technique  leads to a unified presenta- 
tion of the final results. In  the last  section, several ag- 
gregate states  and their marginal distributions are in- 
troduced. 

Dejinition of the  queuing  network 
The queuing  system M is defined in terms of the follow- 
ing parameters: 1 )  system  configuration, 2 )  routing 
probabilities, 3) arrival processes, and 4) service  rate and 
work demand  distribution and  queue discipline at  the in- 
dividual service  centers.  In more  detail: 

1. There  are N service centers, R classes of customers, 
and L disjoint  routing chains  (or  subchains) . Through- 
out  the rest of the  paper, indices n,   r ,  and 1 refer to 
service  center,  class,  and  subchain, respectively,  and 283 
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Figure 1 Example of a mixed network with two closed sub- 
chains and one open  subchain.  The  routing  transition  prob- 
abilities  are p3, (14) = 1, P ( ~ ~ ~  (24) = a, p(24h (14) = 1 ,  P ( ~ ~ ~  = ( 1 - 01) : 

p(331 = 1. All other  probabilities  are  zero.  Due  to  the class 
change at service  center 3,  customers  proceed  through 1, in a 
figure eight pattern. 

P(11!, (31)- P(31L (11): '; P(l2h (32)= P(32l (43): P(43L (33)= '' - 

their  values range over n = 1, 2; . ., N ,  r = 1, 2; . ., R ,  
and 1 = 1, 2 ;  . ., L .  We assume R 2 L 2 1 without loss 
of generality. 

2 .  Jobs  (customers) proceed  through the  network N 
according to a first-order Markov chain A. The tran- 
sition matrix is N R  X N R  with elements p(,,.), (n 'r ' )  , 
which are  the probabilities of state transitions (nr)  + 

(n'r ' )  in k, namely, the probability that a job of class 
r completing  service at  center n will next  go  to  center 
n' and  change  its  class membership to r'. The  Markov 
chain A is in general decomposable  into L subchains 
A,, A,; . ., A,, which are all irreducible. 

3. The  subchains A, are  either  open  or closed. Open 
subchains are driven by independent  Poisson  arrival 
streams whose rates, A,, may be  functions of the pop- 
ulation  size K ,  of A,, i.e., A, = A,( K,)  ; K ,  is the  number 
of jobs in Al at a given system  state 9". A newly ar- 
riving class r customer of stream 1 will first join  ser- 
vice center n with probability p,, (nr). Similarly,  a class 

r' customer completing service  at  center n' departs 
the network with probability P ( ~ , , . , ~  ,. In a closed  sub- 
chain &,, the number of jobs is held constant  at K,* .  
Furthermore, p,, (nr )  = P ( ~ , . ) ,  , = 0 for all ( n r )  E 4,. 

4. Service  center n is described by a continuous-time 
Markov chain whose state is given by the  ordered  set 
of customers, their  associated class membership, 
and possibly an additional  integer (denoting  the  stage 
in a cascade of exponential servers  at which the  cus- 
tomer  is).  The  parameters of this Markov chain may 
be state-dependent.  The following queues  have a suit- 
able  Markov chain  representation: 

First-come,  jirst-served  (FCFS) 
The  server  has a queue-dependent  rate p , ( k , ) .  Each 
customer  has  an associated  work  demand which is as- 
sumed to be drawn from an exponential  distribution. 
Note: All classes must have  the  same distribution. The 
mean work demand is w,. 

Processor  sharing ( P S )  [ 61 or  preemptive-resume 
LCFS 
The  server  has a queue-dependent  rate p , (k , ) .  The 
work demand of customers is assumed to be drawn 
from  a  general  distribution. Note:  The distribution 
may be a different one  for different  classes. The mean 
work  demand of a class  rjob is w,,.. 

Injinite  Server (IS) [ 71 
Jobs  have  service  (or  delay)  times which may have a 
general  distribution  with mean wnr. Formally we set 
p,= 1. 

Note  that in our definition the term  service rate  refers 
to  the actual  speed of the  server in work unitsls.  Each 
job  has associated with it a work  demand in work units. 
A job  stays  at a service center until all work is done. Suc- 
cessive work demands  are independent and identically 
distributed random variables. If we assume  constant 
rates and an FCFS discipline,  then the definition of ser- 
vice  times is simply work demand divided by rate. It is 
convenient  to  express  queue-dependent  service  rates in 
the form 

= pn"bn(j)  3 ( 1 )  

where pnU is a  suitably chosen normalization value and 
b,(j) is a  dimensionless scaling function. Similarly, for 
the arrival rate we put 

A, ( j )  = Aloa ( j )  . ( 2 )  

An example of a network in the  above class is given 
in Fig. 1 .  

Relative  workload  intensity 
The following set of quantities e,,, plays an important 
role in the solution of the  network N.  The quantities are 
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defined by L sets of simultaneous  linear equations,  one 
set  for  each subchain A/: 

enr = P I ,  (nr) + x enr,P((n,r,),(nr)l (‘‘1 
( n ’ r ’ ) E R ,  

for n =  1 ,  2 ; . . ,  N ;  r =  1 ,  2 ; . . ,  R .  ( 3 )  

Note  that enr = 0 if ( n r ) 3 A I .  A physical interpretation 
of Eq. ( 3 )  is that enr is the average number of times that 
the  service  center n is visited with class membership r 
by a job which belongs to a subchain Al. The solution of 
(3)  is uniquely given only if subchain A, is open, i.e., 
pl(nr) # 0 for  at least one (nr-) E A‘/, and similarly p(,,,,. ,,), 
# 0 for at least  one (n ’ r ’ )  E At. If subchain Al is closed, 
then the solution of ( 3 )  is determined  only  up to a  con- 
stant  factor T ~ .  

We define the relative workload intensity by 

P n r  = enrAtWnr/pnO (4) 

where p,” and A: are  the normalization  values of ( 1 ) and 
( 2 )  and I is such  that ( n r )  E AL. 

Outline of the  solution 
It is known [8] that if the  Laplace transform of a  given 
service time  distribution is a rational function,  then  the 
distribution can be represented by a set of exponential 
servers (or stages) combined in serial and parallel man- 
ner. The  system behavior can be treated  as a birth-and- 
death  process by  introducing an  appropriate  state  space. 
The equilibrium probability distribution is then  deter- 
mined by a system of linear equations,  also known  as 
balance  equations. These  equations  are difference  equa- 
tions which relate  the  steady  state probability of a given 
state with the probabilities of the  adjacent states. The 
size of the  state  space is such  that a numerical  solution of 
the balance equations  is impossible  for all but  the  most 
simple examples. 

Solutions of a  general nature,  therefore, depend on  the 
existence of a so-called product-form  solution. Such 
solutions are known to exist  only for a restricted class 
of networks.  The notion of individual  balance or local 
balance [9] is useful in the  search  for product-form 
solutions of more  and  more  generality.  A brief review of 
this  method is given in the Appendix. 

In  the “method of stages”  representation of general 
service-time distributions, only one stage can accom- 
modate  a job  at a given time. Therefore, if the  service 
discipline is FCFS, a customer waiting at  the head of the 
line is not allowed to  enter  the first stage until the  job 
currently in service completes its last  stage  and departs 
from  this  service center.  This is equivalent to saying that 
the  entrance  stage is blocked as long as a job  exists in 
some stage. Only  without blocking, however,  does  the 
steady state distribution always take a simple form, i.e., 
it is given in a product  form. Once blocking is introduced, 
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the solution is  rather complicated  even for  the simplest 
queuing system [ 101. This  is why we  were forced to  as- 
sume  that  the service center  is a queue-dependent ex- 
ponential server if that  center is under FCFS discipline. 

If the  queue discipline is either PS or IS, then the 
problem of blocking in the fictitious exponential servers 
disappears.  In  an infinite-server queue,  there  are  always 
more  servers available  than jobs  and  no waiting line de- 
velops;  thus blocking is nonexistent. A single server with 
processor sharing  is, in effect, an infinite server  queue in 
which  service rate is lowered according  to  the number 
of jobs in the  center, i.e., the  service  rate of the fictitious 
exponential server in the individual stage is divided by 
k, ,  which is the number of jobs in this center  at a  given 
time. Blocking is not an  issue in a PS center  either, since 
no  queue  exists,  just  as in an IS center. 

A service  center  under preemptive-resume LCFS can 
be viewed as consisting of sufficiently many parallel 
servers,  each of which is described  as  stages of expo- 
nential  servers. Each time  a new job  arrives  at  this sta- 
tion, it immediately enters  the first stage of the  server 
provided to it. The  job  that  entered  the system just prior 
to it and  has been served by its own server is thenfrozen 
on  the spot.  Any job which has been  frozen at  some stage 
resumes receiving service  when it becomes  the youngest 
among  those remaining in the  system,  Since  the product- 
form  solution exists, any newly arrived job  enters  the 
service center without being blocked. 

Under  the IS, PS, and LCFS queue disciplines dis- 
cussed  above,  the system state can be completely  de- 
scribed by specifying service stages of the jobs  present 
in that  center. 

We now discuss in some  detail the solution of a  net- 
work Jy- with N FCFS service  centers and L open sub- 
chains. The  state 9’ of such a network is described by 
an array of N FCFS  stacks, viz., 

= [SI, s,, . . ., S,I, ( 5 )  

with S, = [ r , ( l ) ,  r n ( 2 ) ,  .... r,(k,)], where r , ( j )  is the 
class membership of the jth  job queuing for  service  at 
center n. Let Y (  [nrl-)  denote a state which is the same 
as Y except  that the  last entry of the stack S, is missing. 
Thus a transition Y (  [nrl-) T, Y takes place  upon  arrival 
of a class r job  at service center n. 

By applying the principle of local balance, we now 
equate 

rate of transitions rate of transitions 
9( [nrl-) + Y due  to = Y + other  states  due  to 
arrivals departures of customers 

and  obtain the simple recurrence  equation 

A(K,)e,,P{Y([nrI-)},= p, (k , )P{Y) ,  (6 1 
where P{Y} is the equilibrium probability for  state 9; 285 
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P{Y} may now be  obtained by applying (6)  repeatedly 
to a sequence of transitions leading from Y down  to  the 
empty system Yo = [ O ,  0, . . ., 01. This  procedure yields 

P { Y }  = c n B,(k,)  n A,(k,)  n Pnrk? (7 )  1 1:1 ( nr )  E Y, 

j 
whereB,(j)=~b,-l(i),A,(j)=~u,(i),andC=P{Y,} 

is determined by normalization. 

j - 1  

i= 1 i=O 

Solution for closed subchains 
If Jf is closed with respect  to  the subchain A,, then  the 
recurrence equation ( 6 )  is not directly  applicable  since 
a direct transition Y (  [nr l - )  3 Y is not  possible.  We 
can, however, view Jf as  the limiting case of a  suitably 
chosen  open  network Jf". The solution of A", then, is 
obtained  directly from Eq. ( 7 ) .  

The  treatment of .N is  further complicated by the fact 
that  for closed subchains A,, the quantities e,, are defined 
only up  to  an  arbitrary  factor r1 which is reflected by the 
nonuniqueness of No with respect  to Jf. However,  Eq. 
(7 )  reveals  that 7 r 1  appears  as n-: in the solution. There- 
fore, since K ,  = K1* is a fixed value in No, T:*/ is a con- 
stant  factor which can be  absorbed in the normalization 
constant. 

In summary, we find that  the solution of a network with 
closed subchains is formally the  same as that given by 
Eq. (7 )  if we  set A, = 1 and A,(K,) = S(K,,   K,*) = 1 if 
K ,  = K1*, 0 otherwise. 

Aggregate  states and  marginal  distributions 
In many practical cases, we may  not  necessarily be in- 
terested in P { Y } ,  the distribution of system state 9. 
Instead, we may want to obtain a marginal distribution, 
such  as  the total  queue-size  distribution. Marginal dis- 
tributions are, by definition, the probability  distribution 
of aggregate  states, an aggregate state being a subset of 
the  state space 9. The following is a  list of important 
aggregate states: 

1 .  X = [k,,  k,, . . ., kN] with k, = [k,,,   k,,; . ., k,,] where 
k,, is the  number of class r jobs  at  center n and the 
specific orderings of the individual FCFS stacks  are 
ignored. 

2.  k = [k , ,   k , ,  . . ., k N ]  where k,  represents  the total num- 
ber of jobs  at  center n ,  i.e., k,  = Z,.k,,. 

3. k,; we  are interested in the queue-size  distribution 
at a specific center n only. 

4. K = [K,,  K,; . ., K,]  where K ,  is the total number of 
jobs in subchain A,, i.e., 

Kt= 2 knr* 
( n r ) E . d ,  

Since P { Y }  is invariant to  permutations of the  elements 
286 in the FCFS stacks, we obtain P { X }  easily as 
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where the  factorial  term represents  the total number of 
distinct  permutations  and is a  product of multinomial 
coefficients. 7 

Summary of the general  results for  the queuing net- 
works JV 
It  is an interesting  result that at the level of detail de- 
scribed  by the aggregate state X, only  mean  work  de- 
mands enter  into  the solution. 

The distribution P { X }  for  the queuing  network .N can 
be expressed in a unified way as 

P { x l =  C . A (K)  n g,(k,, p,), (9 1 
with 

N 

n=1 

I n b,-'(i) for FCFS, PS, and LCFS; 
j 

j !  
I n bL1(i) for IS; (12)  

i= 1 

A,( j )  = 
for  open A,; 

1 S ( j ,  K,*) for closed A, with K,* customers. 

The  quantities p,,  are defined by (4), where we sub- 
stitute unity for A, if Ae is closed. As defined earlier, 
k,, is the number of class r jobs  at  center n and k, = [ k n l ,  
k,, . . ., k,,] ; k ,  is the total  number of jobs  at  center n, 
K,  is the total number of jobs in subchain A,, and K1* is 
the fixed number of jobs in a  closed  subchain A,. 

Generating functions 
In this  section we  introduce  the probability  generating 
function  (p.g.f.) for  the queue-size  distribution. The 
p.g.f. method  allows  a  simple  evaluation of the normaliza- 
tion constant and of marginal distributions. It  also pro- 
vides important theoretical  results, e.g., stability  criteria 
and asymptotic behavior. 

The first step  is  the derivation of the p.g.f. for  an  open 
system with constant arrival  rates.  We  obtain  simple 
explicit expressions  for  the normalization constant  and 
for  the marginal distributions. We find that,  as  far  as  the 
queue size  distribution is concerned, we can  treat  the 
servers as though they were mutually independent and 
behaved exactly like separate single servers,  subject  to 
an equivalent traffic intensity. 
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Mixed networks, i.e., networks with open and  closed 
subchains,  are treated next.  An important connection 
with the p.g.f. for  the  open system is found via the mar- 
ginal distribution of subchain  populations. Closed sub- 
chains  interact in a  complicated way and we can  no 
longer treat  the  servers  as being mutually independent. 
Consequently, there exists  no simple closed-form  ex- 
pressions  for  the p.g.f. Nevertheless,  we obtain results 
concerning how open  and closed subchains  interact with 
each  other  and  also how to calculate marginal dis- 
tributions. 

In  the final part of this  section we discuss  the stability 
problem for mixed networks,  and  we  show  that  the stabil- 
ity is unaffected by the  presence of closed  chains. 

Open  networks  with  constant arrivals 
Let "V be  open with respect  to all subchains A, which are 
driven with separate Poisson streams of constant arrival 
rate A,. We define the p.g.f. for P { Y i }  by 

where 3 is  the array of transformation  variables [z,, 
z2, . . ., zN] with z, = [znl, znZ, .  . ., znn] ,  1 5 n 5 N .  The 
improper  generating  function G (3) is defined by a sum 
over  the product-form terms, viz., 

N 

where 1p,,znrI = ~ P , ~ Z , ~ ,  pn2zn2; . ., P,~Z,,I. The  structure 
of ( 15) allows us to switch sum and  product, yielding 
G (3) as a product of N terms G,(z,, p,) ,  namely, 

G ( 3 )  = n g,(k,, [p,$!,,.l) = n G,(z,, P, ) ,  (16) 

where p, = [pnl, pn2,  . . ., p,,]. Here G,(z,, P,) is ex- 
plicity given by 

N N 

n=1 k$O n=1 

H 

G , ( z n ,  P,) = B,(k , )k , !  n [b,, z ,r ) k n r / k n r ! ] ,  (17 )  
k,ZO r= 1 

which we recognize as a power  series in R dimensions. 
Therefore, we obtain the simple result 

m 

G,(z,, P,) = B , ( i )  (P ,  . Z,li = @ , b ,  . Z,)' (18) 
i = O  

where p, * z, is the  ordinary inner  product of two  vectors 
and a,(() is an analytic  function defined by the  power 

series B ,  ( i )  ti. Since G * (1) = 1 from  the definition of 

p.g.f., we obtain the normalization constant  as C = 

1 / G (1 ), where 1 is an N X R array of all entries one. 

m 

i=O 

Since C itself may be  written as a product  on N terms, 

viz., C = II G,-' (1, p,), we find finally for  the p.g.f. 
N 

n= 1 

N 

G * W )  = n @,(P , .  Z , ) / @ ( P , ) ?  (19) 
n=1 

where p, = Zp,, is the total traffic intensity at  center n. 
For non-queue-dependent service centers,  the function 

a,(() is of the following form: 

1 / ( 1  - 5) for  PS, LCFS, and FCFS, 

exp (1) for IS. 
@,(O = (20) 

For practical  applications, the  case of a limited  queue- 
dependent service center is of special  interest. By limited 
queue-dependence  we mean that  the scaling function 
b ( j )  is such  that b ( j )  = /3 = const.  for j 1 r ;  in other 
words,  the  server  has  constant  rate if the  queue size 
exceeds r .  Parallel servers of multiplicity r fall into  this 
class with b ( j )  = min{j, r } .  It  is not difficult to  see  that 
for a limited queue-dependent service center, @,(() can 
always be  written as 

@ . , ( a  = $,((I / ( 1  - 0, (21) 

where $,( 5) is a  polynomial of degree r - 1.  
We obtain the p.g.f. of marginal distributions by 

equating certain transform  variables and setting others 
to unity. For example: 

1 .  The p.g.f. for P{k} is obtained by setting in (19) 

2. The p.g.f. for P { k , }  is obtained by setting in (19) 
znl = znZ =. . .= znn = z, for all n = 1,2; . ., N .  

Zn1 = Znz = . . . = znn = z, and all other z variables to 
unity. 

3.  The p.g.f. for P{K}, i.e., for the number of customers 
in each subchain A,, is obtained by substituting z, 
for all z,, such that (nr)E&, and  for all I = 1, 2, .  . ., L. 

The solution is particularly simple for  the  case of 
P { k , } ,  the marginal queue-size  distribution.  Because 
G * (3) is a product of independent terms  for  each  server, 
we find that  the marginal queue-size  distribution at  center 
n is identical to that of a single server with  workload in- 
tensity p, = Zp,,. For service  centers with constant rates, 
the  queue size distribution is given by 

P { k , } =  ( 1  - p n ) p n k n 9  (22) 

which is  the familiar expression  for  an M / M /  1 system. 
Similarly, for  an IS service  center, 

f'{k,l= ( ~ , / k , ! )  exp (-P,), (23) 

the result for  an M/G/m system. The  joint distribution 
P{k} is simply the product of the marginal distributions 
P { k , } ,  i.e., 
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Mixed  networks  with  closed  chains mnd constant  ar- 
rivals 
Let  us  assume  that A" has  LC closed subchains which, for 
notational convenience,  are labeled A,, dl,, . ' ., ALc. 
The remaining L - LC open  subchains  are  driven by 
Poisson  streams with constant arrival rates A,. The  state 
space of such  networks is the  set 

9 = {X; k,, 1 0  and K ,  = K,*}.  (25 )  

The p.g.f. G* (3) = ~ P { X ) z n r p n r  is defined by a sum 
over  the  state  space 9. This sum is  more complicated 
than the  one in ( 1 6 )  and  does not split into a  simple 
product of N terms,  each  dependent  on  one  server only. 

We  can  derive  the p.g.f. G*  (3) from  the simple func- 
tion G (a) of Eq. ( 17) by following steps similar to 
those applied in obtaining  the marginal distribution of 
subchain  populations.  We introduce new variables 
0 = (0,, 0,, . . ., O L  ) which we associate with closed 
subchains.  We next define G ( Y ,  0) as  the function 
which is obtained by setting A = 1 and substituting O,z,, 
for z,, in the original expression G ( z )  for all (nr)  E A, 
and 1 5 1 f LC. Let  us  assume  for  convenience  that  the 
classes in closed subchains  are numbered as I ,  2 , .  . ., R, 
with R, 1 LC.  Then we may write G ( b ,  0) as 

I,,. R,. 

For the sample network of Fig. 1 we have 3 = [z,,, zI2, 
zI4, 224' z3,, z3?,  zS3, ~ ~ ~ 1 ,  @ = [e,, 0,l, L = 3, Le = 2, R = 4, 
R, = 3, and 

The p.g.f. is then  found as  the coefficient of OlK10t2* 
. . .  eLCf;l.: in a multivariate  power series expansion of 

G (a, 0) in 0, symbolically written as 

This power  series expansion of G (3, a), however, does 
not lead to simple analytical expressions  for G* (3). Its 
numerical computation is discussed in the next  section. 

Normalization  constant and related  quantities 
The normalization constant, marginal distributions,  and 
average  queue sizes can  be obtained as described in the 
subsection  on open networks with constant arrivals. 

with 
N 

G(1,  0) = n @,(P,O+ 0 . P,", (30)  
n=1 

n 
where p," = p,, is the total  workload  intensity due 

to the  open  subchains  and p,' = [pn1 , pnz , . . ., pnLCC] is 
an  LC-vector  whose element 

r=R,+I 
e c  

is the total  workload  intensity in the closed  subchain 
A,. To separate  the effects of the  open  and closed chains, 
we expand @(p," + p," . 0) into a Taylor series  around 
P,', viz., 

@, (P," + P, . 0) = T n ( p n C  . 0) (32)  

with I 
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@,"'(p,") (in  general) r m  1 
i = O  

1 
V,(O = <  1 - p,o 

(fixed rates) 
5 

1 - P n o  
1" 

exp (p,") exp ( 6 )  (IS server). (33)  

From (29 )  and (33 )  it follows that 

C =  a,(K*) . fi V,,(p, a)]". ( 3 4 )  

Equations (29) to (33)  find an interesting  interpretation. 

1. For fixed-rate or IS service  centers,  an "open-system 
term" p,"/ ( 1 - p,") resp. exp (p,") can  be  factored 
out of the  expression  for  the normalization constant. 

2. A fixed-rate service  center which is in open  and closed 
subchains  contributes  to  the closed subchain  term in 
the  same  manner as a similar service  center with 
adjusted traffic rates a,, = pn;( 1 - p,")". In other 
words,  the effect of an  open subchain  with  traffic rate 
p," on  the closed subchains  is  to  increase  the traffic 
intensity by a factor ( 1 - p,")". 

3. Open  subchains and  closed subchains  do  not  interact 
at  an IS service  center. 

The p.g.f. for  the marginal distribution P{k,}  of the 

[ n=l  

(total)  queue size of service  center rn is 

G(z,) = Ca, (K*)  . (+,(z,[P," + P; - 01 1 

fi @',(P," + P,c . 0)). (35) 
n= I 
n#m 



The mean queue size E[k,] is found in the usual way, 
i.e., by d G  / az, at z, = 1 .  This  procedure yields 

E[k,] = Ca, (K)  * [ p ; +  p:. @]@'(p,"+ p : .  0) 

fi V,,(P; 011. (36) 
n= 1 
nfrn 

For fixed-rate service  centers, we find the special  form 

and similarly for  IS  service  centers we have 

E[k,l = P," + C exp (p,")a,(K*) 

X [ (P," . 0) fi q n ( p :  011. (38) 

The first term in Eqs. (34) and (38) is the mean queue 
size of service  center n ,  subject  to "open" traffic with 
workload  intensity p,". Note  that in the  last  two ex- 
amples,  the  product nYn is  the  same  as found in the ex- 
pression for  the normalization constant. 

n=1 

Stability of mixed networks 
A  network is said to  be  stable if its servicing capacity 
can  handle the arriving traffic and  therefore all queues 
remain finite. More precisely, JV is  stable if the  balance 
equations  have a nonzero solution. In  terms of the pro- 
duct-form  solution, the  sums defining d,(K*) . G(1,  0) 
converge. We investigate  this convergence by a new 
generating  function  which we obtain  from G(B, 0) by 
substituting ( for all z,, with (nr) in an  open chain and 
z,, = 1 for all (nr) in closed subchains, viz., 

N 

G (5, 0 )  = n @.,(5pn" + PnC . 0). (39) 
n= 1 

The transform  variable 6 is associated with the total 
population in all open  subchains. Now Jf is stable if 

G ( 0  = a,,(K*) . G ( L @ )  ( 40) 

is  analytic inside the unit  circle in the complex ( plane. 
By a Taylor  series  expansion of (39) we obtain 

within the region of convergence. Apparently G (  6) is 
a  linear  combination of all ~ , ( ' ) ( { p , " )  for n = 1 ,  2; . ., N 
and i = 1 ,  2, . . ., ZK,* ,  and therefore G(<)  is analytic 
inside 1{151 only if all the @, and their  derivatives  are 
analytic. Since a,, is defined by the power  series ( 19), all 
the  derivatives  are  analytic  whenever Qn is analytic. 

Therefore,  for stability of the  center n it suffices to re- 
quire  that an( t&,") be analytic for 1515 1 for all n = 1 ,  
2 , .  . ., N .  This is the stability  condition of service center 
n alone. For  example, in the  case of fixed-rate FCFS, 
PS,  or  LCFS we have mn( (p,")  = [ 1 - {p,"] - l ,  which 
is analytic inside 1515 1 if and only if p,' 5 1 .  Similarly 
for IS service  centers @,(@,") = exp ( [p ,")  which is 
always  analytic on the  entire (-plane. 

We  conclude by recapitulating that in order  for a mixed 
network  to  be stable, it is only required that  each  service 
center n be stable  with respect  to  the  open chain  work- 
load  intensity p,'. Closed  subchains  do not contribute  to 
instability. 

Numerical solution of mixed networks 
To evaluate numerically the  normalization constant, 
marginal distributions, and moments of the queue-size 
distribution, we have  to sum the product-form terms  over 
appropriate regions in the  state  space. A simple term-by- 
term  summation,  however, is out of question for all but 
the most simple models,  since the number of terms in 
these  sums  grows combinatorially with the size of the 
problem  (i.e.,  with N and K* ). Hence, more efficient 
algorithms are required for  pikiical  use of our  network 
model. Such  algorithms wLi-6 previously reported  for 
networks with  only one closed  subchain [ 1 1 -  141. In  the 
present section we  further  extend  the previous  work  and 
discuss computational  algorithms  applicable to  the gen- 
eral class of queuing networks. 

The generating  function  method' not only sets  the 
earlier  algorithms into  perspective but also leads  quite 
naturally to  the general  result  discussed below. The 
problem, we recall, is a power series  expansion of a mul- 
tivariate  function Q (0)  = G (1, 0) which is a product of 
N terms e,(@) = Tn(pnc . 0). Two methods are avail- 
able, namely: 

1 .  Partial  fractions if Q(0) is a  rational  function of only 

2. Basic coefficient multiplication of power  series. 

The first approach  was applied to a limited class of queu- 
ing network models by Moore [ 111. The second method 
is essentially  equivalent to  the recursive  algorithms dis- 
cussed by Buzen [ 121 and by Reiser  and Kobayashi 
[ 13, 141. Below we generalize the partial  fraction  method 
to  the  case of mixed networks with one closed  subchain 
and  also  remove several constraints forced in [ 1 I ] .  We 
then give  a  general  algorithm which is based on multipli- 
cation of power series  and which, in the light of generat- 
ing functions,  becomes remarkably simple. 

Partial fraction  method  for  a mixed  network  with only 
one closed subchain 
Let A'" be  a  network with only one closed chain  and 

one variable 13 (i.e.,  only one closed subchain). 
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let us further  assume  that  there is no IS service center 
and that all queue-dependent FCFS service  centers  are 
of the limited queue-dependent type. For this network, 
the function Q ( 0 )  for which we seek  a power series 
expansion is of the form 

where w, = p,"( 1 - p,")" is the adjusted traffic intensity 
and +n ( 5 )  = 4,(pn" + 5 )  is the polynomial of Eq. (2 1 ). 
Note  that +n = 1 for fixed rate service centers. I t  is easy 
to  write (42) in partial fractions, viz., 

N 

QW = +q(e) + an/ ( 1  - U n o ) .  (43) 
n= 1 

where I,IJ~(O) is the  quotient of the polynomial division 
[ rI+n(wnf3)] /II( 1 - w,O) and the an are residues. If all 
on are  distinct,  these residues are 

N 

a,= +r(wn-l) n (1 - wi/wn)-l, (44) 
i=l, i t n  

with +r being the remainder of the  above division. From 
(43) follows  immediately the desired power series ex- 
pansion of Q (0)  ; in particular, we find 

8, (K*)Q(@) = q ( K * )  

where q(K*) is the coefficient of O K *  in the polynomial 
+,(e). Equation (45) gives  rise to  the following algo- 
rithm for computing do (K*) . Q (0) :  

Step I Compute  quotient and  remainder of the poly- 
nomial equation in 0, 

r N  1 I N  [i + n ( w n e ) j / ' H  ( I - w n e ) .  
n=1 

Step 2 Compute residues a, for n = 1, 2 , .  . ., N by (44).  

Step 3 For given K* compute 8, (K*) . Q = q( K*) 

n=1 

The polynomial division  and the required polynomial 
evaluations are conveniently done using Horner's rule. 
Once  step 2 is completed,  step 3 can  be  repeated  for 
various  values of K* at little extra cost. Most computa- 
tional effort is spend  at  step 2 which has  an  operation 
count of O ( N 2 ) .  It is not difficult to  remove  the restric- 
tion on w,. 

The partial fraction method, when  applicable, is usually 
the  more efficient algorithm. It  has,  however,  two  draw- 
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1 .  The sum in (45) has alternating signs and may be 

2. The method cannot  be generalized to  the  case with 
subject  to round-off errors in some cases. 

more than  one closed  chain. 

Multiplication of multinomial  power  series 
We start with mathematical  formulas pertinent  to  the 
general algorithm discussed in the next  section. Let 
Ql( 0)  and Q,(@) be functions in m variables 0 = [ el, 
e,, . .., e,] which are defined by power  series with 
coefficients ql( i )  = q l ( i l ,  i,, . . ., i,) and q, ( i ) ,  respec- 
tively, viz., 

and similarly for  Q, (0).  The  product Q = Q,Qz has coef- 
ficents q( i )  which can  be  obtained  from those of Q ,  
and Q, by 

q(K) = 2 . . .  2 q1(i)q,(K--i) ,  ( 47) 
K I  '"2 Km 

i l = O  i2=0 i,=O 

where K = [ K,, K,; . ., K,] and i = [ i,, i,; . ., i,] are index 
vectors. Equation (48) is an m-dimensional convolution. 
Note  that in order  to  evaluate q(K) at a  point K in the 
index space, only  coefficients q,( i )  and q,(i) at points i 
closer  to  the origin are required, i.e., 0 5 i 5 K or 0 5 i, 
5 K,, 0 5 i, 5 K,; . ., 0 5 i, 5 K,.  We can  interpret (47) 
as a multidimensional  linear  filtering [ 151 with q1 ( i )  as 
input, q, ( i )  as filter coefficients, and q( i )  as  output.  Then 
the filter we  discuss  here is a causal one [ 161 in the  sense 
that  the  output is dependent only on  the  past input, i.e., 
those q, ( i )  with 0 5 i 5 K. We observe  that  the filter 
Q, acts  on  the  entire  past history of q , ( i ) ;  hence a[ (Kl,  
K,, . . ., K,)'] operations  are required to  compute  the 
output q(i)  at all points 0 5 i 5 K. 

A significant reduction in the  operation  count is pos- 
sible if the filter function Q,(@) is a rational  function 
in 0, viz., 

where e,(@) is a polynomial of degree d, with coef- 
ficients q,(i) defined on  the index set FF = {i > 0 and 
( i ,  + i, +. . . + i,) 5 d,} and similarly Q B (  0)  is a poly- 
nomial of degree dB with coefficients qB(i) for i in the 
index set YB = { i ;  i > 0 and ( i ,  + i, +. . .+ i,) 5 dR} . Note 
that Q, has  no  constant term. It is a well known fact 
that  the filter function (48) can be  realized by a  feed- 
forward/feed-back filter as shown in Fig. 2. The input- 
output relation is therefore given by 
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Feed-Forward 

Feed-Back 

( a )  

(b) 

Figure 2 (a)  Schematic representation of a feed-forward/feed-back filter, (b)  Computation diagram  for  a  spatial (i.e., m = 2) feed- 
forward/feed-back filter with d, = 3 and dB = 2. The circles  symbolize  multipliers which act on the  underlying grid values. 

The  process q( i )  can also  be viewed as a multidimen- 
sional analogue of an autoregressive  moving-average 
process [ 171 : The first term represents  the moving aver- 
age of the input q,(i)  and  the  second,  the  autoregressive 
term. The  operation  count of (49) is a[ (dFm + dBm) K,K, 
. . . K,]. Of special interest  to us is dF = 0 and dB = 1, in 
which case  we  have  an  operation  count of 0 (K,K; . . K m ) .  

General  algorithm 
From  the preceding discussion, it is clear that  the desired 
coefficient q(K)  = a,,(K) . Q ( 0 )  is the  impulse response 
evaluated at i = K of a cascade of N linear filters with 
transfer  functions Q,(0) = .Wn(pnr . 0) (see Fig. 3 ) .  
Since we are  not interested in the  output  for any i > K, 
we can  always  write e,(@) in the form of a  feed- 
forward/feed-back filter with a  feed-forward part e,(@) 
of the  form 
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I for PS, LCFS, and fixed rates 

e,(@) = 
. 0 )  for limited queue-dependent  rates 

( I / i!) (pnc * 01 for IS, (50) 

Figure 3 Signal flow diagram of the  general  algorithm to com- 
pute  normalization constant,  server utilization, and mean queue 
sizes. 

nn n 

I 1" server rn 
Utilization of 

Mean  queue- 
sire  at server 111 

uu 



292 

M. REISER AND  H.  KOBAYASHI 

with K = K ,  + K ,  +. . . + KIA" and $,(<) = cpn(pn" + 5 ) .  
The feed-back part e,(@) similarly becomes 

e,(@) = [ (p," . 0)  for fixed rates, 
1 for IS. 

Apparently,  for  an  IS service center,  we  have a  feed- 
forward filter only which extends  over  the  entire past 
history. 

We  summarize  this procedure in algorithmic  notation: 

Step I Set up the m-dimensional arrays Q and Q,  with 
index  bounds 0 5 i 5 K. 

Step 2 Initialize Q + ( 1  for i = 0, 0 otherwise)  and 
n +  1 .  

Step 3 Q ,  + Q. 

Step 4 Compute filter coe,fficients and  store them in QF 
and QB [Eqs. (51 )  and ( 5 2 ) ] .  

Step 5 Compute filtered output  for  the input in Q, and 
store it  in Q [Eq. ( S O ) ] .  

Step 6 n + n + 1. If n > N then  stop;  else  go  to  step 3 .  

After completion of the algorithm, de ( K )  . Q ( 0 )  is 
found in array location Q (K)  . The signal flow diagram of 
this  algorithm is given in Fig. 3 .  

The  operation  count is a[ (N,IIK,  + N 2 )   l I K , ] ,  where 
N ,  is the  number of general queue-dependent service 
centers and N ,  is the number of fixed-rate rate-limited 
queue-dependent-rate service centers.  The  storage re- 
quirement is O( 2IIK,) if there  are  queue-dependent  ser- 
vice centers, O ( n K , )  otherwise. Both computational ef- 
fort and storage  requirement grow rapidly with the 
number of closed subchains and also with the population 
therein. It should be  noted that the sums for the convolu- 
tion are  over positive terms only and  therefore  are nu- 
merically  stable. 

The high computational effort can  often  be  reduced by 
taking advantage of special properties of A'". For example: 

1 .  The filtering can  be restricted to  lower dimensional 
subspaces of the  index space if all N service centers 
are not visited by every subchain. 

2. More than one IS service  center can  be easily lumped 
together by II'exp (p," . 0 )  = exp [ (Zp,") . 0 ]  where 
product and sum are  over all IS service centers.  The 
combined  exponential  function  should  be applied to 
the unit  input, i.e., to  the  corresponding filter used first 
in the  cascade of N filters. Then  the high computa- 
tional effort of the general  convolution (48) can be 
totally  avoided. 

3. If results  are required for several  different  subchain 
populations K, these  are  computed simultaneously 
for all K 5 K,,, where K,,, is the original K value. 

Fast  computation of marginal  queue-size  distributions 
and their  moments 
We showed in the  previous  section that the marginal 
queue-size  distribution at  service  center m and  its mo- 
ments can be  obtained  by expressions of the form do (K) 

. Qm* (0) II en(@). In  terms of linear filtering, 

we apply  a filter with transfer function Qn* (0)  [ 181 to  the 

output of II en(@). For  the  service  center labeled 
n = N this output  is  part of the computation of the nor- 
malization constant, and therefore little  additional effort 
is needed to obtain the  desired results. 

In general, however,  the  output of the filter with trans- 

N 

n=1, n z m  

N 

n=1, n#m 

N 

fer functions n em(@) has  to be computed sepa- 

rately for  each m. An efficient way to perform  this com- 
putation is to apply  the inverse filter Qm"(0) to  the 

output of lI en(@),  which we have obtained as a by- 
product of the evaluation of the normalization constant 
C .  The  inverse filter is again a feed-fonvardlfeed-back 
filter with transfer function 

n=1, n#m 

N 

n=l  

Note  that  the inverse filter Eq. (53) must be used with 
caution because it may be numerically unstable. Fixed- 
rate service centers always have  stable inverse filters of 
the simple feed-forward  form Q n - ' ( @ )  = 1 - pncO. 

The computation of the mean queue size  becomes 
especially simple for a  fixed-rate  service center.  In this 
case,  we  have Q,*(O) = Q,'(@) = Qm'(0). Therefore, 
we simply apply the filter em(@) to  the  output of the 

entire filter cascade with transfer function n Qn(0). In 
the  case of an IS service center,  the computation of the 
mean queue size is even simpler,  since en* (0) = e,(@), 
and therefore additional filtering is not  required. 

N 

n=1 

Appendix 
Let 9 ' ( [ n r ] - ) ,   9 ( [ [ n r ] ' ) ,  and Y ( [ [ n r ] + ,   [ n ' r ' l - )  be 
states such that  the following state transitions are pos- 
sible between  them: 

1 .  Y (  [ n r l - )  + Y upon  arrival of a class r customer  at 

2.  9'( [nr] ' )  4 Y upon departure of a class r customer 

3. 9 ' ( [ n r ] + ,   [ n ' r ' l - )  + Y upon departure of a class r 
customer from service  center n and his subsequent 
arrival at service center n' after a class change to r'. 

service center n. 

from  service center n. 

With  these definitions, the overall  balance equations  for 
a network of FCFS service centers  are 

IBM J. RES.  DEVELOP. 



N R  1 

n=1 r=l 

N R  

n=1 r=1 

N N R R  

where we assume  that all 1 are  such  that ( n r )  E AI. The 
principle of local balance or individual balance equations 
[ 91 is simply to  equate a subset of the left-hand terms in 
(A 1 ) with a subset of the right-hand terms. For  example, 
if A + B + C = D + E + F is a global balance equation, 
then A = D, B = E ,  C = F are local balance  equations. 
Clearly a set of local balance  equations is a sufficient 
condition for  the global balance  equation  but it is not 
a necessary condition. In  the general case  the local bal- 
ance  equations may be contradictory  to  each other.  We 
use  the principle of local balance with great  care in the 
subsequent derivation. 

First we equate  the  rate with which the system leaves 
the  state Y due  to  customer arrivals with the  rate with 
which the system enters  the  state Y due  to  customer 
departures, viz., 
L 

I= 1 n=1 r=I 

This relation is a  balance  between N and  the outside. 
We  next  use local balance again and separate (A2) into 
L individual equations, 

By multiplying the left side of (A3) by 2 p,,  ( n r ) h f ( K f )  

= 1 and by substituting the relations 
i n r ) E X ,  

P(nrh = 1 - 2 P(nr), (n’r’)  
( n ’ r ’ ) E A ,  

and 

P I ,  (nr)  = e n r  - 2 en,r’P(n’rph (n,r)  
( n ’ r ’ ) € A ,  

[see  Eq. ( 3 ) ]  into (A3) we partition the  resultant  equa- 
tion into  the following set of local balance  equations,  for 
all (nr) E AI, 

A,(K,)e,,.P{Yl = p n ( k n +  l)P{Y([nf‘]+)}  (A41 

and 
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2 en’rrP(nrh l n F r , f { Y }  
( n ’ r ’ ) € X l  

= CLn(kn + 1 )  2 P(nr), (n+cf{Y( Ln.1’) 1. (A51 
( n ’ r ’ ) € . l ,  

Evidently (A4) is equivalent to (AS). 
We now turn our  attention  to  the second set of terms 

in (A 1 ) , namely the balance between  the  rate of system 
transition out of state Y due  to  service completion  and 
the  rate of transition into Y due  to  customer arrivals from 

(A61 
We first split (A6) into N X R  balance  equations. We  then 
proceed in the  same  manner  as in the  derivation of (A4) 
and  obtain 

and 

We now have three  equations which are, surprisingly 
enough,  equivalent to  each other. Thus, if one of them, 
say (A4),  is satisfied for all 1 = I ,  2;. ., L and ( n r )  E A,, 
then  the overall balance  equations  are also met. Note 
that if we let the  rate  be  class-dependent, pnr(knr)  say, 
then the  three  equations  are  contradictory and no prod- 
uct-form  solution  exists.  Finally, it remains to be  shown 
that  the  recurrence  equations (A4) and (A7-A8) also 
hold for  the  boundary, an exercise which we do not 
carry  out in detail. 
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