
J. H. Chang

Terminal Response Times in Data Communications
Systems

Abstract: A response time analysis for a general class of terminals-to-computer subsystem is presented in this paper. The model
used is based on the most advanced data communications system in which terminals are connected to Terminal Control Units (TCU)
that are in turn connected to local Front-End Processors (FEP). The line control procedures used to interface a TCU and an FEP
may be half-duplex Binary Synchronous Communications (BSC) , half-duplex Synchronous Data Link Control (SDLC), or full-du-
plex SDLC. The models presented here can be used to determine bottlenecks in the entire system and to facilitate the initial phase of
system design and configuration.

Introduction
A generic configuration of data communications systems
consists of many components such as terminals, Termi-
nal Controller Units (TCU) , communications lines,
remote as well as local Front-End Processors (FEP) ,
host processors, and auxiliary storage devices (see Fig.
1) . Each one of these components has its own specifica-
tions and operating characteristics in terms of data rate,
transmission media, and functional capabilities. One of
the key factors in design and evaluation of such systems
is the calculation of terminal response time, which can
be defined as the time interval from the operator’s press-
ing the last key (send key) of the input to the terminal’s
typing or displaying the first character of the response.
Systems differ widely in their response time require-
ments, and the response time needed can, in turn, have a
major effect on the design of the data transmission net-
work and the data processing facilities. This paper pre-
sents the development of an analytical framework for
analyzing response time requirements of data communi-
cations systems.

The terminal response time as defined above is the
totality of several time elements. At the time when the
send key is depressed, the complete transaction has al-
ready been stored at a prespecified buffer area in the
TCU, one for each terminal. Transactions stored at their
terminal buffers cannot be transmitted to the host site
until the particular TCU at which these transactions re-
side is polled by the local FEP in accordance with a giv-
en polling list. The time spent by a transaction waiting
for polling is the first time element to be calculated in
obtaining the total terminal response time. This element
depends on the system configuration and line pro-

272 cedures. The time required for transaction transmission

I . H. CHANG

along communications lines is relatively easy to calcu-
late once we know the length of a transaction and the
line speed. When a transaction arrives at an FEP, cer-
tain delays may occur because this is where most com-
munications functions are performed. In case the FEP is
a simple control unit whose only function is character
assembly and disassembly, such delay would be negligi-
ble. After the whole transaction has entered the host
processor, its processing time depends on the applica-
tion programs, CPU processing speed, operating system,
access methods, and the characteristics of the auxiliary
storage devices such as disk files. A completely pro-
cessed transaction will then wait at the FEP until the
addressed line and TCU are ready to receive their re-
sponses. The length of this waiting time can generally be
analyzed by an approximate queuing model.

Readers familiar with teleprocessing systems are
aware of the fact that there are many different variations
in system configurations and operations. The connection
between the TCU and FEPs may be in the form of
loops, stars, or multi-drops. The mode of transmission
may be half-duplex or full-duplex with different line con-
trol procedures such as Binary Synchronous Communi-
cations (BSC) and Synchronous Data Link Controls
(SDLC). After an inquiry has been sent to the host site
for processing, the whole communication path may be
held throughout the entire question-answering period, or
the sending terminal may release the communication
path, in whole or in part, so that other terminals and
TCUs can send and receive their transactions. It is as-
sumed in this paper that a terminal will release its line
after its transaction is keyed in, and that several TCUs
share the same high speed line in a multi-drop fashion to

I B M J . RES. DEVELOP.

communicate with the local FEPs. However, both the
half-duplex and full-duplex modes can be accommodated
by the analysis.

In a recent survey paper, Green and Tang I] dis-
cussed in depth the state of the art in using analytical
models to design terminal-oriented systems. They di-
vided the whole design and configuration process into
two parts: the network models and the host models.
Various problem areas and the progress to date were
summarized. It was indicated that there has been no over-
all treatment of complete computer communications sys-
tems that would allow one to carry out the configuration
process, taking into account details of the various trans-
actions within the system. To the best knowledge of the
author, the present paper represents the first attempt to
bridge the gap between, on the one hand, buffered termi-
nals with terminal cluster controllers and line control in
the network models, and, on the other hand, CPU mod-
els, file accessing, and front-end processor analysis in
the host models. The models presented here can be used
to determine bottlenecks in the entire system and to fa-
cilitate the initial phase of system design and configura-
tion.

Polling cycle analysis

Polling and operations in u polling cycle
Under normal operating conditions several terminals as
well as several TCUs may be prepared to transmit trans-
actions at the same time from remote locations to the
host site. Only one can do so, and the others must wait
their turns. To organize this, the line will normally be
polled. For cases where terminals are controlled by the
TCUs, as assumed in our model, transactions are sent to
the controller at will and accumulated there so that only
the TCUs need to be polled. In other cases, terminals
are polled individually. Normally the local FEP (if any)
or the host processor organizes the polling. In the main
memory there is a polling list telling the programs the
sequence in which to poll the TCUs or terminals. The
polling list and its use therefore determine the priorities
with which the remote devices are scanned.

There are several major time elements that constitute
a polling cycle, and these include transaction transmis-
sion time, the time for either an unsuccessful (negative)
or a successful (positive) poll and the associated ac-
knowledgment. Except for the first item, all other ele-
ments depend to a great extent on the line control pro-
cedures employed by the system. Two such procedures
are considered in our model: the Binary Synchronous
Communications (BSC) and the Synchronous Data
Link Controls (SDLC) . Without going into details (see,
for example, [21 and [3]) , some of the differences be-
tween these are that BSC can be used only for half-du-

MAY 1975

Terminal

0,

d'
Figure 1 A typical data-communications system.

plex transmission while SDLC can provide both the half-
duplex and the full-duplex modes, together with some
built-in functions to reduce communications overhead
as indicated in the following diagram.

CPU TCU

SDLC:
Input

output

BSC:
Input

output

POLL .
4

INPUT

OUTPUT +

POLL
b

INPUT
4

ACK
b

4 .
4

EOT

SELECT

ACK

OUTPUT b

c ACK

EOT
b

Here POLL is the polling message generated by the host
site, INPUT is the transaction transmitted from the re-
mote terminal to the host site, OUTPUT is the transac-
tion transmitted from the host site to the remote termi-
nal, ACK is the acknowledgment of the receipt of a
transaction, EOT is the end of transmission, and SELECT

is the selection of the proper remote device for receiving
a transaction from the host site.

Transaction transmission time
Let K be a discrete random variable denoting the num-
ber of transactions removed from a typical TCU each 273

TERMINAL RESPONSE TIMES

time this TCU is polled. The distribution function of K
will be considered in the next section. We also let Li, be
the length (in number of characters) of each input trans-
action and S, be the line speed (in number of characters
per second). If there are M, TCUs in the system, the
total time required for the transaction transmission dur-
ing a polling cycle is then

t,'" = M,KL,,/S,. (1)

Although it is generally true that the sum of random
variables may behave quite differently from each mem-
ber of the sum, for analytic as well as practical reasons,
we assume in Eq. (1) that all of the M, terminal control
units are identical in structure and all terminals generate
similar traffic. The extension to more rigorous cases is
straightforward but would introduce many involved
complications in computation.

Time element related to communications overhead
Let L,, La, Le be the lengths of polling, acknowledge and
EOT messages, respectively. The time element related
to a positive polling is then

i M,(L,/S, + C ,) , for SDLC

M,[(L,+L,+L,) /S ,+C,I , forBSC, (2)

where C , is a constant representing the time caused by
modem establishment and other propagation delays.

In general the cycle time can be described in the form

n

t,'2' =

a K + b i f K > O
t, = g (K) = t p (l) + t,") =

C,, otherwise, (3 1
where a = M,L, , /S , and b = tpr2), and C,, is the time
element associated with a negative poll. It is now neces-
sary to obtain the distribution function of K.

Input process to the TCU
For the terminal subsystem under consideration, we
assume that M, TCUs are polled by a single FEP (there
may be more than one FEP in large systems) and on the
average M i terminals are connected to a nearby TCU.
Consider a particular terminal, one out of a group with a
total of M, terminals (the population source). In most
interactive systems the terminal operator does not send
any inquiry before the response to the previous one has
been received. Thus this terminal, after a time T ~ , starts
to transmit a transaction for the first time. After receiv-
ing the response, the terminal becomes idle for a time T~

before making the second request for data transmission.
In general, it stays for a time T~ in the source before
making the ith demand for the use of communications
facilities.

Let the distribution function of the inter-arrival time
274 of transactions at a TCU be

J . H. CHANG

A (t) = Prob (T ~ 5 t) . (4)

Instead of specifying the input process through the
inter-arrival-time distribution at the TCU from all the
sources, which involves both the distribution and the size
of the source, we specify the input process through
the distribution of T~ above, which is the inter-arrival
time from one terminal.

Because the size of the source is M,, the distribution
of K (t) , the number of arrivals up to time t is

Prob{K(t) = k } = (k t) [A (t)] k [l - A(t)IMt- , , (5)
M

which reduces to

Prob{K(t) = k } = (,) [1 - e-Xi]ke-A(Mt-k)t
M
k (6)

if the arrival process is exponentially distributed with
parameter A.

Number of transaction removed per poll in each TCU
The probability that k transactions have arrived at a TCU
during a polling cycle t p is

p k = [p(K(t ,) = k) f (t ,)d t , , (7)

as tp is a continuous random variable having probability
density function (p.d.f.) f(t,). On the other hand, t, is
also a function of the discrete random variable k as seen
in Eq. (3). It is thus proper to rewrite

k = 0, 1 , 2 , . . ., M , , (8)

M t

and 2 P k = 1,

where P I has the same meaning as P , with the subscript
changed. We now have a set of simultaneous equations

k=O

M t

' k = 2 PtkPl
1=0

Mi

2 P I = 1
I=O

with the coefficient plk given by

It is noted that

M t

p lk = 1 for all I ,
k=O

IBM I. RES. DEVELOP.

so that these coefficients are transition probabilities.

manipulations
The solution to Eq. (9) is given below by elementary

(Po, PI, . . ., P,,)

(1, Pl' , P*' , P,,')

(l + P , ' + P * ' + . - + P , , ') '
- - (1 1)

where

(Pl', P*". . ., P,,')
- - (pol9 PO*?. ' '3 p O M t) [I - (p l k ') I-'?

and where I is the identity matrix and (pf,') is the M , X M ,
matrix formed by deleting the first row and first column
of the original matrix (pf,).

After having obtained the P,, the nth moment of the
polling cycle time can readily be expressed as

One can now fit f(t p) by a gamma distribution function

with its Laplace transform

where

Iff (t,) does not fit a gamma function, we can approxi-
mate @(s) by [4]

Waiting time for polling
The terminals in our model are assumed to be identical
with respect to transaction generation intensity. The
host processor (actually its local FEP) receives transac-
tions and polls each TCU in a prescribed cyclic order
(polling list). Transactions that have been keyed in and
are waiting at a given TCU are transmitted almost simul-
taneously after this TCU is polled.

We fix our attention upon a given simple terminal (out
of the whole subsystem of M, identical terminals) pos-
sessing a transaction generation intensity in number of
transactions per unit of time and follow its history over a

complete polling cycle. After the TCU is polled by the
host processor, transactions waiting in the TCU are
transmitted to the host site and the next TCU in se-
quence is served similarly. This particular TCU under
consideration will be polled again after a random time t ,
(polling cycle) and the host processor may find it either
empty (negative polling) or with transactions waiting
(positive polling).

Because the polling signal comes to any particular
TCU every tp seconds, where tp assumes some known
distribution, the polling process is indeed a renewal pro-
cess. In particular, it is an ordinary renewal process be-
cause the t,,s are independent identically distributed
random variables. With the aid of some useful results
available in the theory of the renewal process [4], we
now evaluate the density function of the time that a trans-
action has to wait before being polled by the host site.
This situation is similar to a queuing process in which
service is available only at service-intervals, which form
a renewal process. A customer arriving at time t will have
to wait a time t , for the first service-instant. The limiting
distribution of t , can be expressed as

The moments of the limiting distribution of this waiting
time are easily obtained from the Laplace transform.
Because

2"cf(t,) ; s} = @(s) = Iom e-"Pf(t,) dt,

and

we have

The jth moment of t , about the origin, as it exits, is
given by the coefficient of (- s) ' / j ! in the Taylor series
expansion of its Laplace transform. Therefore

Three examples of different polling-cycle time dis-
tributions are considered here:

1 . The polling-cycle time is exponentially distributed with

275

TERMINAL RESPONSE TIMES MAY 1975

wherep= l /E(tJ .

The waiting-time distribution is easily shown to be

g (t,) = p pe-”tPdt, = pe-”tw,

and thus

Var (t,) = 7 1
P

2 . The polling-cycle time is a constant. The density
function is then the &function

Thus

and

Var (t,) = - 1
1 2 p 2 .

3. The polling-cycle time possesses a gamma function
density as given by Eq. (13). Thus

or

with the mean and variance given by

E (t ,) =-? 1 1 T ’ (a f 2)
2 a P r (a) ’

Delays in the front-end processor
A generic FEP can be regarded as a communications-
oriented computer containing a main storage, a central
control unit, a channel adapter for attachment to its host
processor (a more powerful general-purpose computer)
or a line adapter when used at remote locations to com-
municate with a local FEP, a communications line scan-

276 ner, and the necessary hardware to connect a certain

J. n. CHANG

number of communications lines. Depending on the
user’s requirements, there may be several types of scan-
ners and adapters available, differing in performance
capability and cost.

Some simple transmission control units perform func-
tions such as control character recognition, line-time-out
control, error checking, and character assembly and dis-
assembly. An FEP as described above can perform a
variety of other functions such as polling and addressing
of remote devices, control character insertion and dele-
tion, character code translation, buffering, error record-
ing and diagnosis, and the block processing capability
that can correct text incorrectly entered from a station.
For the purpose of analysis, all these functions can be
consolidated to form three types of tasks that require
service from the processor at different priority levels.
Another model is required to study the channel or line
adapter.

Central control unit
The Central Control Unit is essentially a processor han-
dling three types of tasks at different priority levels. If
we treat the processor as a server in the context of
queuing theory, the first type of input with priority 1
(the highest) is the bit and character service in the scan-
ner. The second job stream with priority 2 is the data
transfer through the channel adapter, and the third input
is the background processing in units of blocks. Each of
these three types of jobs requires a certain amount of
service from the processor.

Inputs to the processor
Let us consider a teleprocessing network of L line
groups with identical traffic statistics for each line be-
longing to the same group. There are L, lines in the ith
group (i = 1 , 2 , . . . L) with line utilization pi, line speed
Si (characters/ second), and block length Bi (characters/
block).

The total network loading or the request rate of the
scanner character service is

A, = x piSiLi (ch/s). (29)

Note that the time to serve a character depends on the
type of scanners. Under normal conditions the output
rate of the FEP should be nearly equal to the input rate,
and the character service request rate at the channel
adapter is

A, = A, + e , (30)

where E: denotes the transfer of command and control
information. The request rate of the background process-
ing expressed in blocks per second is

L

i=l

IBM J. RES. DEVELOP.

and the average time to process a block b,,, is assumed broadcasting, less than 1 for data collection. The charac-
to be independent of the block size. We shall use bij to ter arrival rate at the host processor queue is then
denote the ith moment of service time for thejth class
arrivals.

Assumptions
In view of the fact that only average values are generally
available for the arrival and service rates, it appears - 1

1 + R ”’ necessary and proper to make the following assump-

R
AH=-

l + R A z (34)

and the character arrival rate at the FEP queue is

(3 5)

tions:

a. All of the three types of arrival patterns have Pois-
son distributions with parameters A,, A,, and A,,
respectively.

b. The service mechanism is of mixed priority schemes
in the sense that classes 1 and 2 can interrupt class
3 on a preemptive basis. The job unit for both the
scanner and the adapter is in characters which are
not supposed to be broken into bits before being in-
terrupted. The job unit for background processing
is in blocks consisting of many characters.

Message delay and background queue length
The message delay caused by the presence of the FEP
and the storage required to handle the background pro-
cessing are, respectively, the queuing time and queue
length of the lowest priority job stream. As shown in
[51, we have the mean message delay

where A, is the total network loading or throughput to the
system given by Eq. (30) and subscripts H and F denote
host and front-end processors, respectively.

Let the first and second moments of the service time
(provided by the channel) be denoted by b, and b,, re-
spectively. As shown in [6] the average channel queu-
ing time in the FEP is

t,, = c, + a, /2a1 , (36)

where

hFb2 c, =
2(1 - A,b,) ’

3 Although higher moments can be determined in princi-
ple, the increment to the results is inconsequential, espe-

(32) cially in terms of the tedious computations involved and
additional information required.

and the mean background queue length

where

uj = hibli f o r j = 1 , 2, 3 and u,, = 0.
j

i=l

Channel adapter
The service provided by the FEP control program on

~ data transfer across the channel adapter has been includ-
~ ed in the throughput analysis. Here we shall treat the

adapter itself as a server and determine the queue sizes
~ and waiting time both at the FEP and at the host proces-

sor. The channel operation suggests that we can formu-
late the present system as a queuing model with two
queues attended by a single server and with alternating
priorities.

Let R be the ratio of output rate to input rate. R de-
pends on the applications under study and is generally
equal to 1 for message switching, greater than 1 for

Analysis of the host processor
The major software structure of the host processor con-
sists of many blocks of user written logic, called pro-
grams. The most important series of programs to assist
the user in overall computer operation is called an oper-
ating system. The received data transmitted from the
terminal is first handled by portions of the operating sys-
tem and then passed to the user’s application programs.
Application programs are designed and implemented by
the user to perform the necessary processing required in
handling every business function. Access methods for
teleprocessing provide an interface between the FEP
and the user’s application programs. Thus, the operating
system, application programs, and the access methods are
the three essential software parts of a host processor.

As far as the hardware structure is concerned, the use
of auxiliary storage devices like disk files is essential
because the main memory is limited in space. User’s
data, application programs, and even a major portion of
the operating system are stored in these devices and are
retrieved as the need arises. It is now clear that a de- 277

MAY 1975 TERMINAL RESPONSE TIMES

Processor I
queue I CPU queue

I 4 KJyes

I

Figure 2 A model for the host processor.

tailed analysis of the host processor is extremely compli-
cated and requires complete information on the system
(both hardware and software) and the user’s applications.
Because the primary goal of this paper is to study the
general situation rather than to serve as a reference for
any particular system or application, we analyze a model
common to most systems and one that can be easily
modified to meet other specific applications.

The host-processor model considered here consists of
a single central processing unit (CPU) , a main memory,
several channels, and disk files. The disk subsystem has
the feature of rotational position sensing (RPS), by which
the channel and storage control are allowed to be re-
leased during most of the record search time, thus in-
creasing channel and control unit availability for other
operations. The processor itself is operated in a multi-
programming environment and assumed to have more
than one program waiting for processing. The CPU
makes an input/output (1 / 0) request whenever the
program being processed issues an I / O command (such
as READ, WRITE GET, PUT) either for data or for any in-
formation not available in the main memory. Having
initiated this request, the CPU starts to process the next
program waiting at the CPU queue. At the same time,
the requested 1 / 0 operations are performed indepen-
dent of the CPU. When the desired information has been
transferred into the main memory, the program that made
such a request will now join the CPU queue waiting for
processing. This process is repeated until all the re-
quired processing is completed for a particular program
and the next program waiting at the processor queue is
admitted into such a partition to start these repeated
operations. A schematic diagram is given in Fig. 2 to
show the relationships between various queues and sys-
tem components.

The basic model just described belongs to the general
class of queuing networks (see [7, 81). A special case
of the queuing network is a cyclic queue that was studied
by Chen and Shedler [9] for the case of exponential
CPU processing time and constant 1 / 0 service. Shelder
[101 subsequently allowed general distributions for

278 the 1 / 0 service time. Expressions related to system

throughput were obtained by Shedler [101 and those re-
lated to disk files were derived by Chang and Gorenstein
[1 11 in a more general environment. Justification for and
effects of various assumptions have been given in the
cited references and will not be repeated here.

Service time of the host processor
Consider the following assumptions:

1. There is more than one program resident in the main
memory, giving rise to contention among processing
resources.

2. The CPU can be operated concurrently with the in-
formation transfer unit (ITU) , which consists of the
channel, the control unit, and the disk devices.

3. Both the queue in front of the CPU and the queue in
front of the ITU are served under a FIFO (first-in,
first-out) queuing discipline.

4. System overhead is negligible.
5. N,,, the number of programs being processed in the

main memory, is a constant so that the system is in a
saturated mode.

6. The successive ITU service times are independently
and identically distributed as a random variable W
with arbitrary distribution F,(t) , i.e.

F , (t) = Prob{ W 5 t } (37)

7. The successive CPU service times are independently
and identically distributed as a random variable C/ with
exponential distribution having rate parameter u, i.e.,

F l , (t) = Prob { I / 5 t } = 1 - e-ut for t 1 0 . (38)

8. A program requires a random number M , of CPU
services for completion and M , has a geometric dis-
tribution with parameter q. The probability of termina-
tion after the jth CPU service is

Prob{M, = j } = (1 - q) j - l q , j 1 1.

If the above assumptions hold, then, as shown in [101,
the rate of departure from the host processor has the
long-term expectation

The effective service time of the processor is then

(39)

Statistics of the ITU service time have been derived
in [101 and ro is calculated by

I. H. CHANG IBM J . RES. DEVELOP.

where

F,(t) = 1 - 2 ~

I;-1 * ?) l

1=0
I ! (43)

Suppose now that the ITU service time has the Er-
langian distribution, or

with a1 = E"0 (integer part) ;
Var(W)

since

and

We can show that after some algebraic manipulations

G, = /31a1u'
(u + ',)"'"I (k + al k - I)

Response time at the host processor
We can now calculate the response time at the host pro-
cessor by treating the CPU and ITU together as a service
facility. Because many transactions enter and leave the
host processor, dependence between various transac-
tions seems small and the processor service time can be
assumed to have exponential distribution with parameter
E (D) , given by Eq. (39). Similar assumptions have been
used by authors in studying the ARPA networks [121
and verified satisfactorily by measurements and simu-
lations. By applying an M / M / I (Poisson arrival/Ex-
ponential service time/Simple serve) queuing model,
we can get our estimate for the processor response time
given by

MAY 1975

(47)

where pH = A,E(S,) and A, is the total transaction ar-
rival rate at the host processor.

Other time elements and the total response time
So far we have calculated three major elements of a ter-
minal response time; namely, waiting time for polling,
delays in the FEP, and the turn-around time at the host
processor. Other elements are the input and output
transaction transmission times and the addressing time,
which is just the time an output transaction has to wait
for the availability of output lines.

Let Lin be the length of input (from terminal to CPU)
transaction, and Lo,, that of the output transaction. If the
line speed is S,, then the transaction transmission times
are Ti, = Lin/ S, and To,, = L,,,,/ S,.

Since S, is a constant, we have

in terms of the mean and variance of transaction lengths.
When all the required processing is finished at the host

processor, the response or the output transaction is then
forwarded to the FEP for transmission. Sometimes out-
put transactions are stored in disk files before being re-
trieved for transaction. We now assume that these trans-
actions are waiting in the main storage of the FEP and
calculate the waiting time. Note that in the half-duplex
mode the output transactions will have priority over the
input transactions on a non-preemptive basis, while in
the full-duplex mode the usual FIFO queuing discipline
is employed. The line connecting the FEP and TCU
plays the role of server in the context of queuing theory
and its speed becomes the service rate. By applying an
M / G / 1 queuing model we have:

1 . in half-duplex mode,

(49)

279

TERMINAL RESPONSE TIMES

Table 1 Description of a host processor. 2. in full-duplex mode,

M 1 PS number . 0. I50 A,E"S,)
Operating System . OS E(Ta) = 2[1 - A2E(SL)] '
No. of Byte Multiplexor Channels.. I
No. of Block Multiplexor Channels. I
No. of Selector Channels . 1 E (T ~ ') =
No.o fFEPs . 2

Use of DASD with RPS . 50% and

(51)

A,E3(S,,) + A,E2(S,)
3[1 - A,E(S,)] 2[1 - A2E(SL)]"

(5 2)

Degree of multiprogramming . 2

Use of DASD without R P S . . . 50%
Var (Ta) = E(TU2) - E' (T,) ,

Table 2 Description of disk files.

DASD with RPS
No. of modules . 4
Data transfer rate . 806 kB/s
Rotational delay . 16.7 ms
No. of page-size sections 4
Constant1 . 25 ms
Constant 2 . 1.57 ms
Total no. of track/cylinders 100

DASD without RPS
No. of modules . 6
Data transfer rate . 312 kB/s
Average seek time . 165 ms
Variance of seek time . 1044
Rotational delay . 33.3 rns
Data transfer time . 10 ms
Overhead per record . 1 ms

Table 3 Communication controls.

with AI and A, the input and output transaction rates
along that particular line.

Now, we add a word about the total terminal response
time. It is stated in previous sections that the total re-
sponse time is the sum of various components and essen-
tially no dependence exists among them because of the
high degree of mixing among various transactions. We
can simply write the mean (or the variance) of the sum
as the sum of individual means (or the variances).

Example
In this section we give a simple example that illustrates
some of the results of the paper. The system under con-
sideration consists of a single host processor, two front-
end processors, four line groups, and several disk mod-
ules.

The host processor is a general-purpose computer and
the two front-end processors represent, respectively, a
simple transmission control unit and a more sophisticat-
ed communications controller. The host processor is
described by its MIPS number (million instructions exe-
cuted per second), operating system (OS, DOS, etc.) ,

Communications access method BTAM number of various types of channel, degree of multipro-

Line control procedure . BSC
Polling message length . 7 ch well as without the RPS feature. Table 1 shows the
Acknowledgment . 2 ch characteristics of the host vrocessor analvzed in this

End-of-poll list pause . 200 mS gramming, and the percentage of using disk files with as

EOT . 2 c h
Time for negative polling. 700 ms

paper. A front-end processor is specified by indicating
Time for positive polling . 1 . 1 s its type (either a simple control unit 0 1 % a more compli-

.

Time for addressing . 1.2 s cated controller), and the number of line groups with and
without terminal control units, together with some time
constants required to perform certain communications
functions. The characteristics of disk files are outlined in

Table 4 Description of line groups.
Table 2, and information related to communication con-
trols is shown in Table 3. Table 4 gives the traffic statis-

Line type . HDPX tics for one ofthe eight line groups, e.g., transaction arri-
No. of lines/group . 3 val rate, line speed, message length.
No. of terminals/line . 5
Line speed in ch / s 15 The nature of input transactions or the environment in
Average block size . 50 ch which the system operates is determined by a combina-
Modem turn-around time . 100 ms tion of several terminal modes such as sim& inauirv.

.

Message ratio of output/input 1
Input message rate per terminal 0.001

1 ,, inquiry and update, data entry, and complete inquiry.
Average input message length 100 ch Transactions Operating in each one of these modes would
Variance of input message length. 200
Average output message length 100 ch

invoke specific application programs, from which the

Variance of output message length 200 number of CPU services and disk access rates can be
280 predetermined. As an example, the following steps may

.
.

J. H. CHANG IBM J. RES. DEVELOP.

Table 5 Average response time for each transaction in one line group.

~

E/cruc./rtv
0.75 1 .00

"_ ~ ~ ~ ~~ ~~~ ~~ ~~~

Waiting for polling 1.144 1.176
Input transmission 7.767 7.767
Delay in FEP 0.00 1 0.001
Processing in H P 0.484 0.683
Waiting for addressing 0.104 0.139
Output transmission 7.867 7.867
Total response time 17.365 17.632

*Load ratio = A/A,, A,, = normal load.

be required for transactions operating in a complex in-
quiry mode:

1. Read message.
2 . Log message.
3. Process 150 instructions.
4. Read a quick look-up type of file of perhaps 20 cyl-

5 . Process I O 0 to I50 instructions.
6. Read a large file covering 2 to 4 packs.
7. Read an intermediate work-type file for tracking cer-

tain changes to the systems.
8. Process 200 to 300 instructions.
9. Write message to terminal.

In our example we assume equal distribution for all
three of the most popular modes; namely, simple inquiry,
inquiry and update, and data entry.

With the supply of the above input parameters, we can
calculate the terminal response times for each line
group. Table 5 summarizes the results for one particular
line group and shows how each element of the response
time changes as the transaction arrival rates vary. Here
X, represents the normal traffic rates given by Table 4.
Although the results are self-explanatory, a few words
seem worth mentioning. Among all of the elements that
constitute the terminal response time, some of them
depend solely on the physical structures of the commu-
nication path and transactions and show no effect due to
traffic variation. The input and output transaction trans-
mission times belong to this category. Other elements,
on the other hand, are direct derivatives of the queuing
and congestion situations. If the traffic is light, very little
delay would occur. As the amount of traffic starts to
build up, transactions experience longer delays and
sometimes those queuing delays may become the domi-
nating parts of the terminal response time. For systems
with low-speed lines (15 characters/s or less), the
input and output transmission times constitute a major
portion of the total response time for light traffic situa-

inders.

MAY 1975

Lortd r d o *
1.25 1.50 1.687

1.208 1.240 1.264
7.767 7.767 7.767
0.015 0.02 1 0.315
1.093 2.457 20.829
0.174 0.210 0.237
7.867 7.867 7.867

18.123 19.563 38.3 I4

tions. The use of a small or large host processor does
not affect the final result much. If the input rate is high,
then each transaction spends more time on the host
side and this delay can be reduced significantly by em-
ploying more disk files and/or a more powerful host
processor. As part of a system design tool, techniques
presented in this paper can be used iteratively to check
the locations of various bottlenecks and suggest ways
to improve system efficiency. By taking the cost of the
system into consideration, a pricelperformance compu-
tation can easily be made to indicate where money
should be invested for the best return.

Conclusions
As can be seen from the techniques and their potential
applications, they are not all-inclusive; that is, there are
parameters of interest for which analytic techniques are
not provided. By going through the actual development
of most of the techniques, we can easily see that their
development is very complex and time-consuming and
hence it would take a lot of time and effort to develop all
the necessary techniques. We believe, however, that
techniques provided here furnish a framework for more
specific studies. It is the purpose of this paper to give an
estimate of the total terminal response time, but not the
detailed distributions, without which the actual percen-
tile of response time cannot be obtained. A reasonable
approximation of the percentile can be obtained by as-
suming a normal or a gamma distribution for the total
response time. We suggest that further effort be devoted
to the calibration and validation process. All system de-
signers should keep in mind the problem of how to col-
lect the correct input data and how to validate mathe-
matical models against actual measurements.

Acknowledgment
The author thanks Y . C. Chen, P. E. Green, A. J .
Karchere, and D. T. Tang for their encouragement and
support. He also thanks H. Eisenpress and L. S. Loh for
their programming assistance. 281

TERMINAL RESPONSE TIMES

References
1. P. E. Green and D. T. Tang, “Some Recent Developments

in Teleprocessing System Optimization,” IEEE Inter-
communication Conference Record, New York, March
1973.

2. J. L. Eisenbies, “Conventions for Digital Communication
Link Design,” IBM Syst. J. 6 , 267 (1967).

3. J. P. Gray, “Line Control Procedures,” Proc. IEEE 60,
1301 (1972).

4. D. R. Cox, Renewal Theory, Methuen Monograph, John
Wiley & Sons, London, 1962.

5 . B. V. Gnedenko and I. M. Kovalenko, Introduction to
Queuing Theory, Israel Program for Scientific Translations,
Jerusalem, 1968.

6. L. Takacs “Two Queues Attained by a Single Server,”
Uper. Res. 16, 639 (1968).

7. W. J. Gordon and G. F. Newell, “Closed Queueing Sys-
tems with Exponential Servers,” Uper. Res. 15, 254 (1967).

8. J. R. Jackson, “Jobshop-like Queueing Systems,” Manage-
ment Science 10, 13 1 (1963).

9. Y. C. Chen and G. S. Shedler, “A Cyclic Queue Network
Model for Demand Paging Computer Systems,” Research

282

J . H. CHANG

Report RC-2398, IBM Thomas J. Watson Research Cen-
ter, Yorktown Heights, New York 10598, March 1969.

10. G. S. Shedler, “A Cyclic-Queue Model of a Paging Ma-
chine,” Research Report RC-2814, IBM Thomas J . Wat-
son Research Center, Yorktown Heights, NY 10598, March
1970.

11. J . H. Chang and S. Gorenstein, “A Disk File System
Shared by Several Computers in a Teleprocessing Environ-
ment,” Proceedings of PIB International Symposium on
Computer-Communications und Teletra@c, Brooklyn,
NY, April 1972, pp. 177.

12. L. Kleinrock, “Analytic and Simulation Methods in Com-
puter Network Design,” Proc. Spring Joint Computer Con-
ference (AFIPS) 36, Spartan Books, New York, 1970,
p. 569.

Received May 23, I974

The author is located at I B M Corporate Headquarters,
Armonk, New York 10504.

IBM J . RES. DEVELOP.

