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Terminal  Response  Times in Data Communications 
Systems 

Abstract: A response  time  analysis for  a general class of terminals-to-computer subsystem is presented in this paper.  The model 
used is based on the most advanced  data communications  system in which terminals are connected to Terminal Control  Units (TCU)  
that  are in turn  connected  to local Front-End  Processors (FEP).   The line control procedures used to interface a  TCU and an FEP 
may be half-duplex Binary Synchronous Communications (BSC) , half-duplex Synchronous  Data Link Control (SDLC),  or full-du- 
plex SDLC.  The models presented here  can  be used to  determine bottlenecks in the entire system and  to facilitate the initial phase of 
system design and  configuration. 

Introduction 
A  generic configuration of data communications systems 
consists of many components  such  as terminals, Termi- 
nal Controller  Units (TCU) , communications  lines, 
remote  as well as local Front-End  Processors (FEP)  , 
host processors, and  auxiliary storage devices (see Fig. 
1 ) . Each  one of these  components  has  its own specifica- 
tions  and  operating characteristics in terms of data  rate, 
transmission  media,  and  functional  capabilities. One of 
the key factors in design and evaluation of such systems 
is the calculation of terminal response time, which can 
be defined as the time  interval from the  operator’s  press- 
ing the last key (send  key) of the input to  the terminal’s 
typing or displaying the first character of the  response. 
Systems differ widely in their response time  require- 
ments, and the  response time needed can, in turn, have  a 
major effect on the design of the  data transmission  net- 
work and the  data processing facilities. This paper  pre- 
sents  the development of an analytical  framework for 
analyzing response time  requirements of data communi- 
cations systems. 

The terminal response time as defined above is the 
totality of several time elements.  At the time  when the 
send key is depressed,  the complete transaction has al- 
ready  been  stored  at a prespecified buffer area in the 
TCU, one  for each  terminal. Transactions stored at their 
terminal buffers cannot be transmitted to  the host  site 
until the particular TCU at which these  transactions re- 
side is polled by the local FEP in accordance with a giv- 
en polling list. The time spent by a transaction waiting 
for polling is the first time  element to be calculated in 
obtaining the total  terminal response time. This element 
depends  on  the  system configuration and line pro- 
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along communications lines is relatively easy  to calcu- 
late once we know the length of a transaction and the 
line speed.  When a transaction arrives at an FEP, cer- 
tain delays may occur  because this is where  most com- 
munications  functions are performed. In  case  the  FEP is 
a simple control unit whose  only  function is character 
assembly  and  disassembly, such delay would be negligi- 
ble. After the whole transaction has entered the  host 
processor, its  processing  time depends  on  the applica- 
tion programs, CPU processing speed, operating system, 
access  methods, and the  characteristics of the auxiliary 
storage devices  such as disk files. A  completely  pro- 
cessed  transaction will then wait at the FEP until the 
addressed line and TCU  are ready to receive  their re- 
sponses.  The length of this waiting time can generally be 
analyzed by an  approximate queuing model. 

Readers familiar with teleprocessing systems  are 
aware of the  fact that there  are many different  variations 
in system  configurations and  operations.  The connection 
between the TCU and FEPs may be in the  form of 
loops, stars,  or multi-drops. The mode of transmission 
may be  half-duplex or full-duplex with different line con- 
trol procedures  such as  Binary Synchronous Communi- 
cations  (BSC)  and  Synchronous  Data Link Controls 
(SDLC). After  an inquiry has  been sent  to the  host  site 
for processing, the whole communication path may be 
held throughout the  entire question-answering  period, or 
the sending  terminal may release the communication 
path, in whole or in part, so that  other terminals and 
TCUs can  send  and  receive  their transactions. It is as- 
sumed in this  paper  that  a terminal will release its line 
after  its  transaction is keyed  in,  and that several TCUs 
share the same high speed line in a  multi-drop  fashion to 
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communicate with the local FEPs.  However, both the 
half-duplex and full-duplex modes  can be accommodated 
by the analysis. 

In a recent  survey  paper,  Green and Tang I ]  dis- 
cussed in depth  the  state of the art in using analytical 
models to design  terminal-oriented systems.  They di- 
vided the whole design and configuration process into 
two  parts: the network models and  the host  models. 
Various problem areas and the progress to  date were 
summarized. It was  indicated  that there  has been no over- 
all treatment of complete computer communications sys- 
tems that would allow one  to carry out  the configuration 
process, taking into account details of the various trans- 
actions within the system. To  the  best knowledge of the 
author, the  present  paper represents  the first attempt  to 
bridge the gap between,  on  the  one hand, buffered termi- 
nals with terminal cluster controllers  and line control in 
the network  models, and, on the  other hand, CPU mod- 
els, file accessing,  and  front-end  processor analysis in 
the host models. The models presented  here can  be  used 
to  determine  bottlenecks in the  entire  system  and  to fa- 
cilitate the initial phase of system design and configura- 
tion. 

Polling cycle analysis 

Polling  and  operations in u polling  cycle 
Under normal  operating  conditions  several  terminals as 
well as  several TCUs may be prepared  to transmit trans- 
actions at  the  same time from  remote locations to  the 
host  site.  Only one can do so, and the  others must wait 
their turns. To  organize  this, the line will normally be 
polled. For  cases where  terminals are controlled  by the 
TCUs,  as  assumed in our model, transactions  are  sent  to 
the controller  at will and accumulated there so that only 
the TCUs need to be polled. In  other  cases, terminals 
are polled individually. Normally the local FEP (if any) 
or  the  host  processor organizes the polling. In  the main 
memory there is a polling list telling the programs the 
sequence in which to poll the  TCUs  or terminals. The 
polling list and its  use therefore  determine  the priorities 
with which the  remote devices are  scanned. 

There  are several  major  time elements  that  constitute 
a polling cycle,  and  these include transaction transmis- 
sion  time, the time for  either  an unsuccessful (negative) 
or a successful (positive) poll and the associated ac- 
knowledgment. Except  for  the first item, all other ele- 
ments  depend to a great  extent  on  the line control  pro- 
cedures employed by the system. Two  such  procedures 
are considered in our model: the  Binary Synchronous 
Communications (BSC)  and  the  Synchronous  Data 
Link Controls  (SDLC) . Without going into details (see, 
for example, [ 21 and [ 3 ] ) ,  some of the differences  be- 
tween these  are  that BSC can be  used  only for half-du- 

MAY 1975 

Terminal 

0, 

d' 
Figure 1 A typical data-communications system. 

plex transmission while SDLC can  provide both  the half- 
duplex  and the full-duplex modes, together with some 
built-in functions to  reduce communications overhead 
as indicated in the following diagram. 
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Here POLL is the polling message  generated by the host 
site, INPUT is the transaction  transmitted  from  the re- 
mote terminal to the  host  site, OUTPUT is the transac- 
tion transmitted  from the  host site to the remote termi- 
nal, ACK is the acknowledgment of the receipt of a 
transaction, EOT is the  end of transmission, and SELECT 

is the selection of the  proper  remote device for receiving 
a transaction  from  the host  site. 

Transaction  transmission time 
Let K be a discrete random  variable  denoting the num- 
ber of transactions removed  from a typical TCU each 273 
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time  this TCU is polled. The distribution  function of K 
will be considered in the next  section.  We also let Li, be 
the length (in number of characters) of each input  trans- 
action and S, be the line speed  (in number of characters 
per second). If there  are M, TCUs in the  system,  the 
total time  required for  the  transaction transmission dur- 
ing a polling cycle is then 

t,'" = M,KL,,/S,. (1) 

Although it is generally true  that  the  sum of random 
variables may behave quite differently from  each mem- 
ber of the  sum,  for analytic as well as practical reasons, 
we assume in  Eq. ( 1 )  that all of the M, terminal control 
units are identical  in structure  and all terminals generate 
similar traffic. The extension to more  rigorous cases is 
straightforward but would introduce many involved 
complications in computation. 

Time element related  to communications overhead 
Let L,, La, Le be the lengths of polling, acknowledge and 
EOT messages,  respectively. The time  element  related 
to a positive polling is  then 

i M,(L,/S, + C , ) ,  for  SDLC 

M,[(L,+L,+L,) /S ,+C,I , forBSC,  ( 2 )  

where C ,  is a constant representing the time caused by 
modem establishment  and other propagation delays. 

In general the  cycle time can be described in the form 

n 

t,'2' = 

a K + b i f K > O  
t, = g ( K )  = t p ( l )  + t,") = 

C,, otherwise, (3  1 
where a = M,L, , /S ,  and b = tpr2), and C,, is the time 
element associated with a negative poll. It is now neces- 
sary  to  obtain  the distribution  function of K. 

Input process to the TCU 
For  the terminal subsystem  under  consideration, we 
assume  that M, TCUs  are polled by a single FEP  (there 
may be more  than one  FEP in large systems)  and  on  the 
average M i  terminals are  connected  to a nearby TCU. 
Consider a  particular  terminal, one  out of a group with a 
total of M, terminals (the population source).  In most 
interactive  systems  the terminal operator  does not send 
any  inquiry  before the  response  to  the previous one  has 
been  received. Thus this  terminal, after a time T ~ ,  starts 
to  transmit a transaction  for  the first time. After receiv- 
ing the  response,  the terminal becomes idle for a time T~ 

before making the  second  request  for  data transmission. 
In general, it stays  for a  time T~ in the  source before 
making the ith demand for  the use of communications 
facilities. 

Let  the distribution  function of the inter-arrival  time 
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A ( t )  = Prob ( T ~  5 t )  . (4) 

Instead of specifying the input process through the 
inter-arrival-time  distribution at  the  TCU  from all the 
sources, which  involves  both the distribution and  the  size 
of the  source, we specify the input process through 
the distribution of T~ above, which is the inter-arrival 
time from  one terminal. 

Because the size of the  source is M,,  the distribution 
of K ( t ) ,  the number of arrivals  up to time t is 

Prob{K(t) = k }  = ( k t ) [ A ( t ) ] k [ l  - A(t )IMt- , ,  ( 5 )  
M 

which reduces  to 

Prob{K(t) = k }  = ( ,) [ 1 - e-Xi]ke-A(Mt-k)t 
M 
k (6) 

if the arrival process is exponentially distributed with 
parameter A. 

Number of transaction removed  per poll in each TCU 
The probability that k transactions  have arrived at a TCU 
during  a polling cycle t p  is 

p k =  [ p(K( t , )  = k) f ( t , )d t , ,  (7)  

as tp  is a continuous  random variable  having probability 
density  function (p.d.f.) f(t,). On  the  other  hand, t, is 
also a function of the  discrete  random variable k as  seen 
in Eq. (3). It is thus  proper  to  rewrite 

k = 0,  1 ,  2 , .  . ., M , ,  ( 8 )  

M t  

and 2 P k =  1, 

where P I  has  the  same meaning as P ,  with the  subscript 
changed.  We now have a set of simultaneous equations 

k=O 

M t  

' k  = 2 PtkPl  
1=0 

Mi 

2 P I =  1 
I=O 

with the coefficient plk given by 

It is noted that 

M t  

p lk  = 1 for all I ,  
k=O 
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so that  these coefficients are transition  probabilities. 

manipulations 
The solution to Eq. (9) is given below by elementary 

(Po,  PI, .  . ., P,,) 

( 1, Pl' ,   P*' ,  . . .. P,,') 

( l + P , ' + P * ' + . - + P , , ' ) '  
- - ( 1 1 )  

where 

(Pl', P*". . ., P,,') 
- - (pol9 PO*?. ' '3 p O M t )  [I - ( p l k ' )  I-'? 

and where I is the identity matrix and (pf,') is the M ,  X M ,  
matrix  formed by deleting the first row  and first column 
of the original matrix (pf,). 

After having obtained the P,, the  nth  moment of the 
polling cycle time  can  readily  be expressed  as 

One  can now fit f( t p )  by a gamma  distribution  function 

with its  Laplace transform 

where 

Iff ( t,) does not fit a  gamma  function, we  can approxi- 
mate @(s) by [4] 

Waiting time for polling 
The terminals in our model are assumed to  be identical 
with respect to  transaction generation  intensity. The 
host  processor  (actually its local FEP) receives transac- 
tions  and polls each  TCU in a  prescribed  cyclic order 
(polling list).  Transactions  that have  been keyed in and 
are waiting at a given TCU  are transmitted almost simul- 
taneously after this TCU is polled. 

We fix our  attention upon a given simple terminal (out 
of the whole subsystem of M, identical  terminals)  pos- 
sessing a transaction generation  intensity in number of 
transactions per unit of time and follow its  history over a 

complete polling cycle. After  the TCU is polled by the 
host  processor,  transactions waiting in the  TCU  are 
transmitted to the  host  site  and  the next TCU in  se- 
quence is served similarly. This particular TCU under 
consideration will be polled again after a  random  time t ,  
(polling cycle)  and  the host processor may find it either 
empty  (negative polling) or with transactions waiting 
(positive polling). 

Because the polling signal comes  to  any particular 
TCU every tp  seconds,  where tp  assumes some  known 
distribution, the polling process is indeed  a  renewal pro- 
cess. In particular, it  is an ordinary  renewal process be- 
cause  the t,,s are independent identically distributed 
random  variables. With the aid of some useful results 
available in the  theory of the renewal process [4], we 
now evaluate  the density  function of the time that a trans- 
action has  to wait before being polled by the  host site. 
This situation is similar to a  queuing process in which 
service is available only at service-intervals, which form 
a  renewal  process.  A customer arriving at time t will have 
to wait a time t ,  for  the first service-instant. The limiting 
distribution of t ,  can  be  expressed  as 

The  moments of the limiting distribution of this waiting 
time are easily obtained  from the  Laplace transform. 
Because 

2"cf( t,) ; s} = @( s) = Iom e-"Pf( t,) dt, 

and 

we have 

The  jth moment of t ,  about  the origin, as it exits, is 
given by the coefficient of ( - s ) ' / j !  in the  Taylor  series 
expansion of its Laplace transform. Therefore 

Three  examples of different polling-cycle time dis- 
tributions are considered  here: 

1 .  The polling-cycle time is exponentially  distributed with 
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wherep= l /E( tJ .  

The waiting-time distribution is easily  shown to  be 

g (  t,) = p pe-”tPdt, = pe-”tw, 

and  thus 

Var ( t,) = 7 1 
P 

2 .  The polling-cycle time is a constant.  The  density 
function is then  the &function 

Thus 

and 

Var ( t,) = - 1 
1 2 p 2  . 

3. The polling-cycle time possesses a  gamma  function 
density  as given by Eq. ( 13). Thus 

or 

with the mean  and variance given by 

E ( t , )  =-? 1 1 T ’ ( a f 2 )  
2 a P  r ( a )  ’ 

Delays in  the front-end processor 
A generic FEP can  be regarded as a communications- 
oriented  computer containing a main storage, a central 
control unit,  a  channel adapter  for  attachment to its  host 
processor (a more powerful  general-purpose computer) 
or a line adapter when used at remote locations to com- 
municate with a local FEP, a communications line scan- 
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number of communications lines. Depending  on  the 
user’s requirements,  there may  be several  types of scan- 
ners  and  adapters available, differing in performance 
capability and cost. 

Some simple transmission  control  units  perform func- 
tions such  as control character recognition,  line-time-out 
control,  error checking, and  character  assembly  and dis- 
assembly.  An FEP  as described  above can  perform  a 
variety of other  functions  such as polling and  addressing 
of remote  devices, control character insertion and dele- 
tion,  character  code  translation, buffering, error  record- 
ing and  diagnosis,  and the block processing  capability 
that can correct  text incorrectly entered from a station. 
For  the  purpose of analysis, all these functions can  be 
consolidated to form  three  types of tasks  that  require 
service  from  the  processor  at different priority  levels. 
Another model is required to  study  the channel or line 
adapter. 

Central control unit 
The  Central  Control  Unit is essentially a processor han- 
dling three  types of tasks  at different  priority levels. If 
we  treat  the  processor  as a server in the  context of 
queuing theory,  the first type of input  with  priority  1 
(the highest) is the bit and  character  service in the  scan- 
ner. The  second job stream with  priority 2 is the  data 
transfer through the channel adapter,  and  the third input 
is  the background  processing  in  units of blocks. Each of 
these  three  types of jobs  requires a certain  amount of 
service  from  the processor. 

Inputs to the processor 
Let us consider a teleprocessing  network of L line 
groups  with  identical traffic statistics  for  each line be- 
longing to  the  same group. There  are L, lines in the  ith 
group  (i = 1 ,  2 , .  . . L )  with line utilization  pi, line speed 
Si (characters/  second),  and block length Bi (characters/ 
block). 

The total network loading or  the  request  rate of the 
scanner  character service is 

A, = x piSiLi (ch/s).  (29) 

Note  that  the time to  serve a character  depends  on  the 
type of scanners.  Under normal  conditions the  output 
rate of the FEP should be nearly  equal to  the input rate, 
and the  character  service  request  rate  at  the  channel 
adapter  is 

A, = A, + e ,  (30) 

where E: denotes  the  transfer of command and  control 
information. The  request  rate of the background  process- 
ing expressed in blocks per second is 

L 

i=l 
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and  the  average time to  process a block b,,, is assumed broadcasting,  less  than 1 for  data collection. The  charac- 
to be independent of the block size. We shall use bij to  ter arrival rate  at  the host processor  queue is then 
denote  the ith  moment of service time for  thejth  class 
arrivals. 

Assumptions 
In view of the  fact  that only  average  values are generally 
available for  the arrival and service rates, it appears - 1 

1 + R ”’ necessary and proper  to make the following assump- 

R 
AH=- 

l + R A z  (34) 

and the  character arrival rate  at  the  FEP  queue is 

( 3 5 )  

tions: 

a. All of the  three  types of arrival patterns  have Pois- 
son  distributions  with parameters A,, A,, and A,, 
respectively. 

b. The service  mechanism is  of mixed priority schemes 
in the  sense  that  classes 1 and 2 can  interrupt  class 
3 on a preemptive basis. The  job unit for  both the 
scanner and the  adapter is in characters which are 
not  supposed to be  broken  into  bits  before being in- 
terrupted.  The  job unit for background  processing 
is in blocks  consisting of many characters. 

Message  delay  and  background  queue length 
The message  delay caused by the  presence of the FEP 
and the storage  required to handle the background pro- 
cessing are, respectively, the queuing  time  and queue 
length of the lowest  priority job stream. As shown in 
[ 51, we have  the mean message  delay 

where A, is the total network loading or throughput to  the 
system given by Eq. (30) and subscripts H and F denote 
host and front-end processors, respectively. 

Let  the first and  second  moments of the  service time 
(provided by the  channel) be denoted by b, and b,, re- 
spectively. As shown in [6] the  average channel  queu- 
ing time in the FEP is 

t,, = c,  + a, /2a1 ,  (36) 

where 

hFb2 c, = 
2( 1 - A,b,) ’ 

3 Although higher moments can be  determined in princi- 
ple, the increment to  the results is inconsequential, espe- 

(32) cially in terms of the  tedious  computations involved and 
additional  information  required. 

and the mean background queue length 

where 

uj = hibli f o r j  = 1 ,  2, 3 and u,, = 0. 
j 

i=l 

Channel  adapter 
The service  provided  by the FEP control  program on 

~ data  transfer  across  the channel adapter  has been includ- 
~ ed in the throughput  analysis. Here we shall treat  the 

adapter itself as a server  and  determine  the  queue sizes 
~ and waiting time  both at  the  FEP and at  the host  proces- 

sor. The channel operation suggests that we can  formu- 
late  the present system as a  queuing model with two 
queues  attended by  a single server and with alternating 
priorities. 

Let R be the ratio of output  rate  to input  rate. R de- 
pends on  the applications under  study and is generally 
equal  to 1 for message  switching, greater than 1 for 

Analysis of the host processor 
The major  software structure of the  host  processor con- 
sists of many blocks of user written logic, called pro- 
grams. The most important  series of programs to assist 
the  user in overall computer  operation is called an oper- 
ating system.  The received data transmitted from  the 
terminal is first handled by portions of the operating  sys- 
tem  and  then  passed to  the user’s application  programs. 
Application  programs are designed  and  implemented by 
the  user  to perform the  necessary processing  required in 
handling every  business  function.  Access methods for 
teleprocessing  provide an interface between  the FEP 
and the user’s application  programs. Thus,  the operating 
system, application  programs, and  the  access  methods  are 
the  three essential  software parts of a  host processor. 

As far  as  the  hardware  structure  is  concerned,  the  use 
of auxiliary  storage  devices like disk files is essential 
because  the main memory is limited in space.  User’s 
data, application  programs, and  even a major portion of 
the operating system  are  stored in these devices  and are 
retrieved as  the need  arises. It is now  clear that a de- 277 
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Figure 2 A model for the host processor. 

tailed analysis of the  host  processor is extremely compli- 
cated  and  requires  complete information on  the system 
(both  hardware and software)  and  the user’s  applications. 
Because the primary goal of this  paper is to  study  the 
general  situation rather than to  serve  as a  reference for 
any  particular system  or application, we analyze a model 
common to most systems and one  that  can be easily 
modified to meet other specific applications. 

The  host-processor model considered  here consists of 
a single central  processing unit (CPU) , a main memory, 
several  channels,  and disk files. The disk subsystem  has 
the  feature of rotational position sensing (RPS),  by which 
the channel  and  storage  control are allowed to be re- 
leased  during  most of the record search time, thus in- 
creasing  channel  and  control  unit availability for  other 
operations. The  processor itself is operated in a multi- 
programming environment and  assumed to  have more 
than one program waiting for processing. The  CPU 
makes  an  input/output ( 1 / 0 )  request  whenever  the 
program being processed  issues  an I / O  command (such 
as READ, WRITE GET, PUT) either  for  data  or  for any in- 
formation  not  available in the main memory.  Having 
initiated this request,  the CPU  starts  to  process  the next 
program waiting at  the CPU queue. At the  same time, 
the  requested 1 / 0  operations  are performed  indepen- 
dent of the  CPU. When the desired information has been 
transferred into  the main memory, the program that made 
such a request will now join  the CPU queue waiting for 
processing. This  process is repeated until all the re- 
quired  processing is completed for a  particular  program 
and  the next  program waiting at  the  processor  queue is 
admitted into  such a  partition to  start  these  repeated 
operations. A schematic diagram is given in Fig. 2 to 
show  the relationships between various queues and sys- 
tem  components. 

The  basic model just described  belongs to  the general 
class of queuing networks  (see [ 7, 81). A  special case 
of the queuing  network is a cyclic queue  that was  studied 
by Chen and Shedler [9] for  the  case of exponential 
CPU processing time and  constant 1 / 0  service. Shelder 
[ 101 subsequently allowed general  distributions for 
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throughput  were  obtained by Shedler [ 101 and those re- 
lated to disk files were derived by Chang and Gorenstein 
[ 1 11 in a  more  general  environment.  Justification for  and 
effects of various assumptions  have  been given in the 
cited references and will not  be repeated  here. 

Service time of the host processor 
Consider  the following assumptions: 

1. There is more  than one program  resident in the main 
memory, giving rise to contention  among  processing 
resources. 

2. The  CPU can  be operated concurrently with the in- 
formation transfer unit (ITU) , which consists of the 
channel,  the control  unit,  and the disk devices. 

3. Both the  queue in front of the CPU and  the  queue in 
front of the  ITU  are served under a FIFO (first-in, 
first-out)  queuing  discipline. 

4. System overhead is negligible. 
5. N,,, the  number of programs being processed in the 

main memory, is a constant so that  the system is in a 
saturated mode. 

6. The  successive  ITU  service times are independently 
and  identically  distributed  as  a  random  variable W 
with arbitrary distribution F,( t ) ,  i.e. 

F , ( t )  = Prob{ W 5 t }  (37)  

7. The  successive  CPU  service times are independently 
and identically distributed as a  random  variable C/ with 
exponential  distribution having rate  parameter u,  i.e., 

F l , ( t )  = Prob { I /  5 t }  = 1 - e-ut for t 1 0 .  (38)  

8. A  program  requires  a  random number M ,  of CPU 
services  for completion and M ,  has  a  geometric  dis- 
tribution with parameter q. The probability of termina- 
tion after  the  jth  CPU service is 

Prob{M, = j }  = ( 1  - q ) j - l q ,  j 1 1. 

If the  above  assumptions hold, then,  as shown in [ 101, 
the  rate of departure  from  the host processor  has  the 
long-term expectation 

The effective service time of the  processor is then 

(39) 

Statistics of the  ITU  service time have been  derived 
in [ 101 and ro is calculated by 
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where 

F,(t) = 1 - 2 ~ 

I;-1 * ? ) l  

1=0 
I !  (43) 

Suppose now that  the  ITU service  time  has the  Er- 
langian distribution, or 

with a1 = E"0 (integer  part) ; 
Var( W )  

since 

and 

We  can  show that  after  some algebraic  manipulations 

G, = /31a1u' 
( u  + ',)"'"I ( k  + al k - I )  

Response time at the host processor 
We  can now calculate the  response time at  the  host pro- 
cessor by treating the CPU and ITU  together  as a  service 
facility. Because many transactions  enter  and leave the 
host  processor,  dependence between  various transac- 
tions  seems small and the  processor service  time can be 
assumed to  have exponential  distribution with parameter 
E ( D ) ,  given by Eq. (39).  Similar assumptions  have been 
used by authors in studying the  ARPA  networks [ 121 
and verified satisfactorily by measurements  and simu- 
lations. By applying an M / M /  I (Poisson  arrival/Ex- 
ponential service  time/Simple  serve) queuing model, 
we can get our estimate for  the  processor  response time 
given by 

MAY 1975 

(47) 

where pH = A,E(S,) and A, is the total transaction  ar- 
rival rate  at the  host processor. 

Other  time elements and the total response time 
So far we have calculated three major elements of a  ter- 
minal response time;  namely, waiting time for polling, 
delays in the  FEP, and the  turn-around time at  the host 
processor.  Other  elements  are  the input and  output 
transaction transmission  times and  the addressing  time, 
which is just  the time an  output  transaction  has  to wait 
for  the availability of output lines. 

Let  Lin be the length of input (from terminal to  CPU) 
transaction, and Lo,, that of the  output  transaction. If the 
line speed is S,, then the  transaction transmission  times 
are Ti, = Lin/ S, and To,, = L,,,,/ S,. 

Since S, is a constant, we have 

in terms of the mean and variance of transaction lengths. 
When all the required  processing is finished at  the host 

processor,  the  response  or  the  output  transaction  is then 
forwarded  to  the  FEP  for transmission. Sometimes out- 
put transactions  are stored  in disk files before being re- 
trieved for transaction. We now assume  that  these  trans- 
actions  are waiting in the main storage of the FEP and 
calculate the waiting time. Note  that in the half-duplex 
mode the  output  transactions will have priority over  the 
input transactions  on a non-preemptive  basis, while in 
the full-duplex mode the usual FIFO queuing  discipline 
is employed. The line connecting the  FEP and TCU 
plays the role of server in the  context of queuing theory 
and  its  speed becomes the  service  rate. By applying an 
M / G /  1 queuing model we have: 

1 .  in half-duplex mode, 

(49) 
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Table 1 Description of a host processor. 2. in full-duplex mode, 

M 1 PS number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0. I50 A,E"S,) 
Operating System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  OS E(Ta) = 2[ 1 - A2E(SL)] ' 
No. of Byte Multiplexor Channels.. . . . . . . . . . . . . . . . .  I 
No. of Block Multiplexor Channels. . . . . . . . . . . . . . . . .  I 
No. of Selector Channels . . . . . . . . . . . . . . . . . . . . . . . . .  1 E ( T ~ ' )  = 
No.o fFEPs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 

Use of DASD with RPS . . . . . . . . . . . . . . . . . . . . . . . . .  50% and 

(51 )  

A,E3(S,,) + A,E2(S,) 
3[ 1 - A,E(S,)] 2[ 1 - A2E(SL)]" 

( 5 2 )  

Degree of multiprogramming . . . . . . . . . . . . . . . . . . . . . .  2 

Use of DASD without R P S . .  . . . . . . . . . . . . . . . . . . . . .  50% 
Var ( Ta)  = E( TU2)  - E' ( T,) , 

Table 2 Description of disk files. 

DASD with RPS 
No. of modules . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 
Data transfer rate . . . . . . . . . . . . . . . . . . . . . . . . .  806 kB/s 
Rotational  delay . . . . . . . . . . . . . . . . . . . . . . . . . .  16.7 ms 
No. of page-size sections . . . . . . . . . . . . . . . . . . .  4 
Constant1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25 ms 
Constant 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.57 ms 
Total no. of track/cylinders . . . . . . . . . . . . . . . . .  100 

DASD without RPS 
No. of modules . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 
Data  transfer  rate . . . . . . . . . . . . . . . . . . . . . . . . .  312 kB/s 
Average  seek time . . . . . . . . . . . . . . . . . . . . . . . . .  165 ms 
Variance of seek  time . . . . . . . . . . . . . . . . . . . . . .  1044 
Rotational  delay . . . . . . . . . . . . . . . . . . . . . . . . . .  33.3 rns 
Data  transfer time . . . . . . . . . . . . . . . . . . . . . . . . .  10 ms 
Overhead per  record . . . . . . . . . . . . . . . . . . . . . . .  1 ms 

Table 3 Communication  controls. 

with AI and A, the input and  output  transaction  rates 
along that particular line. 

Now, we add a word about the  total  terminal response 
time. It is stated in previous sections  that the  total  re- 
sponse  time is the sum of various components and essen- 
tially no dependence  exists among  them  because of the 
high degree of mixing among  various  transactions.  We 
can simply write the mean (or  the  variance) of the  sum 
as the  sum of individual means  (or  the  variances). 

Example 
In this  section we give a simple example that illustrates 
some of the  results of the paper. The  system under  con- 
sideration consists of a single host processor, two front- 
end  processors,  four line groups, and several disk mod- 
ules. 

The host processor is a  general-purpose computer and 
the  two front-end processors  represent, respectively, a 
simple transmission  control unit and  a  more  sophisticat- 
ed communications  controller. The host processor is 
described by its MIPS number (million instructions exe- 
cuted per second), operating system (OS, DOS, etc.) , 

Communications access method . . . . . . . . . . . . . . . . . .  BTAM number of various  types of channel,  degree of multipro- 

Line control procedure . . . . . . . . . . . . . . . . . . . . . . . . .  BSC 
Polling message length . . . . . . . . . . . . . . . . . . . . . . . . . .  7 ch well as  without the RPS feature.  Table 1 shows the 
Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 ch characteristics of the  host  vrocessor analvzed in this 

End-of-poll list pause . . . . . . . . . . . . . . . . . . . . . . . . . . .  200 mS gramming, and the percentage of using disk files with as 

EOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 c h  
Time for  negative polling.  700 ms 

paper. A front-end  processor is specified by indicating 
Time for positive polling . . . . . . . . . . . . . . . . . . . . . . . .  1 . 1  s its type  (either a simple control unit 0 1 %  a  more compli- 

. . . . . . . . . . . . . . . . . . . . . . .  

Time for addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.2 s cated  controller), and the number of line groups with and 
without  terminal  control  units, together with  some  time 
constants required to perform  certain  communications 
functions.  The  characteristics of disk files are outlined in 

Table 4 Description of line groups. 
Table 2, and information  related to communication con- 
trols is shown in Table 3.  Table 4 gives the traffic statis- 

Line  type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  HDPX tics for  one  ofthe eight line groups, e.g., transaction arri- 
No. of lines/group . . . . . . . . . . . . . . . . . . . . . . . . . .  3 val rate, line speed, message length. 
No. of terminals/line . . . . . . . . . . . . . . . . . . . . . . . .  5 
Line  speed in ch / s  15 The  nature of input transactions  or  the  environment in 
Average block size . . . . . . . . . . . . . . . . . . . . . . . . . .  50 ch which the  system  operates is determined by a  combina- 
Modem turn-around  time . . . . . . . . . . . . . . . . . . . . . .  100 ms tion of several terminal modes such as  sim& inauirv. 

. . . . . . . . . . . . . . . . . . . . . . . . . .  

Message  ratio of output/input 1 
Input  message rate  per terminal 0.001 

1 ,, . . . . . . . . . . . . . . . . . .  inquiry and  update,  data  entry, and complete inquiry. . . . . . . . . . . . . . . . . .  
Average input  message  length . . . . . . . . . . . . . . . . . .  100 ch Transactions Operating in each  one of these modes would 
Variance of input  message length. . . . . . . . . . . . . . . .  200 
Average output message length 100 ch 

invoke specific application  programs,  from which the 

Variance of output message length 200 number of CPU services and  disk access  rates can  be 
280 predetermined. As an example, the following steps may 

. . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . .  
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Table 5 Average  response  time for each transaction in one line group. 

~ 

E/cruc./rtv 
0.75 1 .00 

"_ ~ ~ ~ ~~ ~~~ ~~ ~~~ 

Waiting for polling 1.144 1.176 
Input transmission 7.767 7.767 
Delay in FEP 0.00 1 0.001 
Processing in H P  0.484 0.683 
Waiting for addressing 0.104  0.139 
Output transmission 7.867 7.867 
Total  response time 17.365 17.632 

*Load ratio = A/A,, A,, = normal load. 

be required for  transactions operating in a  complex in- 
quiry mode: 

1. Read  message. 
2 .  Log  message. 
3.  Process 150 instructions. 
4. Read  a  quick  look-up type of file of perhaps 20 cyl- 

5 .  Process I O 0  to I50 instructions. 
6. Read a large file covering 2 to 4 packs. 
7. Read an intermediate  work-type file for tracking  cer- 

tain  changes to  the  systems. 
8. Process 200 to 300 instructions. 
9. Write  message to terminal. 

In  our  example we assume equal  distribution for all 
three of the most  popular modes; namely, simple inquiry, 
inquiry and update, and data  entry. 

With the supply of the  above input parameters, we can 
calculate the terminal response times for  each line 
group. Table 5 summarizes the results for  one particular 
line group  and  shows how each element of the  response 
time  changes  as  the transaction arrival rates vary. Here 
X, represents  the normal traffic rates given by Table 4. 
Although the results are self-explanatory,  a  few words 
seem worth mentioning. Among all of the  elements  that 
constitute  the terminal  response  time,  some of them 
depend solely on the  physical structures of the  commu- 
nication path and  transactions and show  no effect due  to 
traffic variation. The input  and output  transaction  trans- 
mission times  belong to this  category. Other  elements, 
on the other  hand,  are  direct derivatives of the queuing 
and congestion  situations. If the traffic is light,  very little 
delay would occur.  As  the amount of traffic starts  to 
build up, transactions  experience longer delays  and 
sometimes  those queuing delays may become  the  domi- 
nating  parts of the terminal response time. For  systems 
with  low-speed  lines ( 15 characters/s or less),  the 
input  and output transmission  times constitute a major 
portion of the total response time for light traffic situa- 

inders. 
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Lortd r d o *  
1.25 1.50 1.687 

1.208 1.240 1.264 
7.767 7.767 7.767 
0.015 0.02 1 0.315 
1.093 2.457 20.829 
0.174 0.210 0.237 
7.867 7.867 7.867 

18.123 19.563 38.3 I4 

tions. The use of a small or large host processor  does 
not affect the final result much. If  the input rate is high, 
then  each  transaction  spends  more time on  the host 
side and this  delay  can  be reduced significantly by em- 
ploying more disk files and/or a  more powerful host 
processor. As part of a system design tool, techniques 
presented in this  paper  can  be  used  iteratively to check 
the locations of various bottlenecks  and suggest  ways 
to improve  system efficiency. By taking the  cost of the 
system  into  consideration, a pricelperformance compu- 
tation can easily be  made to indicate where money 
should  be  invested for  the  best  return. 

Conclusions 
As can be  seen  from the  techniques and their potential 
applications,  they are not all-inclusive; that is, there  are 
parameters of interest  for which analytic techniques  are 
not  provided. By going through the actual development 
of most of the  techniques, we can easily see  that their 
development is very  complex and time-consuming  and 
hence it would take a lot of time  and effort to  develop all 
the  necessary techniques. We believe, however,  that 
techniques provided here furnish  a  framework for more 
specific studies. It is the purpose of this paper  to give an 
estimate of the total  terminal response time, but not the 
detailed  distributions,  without which the actual  percen- 
tile of response  time cannot be  obtained.  A  reasonable 
approximation of the percentile  can  be  obtained by as- 
suming  a  normal or a  gamma  distribution for  the total 
response time. We  suggest that  further effort be devoted 
to  the calibration  and  validation  process. All system  de- 
signers  should keep in mind the problem of how to col- 
lect the  correct input data and how to validate  mathe- 
matical models against  actual  measurements. 
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