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Performance  Analysis of a  Multiprogrammed  Computer 
System 

Abstract: A combination of analytical modeling and measurement is employed for  the performance  analysis of a  multiprogrammed 
computer  system.  First, a  cyclic queue model is developed for  the  system under study.  Then, model validation is attempted in both  con- 
trolled and  normal environments.  The  success of  the model is demonstrated by its prediction  of  performance  improvements  from sys- 
tem  reconfigurations.  Reasonable  correlation  between the measured  performance  and the model predictions under various degrees of 
multiprogramming is observed. Finally,  possible system reconfigurations are explored with the insight gained  from the performance 
analysis. 

Introduction 
Computer performance  evaluation is a topic of consider- 
able  current  interest. In general it deals with the prob- 
lems of ( 1) system  comparison, (2) system tuning, and 
(3)  system  design;  see,  for example, [ I ,  21. Two evalu- 
ation techniques  are commonly  employed: the measure- 
ment of actual systems  and modeling, which includes 
simulation,  statistical techniques,  and analytical  meth- 
ods. Measurement yields the  greatest fidelity with re- 
spect  to actual  configurations; the analytic approach is 
most attractive  because it can  economically  provide 
general insights into computer operations.  Much effort 
has been directed  towards both  analytical modeling and 
performance measurements [ 1,  2, 31, but too often 
these efforts have been decoupled. 

The analytical models which have been constructed 
are usually gross approximations of actual systems, of- 
ten  containing simplifying assumptions  for  the  sake of 
mathematical  tractability. The complaint about  these 
models is that they are  too simple to help the perfor- 
mance  analysis of real-life systems;  therefore,  the suc- 
cess of these models depends largely on how closely 
they can predict the performance of actual  systems. 
Efforts are  currently being made  to  analyze more  realis- 
tic models. However, measurements are often made 
without a structural model as  guidance;  thus, they can- 
not  be easily analyzed  and  any  conclusions drawn  are 
difficult to generalize to  other  systems  or  even  to small 
system changes. In this paper we attempt  to combine the 
two techniques,  analytical modeling and  measurements, 
for  the performance  analysis of a  multiprogrammed 
computer  system.  First, a cyclic queue model (CQM) 
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is developed for  the  system  under  study  and,  second, we 
discuss  the validation of the  CQM in both  controlled 
and  normal  environments. Then we compare  the  results 
from the  CQM with the results obtained  from another 
model, the  central  server model (CSM) . Finally,  possi- 
ble system reconfigurations are explored  with the insight 
gained from  the performance  analysis. 

Model development 
The  development of a model for  an actual computer  sys- 
tem depends on the  structural and  operational aspects of 
the  system and on the  data  desired.  The  hardware mod- 
ules in the system define its structure.  The workload 
characteristics,  the operating system strategies,  and the 
performance of the  hardware modules define its  behav- 
ior.  Each of these  aspects is examined in detail in the 
following paragraphs. 

The  computer  system being modeled is the  IBM  Sys- 
tem/360-75  at  the University of California, Santa Bar- 
bara  (UCSB) . The major components of this system  are 
the  CPU,  the main memory,  consisting of 512 kilobytes 
of high-speed core, and two megabytes of bulk core,  as 
well as two high-speed selector  channels, and  a multi- 
plexor  channel.  Auxiliary storage  consists of two IBM 
23 14’s (eight  disk drives on each  selector  channel) and 
an  array of tape  drives and hard copy equipment (on  the 
multiplexor channel). 

The operating system is the  standard 360 OS/MVT with 
HASP [4] that performs the spooling function, modified 
to  service a  time-sharing system  (UCSB on-line system) 
developed  at UCSB.  The principal  focus of this  study is 263 
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Figure 1 Job flow. 
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Figure 2 Cyclic queue model. 

on  the workload generated by the batch jobs, although 
the impact of the on-line system  on this  workload is also 
considered. 

A job  can be  broken up on several distinct tasks 
(known  as  steps),  such  as COMPILE,  LINK-EDIT, and EXE- 

CUTE, which must  be executed sequentially.  Along with 
these  steps,  system  tasks  are  also invoked, for  example, 
reader/  interpreter,  initiator/  terminator,  etc.  These  tasks 
are considered to be  part of a job's execution [ 51. 

Job I /Os to hard copy devices are spooled on auxil- 
iary storage  (disks).  The  actual I /  Os to  these  devices 
are performed by HASP. They  are completely  over- 
lapped with CPU processing (buffered)  and  require 
very little CPU time;  therefore,  these  devices and their 
channel (multiplexor  channel)  can be  excluded from  the 
model. Tape  operations  also utilize the  same  channel, 
but the small amount of activity observed  on  our  system 
warrants  their exclusion  from the model. 

A disk 1 / 0  involves  both the channel  and  a  disk 
drive. Drives in the  same disk  unit can  be busy  simulta- 
neously, but this occurs rarely in our  system.  Thus, 
there  are  two 1 / 0  processors in the model, each 1 / 0  
processor  (IOP) consisting of both  a selector channel 
and  a  disk unit. 

The model shown in Fig. 1 describes  the  job flow 
through the  system.  Jobs arrive  and wait in the input (or 

264 memory)  queue. When  a job  enters main memory and 

CHIU, DUMONT A N D  WOOD 

becomes active, it competes  for  the CPU and the  IOPs. 
The  measure of throughput is the  rate of CPU service 
request completions,  which is proportional to  the  job 
completion rate.  Under heavy traffic conditions we may 
represent  the  system with a closed  model, as  shown in 
Fig. 2. Such  a model is called a  cyclic queue model;  its 
analysis is discussed later. It  assumes a constant number 
of tasks, N ,  circulating in the  system. A job in execution 
may be  characterized by an alternating series of CPU 
requests  and I /  0 service requests until completion. The 
degree of multiprogramming may vary with dynamic 
partitioning (OSIMVT) ; however,  as  an approximation 
an  average  number, N ,  is used in the model. The model 
has one 1 / 0  queue  for  the  two 1 / 0  processors instead 
of individual I /  0 queues.  This simplifying assumption is 
tolerable because  the  resource allocator tends  to balance 
the load on  the  two 1 / 0  processors.  Reference  to a 
model with separate 1 /0  queues will be made during 
model validation. In the model a  task is not allowed to 
overlap its compute and 1 / 0  operations,  even though 
the actual system  does  have facilities to  coordinate  over- 
lapping compute and 1 / 0  operations of the  same  task. 
Measurements  on a System/360 Model 91 reported in 
[ 61 indicate that  such overlapping  was  seldom  employed, 
in fact less  than five percent  for  their  workload; we be- 
lieve our  system should behave similarly. 

When the CPU is busy, CPU requests must wait in 
the CPU  queue,  where  the  order of task  selection is 
based on priority. The  compute time for  each task  re- 
quest may be characterized by a random  variable, inde- 
pendently and identically distributed  (i.i.d.) for all tasks. 
The 1 / 0  service time is also  characterized by an i.i.d. 
random  variable for all tasks. 

The model shown in Fig. 2 is similar to  the machine- 
repair problem  studied  by  Koenigsberg [ 71. This prob- 
lem is analyzed as a  system of cyclic queues,  thus  the 
name cyclic queue model (CQM) . 

For  the  computer model, tasks  are analogous to ma- 
chines, with the 1 /0  processors representing the  work- 
ing stations  and  the CPU the only  repairman.  When the 
number of 1 / 0  processors equals or  exceeds  the num- 
ber of circulating tasks (i.e., no 1 / 0  queuing occurs), 
and when the 1 / 0  time  and compute time  distributions 
are both exponential  and the task  scheduling at  the  CPU 
and I /  0 queues is first-come-first-served (FCFS) , the 
model is known as  the machine interference problem 
[ 8 ,9 ] .  The I /  0 service  time  probability  density  function 
is given as 

with mean 1 / A ,  and the  CPU processing  time probability 
density  function is given as 
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with mean 1 / p .  This is also a  special case of the 
queuing  network model analyzed by Jackson [ IO]  and 
by Gordon and  Newell [ 1 11. 

The  steady  state  CPU utilization is given as 

p =  1 - 1 (3  1 
pn N! 

n=,) ( N  - n )  ! 

where p = A l p ,  the load factor, and N is the  average  de- 
gree of multiprogramming. 

When the number of 1 / 0  processors is less  than N, the 
steady state CPU utilization is given as 

P = 1 - 1 
. - , + I  

( I p ) "  + (Ip),v"+' c p "11' ( I  -4 ;4) 
n=O k=2 ,=1 

with I equal to  the number of I /  0 processors.  The  aver- 
age  system  throughput rate is therefore given by 

R ,  = P P ,  ( 5 )  

which is the mean number of task compute time (CPU 
service  request) completions per unit time. 

Another specialization of the queuing  network model 
is the  central  server model (CSM) [ 121. The model rep- 
resents  the  case where there is a separate 1 / 0  queue 
for each IOP.  Each task  completing  a compute time has 
a  certain probability of entering an I /  0 queue. Both the 
CQM  and  the  CSM  results  are  compared. 

Measurements from our  system  have shown that 
compute time  distributions are not  exponential and  that 
the coefficient of variation (CV) is often greater than 1 
(for exponential  distributions CV = 1 )  : the empirical data 
are  more closely  approximated by hyperexponential  dis- 
tributions, i.e., a weighted sum of exponentials [ 12, 131. 
An example is shown in Fig. 3: see [ 151 for an analysis 
of a  cyclic queue model with hyperexponential compute 
times. In general  its effect is degradation of resource uti- 
lization. 

CPU scheduling in our  system is preemptive-priority- 
driven, known as  the heuristic  approach [4, 16, 17, IS],  
and  not  first-come-first-served.  Higher priority is gener- 
ally given to  I/O-bound  tasks  or  tasks with extremely 
short  compute times.  Priorities are updated periodically 
based on some function of past  behaviour.  When a 
higher priority task completes  an 1 / 0  request it 
preempts a  lower priority task that is using the  CPU. 
The lower  priority  task will resume execution  only  when 
no  other task of a higher  priority is requesting the CPU. 
The result of this  scheduling policy is such  that  for CPU 
utilization computations we can  approximate  the CPU 
stage with a  first-come-first-served CPU scheduling  and 
an exponential compute time  distribution of the  same 
mean. See [ 151 for a  detailed verification of this asser- 
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Figure 3 Empirical data of compute time  approximated by a 
hyperexponential  distribution. 

tion. Our empirical data also show  that this is a fairly good 
approximation. Figure 4 is a diagram of the  data  for  the 
same workload as  that  ofFig. 3 except  that heuristic CPU 
scheduling is employed in Fig. 4. The  data  shown  are  the 
cumulative  distribution of compute time  between consec- 
utive 1 / 0  requests  (each  continuous  compute time is not 
necessarily  contributed by the  same  task).  The smooth 
curve is the exponential. 

The distribution for 1 / 0  times is also assumed to be 
exponential.  Figure 5 shows  the  data fitted with an expo- 
nential  distribution. As can  be seen,  the fit is not good 
but  at least the first two moments  can be matched with 
the exponential  distribution. Note  that 1 / 0  time is the 
sum of channel  busy  time  and  seek  time,  but  Fig. 5 
shows only channel  busy  time. The distribution for seek 
time  was not obtained,  due  to monitor limitations. 

The  system is interrupt-driven,  and CPU times for 
servicing interrupts  are considered as part of the task 
processing  times.  Since  a  task is modeled as  an  alternat- 
ing series of compute  and I /  0 times, we assume  that  the 
effect of interrupt  processing is elongation of mean  task 
compute time. The  overhead  for task  switching can be 
similarly modeled. 

Under normal environments the  UCSB on-line  system 
is active concurrently with batch processing  and is resi- 
dent in bulk core.  The on-line system runs as a separate 
task under 0s/360. It is compute-bound in nature and 
does very little I /  0 to  secondary storage. Terminal-user 
requests  are serviced with CPU time  acquired periodi- 
cally from O S .  Thus,  the effect of the on-line system  on 
batch  processing is modeled as  the elongation of com- 
pute times for batch tasks, which has  the  same effect as 
interrupt processing and task  switching overhead. 265 
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Figure 4 Empirical data of compute  time  under  heuristic CPU 
scheduling  approximated  by  an  exponential  distribution. 

varied, then the degree of multiprogramming is changed. 
These  parameters  are varied  systematically because 
cause-and-effect  relationships can be  isolated under 
reproducible environments.  Data obtained under normal 
environments are also  employed for model validation. 

The measurement tool is the  Tesdata  System Utiliza- 
tion Monitor,  a hardware monitor. The  standard  IBM 
System Management  Facility (SMF) is employed to  es- 
timate  the  average  degree of multiprogramming, N .  

We  disabled the on-line system when we  conducted 
the controlled experiments  because reproducible  envi- 
ronments  cannot be easily obtained while the on-line 
system is active. 

Controlled  experiments 
Three  sets of experiments  were conducted with a con- 
trolled  experiment. The first  involved studies before  and 
after  replacement of the bulk core,  the  second varied the 
degree of multiprogramming,  and the third  examined the 
job and CPU scheduling processes. 

0 10 20 30 40 50 60 70 

Time (ms)  

Figure 5 Empirical  data of channel  busy  time  approximated 
by an  exponential  distribution. 

In view of the  system  structure and  behavior dis- 
cussed, a  cyclic queue model for  the  System/ 360-75 at 
UCSB  thus  consists of one  CPU and two 1 / 0  proces- 
sors.  The  queue disciplines are  FCFS  for  both  the  CPU 
and the 1 / 0  processors. Exponential  distribution is as- 
sumed for both compute  and I /  0 times with means 1 / p 
and 1 /A, respectively. Figure 2 is a  diagram of the model 
structure;  the performance measures can  be  computed 
from equations (3) ,  (4), and (5). The model validation 
process  that follows tests  the sensitivity to  the  accuracy 
of the assumptions. 

Model validation 
We can validate the model developed in the last section 
by correlating observed performance with that predicted 
by the model with estimated  values for p, A and N under 
various  operating  conditions. Controlled  experiments 
are  conducted with fifty sample jobs selected  from our 

266 daily workload; first, effective CPU processing speed is 

CHIU, DUMONT AND WOOD 

Bulk core replacement During the period of this study, 
the eight-microsecond bulk core  (LCS)  that we origi- 
nally had was  replaced by a  1.8-microsecond bulk core 
(ECM). Controlled experiments, with the sample jobs  as 
the  drive load, were performed  before  and after the re- 
placement.  Because part of the operating system resides 
in bulk core,  the  core  replacement would affect job  exe- 
cution times, even though batch  jobs  can  request  storage 
only from high-speed core  (HSC) . 

Before the  experiment, main memory is cleared of any 
jobs presently  executing. The on-line system is disabled. 
The  probes from the  hardware monitor are  attached  to 
the  appropriate signal points. The  sample  jobs  are 
stacked  together  at  the  card  reader so that they can be 
read into  the  system continuously. Apart from the initial 
and  terminal transient  periods,  the heavy loading as- 
sumption is satisfied throughout the  duration of the ex- , 

periment. HASP selects  jobs  from  the  input  queue based 
on  the  amounts of estimated resource  requirement;  the 
job with the smallest requirement is chosen first. Due 
to  the job-selection algorithm and the heavy loading 
condition, the  order of stacking the  jobs  at  the card read- 
er  has little effect on  the  outcome of the experiments. 
The monitor is started  as soon as  the first job  card is 
read, and the monitor is stopped when the last job finish- 
es execution.  Summary data  are tabulated in Table 1 .  

Elapsed time is in seconds  and  represents  the time 
between the first job  card read and  the  last  job's termina- 
tion. Percentages  are based on elapsed time. As  one 
would expect, both CPU busy  time and elapsed  time 
have  decreased  after  the replacement. CPU busy  time 
may be  divided into  LCS busy  time and  non-LCS busy 
time. Knowing that  the cycle-time ratio of LCS  to  ECM 
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is 8 /  1.8 or  4.4, we can estimate CPU busy  time with 
ECM as 

(1746 - 691) + (691/4.4) = 1212 seconds. 

This  is very  close to  the busy time actually  measured 
( 1225 seconds). 

The channel busy times do not  include  seek  times 
(arm  movement  times).  They  are  rather evenly spread 
over  the  two  channels, especially for  the run with ECM. 
Note  that  the total  channel  busy  times are extremely 
close  for  the  two runs. This proves that  the  environment 
is reproducible,  and that  the cause-and-effect  relation- 
ship can be isolated. Total number of I /Os is the num- 
ber of explicit 1 / 0  requests  to  the disk  units  (half the 
number of start-I/ 0 commands).  This number was not 
measured  for the  case with LCS but we can use  the  same 
value  measured for the  case with ECM. 

The  parameter 1 / p for  the model is estimated by 

1 CPU busy time 
p number of I /  Os' 

Similarly, 1 / A  is given by 

1 channel  busy times 
h number of I/Os 

Average  seek time is average  arm movement  time, 
which is obtained  via a separate  experiment  because  we 
do not have enough hardware  counters during one ex- 
periment. The  average  degree of multiprogramming, N ,  
is estimated  from  information  gathered by SMF.  Even 
though five initiators are assigned to  process  jobs, mem- 
ory limitations hold N to about 2.2. 

The  throughput  increase  for this set of jobs  after re- 
placement is 19 percent.  Throughput is defined in the pre- 
vious  section as  the product of CPU utilization and p. 

With the model parameter values we can  compare  the 
performance  predicted with that measured. Figure 6  dia- 
grams CPU utilization, p ,  versus p obtained  from the 
model, as well as the measured  performance  values. 
Note  that  the model predictions are very close  to actual 
measurements, specifically within three  percent variation. 

Vuriution of degree of rnultiprogrumrning Next,  con- 
trolled experiments were  performed with the  number of 
initiators (an initiator corresponds  to a job) varied from 
one  to five. The number of initiators depicts  the maxi- 
mum degree of multiprogramming allowed. The  drive 
load is again the  set of 50 sample jobs.  These  jobs  are 
executed from one megabyte of ECM rather than  from 
348  kilobytes of HSC because we do not want  to be lim- 
ited by memory size. This time all jobs  are read into  the 
spooling queue on disk  before  the start of the experi- 
ments and  no  job printouts are  generated. To eliminate 
one  more variable, jobs  are  chosen from  the job  queue in 

-- - 

" - + average  seek time. 
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Figure 6 Model predictions  and empirical data for LCS and 
ECM configurations. 

Table 1 Controlled experiment description  before and after 
core replacement. 

Conjiguration Conjigurution 
with LCS with ECM 

Elapsed time ( s )  
Utilization ( s ;  %) 

CPU 
LCS 
Selector channel 1 
Selector channel 2 

Total channel ( s )  
Total no. of 1 / 0 5  
Model parameters 

1 l p  (ms) 
I l k  (ms) 
P = k I P  
N 

Throughput = R, ( s" )  

2580 

1746;67.7 
69 1 :27 
670:26 
928:36 

1598 
60802 

28.7 
26.2 + 20.5 

0.6 1 
2.2 
23.6 

2160 

1225;56.7 

834;39 
760;35 

1594 
60802 

20.1 
26.2 + 20.5 

0.43 
2.2 

28.1 

- 

a  first-come-first-served basis instead of by the HASP 

algorithm. The monitor starts  to collect data  as  soon  as 
the first job is selected from the  job  queue, and the moni- 
tor is stopped when the last job  has finished execution. 
Summary  data  are tabulated in Table 2. 

From runs one  to five elapsed  time decreases, but 
CPU busy time and total  channel  busy  time  stay about 
the same, which again demonstrates  the  consistency of 
these  experiments. Because we lacked sufficient hard- 
ware  counters, it was necessary  to obtain  seek (arm 
movement)  counts  and seek  times by repeating these 
experiments.  Notice  that  the percentage of 1 / 0  requests 
that need  arm movements (AM) increases with each 
run, showing  increased contention. But, for  the  sake of 
simplicity, we do not model the  increase of arm move- 
ment due  to increased contention.  An interesting obser- 
vation can  be made by comparing the  average seek  times 
in Table 2 with those obtained  from the  last  experiment 
(Table I ) .  A detailed  examination shows  that seek time 267 
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Table 2 Controlled experiment summary: the degree of multiprogramming is vaned. 

3 4 5 

Elapsed time ( s )  
Utilization (s;  %) 

CPU 
Channel 1 
Channel 2 

Total channel ( s )  
Total no. of I /Os  
% 1 / 0  to channel 1 
% 1 / 0  need AM 
Avg. seek time (ms) 
Model parameters 

1 l ~  (ms) 
l / h  (ms) 
P = h / Y  
N 

3445 

2068;60 
675;20 
580;17 

1255 
45050 
55.6 
22.6 
7.9 

44.9 
27.3 + 7.9 

1.276 
1 

2662 

2073;78 
63 1 ;24 
614;23 

1245 
47440 

52.6 
32 

13.6 

43.7 
26.2 + 13.6 

1.098 
1.93 

increases  are  due mainly to  the  contention of the initia- 
tors  for  the  system disk  packs. Thus, even  though N = 
2.2  for the experiment in HSC, its average seek  time is 
approximately the  same  as  that of N = 3.99 in Table  2; 
note  that both have five initiators in the  system. 

The model parameters 1 / p  and 1 /A are estimated as 
before. For  the  four-  and five-initiator runs the  actual 
degrees of multiprogramming are  lower than the maxi- 
mum allowed. This may be due  to  storage fragmentation 
problems,  but the  storage utilization measures  are not 
easily  obtained. 

Employing the estimated model parameters,  Table 3 
lists both  the  CSM  and  CQM predictions along with the 
measured  values. Percent deviation  from the measured 
value is also  shown.  In general, the  CSM predicts  a 
lower level of resource utilization due  to  the probability 
of a job waiting for a busy  channel while the  other  chan- 
nel is free [ 121. Note  that  for  the three-initiator case  the 
measured CPU utilization is closer  to  that predicted by 
CSM.  This may be due  to  the  fact  that  two  jobs  are allo- 
cated  to  one channel  and one  job is allocated to  the 
other  because  the operating system  does not  split the file 
of a job  over two channels.  For  the five-initiator case  the 
observed CPU utilization is between  the  CQM  and  the 
CSM predicted  values. For  the two- and four-initiator 
cases  the measured  performances are  closer  to  that 
predicted by CQM. For  the one-initiator case  the mea- 
sured  value is higher  than that predicted by the models. 
This could be  due  to a  certain amount of concurrent ac- 
tivity of HASP and job execution.  We have  seen  that a 
single model is insufficient to predict system perfor- 
mance accurately  for all operating conditions; however, 
the predictions from  the  two models  form the  upper  and 
lower bounds of the  actual performance. The  robustness 

268 of this observation may require  further testing. 

2435  2278  2258 

2072;85 
639;26 
602;25 

1241 
47528 
54.4 
35.9 
15.5 

2076;9 1 
616;27 
628;28 

1244 
47749 
52.8 
40.6 
18.4 

2079;92 
611;27 
626;28 

1237 
47665 
52.1 
48.1 
21.1 

43.6 43.5 43.6 
26.1 + 15.5 26.1 + 18.4 26.0 + 21.1 

1.048 0.978 0.926 
2.82 3.14 3.99 

Effect of scheduling Additional  controlled experiments 
have been conducted  to  study  the effect of scheduling. 
The three-initiator case  from  Table  2 was chosen  for com- 
parison, repeated as case A in Table  4.  First,  the  HETM 
(HASP Execution  Task  Monitor)  [4], previously em- 
ployed for  CPU scheduling, is removed. HETM  uses a 
heuristic approach,  as  discussed in the previous section. 
By removing HETM  we should expect a drop in perfor- 
mance because  the  compute time  distribution is hyper- 
exponential (Fig. 3 ) .  Indeed,  case B in Table  4  shows a 
drop in CPU utilization  without HETM.  Note  that  the 
drop is about 10.6 percent. 

Finally, case A is repeated  but with HASP job  sched- 
uling instead of FCFS. HASP assigns  priority to  jobs 
based on  job  class  (management  assigned), maximum 
CPU kill time (a number specified by the  user),  and 
maximum number of output lines (also specified by the 
user). All jobs in our  experiment belong to  the  same  job 
class;  therefore HASP weights the  jobs by the  other two 
factors.  The smaller the  amount of request,  the higher the 
job priority. Thus, the shortest running jobs get  through 
first. Case C in Table  4  is  the result of this  run. Note 
that CPU utilization has  dropped seven percent from case 
A. Also, the average  degree of multiprogramming has de- 
creased  to  2.52. A  more  detailed  analysis of the experi- 
ment  reveals that  short  jobs  are being executed  together 
at  the beginning of the  experiment  and this, in turn,  cre- 
ates a  temporary bottleneck  at  the  reader/interpreter. 
The  reader/interpreter is an operating  system  function 
[5] which converts  the  job control cards into  a table 
form that is acceptable by an initiator. This processing 
tends  to be I/O-bound. When the processing is com- 
plete the initiator may then  request memory  and 1 / 0  
resources from the  system  to  start  job execution. It 
turns  out  that  there is only one  reader/interpreter which 

CHIU,  DUMONT  AND WOOD IBM J .  RES. DEVELOP. 



Table 3 Correlation of empirical data with model  predictions. 

No. of CPU utilization 
initiutors N P Measured  CQM A ( % )  C S M  A(%) 

I 1 1.276 0.60 0.560 -6.7 0.560 -6.7 
2 1.93 1.098 0.78 0.800 +2.6 0.740 -5.1 
3 2.82 1.048 0.85 0.900 +5.9 0.840 -1.2 
4 3.14 0.978 0.9 1 0.9 15 + O S  0.855 -0.5 
5 3.99 0.926 0.92 0.945 +2.7 0.890 -3.3 

~ 

processes  jobs sequentially;  therefore, when job  execu- 
tion times are small compared to  readerlinterpreter time, 
a  bottleneck  forms. 

Normul environmmt 
In the normal  production environment  the on-line  sys- 
tem that resides in bulk core is active.  The batch jobs 
being executed in high-speed core  are from our normal 
workload.  Summary data recorded by the  hardware 
monitor over several  periods of operation are  presented 
in Table 5. Elapsed  time is in units of hours. Number of 
I/Os to  channels 1 and 2 are recorded  but  not shown in 
Table 5. Session 1 was taken when we still had the bulk 
core  LCS.  Sessions 2  through  7 are regular sessions 
covering  various  operating hours  after  LCS  was re- 
placed by ECM. Only the on-line system is active in 
session  7.  During  session 1 the system  went down 
twice; session 1' is the summary data  for  the interval in 
between. Thus, during session 1 ' the system is heavily 
loaded with a backlog of jobs.  Note  that  CPU utilization 
has dropped as  expected  after  the replacement of LCS. 
Channel 1 is utilized about twice as much as channel  2 
(due  to suboptimal data-set  configuration).  The multi- 
plexor  channel  busy  time is due mainly to tape 1/Os, 
printers, and  card readers, and 110 from the time-shar- 
ing terminals (as indicated by the multiplexor busy time 
of session 7) .   The model parameters  are estimated as 
before.  Unfortunately, we did not have enough hardware 
counters  to measure average seek  time at  the  same time, 
but the ratio T (defined as  CPU time f channels 1 and  2 
time) instead of p still gives an indication of the system 
load. This ratio for session 1 is much higher than  for 
other  sessions,  except session 7. Mean channel  busy 
time  (defined as  channels 1 and  2 busy time divided by 
the total number of disk 110s)  is rather  constant  over 
sessions 2  through 5 .  Session  7 shows  that the  on-line 
system is mainly compute-bound, with very little 110 
activity to  the disk  units. This  substantiates an earlier 
discussion about model development. 

Next, we use  the data of session 1 '  for model valida- 
tion.  We shall assume  the  average  degree of multipro- 
gramming to be 2.2 as indicated in Table I .  Also,  average 
seek  time is taken  to be  20.5 milliseconds (ms).  Thus, 
from the  CQM with 1 / A  = 49.9 ms, p = 0.995, and I = 
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Table 4 Controlled  experiment  summary:  CPU  and job 
scheduling are  varied. 

Case  A B C 

No. of initiators 
Elapsed time ( s )  
Utilization (s: %) 

CPU 
Channel I 
Channel 2 

Total  channel 
Total  no. of I / Os 
% 110 to  channel 1 

l / p  (ms) 
I / h  (ms) 
P = 
N 

3 
2435 

2072:85 
639:26 
602;25 

1241 
47528 
54.4 
43.6 

26.1 + 15.5 
1.048 
2.82 

3 
2732 

2065;76 
625;23 
580;2 1 

1205 
46098 

55 
44.8 

26.1 + 15.5 
1.077 
2.82 

3 
2614 

2070;79 
638;24 
60 1 ;23 

1239 * 
* 

2.53 
~~ ~ 

*Not recorded 

2, we get CPU utilization p = 0.825, which is within three 
percent of that actually  measured (Table 5) .  

Suppose  the  batch workload can be represented by 
the sample jobs.  Let us estimate  what  the throughput 
increase would be under  the  same conditions with ECM. 
The  49.7 ms of 1 / p  for session  1'  can be broken  up into 
28.7  ms + 21 ms, where 28.7  ms is the value for 1 / p  of 
the controlled experiment run with the sample jobs 
(Table 1 )  and,  therefore,  21  ms is due  to  the on-line  sys- 
tem. After  the  replacement l / p  becomes 24.9 ms, i.e., 
20.1  ms + 4.8 ms, where 20.1 ms is the value of 1 / p  
for  the  ECM configuration  shown in Table 1 ,  and 4.8 = 

2 114.4  (note  that  the  cycle time  ratio of LCS  to  ECM is 
4.4).  This value of 1 / p  is also approximately  equal to 
the  average  computed from sessions 2, 4, 5 ,  and 6.  As- 
suming that 1 / A  = 49.9 ms would not change, we have 
p = 0.5. Then, with N = 2.2, the  CQM  predicts p = 

0.625. Hence,  the throughput increase  after replacing 
LCS with ECM,  under  the  same heavy loading condi- 
tions, is 

0.625124.9 - 0.825149.7 
X 100=51%, 

0.825149.7 

which is a  substantial amount. Of course, this is a pre- 
dicted  increase  and would be difficult to verify since we 
cannot find a  normal  session with exactly  the  same load- 269 
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Table 5 Summary profiles under normal environment. 

Session 1 I' 2 3 4 5 6 7 

Elapsed  time 
Utiliz. of CPU (%I 
Channel 1 
Channel 2 
MPX channel 

Mean  channel (ms)  
T =  CPU /chan 1 & 2 

1 I p  (ms) 

R,, = P F  

4.45 2.0 4.45 
72 80 39 
30 31 28 
15 17 12 
12 12 13 
47.6 49.7 26.5 
29.4 29.4 27.2 

15.1 16.1 14.7 
1.62 1.69 0.98 

4.38 4.43 
33 34 
42 28 
13  13 
7 21 

18.0 24.5 
30.6 29.4 

18.3 13.9 
0.59 0.83 

4.01 
45 
39 
14 
8 

24.9 
29.7 

18.1 
0.84 

4.39 
43 
39 
14 
8 

24.3 
30.0 

17.7 
0.82 

.50 
34 
0.6 

7 
3.4 

145.0 
34.5 

8.39 
2.3 

ing conditions (both batch  and on-line)  as  those before 
the  core replacement. Hence,  one must be extremely 
careful  when  quantifying the benefits of a  configuration 
change. This is particularly true  when,  as  for  the on-line 
system,  the demand for service is elastic  and increases 
as performance increases.  From a  qualitative standpoint, 
however, there is no question that both  batch and  on- 
line performance  increased significantly with the  core 
replacement. 

Possible  reconfigurations 
The  purpose of reconfiguration is the improvement of 
performance,  which is the prime concern during  heavy 
loading periods. There  are a  number of ways to  do this. 
First, reconfigure by adding or replacing part of the 
equipment;  second, rearrange the  present configuration. 
Both cases  are examined. 

The first approach is to  increase  the investment in the 
system. In a cost study for  our system [ 151 the indica- 
tions from optimization of the present configuration are 
to add some additional high-speed memory. Figure 7 
diagrams CPU utilization, p ,  versus N ,  the degree of 
multiprogramming, for both CQM  and  CSM predictions 
at I = 2  and p = 0.5. With an additional 5 12 kilobytes of 
high-speed core  for batch jobs we can increase  the  de- 
gree of multiprogramming during  heavy  loading  periods 
from the  current operating  point of 2.2  to  about 4. Thus, 
a  throughput increase of 24.8 percent could  be expected, 
according to  the  CQM.  Even if the behavior at N = 4 is 
closer  to  the  CSM, we still get an increase of 6.4 per- 
cent.  It  seems  that increasing  memory  size is a viable 
alternative to upgrade our installation. 

For  the second case,  we examine  a  proposal to run the 
batch  jobs in ECM and the on-line system in HSC.  The 
batch  jobs would have 1000  kilobytes of memory  with 
an average degree of multiprogramming of four during 
heavy loading periods (as indicated in Table 2) .  From 
the  last section we know that  an  average 1 / p  is 24.9 ms, 
which is broken up  into 20.1 ms of batch  job time  and 
4.8 ms of on-line time,  and the throughput rate R, = p p  

270 = 25.1. When batch  jobs  execute  out of ECM their CPU 
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time roughly doubles  (note  that  1.8/0.75 = 2.4 with 
HSC  cycle time = 0.75 microsecond), Le., 20.1 ms be- 
comes  40.2 ms. Similarly, on-line time is halved. Thus, 
1 / p  = 42.6 ms and p = 42.6149.9 = 0.85, where again 
l / h  = 49.9. For N = 4,  CSM predicts p = 0.87;  there- 
fore R, = 20.4 which is less  than 25.1, the original con- 
figuration. Even for CQM,  the predicted value of p = 

0.93,  i.e., R, = 21.8, which is also  lower  than  before. 
Hence, we conclude  that  the proposal will not  improve 
batch performance. The  above analysis assumes  that  on- 
line load does not change with any  configuration 
change, but in reality this  assumption may not hold. 

In addition,  several changes  have already been made 
or will be  implemented as a direct result of this study. 

First,  observe  that  the  measurements indicated that 
channel 1 is twice as busy as channel 2. The channel 
loads have been  balanced by swapping system-residence 
disk packs,  because  the pack in channel 1 is much more 
utilized than its  counterpart in channel 2. 

Second, knowing that increasing the  amount of memo- 
ry available to  batch  jobs will increase throughput,  we 
moved part of the operating  system's data  area  to  ECM 
and  increased batch memory from 348 to  424 kilobytes 
of high-speed core.  Controlled  experiments  conducted 
before  and after  the  change  show  that CPU busy  time 
increased slightly (about six percent), but the  degree 
of multiprogramming has increased by an  average of 0.7 
job, which is enough to  produce a net gain of 10 per- 
cent in throughput. Thus, this change  has been imple- 
mented for  the normal production environment. 

Third,  as  the  study of job scheduling in section 3 
shows,  resources may not  be fully utilized during peri- 
ods of heavy loading: Many  short-running jobs could be 
submitted  during these periods, and such jobs  are select- 
ed first for execution by HASP. Student  jobs  are usually 
short and  they are given highest priority for  three of the 
five initiators normally active.  Table 4 shows  that  the 
bottleneck at  the  reader/interpreter can cause  CPU utili- 
zation to  drop by seven  percent;  therefore,  an algorithm 
that  does not give as much perference  to  short  jobs 
should  be considered.  The tradeoff, of course, is possible 
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degradation of student  job  turnaround time. A study is 
being carried out  to quantify  this tradeoff. 

Summary 
In this paper, a  cyclic queue model is developed for  an 
IBM  System/360-75 with os/MvT in the  UCSB on- 
line system. Model validation is attempted in both a 
controlled batch  environment and  normal  operating  con- 
ditions. Despite obvious  violations of some model as- 
sumptions and  the simplicity of the model, we found 
reasonable correlation between  the measured  perfor- 
mance  and the model predictions. The most success is 
demonstrated by its  prediction of performance improve- 
ments  from  system  reconfigurations; actual results  show 
excellent  agreement. The ability of the central server 
model [ 121 to predict  performance is also examined. It 
is found to give  a closer prediction of empirical  perfor- 
mance  only under  certain conditions. However,  both 
models together give the  bounds  for  the empirical  per- 
formance  observed. 

Under normal operating  conditions the on-line system 
is active and is treated implicitly as slowing down  the 
CPU  (or elongating compute time of batch jobs).  Statis- 
tics  from  a  period of heavy loading have shown the 
model predictions to be  reasonable. 

Several  proposals for system  reconfiguration are 
studied by exercising the  model; as a result,  appropriate 
actions have  been taken.  The new understanding of the 
system has led to improvements in both  operation  and 
performance. Though  the model is developed for a spe- 
cific system, its  application to  other  systems may also be 
appropriate.  Its use for virtual memory systems is cur- 
rently under  study.  Thus,  the integration of empirical 
measurements  with analytic models is a viable approach 
to  computer performance  analysis. 
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