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System

Abstract: A combination of analytical modeling and measurement is employed for the performance analysis of a multiprogrammed
computer system. First, a cyclic queue model is developed for the system under study. Then, model validation is attempted in both con-
trolfed and normal environments. The success of the model is demonstrated by its prediction of performance improvements from sys-
tem reconfigurations. Reasonable correlation between the measured performance and the model predictions under various degrees of
multiprogramming is observed. Finally, possible system reconfigurations are explored with the insight gained from the performance

analysis.

Introduction

Computer performarnce evaluation is a topic of consider-
able current interest. In general it deals with the prob-
lems of (1) system comparison, (2) system tuning, and
(3) system design; see, for example, [ 1, 2]. Two evalu-
ation techniques are commonly employed: the measure-
ment of actual systems and modeling, which includes
simulation, statistical techniques, and analytical meth-
ods. Measurement yields the greatest fidelity with re-
spect to actual configurations; the analytic approach is
most attractive because it can economically provide
general insights into computer operations. Much effort
has been directed towards both analytical modeling and
performance measurements [1, 2, 3], but too often
these efforts have been decoupled.

The analytical models which have been constructed
are usually gross approximations of actual systems, of-
ten containing simplifying assumptions for the sake of
mathematical tractability. The complaint about these
models is that they are too simple to help the perfor-
mance analysis of real-life systems; therefore, the suc-
cess of these models depends largely on how closely
they can predict the performance of actual systems.
Efforts are currently being made to analyze more realis-
tic models. However, measurements are often made
without a structural model as guidance; thus, they can-
not be easily analyzed and any conclusions drawn are
difficult to generalize to other systems or even to small
system changes. In this paper we attempt to combine the
two techniques, analytical modeling and measurements,
for the performance analysis of a multiprogrammed
computer system. First, a cyclic queue model (CQM)
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is developed for the system under study and, second, we
discuss the validation of the CQM in both controlled
and normal environments. Then we compare the results
from the CQM with the results obtained from another
model, the central server model (CSM). Finally, possi-
ble system reconfigurations are explored with the insight
gained from the performance analysis.

Model development

The development of a model for an actual computer sys-
tem depends on the structural and operational aspects of
the system and on the data desired. The hardware mod-
ules in the system define its structure. The workload
characteristics, the operating system strategies, and the
performance of the hardware modules define its behav-
ior. Each of these aspects is examined in detail in the
following paragraphs.

The computer system being modeled is the IBM Sys-
tem/360-735 at the University of California, Santa Bar-
bara (UCSB). The major components of this system are
the CPU, the main memory, consisting of 512 kilobytes
of high-speed core, and two megabytes of bulk core, as
well as two high-speed selector channels, and a multi-
plexor channel. Auxiliary storage consists of two IBM
2314’s (eight disk drives on each selector channel) and
an array of tape drives and hard copy equipment (on the
multiplexor channel).

The operating system is the standard 360 os/MVT with
HASP [4] that performs the spooling function, modified
to service a time-sharing system (UCSB on-line system)
developed at UCSB. The principal focus of this study is
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Figure 2 Cyclic queue model.

on the workload generated by the batch jobs, although
the impact of the on-line system on this workload is also
considered.

A job can be broken up on several distinct tasks
(known as steps), such as COMPILE, LINK-EDIT, and EXE-
CUTE, which must be executed sequentially. Along with
these steps, system tasks are also invoked, for example,
reader/ interpreter, initiator/ terminator, etc. These tasks
are considered to be part of a job’s execution [ 5].

Job I/Os to hard copy devices are spooled on auxil-
iary storage (disks). The actual I/Os to these devices
are performed by HAsP. They are completely over-
lapped with CPU processing (buffered) and require
very little CPU time: therefore, these devices and their
channel (multiplexor channel) can be excluded from the
model. Tape operations also utilize the same channel,
but the small amount of activity observed on our system
warrants their exclusion from the model.

A disk 1/0 involves both the channel and a disk
drive. Drives in the same disk unit can be busy simulta-
neously, but this occurs rarely in our system. Thus,
there are two I/Q processors in the model, each 1/0O
processor (IOP) consisting of both a selector channel
and a disk unit.

The model shown in Fig. 1 describes the job flow
through the system. Jobs arrive and wait in the input (or
memory) queue. When a job enters main memory and
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becomes active, it competes for the CPU and the IOPs.
The measure of throughput is the rate of CPU service
request completions, which is proportional to the job
completion rate. Under heavy traffic conditions we may
represent the system with a closed model, as shown in
Fig. 2. Such a model is called a cyclic queue model; its
analysis is discussed later. It assumes a constant number
of tasks, N, circulating in the system. A job in execution
may be characterized by an alternating series of CPU
requests and 1/ O service requests until completion. The
degree of multiprogramming may vary with dynamic
partitioning (0s/MVT); however, as an approximation
an average number, N, is used in the model. The model
has one 1/ 0O queue for the two 1/ 0O processors instead
of individual I/ O queues. This simplifying assumption is
tolerable because the resource allocator tends to balance
the load on the two 1/0O processors. Reference to a
model with separate I/O queues will be made during
model validation. In the model a task is not allowed to
overlap its compute and I/O operations, even though
the actual system does have facilities to coordinate over-
lapping compute and 1/ 0O operations of the same task.
Measurements on a System/360 Model 91 reported in
[6] indicate that such overlapping was seldom employed,
in fact less than five percent for their workload; we be-
lieve our system should behave similarly.

When the CPU is busy, CPU requests must wait in
the CPU queue, where the order of task selection is
based on priority. The compute time for each task re-
quest may be characterized by a random variable, inde-
pendently and identically distributed (i.i.d.) for all tasks.
The 1/0O service time is also characterized by an i.i.d.
random variable for all tasks.

The model shown in Fig. 2 is similar to the machine-
repair problem studied by Koenigsberg [7]. This prob-
lem is analyzed as a system of cyclic queues, thus the
name cyclic queue model (CQM).

For the computer model, tasks are analogous to ma-
chines, with the 1/ O processors representing the work-
ing stations and the CPU the only repairman. When the
number of I/0O processors equals or exceeds the num-
ber of circulating tasks (i.e., no I/O queuing occurs),
and when the 1/O time and compute time distributions
are both exponential and the task scheduling at the CPU
and I/0O queues is first-come-first-served (FCFS), the
model is known as the machine interference problem
[8, 9]. The I/ O service time probability density function
is given as

Sio(®) =xe ™ (1

with mean 1/, and the CPU processing time probability
density function is given as

Seru(t) = Me_m (2)
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with mean 1/u. This is also a special case of the
queuing network model analyzed by Jackson [10] and
by Gordon and Newell [11].

The steady state CPU utilization is given as

- (3)
hn N!
2P N

where p = A/ u, the load factor, and N is the average de-
gree of multiprogramming.

When the number of I/O processors is less than N, the
steady state CPU utilization is given as

|

p=1-335 ] I k-1 ’
S o+ U S [ T -0 | @
n=0 k=2 =1

with 7 equal to the number of 1/ O processors. The aver-
age system throughput rate is therefore given by

R, =pu, (5)

which is the mean number of task compute time (CPU
service request) completions per unit time.

Another specialization of the queuing network model
is the central server model (CSM) [12]. The model rep-
resents the case where there is a separate 1/0 queue
for each IOP. Each task completing a compute time has
a certain probability of entering an 1/ O queue. Both the
CQM and the CSM results are compared.

Measurements from our system have shown that
compute time distributions are not exponential and that
the coefficient of variation (CV) is often greater than 1
(for exponential distributions CV = 1) ; the empirical data
are more closely approximated by hyperexponential dis-
tributions, i.e., a weighted sum of exponentials [ 12, 13].
An example is shown in Fig. 3: see [ 15] for an analysis
of a cyclic queue model with hyperexponential compute
times. In general its effect is degradation of resource uti-
lization.

CPU scheduling in our system is preemptive-priority-
driven, known as the heuristic approach [4, 16, 17, 18],
and not first-come-first-served. Higher priority is gener-
ally given to 1/0O-bound tasks or tasks with extremely
short compute times. Priorities are updated periodically
based on some function of past behaviour. When a
higher priority task completes an 1/0 request it
preempts a lower priority task that is using the CPU.
The lower priority task will resume execution only when
no other task of a higher priority is requesting the CPU.
The result of this scheduling policy is such that for CPU
utilization computations we can approximate the CPU
stage with a first-come-first-served CPU scheduling and
an exponential compute time distribution of the same
mean. See [15] for a detailed verification of this asser-
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Figure 3 Empirical data of compute time approximated by a
hyperexponential distribution.

tion. Our empirical data also show that this is a fairly good
approximation. Figure 4 is a diagram of the data for the
same workload as that of Fig. 3 except that heuristic CPU
scheduling is employed in Fig. 4. The data shown are the
cumulative distribution of compute time between consec-
utive I/ O requests (each continuous compute time is not
necessarily contributed by the same task). The smooth
curve is the exponential.

The distribution for I/ O times is also assumed to be
exponential. Figure 5 shows the data fitted with an expo-
nential distribution. As can be seen, the fit is not good
but at least the first two moments can be matched with
the exponential distribution. Note that 1/O time is the
sum of channel busy time and seek time, but Fig. 5
shows only channel busy time. The distribution for seek
time was not obtained, due to monitor limitations.

The system is interrupt-driven, and CPU times for
servicing interrupts are considered as part of the task
processing times. Since a task is modeled as an alternat-
ing series of compute and I/ O times, we assume that the
effect of interrupt processing is elongation of mean task
compute time. The overhead for task switching can be
similarly modeled.

Under normal environments the UCSB on-line system
is active concurrently with batch processing and is resi-
dent in bulk core. The on-line system runs as a separate
task under os/360. It is compute-bound in nature and
does very little 1/ O to secondary storage. Terminal-user
requests are serviced with CPU time acquired periodi-
cally from os. Thus, the effect of the on-line system on
batch processing is modeled as the elongation of com-
pute times for batch tasks, which has the same effect as
interrupt processing and task switching overhead.
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Figure 4 Empirical data of compute time under heuristic CPU
scheduling approximated by an exponential distribution.
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Figure 5 Empirical data of channel busy time approximated
by an exponential distribution.

In view of the system structure and behavior dis-
cussed, a cyclic queue model for the System/ 36075 at
UCSB thus consists of one CPU and two [/ O proces-
sors. The queue disciplines are FCFS for both the CPU
and the I/ O processors. Exponential distribution is as-
sumed for both compute and 1/ O times with means 1/ u
and 1/, respectively. Figure 2 is a diagram of the model
structure; the performance measures can be computed
from equations (3), (4), and (5). The model validation
process that follows tests the sensitivity to the accuracy
of the assumptions.

Model validation

We can validate the model developed in the last section
by correlating observed performance with that predicted
by the model with estimated values for w, A and N under
various operating conditions. Controlled experiments
are conducted with fifty sample jobs selected from our
daily workload; first, effective CPU processing speed is
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varied, then the degree of multiprogramming is changed.
These parameters are varied systematically because
cause-and-effect relationships can be isolated under
reproducible environments, Data obtained under normal
environments are also employed for model validation.

The measurement tool is the Tesdata System Utiliza-
tion Monitor, a hardware monitor. The standard IBM
System Management Facility (SMF) is employed to es-
timate the average degree of multiprogramming, N.

We disabled the on-line system when we conducted
the controlled experiments because reproducible envi-
ronments cannot be easily obtained while the on-line
system is active.

~ Controlled experiments

Three sets of experiments were conducted with a con-
trolled experiment. The first involved studies before and
after replacement of the bulk core, the second varied the
degree of multiprogramming, and the third examined the
job and CPU scheduling processes.

Bulk core replacement During the period of this study,
the eight-microsecond bulk core (LCS) that we origi-
nally had was replaced by a 1.8-microsecond bulk core
(ECM). Controlled experiments, with the sample jobs as
the drive load, were performed before and after the re-
placement. Because part of the operating system resides
in bulk core, the core replacement would affect job exe-
cution times, even though batch jobs can request storage
only from high-speed core (HSC).

Before the experiment, main memory is cleared of any
jobs presently executing. The on-line system is disabled.
The probes from the hardware monitor are attached to
the appropriate signal points. The sample jobs are
stacked together at the card reader so that they can be
read into the system continuously. Apart from the initial
and terminal transient periods, the heavy loading as-
sumption is satisfied throughout the duration of the ex-
periment. HASP selects jobs from the input queue based
on the amounts of estimated resource requirement; the
job with the smallest requirement is chosen first. Due
to the job-selection algorithm and the heavy loading
condition, the order of stacking the jobs at the card read-
er has little effect on the outcome of the experiments.
The monitor is started as soon as the first job card is
read, and the monitor is stopped when the last job finish-
es execution. Summary data are tabulated in Table 1.

Elapsed time is in seconds and represents the time
between the first job card read and the last job’s termina-
tion. Percentages are based on elapsed time. As one
would expect, both CPU busy time and elapsed time
have decreased after the replacement. CPU busy time
may be divided into LCS busy time and non-LCS busy
time. Knowing that the cycle-time ratio of LCS to ECM
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is 8/1.8 or 4.4, we can estimate CPU busy time with
ECM as

(1746 — 691) + (691/4.4) = 1212 seconds.

This is very close to the busy time actually measured
(1225 seconds).

The channel busy times do not include seek times
(arm movement times). They are rather evenly spread
over the two channels, especially for the run with ECM.
Note that the total channel busy times are extremely
close for the two runs. This proves that the environment
is reproducible, and that the cause-and-effect relation-
ship can be isolated. Total number of I/ Os is the num-
ber of explicit I/O requests to the disk units (half the
number of start-1/ O commands). This number was not
measured for the case with LCS but we can use the same
value measured for the case with ECM.

The parameter 1/ u for the model is estimated by

1  CPU busy time

w number of I/0s
Similarly, 1/X is given by

1 channel busy times
A number of [/Os

+ average seek time.

Average seek time is average arm movement time,
which is obtained via a separate experiment because we
do not have enough hardware counters during one ex-
periment. The average degree of multiprogramming, N,
is estimated from information gathered by SMF. Even
though five initiators are assigned to process jobs, mem-
ory limitations hold N to about 2.2.

The throughput increase for this set of jobs after re-
placement is 19 percent. Throughput is defined in the pre-
vious section as the product of CPU utilization and w.

With the model parameter values we can compare the
performance predicted with that measured. Figure 6 dia-
grams CPU utilization, p, versus p obtained from the
model, as well as the measured performance values.
Note that the model predictions are very close to actual
measurements, specifically within three percent variation.

Variation of degree of multiprogramming Next, con-
trolled experiments were performed with the number of
initiators (an initiator corresponds to a job) varied from
one to five. The number of initiators depicts the maxi-
mum degree of multiprogramming allowed. The drive
load is again the set of 50 sample jobs. These jobs are
executed from one megabyte of ECM rather than from
348 kilobytes of HSC because we do not want to be lim-
ited by memory size. This time all jobs are read into the
spooling queue on disk before the start of the experi-
ments and no job printouts are generated. To eliminate
one more variable, jobs are chosen from the job queue in

MAY 1975

0.8
0.7
a LCS
0.6 |-
o ECM
— cyclic queue model
05k I=2,N=22
a 04
1 1 1 1 1
0.2 0.3 0.4 0.5 0.6 0.7 0.8
p

Figure 6 Model predictions and empirical data for LCS and
ECM configurations.

Table 1 Controlled experiment description before and after
core replacement.

Configuration Configuration

with LCS with ECM

Elapsed time (s) 2580 2160
Utilization (s; %)

CPU 1746;67.7 1225;56.7

LCS 691,27 -

Selector channel 1 670;26 834,39

Selector channel 2 928;36 76035
Total channel (s) 1598 1594
Total no. of I,/0s 60802 60802
Model parameters

1/p (ms) 28.7 20.1

1/X (ms) 26.2 + 20.5 26.2 + 20.5

p=Ap 0.61 0.43

N 2.2 2.2
Throughput = R, (s™") 23.6 28.1

a first-come-first-served basis instead of by the HAsp
algorithm. The monitor starts to collect data as soon as
the first job is selected from the job queue, and the moni-
tor is stopped when the last job has finished execution.
Summary data are tabulated in Table 2.

From runs one to five elapsed time decreases, but
CPU busy time and total channel busy time stay about
the same, which again demonstrates the consistency of
these experiments. Because we lacked sufficient hard-
ware counters, it was necessary to obtain seek (arm
movement) counts and seek times by repeating these
experiments. Notice that the percentage of 1/O requests
that need arm movements (AM) increases with each
run, showing increased contention. But, for the sake of
simplicity, we do not model the increase of arm move-
ment due to increased contention. An interesting obser-
vation can be made by comparing the average seek times
in Table 2 with those obtained from the last experiment
(Table 1). A detailed examination shows that seek time
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Table 2 Controlled experiment summary: the degree of multiprogramming is varied.

No. of initiators 1 2 3 4 5
Elapsed time (s) 3445 2662 2435 2278 2258
Utilization (s; %)
CPU 206860 207378 2072;85 2076;91 2079;92
Channel 1 675,20 631,24 639:26 616527 611;27
Channel 2 580;17 614;23 602,25 628;28 626:28
Total channel (s) 1255 1245 1241 1244 1237
Total no. of 1/0s 45050 47440 47528 47749 47665
% 1/0 to channel 1 55.6 52.6 54.4 52.8 52.1
% 1/0 need AM 22.6 32 35.9 40.6 48.1
Avg. seek time (ms) 7.9 13.6 15.5 18.4 21.1
Model parameters
1/um (ms) 449 43.7 43.6 43.5 43.6
1/X (ms) 27.3+79 26.2 + 13.6 26.1 +15.5 26.1 + 18.4 26.0 +21.1
p=Aun 1.276 1.098 1.048 0.978 0.926
N 1 1.93 2.82 3.14 3.99

increases are due mainly to the contention of the initia-
tors for the system disk packs. Thus, even though N =
2.2 for the experiment in HSC, its average seek time is
approximately the same as that of N = 3.99 in Table 2;
note that both have five initiators in the system.

The model parameters 1/u and 1/\ are estimated as
before. For the four- and five-initiator runs the actual
degrees of multiprogramming are lower than the maxi-
mum allowed. This may be due to storage fragmentation
problems, but the storage utilization measures are not
easily obtained.

Employing the estimated model parameters, Table 3
lists both the CSM and CQM predictions along with the
measured values. Percent deviation from the measured
value is also shown. In general, the CSM predicts a
lower level of resource utilization due to the probability
of a job waiting for a busy channel while the other chan-
nel is free [ 12]. Note that for the three-initiator case the
measured CPU utilization is closer to that predicted by
CSM. This may be due to the fact that two jobs are allo-
cated to one channel and one job is allocated to the
other because the operating system does not split the file
of a job over two channels. For the five-initiator case the
observed CPU utilization is between the CQM and the
CSM predicted values. For the two- and four-initiator
cases the measured performances are closer to that
predicted by CQM. For the one-initiator case the mea-
sured value is higher than that predicted by the models.
This could be due to a certain amount of concurrent ac-
tivity of Hasp and job execution. We have seen that a
single model is insufficient to predict system perfor-
mance accurately for all operating conditions; however,
the predictions from the two models form the upper and
lower bounds of the actual performance. The robustness
of this observation may require further testing.
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Effect of scheduling Additional controlled experiments
have been conducted to study the effect of scheduling.
The three-initiator case from Table 2 was chosen for com-
parison, repeated as case A in Table 4. First, the HETM
(HAsP Execution Task Monitor) [4], previously em-
ployed for CPU scheduling, is removed. HETM uses a
heuristic approach, as discussed in the previous section.
By removing HETM we should expect a drop in perfor-
mance because the compute time distribution is hyper-
exponential (Fig. 3). Indeed, case B in Table 4 shows a
drop in CPU utilization without HETM. Note that the
drop is about 10.6 percent.

Finally, case A is repeated but with HAsP job sched-
uling instead of FCFS. HAsP assigns priority to jobs
based on job class (management assigned), maximum
CPU kill time (a number specified by the user), and
maximum number of output lines (also specified by the
user). All jobs in our experiment belong to the same job
class; therefore HAsP weights the jobs by the other two
factors. The smaller the amount of request, the higher the
job priority. Thus, the shortest running jobs get through
first. Case C in Table 4 is the result of this run. Note
that CPU utilization has dropped seven percent from case
A. Also, the average degree of multiprogramming has de-
creased to 2.52. A more detailed analysis of the experi-
ment reveals that short jobs are being executed together
at the beginning of the experiment and this, in turn, cre-
ates a temporary bottleneck at the reader/interpreter.
The reader/interpreter is an operating system function
[5] which converts the job control cards into a table
form that is acceptable by an initiator. This processing
tends to be I/0-bound. When the processing is com-
plete the initiator may then request memory and 1/0
resources from the system to start job execution. It
turns out that there is only one reader/interpreter which
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Table 3 Correlation of empirical data with model predictions.

No. of CPU utilization
initiators N p Measured coM A(%) CSM A(%)
1 1 1.276 0.60 0.560 —6.7 0.560 —6.7
2 1.93 1.098 0.78 0.800 +2.6 0.740 —5.1
3 2.82 1.048 0.85 0.900 +5.9 0.840 —1.2
4 3.14 0.978 0.91 0915 +0.5 0.855 -0.5
5 3.99 0.926 0.92 0.945 +2.7 0.890 -33

processes jobs sequentially; therefore, when job execu-
tion times are small compared to reader /interpreter time,
a bottleneck forms.

Table 4 Controlled experiment summary: CPU and job
scheduling are varied.

Case A B C

e Normal environment No. of initiators 3 3 3
In the normal production environment the on-line sys- Elapsed time (s) 2435 2732 2614

h ides in bulk . . The batch iob Utilization (s: %)
tem that resides in bulk core 1s active. e batch jobs CPU 2072:85 2065:76 2070:79
being executed in high-speed core are from our normal Channel 1 639;26 625;23 638,24
workload. Summary data recorded by the hardware Channel 2 602:25 580;21 601;23

. 1 iods of . d Total channel 1241 1205 1239
monitor over several periods of operation are presente Total no. of 1/0s 47528 46098 *
in Table 5. Elapsed time is in units of hours. Number of % 1/0 to channel 1 54.4 55 *
1/0s to channels 1 and 2 are recorded but not shown in :7; ((ms)) ” 143_'615 s 26 141'815 p

. . ms . . . .

Table 5. Session 1 was taken when we still had the bulk o=\ i 1.048 1.077
core LCS. Sessions 2 through 7 are regular sessions N 2.82 2.82 2.53

covering various operating hours after LCS was re-
placed by ECM. Only the on-line system is active in
session 7. During session 1 the system went down
twice; session 1’ is the summary data for the interval in
between. Thus, during session 1’ the system is heavily
loaded with a backlog of jobs. Note that CPU utilization
has dropped as expected after the replacement of LCS.
Channel 1 is utilized about twice as much as channel 2
(due to suboptimal data-set configuration). The multi-
plexor channel busy time is due mainly to tape 1/Os,
printers, and card readers, and 1/0 from the time-shar-
ing terminals (as indicated by the multiplexor busy time
of session 7). The model parameters are estimated as
before. Unfortunately, we did not have enough hardware
counters to measure average seek time at the same time,
but the ratio 7 (defined as CPU time = channels | and 2
time) instead of p still gives an indication of the system
load. This ratio for session 1 is much higher than for
other sessions, except session 7. Mean channel busy
time (defined as channels 1 and 2 busy time divided by
the total number of disk I/Qs) is rather constant over
sessions 2 through 5. Session 7 shows that the on-line
system is mainly compute-bound, with very little 1/0
activity to the disk units. This substantiates an earlier
discussion about model development.

Next, we use the data of session 1’ for model valida-
tion. We shall assume the average degree of multipro-
gramming to be 2.2 as indicated in Table 1. Also, average
seek time is taken to be 20.5 milliseconds (ms). Thus,
from the CQM with 1 /A =49.9 ms, p=0.995, and | =
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*Not recorded.

2, we get CPU utilization p=0.825, which is within three
percent of that actually measured (Table 5).

Suppose the batch workload can be represented by
the sample jobs. Let us estimate what the throughput
increase would be under the same conditions with ECM.
The 49.7 ms of 1/u for session 1’ can be broken up into
28.7 ms + 21 ms, where 28.7 ms is the value for 1/u of
the controlled experiment run with the sample jobs
(Table 1) and, therefore, 21 ms is due to the on-line sys-
tem. After the replacement. 1/u becomes 24.9 ms, i.e.,
20.1 ms + 4.8 ms, where 20.1 ms is the value of 1/u
for the ECM configuration shown in Table 1, and 4.8 =
21/4.4 (note that the cycle time ratio of LCS to ECM is
4.4). This value of 1/u is also approximately equal to
the average computed from sessions 2, 4, S, and 6. As-
suming that 1 /X = 49.9 ms would not change, we have
p = 0.5. Then, with N = 2.2, the CQM predicts p =
0.625. Hence, the throughput increase after replacing
LCS with ECM, under the same heavy loading condi-
tions. is

0.625/24.9 — 0.825/49.7
0.825/49.7

X 100 = 51%,

which is a substantial amount. Of course, this is a pre-
dicted increase and would be difficult to verify since we
cannot find a normal session with exactly the same load-
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Table 5 Summary profiles under normal environment.

Session 1 I 2 3 4 5 6 7
Elapsed time 4.45 2.0 4.45 4.38 4.43 4.01 4.39 .50
Utiliz. of CPU (%) 72 80 39 33 34 45 43 34
Channel 1 30 31 28 42 28 39 39 0.6
Channel 2 15 17 12 13 13 14 14 3.4
MPX channel 12 12 13 7 21 8 8 7
1/u (ms) 47.6 49.7 26.5 18.0 24.5 249 24.3 145.0
Mean channel (ms) 29.4 29.4 27.2 30.6 29.4 29.7 30.0 34.5
7=CPU/chan1 &2 1.62 1.69 0.98 0.59 0.83 0.84 0.82 8.39
R.=pu 15.1 16.1 14.7 18.3 13.9 18.1 17.7 2.3

ing conditions (both batch and on-line) as those before
the core replacement. Hence, one must be extremely
careful when quantifying the benefits of a configuration
change. This is particularly true when, as for the on-line
system, the demand for service is elastic and increases
as performance increases. From a qualitative standpoint,
however, there is no question that both batch and on-
line performance increased significantly with the core
replacement.

Possible reconfigurations

The purpose of reconfiguration is the improvement of
performance, which is the prime concern during heavy
loading periods. There are a number of ways to do this.
First, reconfigure by adding or replacing part of the
equipment; second, rearrange the present configuration.
Both cases are examined.

The first approach is to increase the investment in the
system. In a cost study for our system [15] the indica-
tions from optimization of the present configuration are
to add some additional high-speed memory. Figure 7
diagrams CPU utilization, p, versus N, the degree of
multiprogramming, for both CQM and CSM predictions
at / =2 and p = 0.5. With an additional 512 kilobytes of
high-speed core for batch jobs we can increase the de-
gree of multiprogramming during heavy loading periods
from the current operating point of 2.2 to about 4. Thus,
a throughput increase of 24.8 percent could be expected,
according to the CQM. Even if the behavior at N =4 is
closer to the CSM, we still get an increase of 6.4 per-
cent. It seems that increasing memory size is a viable
alternative to upgrade our installation.

For the second case, we examine a proposal to run the
batch jobs in ECM and the on-line system in HSC. The
batch jobs would have 1000 kilobytes of memory with
an average degree of multiprogramming of four during
heavy loading periods (as indicated in Table 2). From
the last section we know that an average 1/u is 24.9 ms,
which is broken up into 20.1 ms of batch job time and
4.8 ms of on-line time, and the throughput rate R, = pu
= 25.1. When batch jobs execute out of ECM their CPU
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time roughly doubles (note that 1.8/0.75 = 2.4 with
HSC cycle time = 0.75 microsecond), i.e., 20.1 ms be-
comes 40.2 ms. Similarly, on-line time is halved. Thus,
1/u=42.6 ms and p = 42.6/49.9 = 0.85, where again
1/X=49.9. For N = 4, CSM predicts p = 0.87; there-
fore R, = 20.4 which is less than 25.1, the original con-
figuration. Even for CQM, the predicted value of p =
0.93, i.e., R, = 21.8, which is also lower than before.
Hence, we conclude that the proposal will not improve
batch performance. The above analysis assumes that on-
line load does not change with any configuration
change, but in reality this assumption may not hold.

In addition, several changes have already been made
or will be implemented as a direct result of this study.

First, observe that the measurements indicated that
channel 1 is twice as busy as channel 2. The channel
loads have been balanced by swapping system-residence
disk packs, because the pack in channel 1 is much more
utilized than its counterpart in channel 2.

Second, knowing that increasing the amount of memo-
ry available to batch jobs will increase throughput, we
moved part of the operating system’s data area to ECM
and increased batch memory from 348 to 424 kilobytes
of high-speed core. Controlled experiments conducted
before and after the change show that CPU busy time
increased slightly (about six percent), but the degree
of multiprogramming has increased by an average of 0.7
job, which is enough to produce a net gain of 10 per-
cent in throughput. Thus, this change has been imple-
mented for the normal production environment.

Third, as the study of job scheduling in section 3
shows, resources may not be fully utilized during peri-
ods of heavy loading: Many short-running jobs could be
submitted during these periods, and such jobs are select-
ed first for execution by HAsp. Student jobs are usually
short and they are given highest priority for three of the
five initiators normally active. Table 4 shows that the
bottleneck at the reader /interpreter can cause CPU utili-
zation to drop by seven percent; therefore, an algorithm
that does not give as much perference to short jobs
should be considered. The tradeoff, of course, is possible
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degradation of student job turnaround time. A study is
being carried out to quantify this tradeoff.

Summary

In this paper, a cyclic queue model is developed for an
IBM System/360-75 with os/MvT in the UCSB on-
line system. Model validation is attempted in both a
controlled batch environment and normal operating con-
ditions. Despite obvious violations of some model as-
sumptions and the simplicity of the model, we found
reasonable correlation between the measured perfor-
mance and the model predictions. The most success is
demonstrated by its prediction of performance improve-
ments from system reconfigurations; actual results show
excellent agreement. The ability of the central server
model [12] to predict performance is also examined. It
is found to give a closer prediction of empirical perfor-
mance only under certain conditions. However, both
models together give the bounds for the empirical per-
formance observed.

Under normal operating conditions the on-line system
is active and is treated implicitly as slowing down the
CPU (or elongating compute time of batch jobs). Statis-
tics from a period of heavy loading have shown the
model predictions to be reasonable.

Several proposals for system reconfiguration are
studied by exercising the model; as a resuit, appropriate
actions have been taken. The new understanding of the
system has led to improvements in both operation and
performance. Though the model is developed for a spe-
cific system, its application to other systems may also be
appropriate. Its use for virtual memory systems is cur-
rently under study. Thus, the integration of empirical
measurements with analytic models is a viable approach
to computer performance analysis.
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