
M. Schatzoff
C. C. Tillman

Design of Experiments in Simulator Validation

Abstract: A common problem encountered in computer system simulation is that of validating that the simulator can produce, with a
reasonable degree of accuracy, the same information that can be obtained from the modeled system. This is basically a statistical
problem because there are usually limitations with respect to the number of controlled tests that can be carried out, and assessment
of the fidelity of the model is a function of the signal to noise ratio. That is, the magnitude of error which can be tolerated depends
upon the size of the effect to be predicted. In this paper we describe, by example, how techniques of statistical design and analysis of
experiments have been used to validate the modeling of the dispatching algorithm of a time sharing system. The examples are based on
a detailed, trace-driven simulator of CP-67. They show that identical factorial experiments involving parameters of this algorithm,
when carried out on both the simulator and on the actual system, produced statistically comparable effects.

Introduction
A common problem encountered in computer system
simulation is that of validating that the simulator can
predict, to some required degree of accuracy, the behav-
ior of the modeled system. Typically, this problem is
approached in a direct and obvious manner, namely, by
observing the behavior of the modeled system under a
set of controlled or measurable loading and other condi-
tions (e.g., configuration variations) , then comparing the
observations to corresponding predictions of the simula-
tor. When the observations and predictions agree within
required limits for all conditions treated, the simulator is
considered to be validated.

The procedure described above has several recog-
nized difficulties, not the least of which is the uncertain-
ty associated with drawing a general conclusion from a
finite (and typically small) number of experiments. This
uncertainty is of particular concern in the validation of
detailed simulators, where one may be attempting to
predict effects which are of the same order of magnitude
as the random fluctuations or “noise” inherent in real
system measurements. In such cases, it is advantageous
to use techniques for statistical design and analysis of
experiments, both to reduce the number of experiments
needed for a given level of confidence and to indicate the
statistical significance of measured and simulated effects.
In this paper, we illustrate this point by describing the
use of statistical techniques in validating the modeling
of the dispatching algorithm of a paged time-sharing sys-
tem. Our discussion is based, in particular, on a detailed,
trace-driven simulator [I] of the CP-67 system [2] .
Because this simulator was developed specifically for

252 investigating new system decision algorithms such as

those used in dispatching and paging, it was important to
determine whether changes to such algorithms would
produce comparable effects in the simulator and in the
real system. Such a determination is significant with re-
gard not only to the CP-67 system, but also to the very
similar and more current VM/ 370 system [31. We feel,
in fact, that while modification of the present model to
simulate VM/ 370 would be straightforward, conclu-
sions about alternative decision algorithms reached us-
ing the present CP-67 model are generally applicable to
VM/370 as well.

Our basic approach in this work has been to view both
the real system and the simulator as “black boxes” with
certain inputs and outputs. Our inputs in this case, aside
from the job streams themselves, were essentially
switches for disabling or modifying different parts of the
dispatching mechanism. For example, a provision for
preempting users after a given amount of paging activity
could be turned on or off. Outputs of interest were
typical performance indicators such as paging rate and
CPU utilization in various states based on a fixed inter-
val of time. In all experiments, user job streams and
hardware configuration were held fixed. Thus our pro-
cedure was to run identical experiments on the real sys-
tem and on the sirnulator, selecting various combinations
of switch settings in accordance with the techniques of
statistical design of experiments. The outputs from these
experiments were then analyzed to estimate the statisti-
cally significant effects for each “black box,” i.e., to ex-
tract the signals from the noise, and to verify that the
same signals were present in both cases. In addition, a
set of “sensitivity” experiments was carried out on the

M. SCHATZOFF AND C. C . TILLMAN IBM J. RES. DEVELOP.

simulator alone to indicate its robustness with respect to
several timing parameters representing CP-67 overhead
for various functions and disk hardware characteristics.

In the next section we present an overview of the
simulator per se. This is followed with a review of some
of the important concepts underlying the statistical de-
sign and analysis of experiments. Then, in the following
section we describe and present the results of the valida-
tion and sensitivity experiments outlined above. Brief
descriptions of the CP-67 dispatching algorithm and of
the job streams used in the experiments are given in
Appendices 1 and 2, respectively.

Simulator overview
The purpose of this section is to provide a general de-
scription of the CP-67 simulator on which this work was
based, avoiding the specifics of implementation where
possible. The reader interested in a more complete treat-
ment of this material is directed to Ref. [11.

In the Introduction, the simulator was characterized
as being “detailed’ and “trace-driven.’’ “Detailed” is, of
course, a relative term, and is used here merely to sug-
gest a greater level of detail than is perhaps typical of
full-system simulators. For example, the basic unit of
time in our simulator is one microsecond, which permits
explicit accounting of the overheads for elemental but
frequently occurring operations associated with paging
and other 1 / 0 , dispatching, etc. By “trace-driven’’ we
refer to the fact that job streams are represented by data
derived by tracing actual jobs in execution. Further-
more, this data defines explicit sequences of resource
demands that are interpreted by the simulator in a strict-
ly deterministic manner, i.e., trace data are not reduced
to produce statistical distributions or other summary
characterizations to be used as input for a stochastic
driving mechanism. As we shall see later, the level of
detail in this trace-derived data is, again, quite high. An
inevitable disadvantage of our approach is, of course,
significant simulator execution time; in particular, de-
pending on the job stream and other factors, from one to
ten seconds of execution time are required to simulate
one second of real time. On the other hand, there is the
advantage of the potential ability to simulate accurately
the effects of relatively minor changes in system soft-
ware and hardware. In fact, the simulator has already
been used to investigate the effects of page sharing [4],
various CMS/ APL performance enhancements [51,
response surface techniques for system tuning [61, and
an alternative dispatching strategy [71.

Before elaborating further on the CP-67 simulator, we
should recall that CP-67 is a hypervisor for the Sys-
tem/360 Model 67, which provides functional sim-
ulations of multiple System/360s to users at remote
terminals. These functional simulations, called virtual ma-

MAY 1975

chines, may potentially all have different configurations
and run different virtual operating systems. In our
simulation work, however, we have generally concen-
trated on virtual machines running the interactive CMS
operating system [21, and in the experiments reported
here, in particular, all virtual machines were running
CMS.

Key to the operation of CP-67, and hence to the simu-
lation of CP-67, is the System/ 360 distinction between
privileged and non-privileged instructions, the former
being executable only when the CPU is in supervisor as
opposed to problem state. This distinction enables CP-
67 to execute a virtual machine’s non-privileged instruc-
tions directly on the CPU in problem state, whereas
privileged instructions are executed interpretively by
software. In essence, then, CP-67 consists of a set of pro-
cedures for simulating privileged instructions, plus pro-
cedures for virtual memory management, user (i.e., vir-
tual machine) dispatching, real 1 / 0 management, and
accounting. To facilitate performance monitoring, these
procedures maintain various time and event counters, as
described in [81. It is, of course, unnecessary for CP-67
to provide high-level support for such functions as lan-
guage translation, file maintenance, link-editing, etc.,
because this support is provided by the conventional
operating systems which run on virtual machines. Ac-
cordingly, it is unnecessary to deal explicitly with high-
level operating system functions in simulating CP-67.
The simulation of such functions is provided, in effect,
by tracing all activities of a virtual machine, i.e., operat-
ing system as well as problem program activities.

Our approach, specifically, is to perform full-instruc-
tion traces of a virtual machine’s activities while running
jobs of interest. Subsequently, the trace data are compact-
ed to form files (called SIMLOAD files) whose records
(called load macros) represent the resource demands of
the virtual machine as seen by CP-67. Combinations of
these files, representing the job streams of interest, then
form the input for the simulator. The manner in which
the original trace data are compacted to form load mac-
ros is, of course, crucial to the operation and accuracy
of the simulator and can be summarized as follows. Priv-
ileged instructions are mapped to load macros in a one-
to-one fashion, along with various data necessary for
simulation. For example, load macros used to represent
start-I/ 0 instructions provide virtual 1 / 0 device ad-
dresses, channel program descriptions, referenced page
lists, etc. Non-privileged instructions, on the other hand,
are aggregated to varying degrees, depending on the
requirements of the simulation experiment. In general, a
sequence of n non-privileged instructions is represented
by a load macro specifying the value n and a list of the
set of distinct pages which the instructions caused to be
referenced (change-bits, as well as page numbers, are 253

SIMULATOR VALIDATION EXPERIMENTS

recorded for both privileged and non-privileged load
macros). Pages are listed in order of first reference, but
information as to the exact sequence of page usage is
lost. This loss of page sequence information, clearly a
source of simulation error, is controlled by prescribing
limits on the maximum number of instructions and/or
pages to be represented by a single load macro. During
compaction, if one of these limits is reached before a
privileged instruction is encountered, the current macro
is recorded and a new one started. Encountering a privi-
leged instruction, of course, terminates the current
macro perforce. In experiments reported in [11 it was
found that errors due to the loss of sequence information
are, in fact, tolerable for most purposes (e.g., page
exception rates accurate within five percent) if the
load macro page limit is less than the average number of
pages available to a virtual machine while in execution.
In the experiments reported here, this condition was sat-
isfied by setting the page limit to ten (the instruction lim-
it was sufficiently large as to be ineffective).

While we will not here describe the internal structure
of the simulator explicitly, some indication of this struc-
ture is provided by considering some of the available
controls and output capabilities. The available controls
include system parameters, load parameters, and opera-
tional controls, as follows:

1 . System parameters - hardware configuration and
characteristics, software options (e.g., several alter-
native, parameterized paging and dispatching algo-
rithms are built-in), and software overhead times
(see, e.g., Table 9) ;

2. Load parameters-number of virtual machines, SIM-

LOAD file sequence for each virtual machine, aver-
age instruction execution time to be associated with
each file, and virtual-to-read (mini-) device mappings;

3. Operational controls -initial memory state, shared/
fixed page specifications, initial virtual machine states,
delays before virtual machine start-ups, and conditions
for simulator interruption (e.g., for periodic output)
and termination.

The available outputs include tables summarizing hard-
ware utilization, various event counts and rates, individ-
ual virtual machine activities, current system and virtual
machine state variables, and individual virtual page
usage patterns. Included, in particular, are outputs cor-
responding to the various time and event counters main-
tained by CP-67 itself. Outputs can be triggered not only
when specified points in time have been reached, but
also when various system and virtual machine events are
recognized. The latter events may include high-level
events such as SIMLOAD end-of-files (for response-
time recording) and low-level events such as page ex-

254 ceptions and queue transitions (see Appendix 1) .

Statistical design of experiments
In this section, we review some of the basic concepts
underlying the statistical design and analysis of experi-
ments, in order to facilitate understanding of the analy-
ses described in the next section. A thorough treatment
of the subject is provided by Cochran and Cox [9]. Al-
though these ideas have been widely and profitably ap-
plied in a number of different areas of experimental re-
search over a period of many years, they seem not to
have been employed very extensively in the study of
computer systems. A few examples where such tech-
niques have been successfully applied in computer
studies are given in Refs. [10- 121. It is our belief that this
methodology can be extremely valuable in studying a
wide range of computer system design and evaluation
problems, but that there is a large communication gap
which must be bridged between computer systems peo-
ple and statisticians. The reader who is already familiar
with this subject matter may wish to proceed directly to
the following section.

Statistical design of experiments embodies principles
to maximize the information per observation, and to
permit valid inferences about the effects, on responses of
interest, of variations in factors under the experimenter’s
control. One of the key ideas underlying this discipline is
that of varying several factors simultaneously, rather
than one at a time, as had been the usual practice in
experimental science prior to the introduction and for-
malization of the fundamental concepts of experimental
design by Fisher [131. By varying factors simultaneously,
the experimenter can capture information pertaining to
their joint effects, or interactions, as well as their in-
dividual or main effects. Additionally, different effects
can be estimated from the same set of observations.

A simple example of this notion is that of a balanced
factorial experiment with two factors, each to be varied
at two different levels (high vs low, or on vs off). We
will label the factors A and B, and the factor levels 1 and
2 . The total number of observations, or experimental
runs, will be denoted by N = 4n.

The one-factor-at-a-time approach is to do n runs at
each level of each factor, as shown in Table 1. The ef-
fect of varying factor A, say, can be measured by the
difference in the means of the observations at each level
of A. The appropriate t-test for assessing the statistical
significance of this difference uses a sample standard
deviation based on 2n - 2 degrees of freedom, computed
by pooling the sample standard deviations at each level.
In essence, the standard deviation among observations,
recorded under identical experimental conditions, prov-
ides an estimate of the variation in model errors.

The main effect of varying factor B can be measured
in exactly the same way, but because each factor is var-
ied separately, the experiment does not provide any in-

M. SCHATZOFF AND C. C. TILLMAN IBM J . RES. DEVELOP.

formation about possible interactions between the two
factors. That is, we have no way of knowing whether the
effect of varying factor A is different at different levels
of factor B.

The factorial approach is shown in Table 2 . For the
same expenditure of observations, we now have 2n ob-
servations at each level of each factor, and can estimate
the interaction between the factors. We could, using the
factorial design, cut the size of the experiment in half,
leaving us with n observations at each level of each fac-
tor, as in the one-at-a-time approach. We would then
have approximately the same precision in estimating
main effects as in the one-at-a-time experiment, plus the
ability to estimate the interaction of the two factors.

For experiments involving larger numbers of factors,
the number of factor-level combinations increases geo-
metrically, but higher order interactions can be estimat-
ed. In many applications, certain high order interactions
may be assumed to be negligible, and further economies
can then be realized by using designs which are fractions
of full factorials. They are designed in such a way as to
sacrifice information on specified interactions by elimi-
nating particular factor-level combinations. The exam-
ples discussed in the following section employ these
fractional factorial designs exclusively.

The main idea behind fractional factorials is illustrated
by Fig. 1 , which depicts a 4 fraction of a 23 design (3
factors, each at 2 levels). The coordinates of each ver-
tex of the cube represent the levels of factors A, B and
C . Note that the design corresponding to the four ver-
tices denoted by the circles provides estimates of all
three main effects. For example, the B main effect is
measured by the difference between the means of the
pairs of points on the top and bottom faces of the cube.
The other main effects are measured by similar compari-
sons of observations on the other pairs of faces of the
cube. In higher dimensions, smaller fractions of bal-
anced points on the hypercube can be used.

The analysis of data from a designed experiment is
based on the assumption of a linear model with normally
distributed error terms. For a 3-factor design, the model
would be

where, for example, ai is the effect due to factor A being
at level i , pj is the effect due to factor B being at levelj,
and (cup) ij is the interaction effect due to factor A being
at level i and factor B being at level j . The eijkl are as-

MAY 1975

B

/
C

A

Figure 1 One-half replicate of a fractional factorial design.

Table 1 One-factor-at-a-time arrangement.

A B

255

SIMULATOR VALIDATION EXPERIMENTS

1
n

2
n

1
n

2
n

Table 2 Factorial arrangement.

A

1 2
1
2 n n

n n
B

sumed to be independent errors from a normal distribu-
tion with mean zero and unknown variance c'.

This model states that each observation is composed
of an overall mean, p , plus main effects due to the three
factors, plus interaction terms and a random error term.
The index 1 is used to represent possible replications of
observations made under identical experimental condi-
tions. Usually, an analysis of variance is carried out on
the data from a designed experiment. Essentially, the
total sum of squares of all observations is partitioned
into component sums of squares corresponding to the

Table

256

M. SCHATZOFF A N D C. C. TILLMAN

3 Experimental design for validation study.

Experimrntul Paging CPU Max Variable Two-
run penalty use page multi- level

penalty I / 0 prog. Ql
check control

1 -1 "I -I 1 1
2 1 -I -1 1
3

-1
-1 I -1 1

4 1 1 "1 1 1
-I

5 -1 -1 1 1
6 1 -1 1 1 1

-I

7 -1 1 1 1 1
8 1 1 1 1
9

-1

10
-1 -1 -I -1

1
-I

-1 -1 "1 1
11 "1 1 -1 -1 1
12 1 1 -1 "I -1
13 --I -1 I -1 1
14 1 -1 1 -1
15

-1
-1 1 1

16 1 1 -I I
-1

1
-1

Table 4 Raw data.

Proportion Proportion Page reads
problem supervisor per second

state state
-___-

Run Act. Sim. Act. Sim. Act. Sim.

1 0.286 0.330 0.360 0.313 98.007 89.530
2 0.285 0.286 0.355 0.356 92.675 102.300
3 0.291 0.307 0.335 0.334 87.638 97.700
4 0.283 0.319 0.344 0.334 92.416 95.990
5 0.377 0.427 0.320 0.292 73.844 80.130
6 0.379 0.384 0.299 0.291 66.675 75.250
7 0.365 0.438 0.289 0.292 62.218 76.340
8 0.394 0.415 0.322 0.303 74.176 77.450
9 0.402 0.461 0.250 0.249 43.052 50.000

IO 0.398 0.458 0.220 0.216 32.351 37.690
1 1 0.397 0.469 0.222 0.227 33.607 39.490
12 0.391 0.461 0.249 0.248 42.612 49.670
13 0.417 0.449 0.219 0.212 29.953 35.860
14 0.389 0.475 0.253 0.228 42.775 50.270
15 0.391 0.447 0.247 0.258 40.237 49.750
16 0.449 0.451 0.218 0.215 30.377 37.630

terms in the linear model. Each of these is then divided
by its appropriate degrees of freedom to obtain sample
variances. The sample variances corresponding to the
main effects and interactions are then compared to the
error variance by means of F-tests in order to assess the
statistical significance of each of the observed effects.

Because the validity of inferences drawn from such
analyses is dependent on the adequacy of the assumed
model, various analyses and plots of residuals (differ-
ences between the observations and fitted values ob-

tained from the model) may be employed to indicate
whether there appear to be serious discrepancies.

Validation experiments
As noted in the Introduction, one of the objectives of
the simulation project was to construct a tool that could
be reliably used to evaluate design changes in scheduling
and dispatching algorithms. Such design changes could
encompass a spectrum of possibilities ranging from that
of changing values of fixed parameters in the existing
algorithm, to that of replacing the algorithm with a com-
pletely new one. I t was envisioned from the start of the
project that factorial experiments would be used to spec-
ify patterns of parameter changes and to assess the ef-
fects of such changes on various aspects of system
performance. Therefore, a necessary objective of the vali-
dation was to demonstrate that experiments of this type
would produce similar effects both in the actual system
and in the simulator.

The specific dispatching experiment chosen as the
basis for the validation involved the following five pa-
rameters (factors), each of which could be viewed as an
on-off switch.

x, Paging penalty
x, CPU usage penalty
x, Maximum page I / 0 preemption
x4 Maximum multiprogramming level
x5 Two-level Q 1

A summary description of the algorithm is provided in
Appendix 1 ; a more detailed account is given in a tech-
nical report by Schatzoff and Wheeler [141.

The experiment consisted of a one-half replicate of a
2 5 factorial. It used a workload of four different CMS job
streams, each replicated different numbers of times, to
provide a total of 40 virtual machines. The workloads
are described briefly in Appendix 2 . The design of the
experiment is given in Table 3, which uses plus ones and
minus ones to represent on and off conditions, respec-
tively.

The results, for three variables of interest-CPU
problem state time, CPU supervisor state time, and page
read rate - are given in Table 4. Ten minutes of real time
were simulated for each run. A number of other variables
were also measured. However, the key aspects of the
system's performance can be characterized adequately
for our purposes by these parameters, which represent
the CPU throughput, overhead, and paging activity lev-
els of the system. The same methodology could be ap-
plied to any other variables of interest.

Initial examination of the data is not very revealing. It
shows that our estimates of problem state time and page
read rate are more than ten percent too high on average,
while supervisor state time is much more closely ap-

IBM J. RES. DEVELOP.

proximated, being only about three percent too low. In-
dividual estimates are sometimes in error by over twenty
percent. It should be recalled, however, that the objec-
tive is to provide valid information concerning the ef-
fects, on the average, of changes in parameter values,
rather than to estimate individual results with great pre-
cision.

A more incisive view of the data, then, is provided by
Table 5, which shows the main effects and interactions
for each of the variables, for both the simulator and the
actual system. These statistics show the deviations from
average attributable to the various factors, singly and
pairwise.

To understand how these statistics are computed, we
generalize Eq. (I) to five factors and re-parameterize it
in the form

5

Y i jk l = OiXi + OijXiXj + C i j k l , (2)
i = O i#j=l

where xi has the value + I or -1 depending on whether
the ith switch (factor) is on or off. Thus, in terms of Eq.
(1) , we have imposed the constraints a1 + a2 = 0 , Dl +
p, = 0,. . ., etc. in order to be able to estimate the effects
Oi, O i j , . . ., etc. I t should be noted that the re-parameteri-
zation reduces the model to the form of a regression
equation in which the xi are the values of the indepen-
dent variables, and the Oi, Oii are the regression coeffi-
cients.

The main effect for a given factor is computed by sub-
tracting the mean of all observations taken at the low
(-1) level of the factor from the mean of the observa-
tions at the high (+ 1) level and dividing the resulting
difference by 2 [151. All of the main effects can be readily
computed in one step by means of a simple matrix multi-
plication. Let us denote by X the design matrix of Table
3 , and by Y the data matrix of Table 4. Then, the main
effects given by rows 2-6 of Table 5 are computed by
X'Y/ 16, where X' is the transpose of X. Interaction
effects are computed in a similar way. First, columns are
adjoined to X by computing the element by element
products of each pair of columns of the original X ma-
trix. A new column, formed as the product of columns
corresponding to factors i and j , represents the (i, j) in-
teraction effect. Then, the computation X'Y/ 16, where
X represents the extended matrix, provides not only the
main effects, but the interactions as well. Adjoining a
column of 1 s to the X matrix will yield the overall means
(row 1 of Table 5) in the same computation.

A striking aspect of the analysis provided by Table 5
is that for each variable, only three or four effects are
large in magnitude relative to all the others. Further-
more, they are the same set of effects for all variables,
the directions of all such effects for both the simulator
and the real system are always identical, and the magni-

MAY 1975

Table 5 Factorial effects.

Proportion Proportion Page reads
problem supervisor per second

state slate
-~ ~-

Act. Sirn. Act. Sirn. Act. Sim.

Bo 0.3684 0.4111 0.2814 0.2730 58.9133 65.3156

0, 0.0026 -0.0049 0.001 1 0.0009 0.3438 0.4656
0, 0.0018 0.0023 -0.0031 0.0034 -1.0032 0.1869
O3 0.0268 0.0247 -0.- -0.0116 -6.3814 -4.9806

O5 0.0034 0.0012 - 0 . ~ -0.- -3.2128 -4.3431
e4 -0.0359 -0.0478 0.- 0.0414 22.0428 21.5206

0.0065 0.003 1
0.0050 0.0004
0.0001 -0.0073
0.0029 -0.0043
0.0029 -0.0003

-0.0010 0.0042
0.0000 0.0047

0.0040 -0.0064
0.0195 0.0281

-0.0076 0.0033

0.0039 -0.0022
0.0010 -0.0030
0.0009 0.0058

0.0013 0.0023
-0.0024 -0.0020

0.0000 0.001 1

-0.0046 0.0016
0.0050 0.0036

-0.0022 0.0006

- 0 . m -0.0082

1.6413 -0.7831
0.625 1 -0.6506
0.1856 0.4456

-0.5896 0.2019
0.2233 -0.2294

-0.8409 -0.153 1
-0.0428 I .203 I
-5.3464 -4.5631
-2.01 33 0.278 1

2.0857 1.7844

tudes are approximately equal as well. For example,
imposition of a fixed maximum multiprogramming level
results in a substantially lower paging rate, which is ac-
companied by a sharp reduction in overhead and a cor-
responding increase in problem state. The preemption of
tasks which exceed the maximum allowed paging rate
produces similar but somewhat smaller effects on these
three variables. Unfortunatdy, the gains reflected by the
main effects of these two factors are not strictly additive,
because the factors interact negatively with one another
on all three variables of interest, as can be seen from the
(3, 4) row of Table 5. Another effect that seems to be
marginally important is that of two-level Q I , which re-
sults in reduced paging rates and overhead, but does not
seem to affect problem state.

Thus far, we have commented in a qualitative way on
two important questions raised by the simulation experi-
ment, namely, how well do the simulator results approxi-
mate those of the real system, and how significant are
the various effects that have been calculated. A partial
answer to the first question is provided by comparing
differences in effects measured on the simulator and the
real system with independent estimates of errors from
one run to another on the real system. The latter mea-
surements were obtained from initial replicated trials
carried out for the purpose of checking out the testing
procedures to be employed on the real system. The data
from these tests, which were run under three different
combinations of dispatch parameter settings, are shown
in Table 6, together with the pooled-within-sample stan- 257

SIMULATOR VALIDATION EXPERIMENTS

0.03

0.02

0.01

0.00

"0.01

-0.02

-0.03

B "
B

$

2 -0.04
B

-
D

-0.05

w
0

0

0

258

M. SCHATZOFF AND C. C. TILLMAN

Actual problem state effects: o ------
Simulated problem state effects: w -

0

w
I I I I I I I I

-2 -1 0 1 2

Jormalized expected value

Figure 2 Normal probability plot of actual and simulated
problem state effects.

dard deviations. The corresponding standard deviations
of differences between two individual effects, each of
which is a mean of 16 observations (with alternating
signs), are therefore estimated by dividing these within-
sample standard deviations by a (since the variance of
the difference between the means of two samples of size
n is given by 2a2 / n) . These are compared in Table 7 with
the standard deviations of measured differences in ef-
fects between the real system and simulator, which may
be readily calculated from Table 5. We may conclude
from these comparisons that differences in factorial ef-
fects measured on the simulator and the real system are
not significantly different from those that might be ex-
pected between one machine run and another.

An interesting and revealing graphical representation
of the close agreement in simulator and real system ef-
fects is provided in Figs. 2 and 3, which are normal
probability plots of the effects and their differences. In a
normal probability plot, the observations are arranged in
ascending order, and plotted against the standardized

Table 6 Repeatability of real system measurements.

Parameter Proportion Proportion Page reads
settings problem supervisor per second

state state

1 0.335
0.291
0.275
0.273

2 0.460
0.456
0.441
0.458

3 0.42 1
0.424
0.410

Pooled-within-
sample standard 0.0188
deviations

0.3 16 77.10
0.333 85.41
0.342 92.65
0.346 92.2 1

0.237 18.41
0.237 17.79
0.224 17.64
0.23 1 19.42

0.285 5 1.79
0.280 49.78
0.290 55.02

0.0095 4.64

expected values of the corresponding order statistics of
a sample from a normal distribution. The plot has the
property that a random sample drawn from a normal dis-
tribution should scatter about a straight line. Based on
the linear model of Eq. (1) , if the underlying effects are
all non-existent (Le., Yijkl = p + eZik l) , then the computed
effects should plot as a straight line. If most effects are
non-existent (or negligible), but a few are large in mag-
nitude, then the plot should show most points lying close
to the straight line, but those corresponding to the non-
negligible effects should be relatively far away from the
line.

Figure 2 shows the probability plots for the 15 prob-
lem state effects calculated from the experiments on the
real and simulated systems. These plots are almost iden-
tical. Each clearly reveals the presence of two large pos-
itive effects and one large negative effect. As noted from
Table 5, these correspond to the main effect for factor x,
(maximum page I / 0 preemption), the (3 ,4) interaction,
and the main effect for factor x4 (maximum multipro-
gramming control), respectively. Figure 3 i s a normal
probability plot of the differences in the effects between
the actual and the simulated system. These plot very close
to a straight line, indicating that simulator errors are
random in nature and independent of parameter changes.

These graphs help to answer our second question,
which deals with assessment of significance of effects. A
more formal analysis is provided in Table 8, which pre-
sents t-values for the various effects, based on the stan-
dard errors of effects estimated on the actual system (last
row of Table 6 divided by 4). If we refer these to tables of
the t-distribution on eight degrees of freedom, we find

ISM J . RES. DEVELOP.

Table 7 Standard deviations of differences between factorial
effects.

Proportion Proportion Page reads
problem supervisor per second

sfnfe state

Real system 0.0066 0.0034 1.64
(replicated runs)
Simulator-red 0.0068 0.0038 I .22
system

Table 8 t-Values of effects.

Proportion Proportion Page reads
problem supervisor per second

state stute

Acl. Sim. Act. Sim. Act. Sim.

*I 0.56 -1.05 0.47 0.36 0.30 0.40
8, 0.37 0.49 -1.30 1.41 -0.86 0.16
03 "

8 4
0 5

5.69 5.25 -4.37 -4.84 -5.50 -4.29
-7.63 -10.17 19.43 17.24 19.00 18.55

0.72 0.25 -4.17 -4.37 -2.77 -3.74
"

~ ~

* , 2 1.38 0.65 1.61 -0.94 1.41 "0.68
%3 1.06 0.09 0.42 -1.25 0.54 -0.56
*1,4 0.03 "1.56 0.36 2.40

* , 3 0.61 -0.07 0.52 0.94
*2,4 -0.21 0.89 -0.99 -0.83 -0.72 -0.13
02s 0.00 1.00 0.00 0.47 -0.04 1.04
*3,4

6 3 s

*4,5 -1.62 0.70 2.08 1.51

0.16 0.38
'1,5 0.61 -0.92 -0.94 0.26 -0.51 0.17

0.19 -0.20

4.15 5.97 -4.17 -3.44 -4.61 -3.93
0.85 -1.37 -1.93 0.68 -1.74 0.24

1.80 1.54

"

that the three effects that revealed themselves so em-
phatically on the probability plot are all significant at the
one percent level of significance or beyond. The two-
level QI main effects are also significant on supervisor
time and paging rate, although the t-value for the actual
system on paging rate falls just short of the two percent
level. No other effects are significant at the one percent
level.

All of the analyses described thus far have been con-
cerned with validation. An associated problem of inter-
est is that of calibration, or adjusting parameters of the
simulator in such a way as to provide better agree-
ment in the outputs with those of the system being mod-
eled. Validation and calibration may be viewed as iter-
ative and complementary processes. During the course
of our validation work, we were continually trying to
locate and correct sources of discrepancies, and indeed
were led to the discovery of a number of programming
bugs and logical errors in our modeling of the system.
Although we have been very pleased with the high de-
gree of fidelity that has been achieved in estimating the

MAY 1975

0.0125

0.0100

0.0075

0.0050

0.0025

0.0000

-0.0025

-0.0050
Lo

4-

5

5
E
2 "0.0100

G a -0.0125

-0.0075

5

M
L:

259

SlMULATOR VALIDATION EXPERIMENTS

0

I I I I I I I I

-2 -1 0 I 2

iorrnalized expected value

Figure 3 Normal probability plot-actual minus simulated
effects.

effects of certain parameter changes, as already de-
scribed, we have been somewhat perplexed by the ap-
parent biases in estimating mean levels of problem state
time and paging rates. Because there are a large number
of timing parameters in the simulator model, we de-
signed an experiment aimed at indicating the main ef-
fects of mild changes in the values of these parameters.
Thirty-eight parameters were identified and classified
into eight groups, as shown in Table 9. Within each
group, the parameters were varied simultaneously at two
levels, 15 percent above and below the nominal values
for seven of the groups, and plus or minus 2.5 percent
for the eighth, which represented disk characteristics. A
1 / 16 fraction of a 28 factorial was carried out, using the
same workloads as before. However, only 400 s of real

Table 9 Factors for simulator sensitivity experiment.

Values used (ps)

Factor Function Pararnerer(s) LOW, (-1) High (fl)

1 Dispatch- T-READY 100 130
Task (re) start T-DISP 50 65

T-DISP-LOOP 10 13
T-DISP-OVHD 85 1 1 1
T-NODISP-OVHD 15 20
T-REDISP 100 130
T-REDISP-FAST 35 46

2 Dispatch- T-QDROP 400 520
Qdrw

3 Dispatch- T-QCHECK 500 650
Qadd test

4 Paging T-PRALG
T-PG-QUEUE
T-PG-SI0
T-PG-INT

5 Virtual selector T-CCWTRANS
1/0 initiation T-DIAGTRANS
all virtual I/O T-IO-QUEUE
termination T-DISKS10

T-START-SEEK
T-RIO-INT
T-VIO-END
T-VIO-INT

6 Console 1/0 T-CONS-DISC

200
1 50

260
195

600
100 130

780

1 500 1950
500
100

650

150
130

85
195

300
I l l
390

125
175

163
228

1100 1430

7 Disk charac- T-DISRSEEKO 23300 24500
teristics T-DISKSEEK1 475 500

T-DISKSRCH 11870 12500
T-DISKXFER 3.05 3.21

8 Privileged in- T-SIKSSK
struction sim- T-SIXISK
ulation T-SIKSVC

T-SIM-SSM
T-SIM-LPSW
TSIM-DIAG
T-SIM-WRD
T-SIM-RDD
T-SIM-SI0
T-SIM-TI0
T-SIM-HI0
T-SIM-TCH

282
282

205
51

205
196
118
I18
368
368
368
325

Table 10 Factorial effects for calibration experiment,

Proportion Proportion Page reads
problem supervisor per second

state State

0 0 0.3533 0.3 127 74.139

01 -0.002 1 0.0063 0.444
0 2 -0.0054 "0.0030 -1.008

0.0041 -0.0001 4 . 5 9 4
0.0017 0.0245

-0.0063 0.01 14
0.0005 0.0028

2.903
1.427
1.329

-0.0074 -0.0054 -1.67 1
0s -0.0017 0.0019 -0.437

01.5 0.0008 -0.0016 -0.463
018 -0.0042 -0.0007 0.134
el,, 0.0047 0.0001 4 . 3 0 3
01,s -0.0002 0.0006 0.135
01.3 0.0052 0.00 14 0.372
014 -0.0028 -0.0035 -1.332
01.2 -0.00 18 0.00 10 0.923

visor state time, but the magnitudes of these effects are
much smaller, proportionately, than the variations in the
individual factors. Thus, it appears that the simulator is
fairly robust with respect to moderate variations in tim-
ing parameters.

We have not uncovered the source of the observed
biases, but remain confident in the ability of the simula-
tor to accurately predict the effects of changes in the
basic resource allocation algorithms.

367
367

257
66

257
255
153

478
153

478
478
423

Summary and conclusions
We have described a detailed trace-driven simulation
model of a time sharing system (CP-67), and have
shown how techniques of experimental design can be
used to validate and calibrate such a model and to study
the effects of changes in system design. Identical experi-
ments involving five controllable factors of a dispatching
algorithm have been carried out both on the simulator
and the real system. The results indicate that the errors
in estimating factorial effects are almost identical to those
expected from one actual machine run to another.

time were simulated in this experiment, as compared
with 600 s in the previous one. In this design, all main
effects are estimable, but the two-factor interactions are
confounded with one another in groups of four.

The results of the experiment are analyzed in Table
10, which shows that problem state time is relatively
insensitive to variations in the design factors. None of
the main effects is significant at the five percent level,
and the largest main effect is only two percent of nomi-
nal in magnitude. There are significant effects in some of

260 the other variables, for example, paging rate and super-

Appendix 1 : Dispatching algorithm
CP-67 employs two CPU service queues, Q1, which is
used for servicing interactive requests (those which can
be satisfied within a specified short interval of time) and
Q2, which services requests that cannot be completed in
the allotted Q1 quantum. Scheduling priorities for ad-
mission to Q2, the background queue of this so-called
foreground-background dispatcher, are calculated for
each user as functions of current time of day, initial as-
signed priorities, and calculated penalties for excessive
paging or CPU activity. Whenever a user is dropped

M. SCHATZOFF AND C. C. TILLMAN IBM J. RES. DEVELOP.

Table 11 Jobstream summary.

Virtual
machine
numbers CMS functions performed

DASD Virtual
Sleep 110 CPU time
count count (S)

1-16
17-3 1

32-36
37-40

7 text editor invocations
3 F-level assemblies
2 G-level FORTRAN compilations

7 H-level assemblies
2 F-level assemblies,
3 F-level PL/ I compilations,
2 G-level FORTRAN compilations

71
5

0
0

84
1027

1308
267 1

1 . 1
9.8

26.2
25.3

from Q2, another eligible user is admitted in order of
scheduling priority, as long as the total of the estimated
working sets of all Q2 residents does not exceed the
available main memory.

The algorithm employs two feedback mechanisms to
insure that mis-estimation of working sets does not re-
sult either in page thrashing or in under-utilization of the
CPU. The first mechanism calculates an estimate of
page thrashing which is used to scale individual working
set estimates. The second is a check on individual pag-
ing activities, used for preemptive dropping from Q2 of
offending users.

The combined effect of the Q2 admission policy and
feedback mechanisms is to produce a variable multi-
programming level which attempts to adjust dynamically
to changing workload conditions. A fixed maximum mul-
tiprogramming level can be imposed to prevent tempo-
rary large excursions.

When a task has not completed during its allotted Q1
quantum, it becomes eligible for Q2 admission. Under
certain conditions (frequent terminal interactions, indic-
ative of interactive work), the task will be dropped to a
second level of Q1 and re-dispatched so that it can have
a chance to complete before losing its resident pages.

Appendix 2: Job streams
The experiments described in this paper involved run-
ning forty virtual machines, each executing jobs under
the CMS (version 3.1) operating system. In the case of
the real system, the virtual machines were stagger-start-
ed at roughly one-second intervals using a modified ver-
sion of CP-67 with an automatic log-on mechanism. This
mechanism, in effect, simulated the logging on of a ter-
minal user, the execution of a CMS initial program load
(IPL) , and the invocation of a CMS EXEC file specify-
ing a sequence of commands to be executed. In the case
of the simulator, the virtual machines were stagger-
started at exactly one-second intervals using the delay
mechanism mentioned in the simulator section. SIMLOAD

file sequences were, of course, defined to represent the
loads imposed by log-ons, IPLS, and the commands

specified by the various EXEC files. In both the real
system and the simulator, appropriate performance
counters were recorded at the time of the last log-on,
i.e., nominally forty seconds after start up, then again
ten (real or simulated) minutes later. The data discussed
under validation experiments were obtained by differ-
encing the recorded counter values.

The forty virtual machines, in fact, ran only four dis-
tinct job streams, as summarized in Table 1 1. In this ta-
ble, the virtual machine numbers represent log-on order,
i.e., virtual machine IZ was the nth virtual machine to be
logged-on. The “sleep counts” shown in the third col-
umn refer to delays interspersed between some of the
commands to imitate the effects of terminal interactions.
In the real system these delays were effected by modify-
ing the CP SLEEP function to accept an argument re-
presenting “time before wake-up,” while in the simulator
special SIMLOAD control macros were employed. The
information in Table 1 1 can be further summarized by
saying that virtual machines 1 - 16 ran a highly interactive
job stream imitating a sequence of edit sessions; virtual
machines 17-3 1 ran a moderately interactive job stream
involving assembly language and FORTRAN compila-
tions; virtual machines 32-36 ran a non-interactive job
stream involving repeated assembly language compila-
tions; and virtual machines 37-40 ran a non-interactive
job stream involving assembly language, P L / I , and
FORTRAN compilations. Each of the four job streams
was so designed that, in the multi-user context of the
experiments, it would not reach completion before the
end of the ten-minute measurement period.

References and notes
1 . C. Boksenbaum, S. Greenberg, and C. Tillman, “Simula-

tion of CP-67,” Scient$c Center Report G320-2093, IBM
Data Processing Division, Cambridge, MA 02139 (June,
1973).

2. CP-67/CMS System Description Manual Form No.
GH20-0802-2. IBM Data Processing Division, White
Plains, NY 10601 (1971).

3. IBM Virtual Machine Facility/370: Introduction, Form
No. GC20-1800, IBM Data Processing Division, White
Plains, N Y 10601 (1972). 261

SIMULATOR VALIDATION EXPERIMENTS MAY 1975

4. P. N. Wahi, “On Sharing of Pages in CP-67,” Proc . ACM
SIGARCH-SIGOPS Workshop on Virtual Computing Sys-
tems, Harvard University, pp. 127-149 (March 26-27,
1973).

5 . W. M. Buco, A. J. Cristoforo, D. J . Hatfield, and C. C. Till-
man, “A methodology for paging performance enhance-
ments,” unpublished manuscript.

6. M. Schatzoff, and P. Bryant, “Regression Methods in Per-
formance Evaluation: Some Comments on the State of the
Art,” Proc. Computer Science and Statistics, 7th Annuul
Symposium on the Interface, Iowa State University, pp.
48-57 (October 1973).

7. Y. Bard, “Application of the Page Survival Index (PSI) to
Virtual-Memory System Performance,” IBM J . Res .
Develop. 19, 212 (1975), this issue.

8. Y. Bard, “Performance Criteria and Measurement for a
Time-sharing System,” IBM Syst . J . 10, 193 (1971).

9. W. G. Cochran and G. M. Cox, Experimental Designs,
John Wiley & Sons, Inc., New York, 1957 (2nd edition).

10. M. Schatzoff, R. Tsao, and R. Wiig, “An Experimental
Comparison of Time Sharing and Batch Processing,” C o m m .
A C M , 10, 261 (1967).

262

M. SCHATZOFF AND C. C. TILLMAN

11. R. L. Tsao, W. Comeau, and B. H. Margolin, “A Multi-
factor Paging Experiment: I. The Experiment and the Con-
clusions,” in Srutistical Computer Performance Evaluation,
edited by W. Freiberger, Academic Press, Inc., New York,
1972,pp. 103-134.

12. Y. Bard, “Experimental Evaluation of System Perfor-
mance,” IBM Syst. J . 12, 302 (1973).

13. R. A. Fisher, The Design of Experiments, Oliver and
Boyd, Edinburgh, 1935.

14. M. Schatzoff, and L. H. Wheeler, “CP-67 Paging Priority
Dispatcher,” Scientijjc Center Report G320.2088, IBM
Data Processing Division, Cambridge, MA 02139 (March
1973).

15. By convention in the special case of 2” experiments, ef-
fects are frequently defined by taking only the difference.

Received June 20, 1974; revised December 20, 1974

The authors are located at the I B M Data Processing
Division, ScientiJc Center, 545 Technology Square,
Cambridge, M A 02139.

IBM J . RES. DEVELOP.

