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Design of Experiments in Simulator  Validation 

Abstract: A common  problem encountered in computer system  simulation is that of validating that  the simulator can  produce, with a 
reasonable degree of accuracy,  the  same information that  can be obtained  from the modeled system.  This is basically a statistical 
problem because  there  are usually limitations with respect  to  the  number of controlled tests  that  can be carried out,  and  assessment 
of the fidelity of the model is a  function of the signal to noise  ratio. That is, the magnitude of error which can  be tolerated depends 
upon the size of the effect to  be predicted. In this paper we describe, by example,  how  techniques of statistical design and analysis  of 
experiments have  been  used to validate the modeling of the dispatching  algorithm of a  time  sharing system.  The  examples  are based  on 
a detailed,  trace-driven simulator of CP-67. They show that identical  factorial experiments involving parameters of this  algorithm, 
when carried  out  on both the simulator and  on  the actual system, produced  statistically comparable effects. 

Introduction 
A common  problem encountered in computer  system 
simulation is  that of validating that  the simulator  can 
predict, to some  required degree of accuracy,  the behav- 
ior of the modeled system. Typically, this problem is 
approached in a direct and obvious  manner, namely, by 
observing the behavior of the modeled system  under a 
set of controlled or measurable loading and other condi- 
tions  (e.g., configuration variations) , then  comparing the 
observations to corresponding predictions of the simula- 
tor. When  the  observations  and predictions agree within 
required limits for all conditions treated,  the simulator is 
considered to be  validated. 

The  procedure  described  above has  several  recog- 
nized difficulties, not the  least of which is the uncertain- 
ty associated with drawing  a  general  conclusion from a 
finite (and typically  small) number of experiments.  This 
uncertainty is of particular concern in the validation of 
detailed simulators,  where  one may be  attempting to 
predict  effects which are of the  same  order of magnitude 
as the random  fluctuations or  “noise”  inherent in real 
system  measurements.  In  such  cases, it is advantageous 
to use techniques  for statistical  design  and  analysis of 
experiments, both to  reduce  the number of experiments 
needed for a given level of confidence and  to indicate the 
statistical significance of measured and simulated effects. 
In this paper, we illustrate  this  point by describing the 
use of statistical  techniques in validating the modeling 
of the dispatching algorithm of a paged time-sharing sys- 
tem. Our discussion is based, in particular, on a  detailed, 
trace-driven  simulator [ I ]  of the CP-67 system [ 2 ] .  
Because  this  simulator was developed specifically for 

252 investigating new system decision  algorithms such  as 

those used in dispatching and paging, it was  important  to 
determine  whether changes to  such algorithms would 
produce  comparable effects in the simulator and in the 
real  system.  Such a determination is significant with re- 
gard not  only to  the CP-67 system,  but  also  to  the very 
similar and more current VM/ 370 system [ 31. We feel, 
in fact,  that while modification of the  present model to 
simulate VM/ 370 would be  straightforward,  conclu- 
sions  about  alternative decision  algorithms  reached us- 
ing the  present CP-67 model are generally  applicable to 
VM/370 as well. 

Our basic approach in  this work has been to view both 
the real system and the simulator  as  “black boxes” with 
certain  inputs and  outputs.  Our inputs in this case,  aside 
from  the  job  streams  themselves, were  essentially 
switches for disabling or modifying different parts of the 
dispatching  mechanism. For  example, a  provision for 
preempting users  after a given amount of paging activity 
could be turned on  or off. Outputs of interest  were 
typical  performance  indicators such  as paging rate  and 
CPU utilization in various states based on a fixed inter- 
val of time. In all experiments,  user  job  streams  and 
hardware configuration were held fixed. Thus  our  pro- 
cedure was to run  identical experiments  on  the real sys- 
tem  and on  the sirnulator,  selecting  various  combinations 
of switch  settings in accordance with the techniques of 
statistical  design of experiments.  The  outputs from these 
experiments  were  then analyzed to  estimate  the statisti- 
cally significant effects for  each “black  box,” i.e., to  ex- 
tract  the signals from  the  noise,  and to verify that  the 
same signals  were present in both cases. In addition,  a 
set of “sensitivity” experiments was  carried out  on  the 
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simulator  alone to indicate  its robustness with respect  to 
several timing parameters representing CP-67  overhead 
for various  functions and disk hardware  characteristics. 

In the next section we present an overview of the 
simulator  per se.  This is followed with a  review of some 
of the  important  concepts underlying the statistical  de- 
sign and  analysis of experiments.  Then, in the following 
section we describe  and  present  the  results of the valida- 
tion and  sensitivity experiments outlined  above. Brief 
descriptions of the  CP-67 dispatching algorithm and of 
the job streams used in the  experiments  are given in 
Appendices 1 and 2,  respectively. 

Simulator overview 
The purpose of this  section is  to provide  a general de- 
scription of the  CP-67 simulator on which this work was 
based, avoiding  the  specifics of implementation where 
possible. The  reader  interested in a more  complete treat- 
ment of this  material is directed  to Ref. [ 11. 

In  the  Introduction,  the simulator was characterized 
as being “detailed’  and “trace-driven.’’ “Detailed”  is, of 
course, a  relative term, and is used here merely to sug- 
gest a greater level of detail  than is perhaps typical of 
full-system  simulators. For example, the basic unit of 
time in our simulator is one microsecond, which permits 
explicit  accounting of the  overheads  for elemental  but 
frequently occurring operations associated with paging 
and  other 1 / 0 ,  dispatching, etc. By “trace-driven’’ we 
refer to  the  fact  that  job  streams  are  represented by data 
derived by tracing actual jobs in execution. Further- 
more,  this data defines explicit sequences of resource 
demands  that  are  interpreted by the simulator in a strict- 
ly deterministic manner, i.e., trace  data  are not reduced 
to  produce statistical  distributions or  other summary 
characterizations  to  be used  as  input for a stochastic 
driving mechanism. As we shall see  later,  the level of 
detail in this  trace-derived data is,  again,  quite high. An 
inevitable  disadvantage of our approach  is, of course, 
significant simulator execution  time; in particular,  de- 
pending on the job stream  and  other  factors,  from  one  to 
ten  seconds of execution  time are required to simulate 
one second of real time. On  the  other  hand,  there is the 
advantage of the potential ability to simulate accurately 
the effects of relatively  minor  changes in system soft- 
ware  and  hardware. In  fact,  the simulator  has  already 
been  used to investigate the effects of page sharing [4], 
various CMS/ APL performance enhancements [ 51, 
response  surface techniques for  system tuning [ 61,  and 
an alternative  dispatching  strategy [ 71. 

Before elaborating further  on  the  CP-67 simulator, we 
should recall that  CP-67 is a hypervisor for  the  Sys- 
tem/360 Model 67, which provides  functional sim- 
ulations of multiple System/360s to users  at  remote 
terminals. These functional  simulations, called virtual ma- 
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chines, may potentially all have different configurations 
and run different virtual operating systems. In our 
simulation work,  however, we have generally  concen- 
trated  on virtual machines running the interactive CMS 
operating system [ 21, and in the  experiments  reported 
here, in particular, all virtual  machines  were running 
CMS. 

Key  to  the  operation of CP-67, and hence  to  the simu- 
lation of CP-67, is the  System/  360 distinction between 
privileged and non-privileged instructions,  the  former 
being executable only  when the  CPU is in supervisor  as 
opposed  to problem state.  This distinction  enables CP- 
67  to  execute a  virtual machine’s non-privileged instruc- 
tions  directly on the CPU in problem state,  whereas 
privileged instructions are  executed interpretively by 
software. In essence,  then,  CP-67  consists of a set of pro- 
cedures  for simulating privileged instructions, plus pro- 
cedures  for virtual memory  management,  user (i.e., vir- 
tual  machine)  dispatching,  real 1 / 0  management,  and 
accounting. To facilitate  performance monitoring, these 
procedures maintain various  time  and event  counters, as 
described in [ 81. It  is, of course,  unnecessary  for  CP-67 
to provide high-level support  for  such functions as lan- 
guage translation, file maintenance, link-editing, etc., 
because this support is provided by the conventional 
operating  systems which run on virtual  machines.  Ac- 
cordingly, it is unnecessary to deal explicitly with high- 
level operating system functions in simulating CP-67. 
The simulation of such  functions is provided,  in  effect, 
by  tracing all activities of a virtual machine, i.e., operat- 
ing system as well as problem  program  activities. 

Our  approach, specifically, is to perform  full-instruc- 
tion traces of a virtual  machine’s  activities while running 
jobs of interest.  Subsequently,  the  trace  data  are compact- 
ed to form files (called SIMLOAD files) whose  records 
(called load macros)  represent  the  resource  demands of 
the virtual  machine as  seen by CP-67.  Combinations of 
these files, representing the  job  streams of interest, then 
form  the input for  the simulator. The  manner in which 
the original trace  data  are compacted to form load mac- 
ros is, of course, crucial to  the  operation and accuracy 
of the simulator  and  can be summarized as follows. Priv- 
ileged instructions are mapped to load macros in a  one- 
to-one fashion, along with various data  necessary  for 
simulation. For  example, load macros used to  represent 
start-I/ 0 instructions  provide  virtual 1 / 0  device  ad- 
dresses, channel  program descriptions,  referenced page 
lists, etc. Non-privileged instructions,  on  the  other  hand, 
are aggregated to varying degrees, depending on  the 
requirements of the simulation  experiment. In general,  a 
sequence of n non-privileged instructions  is  represented 
by a load macro specifying the value n and a list of the 
set of distinct pages which the  instructions  caused to be 
referenced (change-bits,  as well as page numbers,  are 253 
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recorded for  both privileged and non-privileged load 
macros). Pages are listed in order of first reference, but 
information  as to  the  exact  sequence of page usage is 
lost. This loss of page sequence information,  clearly a 
source of simulation error, is controlled by prescribing 
limits on  the maximum number of instructions  and/or 
pages to  be  represented by  a single load macro.  During 
compaction, if one of these limits is reached  before  a 
privileged instruction is encountered,  the  current  macro 
is recorded and  a new one  started. Encountering  a privi- 
leged instruction, of course,  terminates  the  current 
macro perforce. In  experiments  reported in [ 11 it was 
found that  errors  due  to  the loss of sequence information 
are, in fact, tolerable for most purposes (e.g.,  page 
exception rates  accurate within five percent) if the 
load macro page limit is  less  than  the average  number of 
pages available to a virtual machine while in execution. 
In  the  experiments  reported  here, this  condition  was sat- 
isfied by  setting the page limit to  ten  (the  instruction lim- 
it was sufficiently large as  to be  ineffective). 

While we will not  here  describe  the  internal  structure 
of the simulator  explicitly,  some  indication of this struc- 
ture is provided  by  considering some of the available 
controls and output capabilities. The available controls 
include system  parameters, load parameters,  and  opera- 
tional controls,  as follows: 

1 .  System parameters - hardware configuration and 
characteristics,  software  options (e.g., several  alter- 
native, parameterized paging and  dispatching algo- 
rithms are  built-in), and software  overhead times 
(see, e.g., Table 9) ; 

2. Load  parameters-number of virtual  machines, SIM- 

LOAD file sequence for each virtual  machine, aver- 
age instruction  execution  time to be  associated with 
each file, and virtual-to-read (mini-)  device mappings; 

3. Operational  controls -initial memory state,  shared/ 
fixed page specifications, initial virtual machine states, 
delays before virtual machine start-ups, and  conditions 
for simulator  interruption (e.g.,  for periodic output) 
and termination. 

The available outputs include tables summarizing  hard- 
ware  utilization,  various event  counts and rates, individ- 
ual  virtual  machine  activities, current  system  and virtual 
machine state variables,  and  individual virtual page 
usage patterns.  Included, in particular, are  outputs cor- 
responding to  the various  time and  event  counters main- 
tained  by CP-67 itself. Outputs  can be triggered not  only 
when specified points  in  time have  been  reached,  but 
also when various system and virtual machine events  are 
recognized. The  latter  events may include high-level 
events  such  as SIMLOAD end-of-files (for  response- 
time  recording) and low-level events  such  as page ex- 
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Statistical  design of experiments 
In this section, we review some of the basic concepts 
underlying the statistical  design and analysis of experi- 
ments, in order  to facilitate  understanding of the analy- 
ses described in the  next section. A thorough treatment 
of the subject is provided by Cochran and Cox [9]. Al- 
though these ideas have been widely and profitably ap- 
plied in a number of different areas of experimental re- 
search  over a period of many years,  they  seem not to 
have been  employed very extensively in the study of 
computer  systems. A few examples where  such tech- 
niques have been  successfully applied in computer 
studies  are given in Refs. [ 10- 121. It is our belief that this 
methodology  can  be extremely valuable in studying a 
wide range of computer  system design and evaluation 
problems, but  that  there is a large communication  gap 
which must be bridged between  computer  systems peo- 
ple and statisticians. The  reader who is already  familiar 
with this subject  matter may wish to proceed  directly to 
the following section. 

Statistical design of experiments  embodies principles 
to maximize the information  per observation,  and  to 
permit valid inferences  about  the effects, on  responses of 
interest, of variations in factors  under  the experimenter’s 
control. One of the key ideas  underlying  this  discipline is 
that of varying several  factors simultaneously, rather 
than one  at a  time,  as had been the usual  practice in 
experimental science prior to  the introduction  and for- 
malization of the fundamental concepts of experimental 
design by Fisher [ 131. By varying factors simultaneously, 
the  experimenter  can  capture information  pertaining to 
their  joint effects, or  interactions,  as well as their in- 
dividual or main effects. Additionally,  different effects 
can  be  estimated  from the  same  set of observations. 

A simple example of this  notion is that of a  balanced 
factorial experiment with two  factors,  each to be varied 
at  two different levels (high  vs low, or on vs off). We 
will label the  factors A and B, and  the  factor levels 1 and 
2 .  The total number of observations,  or experimental 
runs, will be denoted by N = 4n. 

The one-factor-at-a-time approach is to  do n runs at 
each level of each  factor,  as shown in Table 1. The ef- 
fect of varying factor A, say,  can be  measured by the 
difference in the means of the  observations  at  each level 
of A. The  appropriate t-test for assessing the statistical 
significance of this difference uses a  sample standard 
deviation based on 2n - 2 degrees of freedom, computed 
by pooling the sample standard deviations at  each level. 
In  essence,  the  standard deviation  among observations, 
recorded  under identical  experimental  conditions,  prov- 
ides  an  estimate of the variation  in model errors. 

The main effect of varying factor B  can be  measured 
in exactly  the  same way, but  because  each  factor is var- 
ied separately,  the  experiment  does  not  provide any in- 
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formation about possible interactions  between  the  two 
factors.  That  is, we have  no way of knowing whether  the 
effect of varying factor A is different at different levels 
of factor B. 

The factorial approach is shown in Table 2 .  For  the 
same  expenditure of observations,  we now have 2n ob- 
servations  at  each level of each  factor,  and can estimate 
the  interaction  between  the  factors. We could, using the 
factorial  design, cut  the size of the  experiment in half, 
leaving us with n observations  at  each level of each fac- 
tor,  as in the one-at-a-time approach.  We would then 
have approximately the  same precision in estimating 
main effects as in the one-at-a-time experiment, plus the 
ability to  estimate  the  interaction of the  two factors. 

For experiments involving larger numbers of factors, 
the  number of factor-level  combinations increases geo- 
metrically, but higher order  interactions  can  be  estimat- 
ed. In many  applications, certain high order  interactions 
may be  assumed  to  be negligible, and  further economies 
can then be realized  by using designs which are  fractions 
of full factorials. They  are designed in such a way as  to 
sacrifice information on specified interactions  by elimi- 
nating particular  factor-level  combinations. The exam- 
ples  discussed in the following section employ these 
fractional  factorial  designs  exclusively. 

The main idea behind  fractional  factorials is illustrated 
by Fig. 1 ,  which depicts a 4 fraction of a 23 design (3  
factors,  each  at 2 levels).  The  coordinates of each ver- 
tex of the  cube  represent  the levels of factors A, B and 
C .  Note  that  the design corresponding to  the  four ver- 
tices denoted by the circles  provides estimates of all 
three main effects. For example, the B main effect is 
measured by the difference between the means of the 
pairs of points on  the  top and bottom  faces of the  cube. 
The  other main effects are measured  by similar compari- 
sons of observations  on  the  other pairs of faces of the 
cube. In higher dimensions,  smaller fractions of bal- 
anced  points on  the  hypercube can  be  used. 

The analysis of data  from a designed experiment  is 
based on  the  assumption of a linear model with normally 
distributed error terms. For a 3-factor  design, the model 
would be 

where,  for  example, ai is  the effect due  to  factor A being 
at level i ,  pj is the effect due  to  factor B being at levelj, 
and (cup) ij is the interaction effect due  to  factor A being 
at level i and  factor B being at level j .  The eijkl are  as- 
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Figure 1 One-half  replicate of a fractional  factorial  design. 

Table 1 One-factor-at-a-time  arrangement. 

A B 
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Table 2 Factorial  arrangement. 

A 

1 2 
1 
2 n n 

n n 
B 

sumed to be independent  errors  from a normal  distribu- 
tion  with  mean zero  and unknown variance c'. 

This model states  that  each  observation is composed 
of an overall mean, p ,  plus main effects due  to  the  three 
factors, plus interaction  terms  and a random  error term. 
The index 1 is used to  represent possible  replications of 
observations  made  under identical experimental condi- 
tions. Usually,  an analysis of variance is carried out  on 
the  data  from a designed  experiment. Essentially,  the 
total sum of squares of  all observations is partitioned 
into  component  sums of squares corresponding to  the 
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3 Experimental  design  for validation study. 

Experimrntul Paging CPU Max Variable Two- 
run penalty use page multi- level 

penalty I /  0 prog. Ql 
check  control 

1 -1 "I -I 1 1 
2 1 -I -1 1 
3 

-1 
-1 I -1 1 

4 1 1 "1 1 1 
-I 

5 -1 -1 1 1 
6 1 -1 1 1 1 

-I 

7 -1 1 1 1 1 
8 1 1 1 1 
9 

-1 

10 
-1 -1 -I -1 

1 
-I 

-1 -1 "1 1 
11  "1 1 -1 -1 1 
12 1 1 -1 "I -1 
13 --I -1 I -1 1 
14 1 -1 1 -1 
15 

-1 
-1 1 1 

16 1 1 -I I 
-1 

1 
-1 

Table 4 Raw data. 

Proportion Proportion Page  reads 
problem supervisor per  second 

state  state 
-___- 

Run  Act.  Sim.  Act.  Sim.  Act.  Sim. 

1 0.286 0.330 0.360 0.313 98.007 89.530 
2 0.285 0.286 0.355 0.356 92.675 102.300 
3 0.291 0.307 0.335 0.334 87.638 97.700 
4 0.283 0.319 0.344 0.334 92.416 95.990 
5 0.377 0.427 0.320 0.292 73.844 80.130 
6 0.379 0.384 0.299 0.291 66.675 75.250 
7 0.365 0.438 0.289 0.292 62.218 76.340 
8 0.394 0.415 0.322 0.303 74.176 77.450 
9 0.402 0.461 0.250 0.249 43.052 50.000 

IO 0.398 0.458 0.220 0.216 32.351 37.690 
1 1  0.397 0.469 0.222 0.227 33.607 39.490 
12 0.391 0.461 0.249 0.248 42.612 49.670 
13 0.417 0.449 0.219 0.212 29.953 35.860 
14 0.389 0.475 0.253 0.228 42.775 50.270 
15 0.391 0.447 0.247 0.258 40.237 49.750 
16 0.449 0.451 0.218 0.215 30.377 37.630 

terms in the linear model. Each of these  is  then divided 
by its appropriate degrees of freedom  to obtain  sample 
variances. The sample  variances  corresponding to  the 
main effects  and interactions  are then compared  to  the 
error variance  by means of F-tests in order  to  assess  the 
statistical significance of each of the  observed effects. 

Because the validity of inferences drawn  from  such 
analyses is dependent  on  the  adequacy of the assumed 
model, various analyses and  plots of residuals (differ- 
ences between the  observations and fitted values  ob- 

tained  from the model) may be  employed to indicate 
whether  there  appear  to be serious discrepancies. 

Validation  experiments 
As noted in the  Introduction,  one of the objectives of 
the simulation  project  was to  construct a  tool that could 
be reliably used to  evaluate design  changes in scheduling 
and  dispatching  algorithms. Such design  changes  could 
encompass a spectrum of possibilities ranging from  that 
of changing values of fixed parameters in the existing 
algorithm, to  that of replacing the algorithm with a  com- 
pletely new one. I t  was  envisioned from  the  start of the 
project that factorial experiments would be used to  spec- 
ify patterns of parameter  changes and to  assess the ef- 
fects of such changes on various aspects of system 
performance. Therefore, a necessary objective of the vali- 
dation was to  demonstrate  that  experiments of this type 
would produce similar effects  both in the actual system 
and in the simulator. 

The specific dispatching experiment  chosen  as  the 
basis for  the validation  involved the following five pa- 
rameters  (factors),  each of which could  be  viewed as an 
on-off switch. 

x, Paging penalty 
x, CPU usage penalty 
x, Maximum  page I /  0 preemption 
x4 Maximum multiprogramming level 
x5 Two-level Q 1 

A summary  description of the algorithm is provided  in 
Appendix 1 ; a more  detailed account  is given in a tech- 
nical report by Schatzoff and  Wheeler [ 141. 

The  experiment consisted of a one-half  replicate of a 
2 5  factorial. It used a workload of four different CMS  job 
streams,  each replicated different numbers of times, to 
provide  a  total of 40 virtual  machines. The workloads 
are  described briefly in Appendix 2 .  The design of the 
experiment  is given in Table 3, which uses plus ones  and 
minus ones  to  represent  on and off conditions, respec- 
tively. 

The  results,  for  three variables of interest-CPU 
problem state time, CPU supervisor  state time, and page 
read rate - are given in Table 4. Ten minutes of real time 
were simulated for  each run. A number of other variables 
were also  measured. However,  the key aspects of the 
system's  performance can  be  characterized  adequately 
for  our  purposes by these  parameters, which represent 
the  CPU  throughput,  overhead, and paging activity lev- 
els of the system. The  same methodology  could  be  ap- 
plied to any other variables of interest. 

Initial  examination of the  data is not very revealing. It 
shows  that  our  estimates of problem state time and page 
read  rate  are more than  ten  percent  too high on  average, 
while supervisor  state time is much more closely  ap- 

IBM J. RES. DEVELOP. 



proximated, being only about  three  percent  too low. In- 
dividual estimates  are  sometimes in error by over  twenty 
percent. It should  be  recalled,  however, that  the objec- 
tive is to provide valid information concerning the ef- 
fects,  on  the  average, of changes in parameter values, 
rather than to  estimate individual results with great pre- 
cision. 

A  more  incisive view of the  data,  then, is provided  by 
Table 5, which shows  the main effects and  interactions 
for  each of the variables, for both the simulator and  the 
actual  system. These  statistics  show  the deviations from 
average  attributable  to  the various factors, singly and 
pairwise. 

To  understand how these statistics are  computed, we 
generalize Eq. ( I )  to five factors and  re-parameterize it 
in the form 

5 

Y i jk l  = OiXi + OijXiXj + C i j k l ,  (2) 
i = O  i#j=l 

where xi has  the value + I  or -1 depending on  whether 
the ith  switch (factor) is on  or off. Thus, in terms of Eq. 
( 1 )  , we have imposed the  constraints a1 + a2 = 0 ,  Dl + 
p, = 0,.  . ., etc. in order  to  be able to  estimate  the effects 
Oi, O i j , .  . ., etc. I t  should  be  noted that the  re-parameteri- 
zation reduces  the model to  the  form of a  regression 
equation in which the xi are  the values of the indepen- 
dent variables,  and the Oi, Oii are  the regression coeffi- 
cients. 

The main effect for  a given factor is computed by sub- 
tracting the mean of all observations taken at  the low 
(-1) level of the  factor from the mean of the observa- 
tions at  the high ( + 1 )  level and dividing the resulting 
difference by 2 [ 151. All of the main effects can be readily 
computed in one  step by means of a simple matrix multi- 
plication. Let us denote by X the design matrix of Table 
3 ,  and by Y the  data matrix of Table 4. Then,  the main 
effects given  by rows 2-6 of Table 5 are  computed by 
X'Y/ 16, where X' is the  transpose of X. Interaction 
effects are computed in a similar way. First, columns are 
adjoined to X by computing the element by element 
products of each pair of columns of the original X ma- 
trix. A new column, formed  as  the  product of columns 
corresponding to  factors i and j ,  represents  the  (i, j )  in- 
teraction effect. Then,  the computation X'Y/ 16, where 
X represents  the  extended matrix,  provides  not  only the 
main effects, but  the  interactions  as well. Adjoining a 
column of 1 s to  the X matrix will yield the overall means 
(row 1 of Table 5) in the  same computation. 

A  striking aspect of the analysis  provided  by Table 5 
is that for  each variable,  only three  or  four effects are 
large in magnitude  relative to all the  others.  Further- 
more,  they  are  the  same  set of effects for all variables, 
the directions of  all such effects for both the  simulator 
and the real system are always  identical, and  the magni- 

MAY 1975 

Table 5 Factorial effects. 

Proportion Proportion Page reads 
problem supervisor per second 

state slate 
-~ ~- 

Act. Sirn. Act. Sirn. Act.  Sim. 

Bo 0.3684 0.4111 0.2814 0.2730 58.9133 65.3156 

0, 0.0026 -0.0049 0.001 1 0.0009 0.3438 0.4656 
0, 0.0018 0.0023 -0.0031 0.0034 -1.0032 0.1869 
O3 0.0268 0.0247 -0.- -0.0116 -6.3814 -4.9806 

O5 0.0034 0.0012 - 0 . ~  -0.- -3.2128 -4.3431 
e4 -0.0359 -0.0478 0.- 0.0414 22.0428 21.5206 

0.0065 0.003 1 
0.0050 0.0004 
0.0001 -0.0073 
0.0029 -0.0043 
0.0029 -0.0003 

-0.0010 0.0042 
0.0000 0.0047 

0.0040 -0.0064 
0.0195 0.0281 

-0.0076 0.0033 

0.0039 -0.0022 
0.0010 -0.0030 
0.0009 0.0058 

0.0013 0.0023 
-0.0024 -0.0020 

0.0000 0.001 1 

-0.0046 0.0016 
0.0050 0.0036 

-0.0022 0.0006 

- 0 . m  -0.0082 

1.6413 -0.7831 
0.625 1 -0.6506 
0.1856 0.4456 

-0.5896 0.2019 
0.2233 -0.2294 

-0.8409 -0.153 1 
-0.0428 I .203 I 
-5.3464 -4.5631 
-2.01  33 0.278 1 

2.0857 1.7844 

tudes  are approximately equal  as well. For  example, 
imposition of a fixed maximum multiprogramming level 
results in a substantially  lower paging rate, which is ac- 
companied by a sharp reduction in overhead  and a cor- 
responding increase in problem state.  The preemption of 
tasks which exceed  the maximum allowed paging rate 
produces similar but somewhat smaller  effects on these 
three variables. Unfortunatdy,  the gains reflected by the 
main effects of these  two factors  are not strictly additive, 
because  the  factors  interact negatively with one  another 
on all three variables of interest,  as can  be seen  from  the 
(3, 4)  row of Table 5. Another effect that  seems to be 
marginally important is that of two-level Q I ,  which re- 
sults in reduced paging rates  and  overhead, but does not 
seem  to affect problem state. 

Thus  far, we have commented in a qualitative  way on 
two important  questions raised by the simulation  experi- 
ment, namely, how well do  the simulator results approxi- 
mate those of the real system,  and how significant are 
the various  effects that  have been  calculated.  A  partial 
answer  to  the first question is provided  by  comparing 
differences in effects measured on  the simulator  and the 
real system with independent  estimates of errors from 
one run to  another  on  the real system.  The  latter mea- 
surements were  obtained from initial replicated  trials 
carried out  for  the  purpose of checking out  the testing 
procedures  to be  employed on  the real system. The  data 
from  these  tests, which were  run under  three different 
combinations of dispatch parameter  settings,  are shown 
in Table 6, together with the pooled-within-sample stan- 257 
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Actual problem state effects: o ------ 
Simulated problem state effects: w - 

0 
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Figure 2 Normal  probability plot of actual  and  simulated 
problem state  effects. 

dard deviations. The  corresponding  standard deviations 
of differences between  two individual effects, each of 
which is a  mean of 16 observations  (with alternating 
signs),  are  therefore estimated by dividing these within- 
sample standard  deviations by a (since  the  variance of 
the difference between  the  means of two samples of size 
n is given by 2a2 / n )  . These  are  compared in Table 7 with 
the standard deviations of measured  differences in ef- 
fects  between  the real  system  and  simulator,  which may 
be readily calculated from Table 5. We may conclude 
from these  comparisons  that differences in factorial ef- 
fects measured on  the simulator  and the real system  are 
not significantly different from those  that might be ex- 
pected between  one machine  run  and another. 

An interesting  and revealing graphical representation 
of the  close agreement in simulator  and real system ef- 
fects is provided in Figs. 2 and 3, which are normal 
probability  plots of the effects and  their differences. In a 
normal  probability  plot, the  observations  are arranged  in 
ascending order,  and plotted  against the  standardized 

Table 6 Repeatability of real system measurements. 

Parameter  Proportion Proportion  Page  reads 
settings  problem supervisor  per  second 

state state 

1 0.335 
0.291 
0.275 
0.273 

2  0.460 
0.456 
0.441 
0.458 

3 0.42 1 
0.424 
0.410 

Pooled-within- 
sample  standard 0.0188 
deviations 

0.3 16 77.10 
0.333 85.41 
0.342 92.65 
0.346 92.2 1 

0.237 18.41 
0.237 17.79 
0.224 17.64 
0.23 1 19.42 

0.285  5 1.79 
0.280 49.78 
0.290 55.02 

0.0095  4.64 

expected values of the corresponding order  statistics of 
a  sample from a normal  distribution. The plot has  the 
property  that a random sample drawn  from a normal dis- 
tribution  should scatter  about a straight line. Based on 
the  linear model of Eq. ( 1) , if the underlying  effects are 
all non-existent (Le., Yijkl = p + eZik l ) ,  then  the  computed 
effects  should  plot as a straight line. If most  effects are 
non-existent (or negligible), but a  few are large in mag- 
nitude,  then  the plot  should show most  points lying close 
to  the straight  line,  but those corresponding to  the non- 
negligible effects  should be relatively far  away  from  the 
line. 

Figure 2 shows  the probability  plots for  the 15 prob- 
lem state effects  calculated from  the  experiments  on  the 
real and simulated systems.  These plots are almost  iden- 
tical. Each clearly  reveals the  presence of two large pos- 
itive effects and one large  negative effect. As noted from 
Table 5, these  correspond  to  the main effect for  factor x, 
(maximum page I /  0 preemption),  the (3 ,4)  interaction, 
and  the main effect for  factor x4 (maximum  multipro- 
gramming control), respectively. Figure 3 i s  a  normal 
probability plot of the differences in the effects between 
the actual  and the simulated system.  These plot  very close 
to a straight  line,  indicating that simulator errors  are 
random in nature  and  independent of parameter changes. 

These  graphs help to  answer  our  second  question, 
which deals  with assessment of significance of effects. A 
more formal  analysis is provided in Table 8, which pre- 
sents t-values for  the various  effects, based  on  the  stan- 
dard  errors of effects  estimated on  the actual system  (last 
row of Table 6 divided by 4). If we refer these  to tables of 
the t-distribution on eight degrees of freedom, we find 
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Table 7 Standard  deviations of differences  between  factorial 
effects. 

Proportion Proportion Page  reads 
problem supervisor per  second 

sfnfe state 

Real  system 0.0066 0.0034 1.64 
(replicated  runs) 
Simulator-red 0.0068 0.0038 I .22 
system 

Table 8 t-Values of effects. 

Proportion Proportion Page  reads 
problem supervisor per  second 

state stute 
____ 

Acl.  Sim.  Act.  Sim.  Act.  Sim. 

*I 0.56 -1.05 0.47 0.36 0.30 0.40 
8, 0.37 0.49 -1.30 1.41 -0.86 0.16 
03 " 

8 4  
0 5  

5.69 5.25 -4.37  -4.84 -5.50 -4.29 
-7.63  -10.17 19.43 17.24 19.00 18.55 

0.72 0.25 -4.17  -4.37  -2.77 -3.74 
" 

~ ~ 

* , 2  1.38 0.65 1.61 -0.94 1.41 "0.68 
%3 1.06 0.09 0.42 -1.25 0.54 -0.56 
*1,4 0.03 "1.56 0.36 2.40 

* , 3  0.61 -0.07 0.52 0.94 
*2,4 -0.21 0.89 -0.99  -0.83  -0.72  -0.13 
02s 0.00 1.00 0.00 0.47 -0.04 1.04 
*3,4 

6 3 s  

*4,5 -1.62  0.70 2.08 1.51 

0.16 0.38 
'1,5 0.61 -0.92  -0.94 0.26 -0.51 0.17 

0.19  -0.20 

4.15 5.97 -4.17 -3.44 -4.61  -3.93 
0.85 -1.37  -1.93 0.68 -1.74 0.24 

1.80 1.54 

" 

that  the  three effects that revealed themselves so em- 
phatically on  the probability plot are all significant at the 
one  percent level of significance or beyond. The two- 
level QI main effects are also significant on  supervisor 
time and paging rate,  although the t-value for  the actual 
system  on paging rate falls just  short of the  two  percent 
level. No other effects are significant at  the  one  percent 
level. 

All of the analyses  described  thus far  have been  con- 
cerned with validation. An  associated problem of inter- 
est is that of calibration, or adjusting parameters of the 
simulator in such a way as  to  provide  better agree- 
ment in the  outputs with those of the system being mod- 
eled.  Validation  and  calibration may be viewed as iter- 
ative and complementary processes. During  the  course 
of our validation work, we were  continually trying to 
locate  and correct  sources of discrepancies,  and  indeed 
were  led to  the discovery of a  number of programming 
bugs and logical errors in our modeling of the  system. 
Although we have been  very  pleased with the high de- 
gree of fidelity that  has been  achieved in estimating the 

MAY 1975 

0.0125 

0.0100 

0.0075 

0.0050 

0.0025 

0.0000 

-0.0025 

-0.0050 
Lo 

4- 

5 

5 
E 
2 "0.0100 

G a -0.0125 

-0.0075 

5 

M 
L: 

259 

SlMULATOR VALIDATION EXPERIMENTS 

0 

I I I I I I I I 

-2 -1 0 I 2 

iorrnalized expected value 

Figure 3 Normal  probability plot-actual minus  simulated 
effects. 

effects of certain  parameter changes, as  already  de- 
scribed, we have  been somewhat perplexed by the ap- 
parent  biases in estimating mean levels of problem state 
time  and paging rates.  Because there  are a large number 
of timing parameters in the simulator  model, we de- 
signed an  experiment aimed at indicating the main ef- 
fects of  mild changes in the values of these parameters. 
Thirty-eight parameters were identified and classified 
into eight groups,  as shown in Table 9. Within each 
group,  the  parameters were  varied  simultaneously at two 
levels, 15 percent above  and below the nominal values 
for  seven of the  groups, and plus or minus 2.5 percent 
for  the eighth, which represented disk characteristics. A 
1 / 16 fraction of a 28 factorial  was carried  out, using the 
same workloads  as  before. However, only 400 s of real 



Table 9 Factors for simulator sensitivity experiment. 

Values used (ps) 

Factor  Function  Pararnerer(s) LOW, (-1) High (fl) 

1 Dispatch-  T-READY 100 130 
Task  (re)  start T-DISP 50 65 

T-DISP-LOOP 10 13 
T-DISP-OVHD 85 1 1 1  
T-NODISP-OVHD 15 20 
T-REDISP 100 130 
T-REDISP-FAST 35 46 

2 Dispatch- T-QDROP 400  520 
Qdrw 

3 Dispatch- T-QCHECK 500  650 
Qadd test 

4 Paging T-PRALG 
T-PG-QUEUE 
T-PG-SI0 
T-PG-INT 

5 Virtual selector T-CCWTRANS 
1/0 initiation T-DIAGTRANS 
all virtual I/O T-IO-QUEUE 
termination T-DISKS10 

T-START-SEEK 
T-RIO-INT 
T-VIO-END 
T-VIO-INT 

6 Console 1/0 T-CONS-DISC 

200 
1 50 

260 
195 

600 
100 130 

780 

1 500  1950 
500 
100 

650 

150 
130 

85 
195 

300 
I l l  
390 

125 
175 

163 
228 

1100 1430 

7 Disk charac- T-DISRSEEKO 23300  24500 
teristics T-DISKSEEK1 475 500 

T-DISKSRCH 11870  12500 
T-DISKXFER 3.05 3.21 

8 Privileged in- T-SIKSSK 
struction sim- T-SIXISK 
ulation T-SIKSVC 

T-SIM-SSM 
T-SIM-LPSW 
TSIM-DIAG 
T-SIM-WRD 
T-SIM-RDD 
T-SIM-SI0 
T-SIM-TI0 
T-SIM-HI0 
T-SIM-TCH 

282 
282 

205 
51 

205 
196 
118 
I18 
368 
368 
368 
325 

Table 10 Factorial effects for calibration experiment, 

Proportion Proportion Page  reads 
problem supervisor per  second 

state State 

0 0  0.3533  0.3 127 74.139 

01 -0.002 1 0.0063 0.444 
0 2  -0.0054 "0.0030 -1.008 

0.0041 -0.0001 4 . 5 9 4  
0.0017 0.0245 

-0.0063 0.01 14 
0.0005 0.0028 

2.903 
1.427 
1.329 

-0.0074 -0.0054 -1.67 1 
0s -0.0017 0.0019 -0.437 

01.5 0.0008 -0.0016 -0.463 
018 -0.0042 -0.0007 0.134 
el,, 0.0047 0.0001 4 . 3 0 3  
01,s -0.0002 0.0006 0.135 
01.3 0.0052 0.00 14 0.372 
014 -0.0028 -0.0035 -1.332 
01.2 -0.00 18 0.00 10 0.923 

visor state time, but  the magnitudes of these effects are 
much smaller, proportionately,  than  the variations in the 
individual factors.  Thus,  it  appears  that  the simulator is 
fairly robust with respect  to  moderate variations in tim- 
ing parameters. 

We  have  not  uncovered  the  source of the  observed 
biases, but  remain confident in the ability of the simula- 
tor  to  accurately predict the effects of changes in the 
basic  resource allocation  algorithms. 

367 
367 

257 
66 

257 
255 
153 

478 
153 

478 
478 
423 

Summary and conclusions 
We  have described  a  detailed  trace-driven simulation 
model of a time  sharing system (CP-67), and have 
shown how techniques of experimental design  can be 
used to validate  and  calibrate such a model and to study 
the effects of changes in system design. Identical experi- 
ments involving five controllable factors of a  dispatching 
algorithm have been  carried out both on  the simulator 
and the real system. The  results indicate that  the  errors 
in estimating  factorial effects are almost  identical to  those 
expected  from  one actual  machine  run to  another. 

time were simulated in this experiment, as compared 
with 600 s in the previous  one. In this  design, all main 
effects are estimable,  but the two-factor interactions  are 
confounded  with one  another in groups of four. 

The  results of the  experiment  are analyzed in Table 
10, which shows that problem state time is relatively 
insensitive to variations  in the design factors.  None of 
the main effects is significant at  the five percent level, 
and  the largest main effect is only two  percent of nomi- 
nal  in magnitude. There  are significant effects in  some of 

260 the  other variables, for  example, paging rate  and  super- 

Appendix 1 : Dispatching algorithm 
CP-67 employs two CPU service  queues,  Q1, which is 
used for servicing interactive  requests  (those which can 
be satisfied  within a specified short interval of time) and 
Q2, which services  requests  that  cannot be  completed in 
the allotted Q1 quantum.  Scheduling  priorities for ad- 
mission to Q2, the background queue of this  so-called 
foreground-background dispatcher,  are calculated for 
each  user  as functions of current time of day, initial as- 
signed priorities, and calculated  penalties for  excessive 
paging or CPU activity. Whenever a user  is  dropped 
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Table 11 Jobstream  summary. 

Virtual 
machine 
numbers CMS  functions  performed 

DASD Virtual 
Sleep 110 CPU time 
count  count ( S )  

1-16 
17-3 1 

32-36 
37-40 

7 text editor invocations 
3 F-level assemblies 
2 G-level FORTRAN compilations 

7 H-level assemblies 
2 F-level assemblies, 
3 F-level PL/ I compilations, 
2 G-level FORTRAN compilations 

71 
5 

0 
0 

84 
1027 

1308 
267 1 

1 . 1  
9.8 

26.2 
25.3 

from Q2, another eligible user is admitted in order of 
scheduling  priority, as long as the  total of the  estimated 
working sets of all Q2 residents does not exceed  the 
available main memory. 

The algorithm employs two  feedback mechanisms to 
insure  that mis-estimation of working sets  does not  re- 
sult  either in page thrashing or in under-utilization of the 
CPU. The first  mechanism  calculates an estimate of 
page thrashing which is used to scale individual working 
set estimates. The  second is a check on individual pag- 
ing activities,  used for preemptive dropping from Q2 of 
offending users. 

The combined effect of the Q2 admission policy and 
feedback mechanisms is to  produce a  variable multi- 
programming level  which attempts  to  adjust dynamically 
to changing workload  conditions. A fixed maximum mul- 
tiprogramming level can be imposed to  prevent tempo- 
rary large excursions. 

When  a  task has not  completed during its allotted Q1 
quantum, it becomes eligible for Q2 admission. Under 
certain conditions (frequent terminal interactions, indic- 
ative of interactive  work),  the task will be  dropped  to a 
second level of Q1 and  re-dispatched so that it can  have 
a chance  to  complete before losing its  resident  pages. 

Appendix 2: Job streams 
The  experiments  described in  this paper involved run- 
ning forty virtual  machines, each executing jobs  under 
the CMS (version 3.1)  operating system.  In  the  case of 
the real system,  the virtual  machines  were  stagger-start- 
ed  at roughly  one-second  intervals using a modified ver- 
sion of CP-67 with an  automatic log-on mechanism. This 
mechanism, in effect,  simulated the logging on of a ter- 
minal user,  the execution of a CMS initial program  load 
( IPL) ,  and  the invocation of a CMS EXEC file specify- 
ing a sequence of commands  to be executed.  In  the  case 
of the  simulator,  the virtual  machines were stagger- 
started  at  exactly  one-second intervals using the delay 
mechanism  mentioned in the simulator  section. SIMLOAD 

file sequences were, of course, defined to  represent  the 
loads  imposed by log-ons, IPLS, and the  commands 

specified by the various EXEC files. In both the real 
system  and  the simulator, appropriate performance 
counters were recorded  at  the time of the last  log-on, 
i.e., nominally forty  seconds  after  start  up,  then again 
ten  (real  or simulated)  minutes  later. The  data  discussed 
under validation experiments  were obtained by differ- 
encing the recorded counter values. 

The  forty virtual  machines,  in fact, ran  only four dis- 
tinct job  streams,  as summarized in Table 1 1. In this ta- 
ble,  the virtual  machine numbers  represent log-on order, 
i.e., virtual  machine IZ was  the nth  virtual  machine to be 
logged-on. The  “sleep  counts”  shown in the third col- 
umn  refer to delays interspersed  between  some of the 
commands  to imitate the effects of terminal  interactions. 
In  the real system  these delays  were  effected  by modify- 
ing the CP SLEEP function to  accept  an  argument re- 
presenting  “time  before  wake-up,” while in the simulator 
special SIMLOAD control  macros were  employed. The 
information in Table 1  1 can be further summarized  by 
saying that virtual  machines 1 - 16 ran a highly interactive 
job  stream imitating  a sequence of edit  sessions; virtual 
machines 17-3 1 ran a moderately interactive  job  stream 
involving assembly  language  and FORTRAN compila- 
tions; virtual  machines 32-36 ran a non-interactive job 
stream involving repeated  assembly language compila- 
tions; and  virtual  machines 37-40 ran  a  non-interactive 
job  stream involving assembly  language, P L / I ,  and 
FORTRAN compilations. Each of the  four  job  streams 
was so designed that, in the multi-user context of the 
experiments, it would not reach completion before  the 
end of the ten-minute measurement period. 
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