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Tailoring  Programs to Models of Program  Behavior 

Abstract: This  paper considers the premise that, in addition to trying to solve the virtual-memory-system  performance problem by 
devising a storage management strategy suitable for  the broad spectrum of behavior  exhibited by programs,  efforts also  be  made  to 
tailor the behavior of each program to  the model underlying the  storage management strategy  under which the program will have to run. 
It is observed  that a  viable approach  to program tailoring is offered by restructuring techniques.  The application of dynamic off-line 
techniques to  the tailoring problem is discussed,  and an algorithm which may be used to fit program  behavior to  the working set model 
is described in detail as an  example. The performance of this algorithm in dealing with two real-program traces is experimentally  evalu- 
ated under a variety of conditions  and  found to  be always  satisfactory. 

Introduction 
The problem of achieving reasonable levels of perfor- 
mance in virtual  memory systems  has received  and is 
still receiving a  considerable amount of attention. from 
system designers  and performance  evaluators.  One of 
the major concerns is with devising  methods for manag- 
ing a storage hierarchy that is responsive  to changes 
in the system’s  workload. The conventional approach 
to  the  storage management  problem consists of selecting 
one among  a  number of methods based on some  prop- 
erties which have been empirically observed  to hold (to 
a greater  or lesser extent)  for a  number of programs. 
However,  that fraction of the programs in a  system’s 
workload which does not  appreciably  exhibit those prop- 
erties is often non-negligible. Because the  system  has 
no control over  the referencing patterns of the programs 
it executes,  the  presence in the workload of programs 
whose  behavior does not  satisfy the  assumptions is 
bound to degrade the performance of the system. 

This  paper  takes, in some sense,  the  opposite view- 
point: Instead of accepting  behavioral  differences  among 
programs as a necessary evil and concentrating  our ef- 
forts only on improving storage management,  trying to 
make it able  to deal efficiently with a  broad spectrum of 
behavior (which is probably  a  hopeless task), we should 
try to  produce programs that  are  better suited to  the 
storage management policy under which they will have 
to run. The  purpose of this paper is to  show  that this 
result (which would be  achievable by proper program 
design methodologies if they had been found)  can be 
obtained by restructuring  programs after they have been 
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Storage  management  strategies  and  models of pro- 
gram behavior 
In virtual memory systems, especially if they are multi- 
programmed, the programs to be executed usually do 
not fit entirely into physical main memory. Thus, pro- 
grams  must be “folded,” i.e., divided  into  (generally 
non-disjoint) parts  to be  successively  loaded into memo- 
ry  during  execution. The folding of programs in a  virtual 
memory system is done automatically by the operating 
system following a set of rules  known as the system’s 
storuge  management  strategy [ I ] .  

The task of a storage management  strategy is to  de- 
cide which parts of the programs that  are ready to  run, 
at any instant,  are  to be in memory at  that instant. The 
relationships  between  this  function  and the  one of the 
scheduling policy (which  has  to  decide  the  order in 
which programs will be executed)  are very  strong  and 
intricate. For  the  sake of simplicity, the following dis- 
cussion will assume  that  the number  and  identities of the 
programs to be (partially) loaded  into main memory are 
selected by some  other operating  system component 
(for example, by the  scheduler or by the general  re- 
source  manager).  Thus,  the memory  manager will only 
be concerned with partitioning the available main memo- 
ry space among the given programs  and  deciding  what 
portion of each program is to be in main memory at any 
given time. 

In a paging implementation of virtual  memory, the 
address  spaces of programs are divided into fixed-size 
portions called virtual  puge  frames, consisting of contig- 
uous virtual addresses. Similarly, the physical main 
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memory is divided  into physical  page  frames having the 
same sizes as  their virtual counterparts.  The information 
stored in a  virtual page frame, and  occasionally also in a 
physical page frame, is called a page. The page is the 
unit of memory  allocation  and of information transfer 
between main memory  and  auxiliary  storage. Thus, in a 
paged system,  the  storage management  strategy deter- 
mines how many physical  page  frames are  to be allocat- 
ed  to  each program and which ones of its pages are  to be 
stored into those frames at  any given  time. In other 
words, the  storage management  strategy has  to  solve  the 
two  interrelated  problems of size and page  identity for 
the loaded portion of each program. The objective, in 
solving these problems, is to maximize performance. 
Various  performance  indices are used today in computer 
system  evaluation, the most  popular being those ex- 
pressing the productivity  (e.g., the throughput rate)  or 
the  responsiveness (e.g., the turnaround or  response 
time) of a system.  In  order  to optimize one of these  sys- 
tem-wide  indices (or a  function of several of them) by 
making decisions concerned with each individual pro- 
gram separately, we should be able  to  determine the 
contribution of each program to  our performance  index 
and the impact of our decisions on it. Because  this is 
beyond the  current  state of our knowledge, at  least  for 
most  practical systems, indices  more easily expressible 
in terms of the behavior of individual programs are used 
in storage  management studies.  One of the most  popular 
indices of this type is the page  fault   rate or, equivalent- 
ly, the  number of page faults (i.e., of pages  not  found by 
the central processor in main memory  when needed) 
generated by a  program or by an  entire workload  during 
execution.  Another  important index is the program’s 
memory  utilization: Evidently, in a space-shortage situa- 
tion, when allocation is dynamic,  the  strategy must  not 
waste space by keeping in main memory those pages that 
are no longer  needed or  that will be  needed only in the 
far  future. 

Thus,  the goal of a good storage  management  strategy 
is to predict  which pages a  program will need in the  near 
future and load those pages in main memory so that  the 
central processor will  find them there  at  the  proper 
time; in other  words,  to  improve  the performance  index 
of the system to  such a degree  that it  will approach  the 
one it would have if the whole program could fit into 
main memory. If the size and page identity  decisions al- 
luded to  above  are  made  at  the virtual-time instants t,, 
t2, . . ., the  set of pages  referenced by a  program  during 
the interval (ti, ti+l) is said to be the working  informa- 
tion of that program  during that interval.  A storage man- 
agement strategy  that is able  to  determine  at ti the 
working information of a  program  during  interval ( t i ,  ti+,) 
and  make sure  that all partially loaded  programs al- 
ways  have  just their  working  information in main memo- 
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ry will reduce  to  zero  the total number of page faults  (of 
course,  the new pages  required by the programs would 
have  to be preloaded)  and  the total number of wasted 
physical page frames. 

As known, the  exact prediction of a program’s working 
information is usually an impossible task, and storage 
management  strategies therefore try only to  estimate 
it. They generally do so by making assumptions  about  the 
behavior of the program in the  near  future.  These  as- 
sumptions can  be viewed as defining a model of program 
behavior. In  other  words, a  strategy is designed to work 
optimally with programs  whose  behavior is accurately 
represented by the model underlying the  strategy, i.e., 
programs which satisfy the behavioral assumptions 
mentioned above. 

For example,  working-set  strategies [ 1, 21 estimate a 
program’s working information by computing  its working 
set ,  defined as  the  set of pages referenced by the pro- 
gram during the interval ( ti - T ,  t i ) ,  where T is the work- 
ing-set  parameter or window  size. Thus,  the  assumption 
is made that  the pages to be referenced  during the inter- 
val ( l i ,  ti+l) are all and  only those referenced in the 
backward window (t i  - T ,   t i ) .  The model of program 
behavior underlying  working-set  strategies is defined by 
this  assumption  and is based on  the empirical observa- 
tions  summarized  by  Denning in the principle of local- 
ity [ 1 ]. 

Other examples can be drawn from the  class of local- 
replacement algorithms. For  instance,  the model of pro- 
gram  behavior  underlying  strategies that  make  use of 
the Least  Recently  Used ( L R U )  replacement  algorithm 
for  each individual program assumes  that  the probability 
that a page will be referenced in the  near  future  decreas- 
es  as  the time  from the most recent reference to it in- 
creases [3]. Note  that local-replacement  algorithms  help 
in solving the page identity  problem only if the  size of a 
program’s working information has been determined  or 
estimated in another way. In fixed-allocation strategies, 
for  example,  the size  problem is solved  very  simply: Al- 
locate  to  each program  a main memory  partition  whose 
size  has been selected once  for all and independently of 
program  behavior. Thus, in this case, the  working infor- 
mation is estimated as consisting of the p most  recently 
referenced  pages, if p is the size of the partition given to 
the program  and LRU is the  replacement algorithm. 

Similarly, the First In, First   Out (FIFO) algorithm 
defines  a model in which the  reference probability of a 
page decreases  as  its “age” in main memory increases 
[3] .  It should  be  noted that in a system with fixed allo- 
cation of main memory, the local-replacement  strategies 
make decisions (i.e.,  estimate  the identities of the pages 
in the program’s  working  information) every time the pro- 
gram generates a  page fault,  that is, every time  they fail 
to  achieve their ideal goal of eliminating page faults. 245 
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Tailoring programs to models by restructuring 
Restructuring a  program means rearranging it in its vir- 
tual address  space  to  improve  its performance [4]. 
Usually, the objective of restructuring is to  increase  the 
locality of a  program by making spatially  contiguous 
those  parts which are likely to be referenced in temporal 
proximity (in  the terminology of Baer  and Sager [ 51, 
to  increase spatial locality). 

Several restructuring  techniques  have been  proposed 
in the  recent past. A class of techniques  that looks 
very promising and is attracting  considerable  interest is 
the  one of dynamic  off-line  restructuring  methods [4, 
6- 91. The term  “dynamic” is used in order  to indicate 
that  these  methods  base their restructuring recommenda- 
tions  on  data, collected  during execution  of  the program 
to  be  restructured, which describe  its  dynamic  behavior; 
“off-line” means  that  the program is not rearranged auto- 
matically every time it runs,  but  once  for all before being 
used in a production environment. A typical dynamic 
off-line procedure  consists of the following phases [ 61 : 

Phase I The program (instructions  and  data) is parti- 
tioned into blocks, i.e., sets of contiguous infor- 
mation items having an average size substan- 
tially smaller  than the page size. 

Phase 2 The program is instrumented  and executed so 
that its block  reference string during  this exe- 
cution  (or equivalent information about its 
dynamic  behavior) is recorded. 

Phase 3 A restructuring  graph of the program is de- 
rived  from the information  gathered in Phase 2 
by applying  a restructuring  algorithm; a  re- 
structuring  graph is a  non-directed  graph whose 
nodes  represent  the blocks of the program  and 
whose edges  have labels  quantifying the desir- 
ability of grouping into  the  same page the  two 
blocks which define that edge. 

Phase 4 A clustering  algorithm is applied to  the  restruc- 
turing graph in order  to  group  nodes  together 
so that  the sum of the labels of edges connect- 
ing nodes belonging to  different  groups is mini- 
mal,  and the sizes of the  groups  do  not  exceed 
the page size; in other  words,  the  most desir- 
able  arrangement of blocks  into pages is 
sought. 

Phase 5 The blocks of the program are  reordered in the 
virtual address  space  as suggested by the re- 
sults of Phase  4, and th’e restructured program 
is used in its  production environment.  (Of 
course, this procedure  does not usually pay off 
if the  program is to be  run only once  or very 
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Restructuring techniques  can  be utilized to tailor the 
behavior of a program to a given program-behavior 
model. For  instance, a dynamic off-line procedure can 
evaluate from the block reference string the working in- 
formation (expressed in terms of program blocks) and 
rearrange the program so that  its  dynamic behavior will 
fit the  one  assumed by the model better than that of the 
non-restructured program. More specifically, because 
models are used by storage management  strategies to 
estimate  the working information, the  restructuring algo- 
rithm will have  as its objective that of making the esti- 
mation process more successful by allocating blocks to 
pages so as  to  decrease  the difference between estimated 
and  actual  working  information. As an example, con- 
sider  the  case of two blocks one of which,  say block h, is 
at a certain  instant part of the estimated working infor- 
mation but  not of the  actual working  information,  where- 
as  the  other, say block k ,  is at  the  same  instant in the 
actual  but not in the estimated  working  information. It is 
evident  that if blocks  h and k are grouped together in 
the  same page, that page will become  part of the estimat- 
ed working information at  that  instant  and,  since it is 
also in the  actual working information,  this will contrib- 
ute  to  the  accuracy of the program’s near-term  behavior 
prediction. 

Given a model of program  behavior, the general  ap- 
proach outlined above suggests one  or more restructur- 
ing algorithms to be used in Phase 3 of the  dynamic 
off-line restructuring procedure in order  to make  a pro- 
gram’s behavior closer  to  the given model and  therefore 
more efficient under a storage  management. strategy 
based on  that model. These restructuring  algorithms will 
be called tailoring algorithms in the  sequel.  The deriva- 
tion of tailoring algorithms in the  case of program-be- 
havior  models  underlying  working-set  strategies is de- 
scribed in the following section. 

The most  serious  objection which may be raised 
against the proposal presented in this  section is that, 
since program reference  patterns depend on  the  input 
data,  the tuning of a program’s behavior to a model for a 
given set of values of the input data (which is what dy- 
namic off-line restructuring techniques  do)  does not  guar- 
antee  that  the program will also  behave consistently 
with the model for different sets of input data.  The  data 
presented in the experimental results section below can- 
not  be used to respond to this question,  but a new set of 
experiments intended to  study  the sensitivity of the per- 
formance of tailoring algorithms to input data variations 
is now being planned.  Because all results of similar in- 
vestigations  performed on  other  types of restructuring 
algorithms have indicated that  these algorithms  were 
able  to  improve locality over a wide range of values of 
the input data  [4, 61, we expect  our  experiments  to be 
reasonably  successful. 
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Some tailoring algorithms for the working set  model 
As mentioned in the storage  management  section, the 
working set model of program behavior identifies the 
working information of a program during virtual-time 
interval (t i ,  tiel) with its working set  at time ti. Thus, 
storage management  strategies  based on  the working set 
model estimate both the identities of the pages and the 
size of the working  information by equating  them to 
those of the program’s working set.  The working-set 
parameter T can be chosen in many different  ways and 
need  not be  constant; however, in this paper, we shall 
limit our  considerations  to  the simplest  strategy in this 
class,  the  one which has a constant working-set  parame- 
ter T and estimates  the working information of a  pro- 
gram periodically with a period  equal to T (Le., we as- 
sume ti+l - ti = T for all i ) .  This strategy is the  one 
called “naive” by Bryant [ 101. 

It should be  noted that T is assumed to be constant 
for  each program  but may vary from program to pro- 
gram. Also, the strategy for which tailoring algorithms 
will be constructed  has been  selected for simplicity of 
illustration; the  same conceptual approach can  be  ap- 
plied to  other strategies (based  on  the  same or different 
models)  as long as  their working-information  estima- 
tions and memory-space  allocations do not depend  on 
the total  workload  but  only on the behavior  and the 
properties of each individual program. This condition, 
which is  made  necessary by the fact that off-line restruc- 
turing procedures  are applied to individual programs 
without having any knowledge of the  other programs 
they will be running with, is satisfied by working-set 
strategies, which do  not allow a  program to  execute un- 
less  its working set is entirely in main memory,  thereby 
preventing other programs from influencing its space 
allotment with their memory demands. 

The general  principle stated in the previous  section 
and  the example  given there  to illustrate it suggest  some 
very  simple tailoring algorithms for  the strategy de- 
scribed above.  Let us consider two consecutive virutal- 
time intervals ti) and (t i ,  t i+l) ,  both of duration T ;  
the estimated working information  during (ti, ti+l) is 
equal to W(t i ,  T ) ,  the working set  at time t i ,  whereas  the 
actual working  information  during the  same interval is 
W ( t i + l ,  T ) ,  the working set  at time ti+l. The  set 

M ( t ,  t i+l)  = W(t i+l ,  T )  - W ( t i ,  T )  (1)  

is called the set  of missing pages,  those which are refer- 
enced during ( ti, t i + l )  but are not  included in the  estimat- 
ed working information. Each missing page causes a 
page fault  and is assumed not to replace any page al- 
ready in main memory (because none of these pages has 
yet  dropped  out of the estimated  working information). 
Thus,  each missing page will be added  to the ones in 
memory when it is brought in and will increase, until the 
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next  measurement of the working set,  the size of the 
program  (if there is no room for its  growth, the program 
will be suspended). Similarly, the  set 

E ( t i ,  t i+l)  = W ( t i ,  T )  - W ( t i + , , T )  ( 2 )  

contains the excess  pages, those which are  kept in 
memory (because  they  are in the estimated  working 
information)  but are not  referenced  during (t i ,  tiil) and 
therefore waste  memory space. 

Working-information prediction would be  perfect if 
both M and E were zero, i.e., if 

W(fi+l, TI = W ( t i ,  T I .  ( 3 )  

To approach this goal let us consider  the  sets of blocks 
corresponding to  the  ones defined so far  as  sets of pages: 
the working  information, the working set W ,  and the  sets 
defined in Eqs. ( 1 ) and ( 2 )  ; the last three will be 
denoted by W,, M, and E, when  referred to  as  sets of 
blocks. The grouping of two blocks h and k into the 
same page may be beneficial in the following cases: 

a.  h E W b ( f i ,  T )  and k E M,(  t i ,  t i+ l ) ,  since the page 
containing  h and k will not be a missing page, and  the 
references  to information items in k will not  cause 
any page faults; 

b. h E Eb(t i ,  t i+ l )  and k E W,( t i f l ,  T ) ,  since the page 
containing  h and k will not be an  excess page, and  the 
references  to information  items in h will not  cause 
any  useless page to be kept in memory during ( t i ,  ti+,). 

Several different tailoring algorithms may be  derived 
from these  observations.  One which is directly 
suggested by our discussion is the algorithm that,  for 
each pair of consecutive intervals, computes  the  sets M ,  
and E, and increases by 1 the labels of all the  edges ( p ,  
q )  with p E W b ( t i ,  T )  and q E M,( t i ,  t i + l )  and also 
those of all the  edges ( r ,  s) with r E E,( ti, t i + l )  and s E 
W b ( t i i l ,  T ) .  This algorithm,  which takes  care of both 
cases a and b above, is called the AB algorithm. 

Simpler to implement  than the AB algorithm is  the A 
algorithm,  which  only computes M ,  and increments  the 
labels of the edges defined in case a, and  the B algo- 
rithm, which only computes E,, and  takes  care of the 
edges defined in case b. The A algorithm is particularly 
simple since the  appropriate labels  can  be  incremented 
immediately for  each new block reference  encountered 
in scanning the string, without  ever having to  postpone 
actions,  such  as when E, is to be computed. 

A comparison of the performances of these  three tail- 
oring  algorithms would be interesting to  make  and will 
be the subject of a future  study.  The  purpose of the pre- 
vious  section and of this  section in the  present  paper is 
to  demonstrate  the feasibility of applying  restructuring 
techniques to  the program-tailoring problem.  We  pro- 247 
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Table 1 Sample  block  reference  string and corresponding  page  reference strings. 

2 1 2 1 8 1 2 7 8 7 8 3 4 5 6 7 2 7 5 1 2 1 8 l 8 7 8 3 4 5 6 7 2 7 5 6  
N T a a a a d a a d d d d b b c c d a d c a a a d a d d d b b c c d a d c c  

A b a b a d a b b d b d c c d a b b b d a b a d a d b d c c d a b b b d a  
C W S b a b a a a b c a c a c b d d c b c d a b a a a a c a c b d d c b c d d  

ceed with the  demonstration by choosing the A algo- 
rithm as  the tailoring algorithm whose  performance is to 
be  evaluated. This evaluation is performed by comparing 
tailored  and  non-tailored  programs in order  to  see how 
much the tailored program  helps the  storage manage- 
ment  strategy estimate  the program’s  working  infor- 
mation. 

The A algorithm is also  compared with the Critical 
Working Set (CWS) algorithm [ 61, which has been  pro- 
posed  and  analyzed for  restructuring  purposes.  It could 
be viewed as a “continuous” A algorithm, because it 
works in exactly the  same way but  with mobile intervals 
which follow the  current reference. More precisely, the 
interval  boundary ti always  coincides with the time at 
which the  reference immediately  preceding the  current 
reference was  issued. The strategy assumed by the CWS 
algorithm estimates  the working  information  and makes 
an allocation  decision at  every reference. This assump- 
tion,  based on the definition of working set, is obviously 
unrealistic  and  can only be  approximately satisfied by 
most  practical  working-set  strategies. 

The performance  indices  according to which the  com- 
parison is made reflect the two  objectives of a tailoring 
algorithm,  namely, the reduction of the number of miss- 
ing pages (i.e.,  page faults) and the reduction of the 
number of excess pages. Thus,  we have chosen  as  our 
performance indices the  sums of the cardinalities of the 
sets M ( t i ,  t i + l )  and E ( t i ,  t i + l )  over all the intervals con- 
tained in the reference  string. 

An example which illustrates the application of the A 
algorithm to a  very simple string and its  comparison with 
the No Tailoring (NT) algorithm and with the CWS algo- 
rithm is reported in Tables 1-4. The program that  has 
generated the block  reference  string in Table 1 is as- 
sumed to contain 8 blocks  numbered 1 through 8, each 
having the size of half a page, and  reference  times are 
assumed to be  equally spaced, so that  an interval of con- 
stant  duration will always  contain the  same  number of 
references.  The labels of the edges in the  restructuring 
graph  produced by the A algorithm for  an interval T 
spanning 4 references  are shown in Table 2, and an opti- 
mal clustering of the graph is reported in column  A of 
Table 3. The  other  columns in this table  represent the 
grouping corresponding to  the non-tailored  program 
(NT) and  an optimal clustering of the restructuring 
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of 4 references. The page reference  strings  obtained by 
replacing each block number by the page name given in 
Table 3 are shown in Table 1 ,  and the performance in- 
dices of the  three page reference strings,  assuming that 
they are processed by the storage  management  strategy 
described  earlier in this section with T = 4 references, 
are displayed in Table 4. Note  the  better  performance of 
the A algorithm also with respect  to index CIE(ti ,  ti+,)l, 
which this algorithm does not  try to minimize. 

Experimental  results 
Some  experiments on block reference strings of real 
programs have been  performed to  evaluate  the tailoring 
abilities of the A algorithm. The  two strings,  used in the 
experiments,  here called STRl and STR2,  were  respec- 
tively produced by a  compiler compiling a program and 
by the compiled  program  executing. STRl consists of 
slightly more  than one million references,  STR2 of about 
2  700 000 references. The performance  indices  intro- 
duced in the previous  section  and the mean working-set 
size have been  measured in a  simulated  working-set- 
strategy environment on the page reference  strings  ob- 
tained from STRl and STR2 by replacing block num- 
bers by the  names of the pages  they  were  assigned to by 
the NT, A and CWS algorithms. The compiler that 
generated STRl was partitioned  into 46 blocks;  the pro- 
gram that  generated  STR2,  into 90 blocks. Two dif- 
ferent page sizes, SI2 and 1024 words,  were considered 
in the  experiments, and the  fact  that blocks will gener- 
ally be  positioned across page  boundaries  when the re- 
structured program is compacted was taken into account 
in the simulation. Also,  three different interval durations 
( 3  000, 5 000 and 7000  references) were considered. 

The  results  are  reported in Tables S - IO.  Algorithm A 
appears  to be successful  not  only in always  drastically 
reducing the total  number of page faults with respect to 
the  one produced  by the non-tailored  program, but  also 
in almost always outperforming,  sometimes  substantial- 
ly, the CWS algorithm. These conclusions are  almost 
valid also  for  the total  number of excess pages,  with the 
only  exception being string STR2 for T = 7000 ref- 
erences, in which case  the CWS algorithm performs better 
than the A algorithm. The CWS algorithm does not have 
the minimization of excess pages  among  its objectives; 
however, it always  reduces considerably the number of 
excess pages with respect  to  the  one produced by the 
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nontailored  program. Interpreting  the measured mean 
working-set  sizes is harder, since there  seems  to be no 
connection  between them  and our performance  indices 
(which are  rather related to  the variance of working-set 
size).  For  STR I ,  for  example, the CWS algorithm consis- 
tently produces a  smaller mean working-set size  than the 
A algorithm, both being substantially  smaller  than those 
of the non-tailored  program. The situation is more com- 
plex in the  case of STR2, in which CWS always  pro- 
duces  the largest mean working-set size, and the non- 
tailored program  for two values of T and  a 5 12-word 
page size  has a  smaller mean working-set  size  than the 
program  tailored by the A algorithm. 

When one  considers  the way the A algorithm operates 
on the block reference string,  one may wonder  whether 
its success,  as displayed in Tables 5 - I O ,  is mostly due  to 
the  fact  that  the interval  boundaries (i.e.,  the times ti at 
which the  storage management  strategy estimates the 
working  information  and makes its decisions) during our 
simulations  were the  same  as  those considered by the A 
algorithm in the restructuring-graph construction  phase. 
In order  to investigate  this  problem, all of our simula- 
tions  were repeated,  each repetition  incrementing the 
starting  time by 1000 references,  as many times as 
needed to  explore  the  entire interval. For example, each 
simulated  run with an interval of 7000 references was 
repeated 7 times beginning at  references I ,  1 00 I ,  2 00 I ,  
. . ., 6001, respectively. All the  results obtained  were 
similar to  the sample  shown in Table 1 1 ; i.e., very small 
differences were found to  exist between the various  runs, 
and  often the A algorithm turned out  to work slightly 
better for  interval  boundaries quite different from those 
assumed  when  the  graph  was constructed.  The  same 
insensitivity to interval-boundary  variations was  also 
always  found with the page reference strings  produced 
by the NT and CWS clusterings. 

Conclusions 
The  concept of program tailoring has been  proposed to 
help  solve the virtual-memory-system  performance 
problem. Its implications have been illustrated,  and the 
feasibility of its  implementation by dynamic off-line re- 
structuring techniques has been demonstrated by discuss- 
ing a  very  simple tailoring algorithm (the A algorithm, 
which applies to  systems running under a pure working- 
set storage  management strategy) and  its  performance 
as determined  from  experimentation with two real 
program traces. 

Several  problems are raised by the introduction of the 
program-tailoring concept (e.g., the possibility of de- 
vising some program design rules  that would produce 
programs better fitted to a given behavioral model): by 
the idea of using restructuring  techniques  to tailor pro- 
grams  (e.g., the study of the conditions that a  strategy 

MAY 1975 

Table 2 Matrix  reoresenting the re: In- I structuring  graph co 
structed by the A algorithm with T = 4 references. 

2  3  4 5 6  7 8 
1 0 2 1 1 1 3  2 
2  2  2  2  2  4  2 
3  2  2  2 1 0 
4 0 0 2  2 
5 0 2 3 
6  2  2 
7  2 

~ 

Table 3 Groupings of blocks  recommended by the algorithms. 

NT 

Algorithm 
~ 

A 

~~ 

cws 
Puge 
nume 

a 
b 

d 
C 

Table 4 Performance  comparison of the algorithms for the 
sample  string in Table 1. 

NT 
A 
cws 

7 
5 
7 

5 
4 
6 
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Table 5 Experimental results for STR1: total number of 
missing pages 8 / M I .  

NT A CWS NT A CWS 

3 000 212 66  98 109 9  24 
5 000 88 22  27 44 6  8 
7 000 67 . 16 19 32 8  12 

Table 6 Experimental results for STRI:  total number of 
excess pages ZlEl .  

~ ~~ ~~ __~  __ _ _ ~  __ 

3 000 203 56 89 103 9  24 
5 000 77 19 21 36 6 8 
7 000 5 5  14 15 24 7  12 



Table 7 Experimental results for STRl: mean  working set size (pages). 

Interval  Page  size  (words) 
(window  size) 512 1024 
[references] 

NT A cws NT A cws 

3  000 10.34 9.14 8.78 7.03 5.24 4.99 
5  000 1 1.01 9.73 9.5 1 7.40 5.54 5.20 
7  000 11.22 10.13 9.62 7.48 5.88 5.80 

_________ 

Table 8 Experimental results for STR2: total  number of missing pages ZIMI. 

Interval  Page  size  (words) 
window  size 512 1024 
references 

NT A cws NT A cws 

3 000  3 80 37 256 I46 7  9 
5 000 141 37 42 91  7  7 
7 000 91 16 18 61 7  7 

Table 9 Experimental results for STR2: total  number of excess pages ZIEl 

Interval  Page  size  (words) 
window  size 512 1024 
(references) 

NT A cws NT A cws 

3 000 
5 000 
7  000 

373 39 253 149 8 
143 40 44 93 8 
94 19 15 63 10 

10 
9 
9 

Table 10 Experimental results for STRZ: mean  working set  size (pages). 

Interval  Page  size  (words) 
window  size 512 1024 
(references) 

NT A cws NT A cws 

3 000 
5 000 
7  000 

6.1 1 7.15 7.65 4.74 4.03  5.02 
7.84 7.18 8.07 4.86 4.03 5.05 
8.0 1 8.10 9.02 4.97 4.08 5.02 

Table 11 Performance indices of the A algorithm  for  different  interval  boundaries (STR; T = 7000 references). 

Performance  index  Interval  beginning  at  reference 

1 1001  2001  3001  400 1 5001  6001 

Page size: 5 12 words 
ZIMI 16 16 14 16 15 16 16 
HIE1 14 14 12 14 13 14 14 
Mean  working set size 10.13 10.12 10.12 10.1 1 10.12 10.12 10.12 

Page size: 1024 words 
X l M l  8 6 6  6 7  7  7 
ZIEI 7  5 5  6 6  6  6 
Mean working set size 5.88 5.89 5.88 5.88 5.87 5.87 5.87 
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has  to satisfy in order  to allow a tailoring algorithm to be 
constructed: a  condition has been stated in the  section 
that  describes  the tailoring algorithms,  but no  extensive 
investigation of its sufficiency has been made);  and by 
the algorithms  proposed in that section for working-set 
strategies (e.g., a comparison of the performance of 
the A,  B and AB algorithms  and  a  study of the sensitivity 
of the performance of programs tailored by these algo- 
rithms to  changes in the  duration of the  interval). Among 
the many other  research topics  which will have  to be 
investigated for their importance,  we shall only mention 
here  the  study of tailoring algorithms for fixed-allocation 
local-replacement  strategies  and for global-replacement 
strategies (if applicable), and the  analysis of the sensi- 
tivity of tailoring-algorithm performance to variations 
in a program’s input data. 
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