
Domenico Ferrari

Tailoring Programs to Models of Program Behavior

Abstract: This paper considers the premise that, in addition to trying to solve the virtual-memory-system performance problem by
devising a storage management strategy suitable for the broad spectrum of behavior exhibited by programs, efforts also be made to
tailor the behavior of each program to the model underlying the storage management strategy under which the program will have to run.
It is observed that a viable approach to program tailoring is offered by restructuring techniques. The application of dynamic off-line
techniques to the tailoring problem is discussed, and an algorithm which may be used to fit program behavior to the working set model
is described in detail as an example. The performance of this algorithm in dealing with two real-program traces is experimentally evalu-
ated under a variety of conditions and found to be always satisfactory.

Introduction
The problem of achieving reasonable levels of perfor-
mance in virtual memory systems has received and is
still receiving a considerable amount of attention. from
system designers and performance evaluators. One of
the major concerns is with devising methods for manag-
ing a storage hierarchy that is responsive to changes
in the system’s workload. The conventional approach
to the storage management problem consists of selecting
one among a number of methods based on some prop-
erties which have been empirically observed to hold (to
a greater or lesser extent) for a number of programs.
However, that fraction of the programs in a system’s
workload which does not appreciably exhibit those prop-
erties is often non-negligible. Because the system has
no control over the referencing patterns of the programs
it executes, the presence in the workload of programs
whose behavior does not satisfy the assumptions is
bound to degrade the performance of the system.

This paper takes, in some sense, the opposite view-
point: Instead of accepting behavioral differences among
programs as a necessary evil and concentrating our ef-
forts only on improving storage management, trying to
make it able to deal efficiently with a broad spectrum of
behavior (which is probably a hopeless task), we should
try to produce programs that are better suited to the
storage management policy under which they will have
to run. The purpose of this paper is to show that this
result (which would be achievable by proper program
design methodologies if they had been found) can be
obtained by restructuring programs after they have been

244 implemented.

D. FERRARI

Storage management strategies and models of pro-
gram behavior
In virtual memory systems, especially if they are multi-
programmed, the programs to be executed usually do
not fit entirely into physical main memory. Thus, pro-
grams must be “folded,” i.e., divided into (generally
non-disjoint) parts to be successively loaded into memo-
ry during execution. The folding of programs in a virtual
memory system is done automatically by the operating
system following a set of rules known as the system’s
storuge management strategy [I] .

The task of a storage management strategy is to de-
cide which parts of the programs that are ready to run,
at any instant, are to be in memory at that instant. The
relationships between this function and the one of the
scheduling policy (which has to decide the order in
which programs will be executed) are very strong and
intricate. For the sake of simplicity, the following dis-
cussion will assume that the number and identities of the
programs to be (partially) loaded into main memory are
selected by some other operating system component
(for example, by the scheduler or by the general re-
source manager). Thus, the memory manager will only
be concerned with partitioning the available main memo-
ry space among the given programs and deciding what
portion of each program is to be in main memory at any
given time.

In a paging implementation of virtual memory, the
address spaces of programs are divided into fixed-size
portions called virtual puge frames, consisting of contig-
uous virtual addresses. Similarly, the physical main

IBM J . RES. DEVELOP.

memory is divided into physical page frames having the
same sizes as their virtual counterparts. The information
stored in a virtual page frame, and occasionally also in a
physical page frame, is called a page. The page is the
unit of memory allocation and of information transfer
between main memory and auxiliary storage. Thus, in a
paged system, the storage management strategy deter-
mines how many physical page frames are to be allocat-
ed to each program and which ones of its pages are to be
stored into those frames at any given time. In other
words, the storage management strategy has to solve the
two interrelated problems of size and page identity for
the loaded portion of each program. The objective, in
solving these problems, is to maximize performance.
Various performance indices are used today in computer
system evaluation, the most popular being those ex-
pressing the productivity (e.g., the throughput rate) or
the responsiveness (e.g., the turnaround or response
time) of a system. In order to optimize one of these sys-
tem-wide indices (or a function of several of them) by
making decisions concerned with each individual pro-
gram separately, we should be able to determine the
contribution of each program to our performance index
and the impact of our decisions on it. Because this is
beyond the current state of our knowledge, at least for
most practical systems, indices more easily expressible
in terms of the behavior of individual programs are used
in storage management studies. One of the most popular
indices of this type is the page fault rate or, equivalent-
ly, the number of page faults (i.e., of pages not found by
the central processor in main memory when needed)
generated by a program or by an entire workload during
execution. Another important index is the program’s
memory utilization: Evidently, in a space-shortage situa-
tion, when allocation is dynamic, the strategy must not
waste space by keeping in main memory those pages that
are no longer needed or that will be needed only in the
far future.

Thus, the goal of a good storage management strategy
is to predict which pages a program will need in the near
future and load those pages in main memory so that the
central processor will find them there at the proper
time; in other words, to improve the performance index
of the system to such a degree that it will approach the
one it would have if the whole program could fit into
main memory. If the size and page identity decisions al-
luded to above are made at the virtual-time instants t,,
t2, . . ., the set of pages referenced by a program during
the interval (ti, ti+l) is said to be the working informa-
tion of that program during that interval. A storage man-
agement strategy that is able to determine at ti the
working information of a program during interval (t i , ti+,)
and make sure that all partially loaded programs al-
ways have just their working information in main memo-

MAY 1975

ry will reduce to zero the total number of page faults (of
course, the new pages required by the programs would
have to be preloaded) and the total number of wasted
physical page frames.

As known, the exact prediction of a program’s working
information is usually an impossible task, and storage
management strategies therefore try only to estimate
it. They generally do so by making assumptions about the
behavior of the program in the near future. These as-
sumptions can be viewed as defining a model of program
behavior. In other words, a strategy is designed to work
optimally with programs whose behavior is accurately
represented by the model underlying the strategy, i.e.,
programs which satisfy the behavioral assumptions
mentioned above.

For example, working-set strategies [1, 21 estimate a
program’s working information by computing its working
set , defined as the set of pages referenced by the pro-
gram during the interval (ti - T , t i) , where T is the work-
ing-set parameter or window size. Thus, the assumption
is made that the pages to be referenced during the inter-
val (l i , ti+l) are all and only those referenced in the
backward window (t i - T , t i) . The model of program
behavior underlying working-set strategies is defined by
this assumption and is based on the empirical observa-
tions summarized by Denning in the principle of local-
ity [1].

Other examples can be drawn from the class of local-
replacement algorithms. For instance, the model of pro-
gram behavior underlying strategies that make use of
the Least Recently Used (L R U) replacement algorithm
for each individual program assumes that the probability
that a page will be referenced in the near future decreas-
es as the time from the most recent reference to it in-
creases [3]. Note that local-replacement algorithms help
in solving the page identity problem only if the size of a
program’s working information has been determined or
estimated in another way. In fixed-allocation strategies,
for example, the size problem is solved very simply: Al-
locate to each program a main memory partition whose
size has been selected once for all and independently of
program behavior. Thus, in this case, the working infor-
mation is estimated as consisting of the p most recently
referenced pages, if p is the size of the partition given to
the program and LRU is the replacement algorithm.

Similarly, the First In, First Out (FIFO) algorithm
defines a model in which the reference probability of a
page decreases as its “age” in main memory increases
[3] . It should be noted that in a system with fixed allo-
cation of main memory, the local-replacement strategies
make decisions (i.e., estimate the identities of the pages
in the program’s working information) every time the pro-
gram generates a page fault, that is, every time they fail
to achieve their ideal goal of eliminating page faults. 245

TAILORING PROGRAMS

Tailoring programs to models by restructuring
Restructuring a program means rearranging it in its vir-
tual address space to improve its performance [4].
Usually, the objective of restructuring is to increase the
locality of a program by making spatially contiguous
those parts which are likely to be referenced in temporal
proximity (in the terminology of Baer and Sager [51,
to increase spatial locality).

Several restructuring techniques have been proposed
in the recent past. A class of techniques that looks
very promising and is attracting considerable interest is
the one of dynamic off-line restructuring methods [4,
6- 91. The term “dynamic” is used in order to indicate
that these methods base their restructuring recommenda-
tions on data, collected during execution of the program
to be restructured, which describe its dynamic behavior;
“off-line” means that the program is not rearranged auto-
matically every time it runs, but once for all before being
used in a production environment. A typical dynamic
off-line procedure consists of the following phases [61 :

Phase I The program (instructions and data) is parti-
tioned into blocks, i.e., sets of contiguous infor-
mation items having an average size substan-
tially smaller than the page size.

Phase 2 The program is instrumented and executed so
that its block reference string during this exe-
cution (or equivalent information about its
dynamic behavior) is recorded.

Phase 3 A restructuring graph of the program is de-
rived from the information gathered in Phase 2
by applying a restructuring algorithm; a re-
structuring graph is a non-directed graph whose
nodes represent the blocks of the program and
whose edges have labels quantifying the desir-
ability of grouping into the same page the two
blocks which define that edge.

Phase 4 A clustering algorithm is applied to the restruc-
turing graph in order to group nodes together
so that the sum of the labels of edges connect-
ing nodes belonging to different groups is mini-
mal, and the sizes of the groups do not exceed
the page size; in other words, the most desir-
able arrangement of blocks into pages is
sought.

Phase 5 The blocks of the program are reordered in the
virtual address space as suggested by the re-
sults of Phase 4, and th’e restructured program
is used in its production environment. (Of
course, this procedure does not usually pay off
if the program is to be run only once or very

246 few times.)

D. FERRARI

Restructuring techniques can be utilized to tailor the
behavior of a program to a given program-behavior
model. For instance, a dynamic off-line procedure can
evaluate from the block reference string the working in-
formation (expressed in terms of program blocks) and
rearrange the program so that its dynamic behavior will
fit the one assumed by the model better than that of the
non-restructured program. More specifically, because
models are used by storage management strategies to
estimate the working information, the restructuring algo-
rithm will have as its objective that of making the esti-
mation process more successful by allocating blocks to
pages so as to decrease the difference between estimated
and actual working information. As an example, con-
sider the case of two blocks one of which, say block h, is
at a certain instant part of the estimated working infor-
mation but not of the actual working information, where-
as the other, say block k , is at the same instant in the
actual but not in the estimated working information. It is
evident that if blocks h and k are grouped together in
the same page, that page will become part of the estimat-
ed working information at that instant and, since it is
also in the actual working information, this will contrib-
ute to the accuracy of the program’s near-term behavior
prediction.

Given a model of program behavior, the general ap-
proach outlined above suggests one or more restructur-
ing algorithms to be used in Phase 3 of the dynamic
off-line restructuring procedure in order to make a pro-
gram’s behavior closer to the given model and therefore
more efficient under a storage management. strategy
based on that model. These restructuring algorithms will
be called tailoring algorithms in the sequel. The deriva-
tion of tailoring algorithms in the case of program-be-
havior models underlying working-set strategies is de-
scribed in the following section.

The most serious objection which may be raised
against the proposal presented in this section is that,
since program reference patterns depend on the input
data, the tuning of a program’s behavior to a model for a
given set of values of the input data (which is what dy-
namic off-line restructuring techniques do) does not guar-
antee that the program will also behave consistently
with the model for different sets of input data. The data
presented in the experimental results section below can-
not be used to respond to this question, but a new set of
experiments intended to study the sensitivity of the per-
formance of tailoring algorithms to input data variations
is now being planned. Because all results of similar in-
vestigations performed on other types of restructuring
algorithms have indicated that these algorithms were
able to improve locality over a wide range of values of
the input data [4, 61, we expect our experiments to be
reasonably successful.

IBM J. RES. DEVELOP.

Some tailoring algorithms for the working set model
As mentioned in the storage management section, the
working set model of program behavior identifies the
working information of a program during virtual-time
interval (t i , tiel) with its working set at time ti. Thus,
storage management strategies based on the working set
model estimate both the identities of the pages and the
size of the working information by equating them to
those of the program’s working set. The working-set
parameter T can be chosen in many different ways and
need not be constant; however, in this paper, we shall
limit our considerations to the simplest strategy in this
class, the one which has a constant working-set parame-
ter T and estimates the working information of a pro-
gram periodically with a period equal to T (Le., we as-
sume ti+l - ti = T for all i) . This strategy is the one
called “naive” by Bryant [101.

It should be noted that T is assumed to be constant
for each program but may vary from program to pro-
gram. Also, the strategy for which tailoring algorithms
will be constructed has been selected for simplicity of
illustration; the same conceptual approach can be ap-
plied to other strategies (based on the same or different
models) as long as their working-information estima-
tions and memory-space allocations do not depend on
the total workload but only on the behavior and the
properties of each individual program. This condition,
which is made necessary by the fact that off-line restruc-
turing procedures are applied to individual programs
without having any knowledge of the other programs
they will be running with, is satisfied by working-set
strategies, which do not allow a program to execute un-
less its working set is entirely in main memory, thereby
preventing other programs from influencing its space
allotment with their memory demands.

The general principle stated in the previous section
and the example given there to illustrate it suggest some
very simple tailoring algorithms for the strategy de-
scribed above. Let us consider two consecutive virutal-
time intervals ti) and (t i , t i+l) , both of duration T ;
the estimated working information during (ti, ti+l) is
equal to W(t i , T) , the working set at time t i , whereas the
actual working information during the same interval is
W (t i + l , T) , the working set at time ti+l. The set

M (t , t i+l) = W(t i+l , T) - W (t i , T) (1)

is called the set of missing pages, those which are refer-
enced during (ti, t i + l) but are not included in the estimat-
ed working information. Each missing page causes a
page fault and is assumed not to replace any page al-
ready in main memory (because none of these pages has
yet dropped out of the estimated working information).
Thus, each missing page will be added to the ones in
memory when it is brought in and will increase, until the

MAY 1975

next measurement of the working set, the size of the
program (if there is no room for its growth, the program
will be suspended). Similarly, the set

E (t i , t i+l) = W (t i , T) - W (t i + , , T) (2)

contains the excess pages, those which are kept in
memory (because they are in the estimated working
information) but are not referenced during (t i , tiil) and
therefore waste memory space.

Working-information prediction would be perfect if
both M and E were zero, i.e., if

W(fi+l, TI = W (t i , T I . (3)

To approach this goal let us consider the sets of blocks
corresponding to the ones defined so far as sets of pages:
the working information, the working set W , and the sets
defined in Eqs. (1) and (2) ; the last three will be
denoted by W,, M, and E, when referred to as sets of
blocks. The grouping of two blocks h and k into the
same page may be beneficial in the following cases:

a. h E W b (f i , T) and k E M,(t i , t i+ l) , since the page
containing h and k will not be a missing page, and the
references to information items in k will not cause
any page faults;

b. h E Eb(t i , t i+ l) and k E W,(t i f l , T) , since the page
containing h and k will not be an excess page, and the
references to information items in h will not cause
any useless page to be kept in memory during (t i , ti+,).

Several different tailoring algorithms may be derived
from these observations. One which is directly
suggested by our discussion is the algorithm that, for
each pair of consecutive intervals, computes the sets M ,
and E, and increases by 1 the labels of all the edges (p ,
q) with p E W b (t i , T) and q E M,(t i , t i + l) and also
those of all the edges (r , s) with r E E,(ti, t i + l) and s E
W b (t i i l , T) . This algorithm, which takes care of both
cases a and b above, is called the AB algorithm.

Simpler to implement than the AB algorithm is the A
algorithm, which only computes M , and increments the
labels of the edges defined in case a, and the B algo-
rithm, which only computes E,, and takes care of the
edges defined in case b. The A algorithm is particularly
simple since the appropriate labels can be incremented
immediately for each new block reference encountered
in scanning the string, without ever having to postpone
actions, such as when E, is to be computed.

A comparison of the performances of these three tail-
oring algorithms would be interesting to make and will
be the subject of a future study. The purpose of the pre-
vious section and of this section in the present paper is
to demonstrate the feasibility of applying restructuring
techniques to the program-tailoring problem. We pro- 247

TAILORING PROGRAMS

Table 1 Sample block reference string and corresponding page reference strings.

2 1 2 1 8 1 2 7 8 7 8 3 4 5 6 7 2 7 5 1 2 1 8 l 8 7 8 3 4 5 6 7 2 7 5 6
N T a a a a d a a d d d d b b c c d a d c a a a d a d d d b b c c d a d c c

A b a b a d a b b d b d c c d a b b b d a b a d a d b d c c d a b b b d a
C W S b a b a a a b c a c a c b d d c b c d a b a a a a c a c b d d c b c d d

ceed with the demonstration by choosing the A algo-
rithm as the tailoring algorithm whose performance is to
be evaluated. This evaluation is performed by comparing
tailored and non-tailored programs in order to see how
much the tailored program helps the storage manage-
ment strategy estimate the program’s working infor-
mation.

The A algorithm is also compared with the Critical
Working Set (CWS) algorithm [61, which has been pro-
posed and analyzed for restructuring purposes. It could
be viewed as a “continuous” A algorithm, because it
works in exactly the same way but with mobile intervals
which follow the current reference. More precisely, the
interval boundary ti always coincides with the time at
which the reference immediately preceding the current
reference was issued. The strategy assumed by the CWS
algorithm estimates the working information and makes
an allocation decision at every reference. This assump-
tion, based on the definition of working set, is obviously
unrealistic and can only be approximately satisfied by
most practical working-set strategies.

The performance indices according to which the com-
parison is made reflect the two objectives of a tailoring
algorithm, namely, the reduction of the number of miss-
ing pages (i.e., page faults) and the reduction of the
number of excess pages. Thus, we have chosen as our
performance indices the sums of the cardinalities of the
sets M (t i , t i + l) and E (t i , t i + l) over all the intervals con-
tained in the reference string.

An example which illustrates the application of the A
algorithm to a very simple string and its comparison with
the No Tailoring (NT) algorithm and with the CWS algo-
rithm is reported in Tables 1-4. The program that has
generated the block reference string in Table 1 is as-
sumed to contain 8 blocks numbered 1 through 8, each
having the size of half a page, and reference times are
assumed to be equally spaced, so that an interval of con-
stant duration will always contain the same number of
references. The labels of the edges in the restructuring
graph produced by the A algorithm for an interval T
spanning 4 references are shown in Table 2, and an opti-
mal clustering of the graph is reported in column A of
Table 3. The other columns in this table represent the
grouping corresponding to the non-tailored program
(NT) and an optimal clustering of the restructuring

248 graph produced by the CWS algorithm for a window size

of 4 references. The page reference strings obtained by
replacing each block number by the page name given in
Table 3 are shown in Table 1 , and the performance in-
dices of the three page reference strings, assuming that
they are processed by the storage management strategy
described earlier in this section with T = 4 references,
are displayed in Table 4. Note the better performance of
the A algorithm also with respect to index CIE(ti , ti+,)l,
which this algorithm does not try to minimize.

Experimental results
Some experiments on block reference strings of real
programs have been performed to evaluate the tailoring
abilities of the A algorithm. The two strings, used in the
experiments, here called STRl and STR2, were respec-
tively produced by a compiler compiling a program and
by the compiled program executing. STRl consists of
slightly more than one million references, STR2 of about
2 700 000 references. The performance indices intro-
duced in the previous section and the mean working-set
size have been measured in a simulated working-set-
strategy environment on the page reference strings ob-
tained from STRl and STR2 by replacing block num-
bers by the names of the pages they were assigned to by
the NT, A and CWS algorithms. The compiler that
generated STRl was partitioned into 46 blocks; the pro-
gram that generated STR2, into 90 blocks. Two dif-
ferent page sizes, SI2 and 1024 words, were considered
in the experiments, and the fact that blocks will gener-
ally be positioned across page boundaries when the re-
structured program is compacted was taken into account
in the simulation. Also, three different interval durations
(3 000, 5 000 and 7000 references) were considered.

The results are reported in Tables S - IO. Algorithm A
appears to be successful not only in always drastically
reducing the total number of page faults with respect to
the one produced by the non-tailored program, but also
in almost always outperforming, sometimes substantial-
ly, the CWS algorithm. These conclusions are almost
valid also for the total number of excess pages, with the
only exception being string STR2 for T = 7000 ref-
erences, in which case the CWS algorithm performs better
than the A algorithm. The CWS algorithm does not have
the minimization of excess pages among its objectives;
however, it always reduces considerably the number of
excess pages with respect to the one produced by the

D. FERRARI IBM J . RES. DEVELOP.

nontailored program. Interpreting the measured mean
working-set sizes is harder, since there seems to be no
connection between them and our performance indices
(which are rather related to the variance of working-set
size). For STR I , for example, the CWS algorithm consis-
tently produces a smaller mean working-set size than the
A algorithm, both being substantially smaller than those
of the non-tailored program. The situation is more com-
plex in the case of STR2, in which CWS always pro-
duces the largest mean working-set size, and the non-
tailored program for two values of T and a 5 12-word
page size has a smaller mean working-set size than the
program tailored by the A algorithm.

When one considers the way the A algorithm operates
on the block reference string, one may wonder whether
its success, as displayed in Tables 5 - I O , is mostly due to
the fact that the interval boundaries (i.e., the times ti at
which the storage management strategy estimates the
working information and makes its decisions) during our
simulations were the same as those considered by the A
algorithm in the restructuring-graph construction phase.
In order to investigate this problem, all of our simula-
tions were repeated, each repetition incrementing the
starting time by 1000 references, as many times as
needed to explore the entire interval. For example, each
simulated run with an interval of 7000 references was
repeated 7 times beginning at references I , 1 00 I , 2 00 I ,
. . ., 6001, respectively. All the results obtained were
similar to the sample shown in Table 1 1 ; i.e., very small
differences were found to exist between the various runs,
and often the A algorithm turned out to work slightly
better for interval boundaries quite different from those
assumed when the graph was constructed. The same
insensitivity to interval-boundary variations was also
always found with the page reference strings produced
by the NT and CWS clusterings.

Conclusions
The concept of program tailoring has been proposed to
help solve the virtual-memory-system performance
problem. Its implications have been illustrated, and the
feasibility of its implementation by dynamic off-line re-
structuring techniques has been demonstrated by discuss-
ing a very simple tailoring algorithm (the A algorithm,
which applies to systems running under a pure working-
set storage management strategy) and its performance
as determined from experimentation with two real
program traces.

Several problems are raised by the introduction of the
program-tailoring concept (e.g., the possibility of de-
vising some program design rules that would produce
programs better fitted to a given behavioral model): by
the idea of using restructuring techniques to tailor pro-
grams (e.g., the study of the conditions that a strategy

MAY 1975

Table 2 Matrix reoresenting the re: In- I structuring graph co
structed by the A algorithm with T = 4 references.

2 3 4 5 6 7 8
1 0 2 1 1 1 3 2
2 2 2 2 2 4 2
3 2 2 2 1 0
4 0 0 2 2
5 0 2 3
6 2 2
7 2

~

Table 3 Groupings of blocks recommended by the algorithms.

NT

Algorithm
~

A

~~

cws
Puge
nume

a
b

d
C

Table 4 Performance comparison of the algorithms for the
sample string in Table 1.

NT
A
cws

7
5
7

5
4
6

249

TAILORING PROGRAMS

Table 5 Experimental results for STR1: total number of
missing pages 8 / M I .

NT A CWS NT A CWS

3 000 212 66 98 109 9 24
5 000 88 22 27 44 6 8
7 000 67 . 16 19 32 8 12

Table 6 Experimental results for STRI: total number of
excess pages ZlEl .

~ ~~ ~~ __~ __ _ _ ~ __

3 000 203 56 89 103 9 24
5 000 77 19 21 36 6 8
7 000 5 5 14 15 24 7 12

Table 7 Experimental results for STRl: mean working set size (pages).

Interval Page size (words)
(window size) 512 1024
[references]

NT A cws NT A cws

3 000 10.34 9.14 8.78 7.03 5.24 4.99
5 000 1 1.01 9.73 9.5 1 7.40 5.54 5.20
7 000 11.22 10.13 9.62 7.48 5.88 5.80

Table 8 Experimental results for STR2: total number of missing pages ZIMI.

Interval Page size (words)
window size 512 1024
references

NT A cws NT A cws

3 000 3 80 37 256 I46 7 9
5 000 141 37 42 91 7 7
7 000 91 16 18 61 7 7

Table 9 Experimental results for STR2: total number of excess pages ZIEl

Interval Page size (words)
window size 512 1024
(references)

NT A cws NT A cws

3 000
5 000
7 000

373 39 253 149 8
143 40 44 93 8
94 19 15 63 10

10
9
9

Table 10 Experimental results for STRZ: mean working set size (pages).

Interval Page size (words)
window size 512 1024
(references)

NT A cws NT A cws

3 000
5 000
7 000

6.1 1 7.15 7.65 4.74 4.03 5.02
7.84 7.18 8.07 4.86 4.03 5.05
8.0 1 8.10 9.02 4.97 4.08 5.02

Table 11 Performance indices of the A algorithm for different interval boundaries (STR; T = 7000 references).

Performance index Interval beginning at reference

1 1001 2001 3001 400 1 5001 6001

Page size: 5 12 words
ZIMI 16 16 14 16 15 16 16
HIE1 14 14 12 14 13 14 14
Mean working set size 10.13 10.12 10.12 10.1 1 10.12 10.12 10.12

Page size: 1024 words
X l M l 8 6 6 6 7 7 7
ZIEI 7 5 5 6 6 6 6
Mean working set size 5.88 5.89 5.88 5.88 5.87 5.87 5.87

250

D. FERRARI IBM J. RES. DEVELOP.

has to satisfy in order to allow a tailoring algorithm to be
constructed: a condition has been stated in the section
that describes the tailoring algorithms, but no extensive
investigation of its sufficiency has been made); and by
the algorithms proposed in that section for working-set
strategies (e.g., a comparison of the performance of
the A, B and AB algorithms and a study of the sensitivity
of the performance of programs tailored by these algo-
rithms to changes in the duration of the interval). Among
the many other research topics which will have to be
investigated for their importance, we shall only mention
here the study of tailoring algorithms for fixed-allocation
local-replacement strategies and for global-replacement
strategies (if applicable), and the analysis of the sensi-
tivity of tailoring-algorithm performance to variations
in a program’s input data.

Acknowledgment
This research was supported in part by the Joint Ser-
vices Electronics Program Contract F44620-7 1-C-0087.

References
I . P. J . Denning, “Virtual Memory,” Computing Surveys 2,

2. P. J . Denning, “The Working Set Model for Program Be-
153 (1970).

havior,” Comm. A C M ll, 323 (1968).

3. L. A. Belady, “A Study of Replacement Algorithms for a
Virtual Storage Computer,” I B M Sysr. J . 5, 78 (1966).

4. D. J . Hatfield and J . Gerald, “Program Restructuring for
Virtual Memory,” IBM Syst. J . 10, 168 (197 1 1.

5 . J . L. Baer and G. R. Sager, “On the Dynamic Definition of
Locality in Virtual Memory Systems,” Technicd Report

do (1974).
CS74-01, Colorado State University, Fort Collins, Colora-

6. D. Ferrari, “Improving Locality by Critical Working Sets,”
Cornm. ACM 17, 614 (1974).

7. D. Ferrari, “Improving Program Locality by Strategy-orien-
ted Restructuring,” Injiwmafion Processing 74, North-Hol-
land Publishing Co., Amsterdam, 1974, p. 266.

8. T. Masuda, H. Shiota, K. Noguchi and T. Ohki, “Optimi-
zation of Program Organization by Cluster Analysis,” In-
formution Processing 74, North-Holland Publishing Co.,
Amsterdam, 1974, p. 261.

9. K. D. Ryder, “Optimizing Program Placement in Virtual
Systems,” IBM Syst . J . 13, 292 (1974).

IO. P. Bryant, “Predicting Working Set Sizes,” IBM J . Res.
Develop. 19, 221 (1975), this issue.

Received December 13, 1974; revised December 31,
1974

Domenico Ferrari is located at the Computer Science
Division, Department of Electrical Engineering and
Computer Sciences and the Electronics Research Labo-
ratory. University of California, Berkeley, California
94720.

251

TAILORING PROGRAMS

