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Patterns in Program References

Abstract: This paper describes a study of some of the characteristics of program referencing patterns. Program behavior is investigated
by constructing stochastic models for the page reference mechanism and evaluating the validity of the assumptions made through com-
parison with empirical results. The notion of a regime process is shown to play a useful role in describing the observed phenomena math-
ematically. The study falls within the realm of a rapidly growing field of computer science known as compumetrics, where quantitative
and qualitative methods are being applied to the study and evaluation of computer performance.

Introduction

The execution of a program in a multiprogrammed system
has to be interrupted frequently for reference to informa-
tion stored in different levels of the storage hierarchy.
To discuss the strategy of the basic decision algorithm
appropriate for the system, it is necessary to know some-
thing about the manner in which these references to
stored information are made.

When dealing with a large program, such as an assem-
bler or a compiler, it is impossible, in practice, to predict
the references deterministically, and it has been recog-
nized for a long time that one has to resort to probabilistic
models in this context.

The choice of the correct probabilistic model is far
from obvious. It is the purpose of this paper to elucidate
the problem by considering an analytic model and to re-
late the results of the analysis to actual measurements.
Our aim consists in improving our understanding of the
stochastic structure underlying the phenomena, but not
yet to suggest methods for improvements in the decision
algorithms of existing operating systems. The latter will
be possible once the model has been firmly established
and validated.

The model proposed in this paper should be regarded
as only a first approximation to the best one. We could
no doubt have obtained higher accuracy by choosing the
stochastic process appearing in the next section to be
more general, but this seemed to us not to be called for
at the present preliminary stage of our investigations.

We start from some simple hypotheses about program
references, in order to arrive at a model that is more in-
trinsic than pure curve-fitting would be:

1. Under multiprogramming, each program is given a
“slice” of execution time that cannot be exceeded but
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may well not be used up. The size of the time slice can
vary considerably among different systems, but will
normally be enough for many thousands of operations.
When we change from one program to another the
probabilistic structure can also be expected to change,
at least in an environment with a heterogeneous load.
These breakpoints, and their distribution in time, will
play an important role in any realistic model. Some
other work [1-3] is in progress to develop statistical
methods for studying this problem.

2. Between two breakpoints one can expect more homo-
geneous behavior, both because programs are exe-
cuted sequentially, except for branching, and because
the simplest kind of string information is also sequén—
tial. One might compare this with the notion of local-
ity [4].

3. Branching makes for less homogeneous behavior and
causes one of the most obvious aspects of program
behavior, viz., looping. This will lead to an (approxi-
mately) periodic appearance, and with loops within
loops there can be many periods present.

4. On the other hand, most programs have a characteris-
tic behavior at their beginning (and usually also at
their end). Initialization will be needed to set up
tables, specify parameters, deal with macros and sub-
routines, etc. This also leads to heterogeneous be-
havior.

There are, of course, many other phenomena of pro-
gram behavior that are known empirically although not
yet quantified. For the moment, however, we shall limit
ourselves to those mentioned above.

To be more specific, we consider an operating system
that employs the concept of paging from and to virtual
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memory. Pages are assumed to be of constant size and
the entire storage hierarchy (main memory and auxiliary
storage) in which paging takes place is taken to contain
the collection P = {1, 2, 3,---, M} of pages, where M is
the total number of pages. Let m be the maximum num-
ber of pages that can reside in main memory and denote
the set of these pages by {1, 2, 3,---, m}.

During execution the operating system makes refer-
ences to memory and we shall denote by p=1{--,p_,, p,,,
P> * -} the reference string of successive pages (not
necessarily distinct) referred to. Under demand paging,
a page that is referenced but is not resident in main mem-
ory will be brought in from auxiliary storage, usually in
place of some other page which has to be pushed out,
according to the particular paging algorithm implemented
in the operating system. A common class of such algo-
rithms is the so-called stack algorithm, of which the most
popular is LRU (Least Recently Used); let us define
stack algorithms as in [4].

The set D= {1, 2,---, J} denotes the set of pages of a
given program, so that the members of the reference
string p, € J. The program has been allocated a main
memory space of m pages, where | = m= J. Wecall a
subset S of D such that § contains m or fewer pages a
possible meniory state. Let r be a reference string and
A an allocation algorithm, and let $ (4, m, r) denote the
memory state after 4 has processed r pages under de-
mand paging in an initially empty main memory of size m.
Then A is a stack algorithm if S(4, m— 1, r) is a subset of
S(A, m, r). That is, the contents of the (m — 1)-page
memory are alwayé contained in the m-page memory, so
that the memory states are “stacked up” on one another.

After considering this definition, it is clear why, for
such stack algorithms, performance is crucially depen-
dent on the behavior of the distance string, defined as
follows. Suppose that at time ¢ page r, = i has been ref-
erenced, and that the next reference to page i occurs at
time t + n, + 1 (see below); that is, between these two
references to page i there have been n, page references,
but none to page i. Let d, denote the number of distinct
page references among these n, references. Then the
string d= (---, d_,, d,, d,, - -) is called the distance string
corresponding to the reference string r.

| l |
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‘ r ¥ r F

n, page references,
none of them = |

|
r=1 ]

t+1 t+2 thng | Ttdmgt T

A page exception will occur each time that 4, = m.
Consider a substring (r,, 7, ,, Vg, " 1) Of the refer-
ence string and denote by N, the number of pages that
had to be brought in from auxiliary storage during the
interval [a, b]. The ratio R,,= N,,/{b—a+1) is called
the paging rate and is one of the criteria to be evaluated
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when judging the performance of a paged computing
system. Notice that R, is an empirical quantity, not a
parameter of any model.

It should be mentioned, in passing, that paging rates
can be measured in at least two ways: either with respect
to the flow of instructions (the unit being a time interval
between two successive instruction executions) or with
respect to new page references. Because the first method
is more informative when studying overhead caused by
page faults, we adopt it in this paper.

Model of program references

Let us measure time, as indicated above, in terms of the
number of instructions executed. We shall not be con-
cerned with happenings during individual instruction exe-
cutions, but rather with nonoverlapping and contiguous
time intervals of length T, where T is the window of the
working set. the working set W (¢) is the binary M-vector
with its ith component equal to one if the ith page has,
zero if it has not;, been referenced in the rth window
[(¢z—1)T, ¢tT]. In other words, W (r) can be looked upon
either as a binary vector or as the set whose indicator
function is this distance.

The number of elements in W(?) is

#[W()] = i e;(t) = ||W(r)|| (the Hamming norm),
i=1

where ¢,(¢) is the indicator function of page i.

Let us make the time parameter ¢ continuous and treat
W(t) in terms of the “birth and death process” e,(t)
(considering one i only):

1 mortality u per time unit
e(t) =1 orfwith and
0 birthrate A per time unit

Here the time unit will be equal to the window size and
the birthrate is equivalent to the reentry rate of pages.
We have the conditional probabilities

P (1) = Ple(r) = 1]|e(0) = 1], and
P, (1) = Pe(r) = 1]e(0) = 0].

Omitting subscripts since both P obey the same differ-
ential question but with different boundary conditions,
we have (see [5], p.’459)

P(t+h) = P(t)(1 — ph) + [1 — P(1) I\ + o(h),
[P(t+h)~P()]/h=N—=P()(p+ \) +o(1),
(dP/dt) + (A + w)P =\,

P(1) = c exp[—(A + p)t] + N/ (A + w).

We must have that P (1) > 0as¢— 0and P,(t) > 1as
t - 0; therefore
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Py(t) = [1/ (A 4+ p) ] (N = X exp[—(A + pn)t]),
{Pl(t) =[1/(A+ )]+ pexp[—(A + u)1]),
and we get the equilibrium probability (¢ — «)
Ple()=1]1=A/(A+p)=p,
say, which holds of course for each page:
Ple(i)=1]=—2t_=p

i ANt

The equilibrium probability (r — ) for the size of the
working set can be denoted by P[w(¢) =k]=w,, say; the
whole probability distribution for the working set is de-
noted by {w}. Let b(a) denote the Bernoulli distribution
with parameter «; then {w} will be the convolution of M
distributions with a = X,/ (A, + u,):

M
fwh =TT * bIn/ O + ).
i=1
The generating function of {w} is

M M
H (1 _pi+piz) = CXP{E ln(l "P,‘*'P,Z)}

i=1 =1
= exp{M f In(1—p+ pz) U(dp),

where U (p) is the distribution function of the p,.
The covariance function of each of the e,(¢) is

Cov{e(t)} = E[e(1)e(0)] ~ p*
=[p/ N+ )N+ pexp[—(A+ w)t]} — p°
= [/ (A + p)*] exp[—(X + p)1l,

so that the total spectral density becomes

1

Ly ALK,
27 S+ ) 1+ A+ )i

because

0

wwﬂm=%f9&@ﬂ§

w |1 —iaX]® ~
It should be noted that the resulting spectral density is
monotonically decreasing for A = 0.

The frequency function of the working set size w(t)
can take many forms. If the p, are all small it will be ap-
proximately Poisson; if the p; are all close to one it will
be approximately inverse Poisson; and if all p, are near
the center of the interval (0, 1) it will be approximately
normal. Convolutions among these three cases can occur,
so that the resulting frequency function can take many
forms.

We have, however, the following result, which limits
the possible qualitative appearance of the distribution.

Assume that for each page 0, 1, 2,3,---, N— 1 we have
a probability #* of being referenced in a window of given
size. Assume also independence between pages. This
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obviously cannot be strictly true. We expect, however,
stochastic dependence in time, which we take into ac-
count, to be more important than dependence in space,
i.e., between pages. We do realize, however, that our
assumption requires additional empirical support, and
as will be seen in a later section the empirical results do
not always support our assumptions. Then the number
of pages called in a window will be a stochastic variable
NP=b,+ b, +---+ b, ,, where the b, are independent
Bernoulli variables b, = b(#*). For certain special cases
we can obtain closed-form expressions or approximations
for the distribution of NP: binomial, Poisson, inverse
Poisson, normal. Because these do not seem to occur in
practice, one is led to ask whether it is possible to say
something general and qualitative about the distribution.
The question is partially answered by the following
theorem.

Theorem Let NP have the frequency function p, =
P(NP=k); k=0, 1,---, N— 1. Then the ratios p,./p,_,
are nonincreasing. In other words, the frequency function
is logarithmically convex.

Proof Introduce the ratios rkt = p,ct/p,c_lt; k=1,2,---1t
and assume that for a fixed value of ¢ the sequence rk' is
nonincreasing in k. Since

pkt+1 _ Pkt(l — )+ pk_ltﬂ_t,

we have

41 _ pkt(l —a)+ pk—1t77t
pk—lt(l - Trt) + pk—ztﬂ't

Ty
_ rkt(l —a)+ 4
B 11—+ wt/rkvlt .
Because r,’ is nonincreasing we have
ri(0—a)y+a'=r_'(0—a)+4,
1—a'+a/r_=1—a+a/r,

Dividing these inequalities by each other, we obtain

+1 = t41
k. — e

On the other hand, we have, for + = 2,
Py = (1—a") (1 —a"),

pl2 =(1—-a)r'+ (1 — ),

and 1)22 =z'7,

so that

0 1
2 2 2 ma
Fy =Dy /Py = , and
T A =aYYr 2" =)

(1 =)o +7°(1—=")

(1=a")(1—a")

rlz - plz/poz -
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This implies that r,” < r,* since this is the same as
A (1—-2)(1—7") =< [(1—a)7' + 7" (1 —=Y 7%,
which inequality holds. This proves the assertion.

As a consequence we know that the frequency func-
tion of the sum b, + b, +---+ b, must be of one of the
following forms: 1) nonincreasing, 2) nondecreasing up
to a point and then nonincreasing, or 3) nondecreasing.
This severely limits the theoretical shape of the distribu-
tion under the conditions we have imposed: U-shape and
bimodal shape are impossible, just to mention two cases,

One consequence of this theorem is that the distribu-
tion of the working set size w(¢) will be unimodal. (Bi-
modal distributions, however, were found in the empirical
results as reported in a later section, and therefore the
assumptions of the theorem cannot be wholly satisfied in
practice.) Another significant consequence is the relation

Var(w) =Y p,(1=p) =3 p,=E[w];

in other words, the working set size distribution w(¢) has
either subnormal or normal, but never supernormal, vari-
ation.

The working set W () itself can be looked upon as a
stochastic process taking sets as its values. In addition
to the function w = ||W (¢)|| we shall consider the follow-
ing Boolean functions, which are physically meaningful:

() =W({) AN [~W(—1)],

representing the pages referenced in window ¢ but not
int— 1. We have

Eli(nll=% (1=p)A, =3 (A /N, +n,).

Similarly, O(¢) = (~W(t)) A W(t — 1) means that the
pages were referenced in window ¢ — 1 but not in window
t. The expected size of O(r) is the same as that of /(¢)
since

EloO=3 pp, = N, /A, + ).

This is obvious because the model is stationary and we
must have balance. Also, let L(¢) = {W(t)=W(t— 1)},
where the second equality sign should be read as a
Boolean function. The locality is expressed by L(7);
its expected size

ElLOI=3 [p,(1—w,)+ (1=p,)(1=A)]

R Vel "
270, )

also expresses the locality. Just as above, one can also
get expressions for the spectral densities of the sizes of
O(1), 1(t), and L(1).

This simple model can only be expected to apply in a
homogeneous regime, as in the present section.
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An informal definition of a regime process starts from
a random mechanism producing the time points where
regimes start and end and also describes the transitions
between regimes at these points. Conditioned by the
break points the process formulates a stationary stochas-
tic process between two such time points where the con-
ditional probability distribution may depend upon the
first random mechanism. For a precise definition of the
notion of regime process and its mathematical conse-
quences see [6].

A regime that exhibits looping, as described in the
next section, would require a modified model with AV‘”,
" periodic functions of ¢ This, however, is a matter
of the time scale chosen. If the period of the outer loop
is of the order of the window size T, then the statement
in the last sentence can be expected to hold. On the other
hand, if the period is much smaller, the looping will not
be very pronounced and the A\, u, can be left as con-
stants. Finally, if the period is much larger than T it may
be sufficient to treat the regime as time-homogeneous un-
less other program events interfere.

The periodic case will look rather different from the
purely homogeneous regime. The distribution {w} will
be made up of contributions belonging to the different
phases of the regime. Note that this composition will
have the effect of a mixture, not of a convolution. Hence
there need be no tendency toward the normal distribution
because the central limit theorem is not operative. We
expect two or more peaks in the frequency function, and
the spectral density need no longer be decreasing, but
can have several peaks.

The effect of initialization (see the last section) is
difficult to anticipate in general, and the same is true of
time intervals with a gradual transition between regimes.
In a later section we show through measurements how
some actual programs can behave.

Distribution of distance

To study the behavior of the distance string we use the
following model, which is a discrete-time version of the
one used in the previous section.

Let p = (p,, p,» ' p,,) be a discrete probability dis-
tribution of the total number M of pages;ie., 0= p,= 1
and 2211 p;=1. Also, let g = (q,, q,," * , q,,) be a vector
with components which satisfy 0 = g, = 1. Our model
develops as follows. At time ¢, a page i is selected from
the collection of pages P = {1, 2, i,- -+, M} according
to the probability measure p={p,, p,, . p;,* * » P),}. We
now stipulate that subsequent references are made to
this page / a number »; — 1 times, where v, has the geo-
metric probability distribution

Pv,=n)=(1— qi)qi"—l’ n=1,2--

This means that g, is the probability of staying within
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page i and (1 — g,) that of leaving it. It must be admitted
that this assumption is far from convincing and is made
for mathematical convenience. (A more resonable ap-
proximation to real data would be offered by the negative
binomial distribution, which could be analyzed by ap-
pealing to Erlang’s method of formulating the problems in
terms of Markov chains.) In the diagram, pages between
the long vertical bars are selected according to the
probability measure (1 —g,) qi"_l; the last page before the
first long vertical bar and the first page after the second
long vertical bar are selected according to the probability
measure p.

v,=1 ’ 2 3 n |
| | | | |
I 1 1 ] i ‘ T
re=i i i i J
Note that

z (1“‘11-)(],-”71= (1._(11) 2 qin71= (1 —q,) 2 qik
n=1 n=1 k=0
fomad —_— . —1 =
(1—gq,) —q 1

as required. The expected value of the random variable
v, is therefore

- n— 11— q; - n
n=1 i p=1
q; (1 - qi)l 11— q;
= m,, say.

After v, occurrences of page i we sample again from P =
{1, 2, i,- -+, M} according to the probability measure
p={py Py " Pp " P, and proceed as before. Note
that we may, of course, obtain the same page i again; i.e.,
in the above diagram we could have j=i.

Locality is large when ¢, is close to unity, and hence
when m; is large.

We shall speak of the p; as the page frequencies and
of the m, as the page durations. 1f the p-distribution is
well concentrated, the work load is skewed toward a
subset of pages; if the vector m = {m,} is large in magni-
tude, the work load possesses a high degree of locality.

This simple model may be criticized on at least two
grounds: First, it is stationary; it is, however, known that
this property is meaningful only in the context of time
scale and can therefore not be ruled out a priori. Second
—and this objection is more serious, the model postu'-
lates simple random sampling from P= {1, 2,---, M} as
each new page is selected. Empirical studies are needed,
and are reported on in a later section, to verify this as-
sumption.
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To relate the vectors p= (p,, p,,"* " p,} and g = (q,,
4, " q,,) to data, the following considerations are rele-
vant.

Let 7, be the equilibrium (or absolute) probability of
referring to page i at some given moment: P(r,=i) =m,
We can write

=2 7 Py
J

where p;; is the transition probability of selecting page i
at time ¢ after page j has occurred at time ¢ — 1 in qur
(Markovian) model.

The transition from any state at time # — 1 to state i at
time ¢ can, in our Markovian model, happen in three
ways:

1. r,_, = r,= i and we stay within an i substring (with
probability g,);

2. r,, = r,=iand we leave an i substring (with prob-
ability 1 — g,) but select state / again (with probability
p);

3. r,_, = Jj, r,=iand we leave a j substring (with prob-
ability 1— g;), selecting a new state i # j (with proba-
bility pj). :

Let the equilibrium (total) probabilities be m; and the
transition probabilities be p;- We have then, separating
the above three cases,

;= Z T, Py
J
=7Tiq,'+77i(] _qi)pi+z 77]'(1 _q]')pi- (1)
i
Introducing the notation a,= m,(1 — ¢,) and a = 2, a,,

we get from Eq. (1),

(1=p)a;=p; Y a;=pla—a,),

i
so that a,= p,a, and
w = [p,/] - qi)]a =p;m;a.

The constant ¢ must be determined from the condi-
tion X, 7, =1, so that a = (X pkmk)fl, and finally
”izpimi/z Pyl (2)

Let M, denote the expected length of a substring con-
sisting entirely of i’s; we have, for a single substring,

P(v;=n)=(1—gq)q;"", and

E[v,J=m=1/(1—gq,).

Let s, = number of connected i substrings, e.g.,

i 0 I i i i

| | 1 1 | |
L R A B

3 v,=2yp=1 v, =4

Thus, P(s,= s) =p/ ' (1 —p,) and
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Els,] = i sP(s,=s)= i SP{??I(I — P

s=1 s=1

= (1 _[)i) 2 spi871 = 1/(1 _Pi)~
s=1

Hence,
M, =mE[s]=m/ (1 —p,). (3)

Denote by L the length of a long reference string, by
f; the frequencies of page references to page i, and by
b by - 1, the lengths of the n, connected i-substrings:

ie., ;; will be the length of the jth connected i-string; e.g.,

Then, with convergence in probability, f;/ L — 7, and
Uy +lg+Fl)n > M, (4)
But Eqgs. (2) and (3) give
Tri/\Ml.=pl.(l —p,)/ Ep,my. (35)

The unknown parameter vectors p and g will not always
be identifiable. We have, however, =, = p,(1 — p)Ma

where @ = (Sp,m,)”" so that, with some constant
C=1/a,
(1= p)M;=nC. (6)

If we assume that all p, = 1/2, which will certainly be
true in all practical cases, then the p, are uniquely de-
termined from Eq. (6), choosing the smaller of the two
roots. We select that (unique) value of C giving unity
for the sum of the two roots p,; this sum is clearly a
monotonically increasing function of C. Then the re-
lation (3) determines the other parameters m,.

If all p, are quite small, we can use the approximations

m; = M,, and

Pig (”i/Mi) (Eﬁi/Mi) 7!’

estimating M, and =, from Eq. (4). In other cases, it
will be necessary to use an iterative procedure, starting
with Eq. (3).

For the model defined in this section let us next de-
termine the probability distribution of #,, that is, of the
length of the reference string between two equal page
references r,= r = i. Consider, first, the conditional

tHn 41

probability P(n,= n|r,=i): e.g.,

1

|

456
=7 -
J ok

2
|
I
J

> T w
> =

] |
I I
=61 m "t+n,+1 =1
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The conditional generating function of this probability is
g;(zli) =E["] =Y €™ P(n,= nli)
n=0

=gq,- 1+ (1—gq,) E[Z"]i,
i-string has ended].

The first term corresponds to the situation n = 0 with
P, = i being an element of an i-substring:

2" P(n,=nli) = 2 P(n,=0li)=1"¢;

ie.,

where the r | is selected by the ¢, mechanism.,
We proceed to condition the expectation further and
obtain

alely =g+ (1=a) S p(1=p)'

=0

x E[2"

i, i-string has ended, / non-i-strings until i];

| -

| N I I R
| 1T 1T T 1
x,=i | j jj k k|x

t

Let v,(z) denote the conditional generating function of
the number v of elements in one substring, given it is
not an i-substring. Then

g:(zl)=q,+ (1—gq,) i pi(1—=p) v/ (2)

=0
=a;+ (1=q)p;/[1 = (1 =p) v,(2)],
where

=

— __[z.l__ — v=1 v
vi(Z)—j%(l_pi)Z‘,l(l %),z
—-# —_ = v—1 v—1
_(]—pl)g;p](l Qj)zzq]' 2
N T PR B
(1—171-)1.%')’( %) (1 — 2q;)

Clearly, the absolute generating function of the stochastic
variable n, now becomes

M
g(z) =3 m g(zli),
i=1
and we can evaluate the moments of n,:

Bl =g (1) =3 m g/ (1li).
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Now,

—(1—p)y,/ (1)
- —P)Yl(l)]

g (ll)=—(—gq)p

Note that
Y(H)=[1/0=p)] ¥ p;=1
Ji
as expected, and
v/ () =3 [p(1—q)/(1=p)I[1/(1—g;)
iEHI—Wﬁ=ZmNI—WU~mL
por
Hence,

J#i

and
Mo pm; (1—gq,) p;
Eln]=3 o P
=ZP P; J=i 4;
k
1
T 22(—q
E /(l_q)llj#l J
k=1
because m; = 1 s
1—gq,

Enl=] 3 p/0-

i, j=1,1j

]zpm

Summing over the entire M X M square matrix and
subtracting the diagonal elements gives

x[Sp/-g)]

2 pi/ (1— qi)
=M—|L———|=M-1.
i
(It has been brought to our attention that this result can
also be obtained more directly by an appeal to Markov
Chain Theory.)

The distribution of the distance d, is more complicated.
To find its expected value we write
d=b,+b,+b,+ - +b,,
where b, =0 or 1 according to whether page 1 has or has
not been referenced.
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n, page references, none = |
0

= —+

= r r r =
0 ty+1 tgt2 ot n‘o t0+nt0+1

As we see in diagram above, we have for the conditional
expectation of b, given reference r,=i for t =1t and that
n =n selections are made from P = {1, 2,- - -, M} before
i is referenced again (at t=1,+n+ 1),

E[b z|’t0 =1, n selections from P before i referenced again |
=1-(1-p/)",
where we have introduced the conditional probability
P(r,=j; j# ) =p =p;/(1—=py;
=12, i—1i+1,--, M.

We thus get

M
E(b]= 3 Elbr, =i, n selections # i)
o
X P (rto = i) X P(exactly n selections after ¢,

which are # i)].

However,

P(r, =i)=m,
0

and

P(exactly n selections after ¢, which are # i) =
2 p1(1 - Pl)n(l - ql)
n=0

Therefore

Elb,1=F S m p,(1—p)" [1— (1—-p/)"1(1—q)

i*1 n=0
zz Wipi{z (I—I)i)n
n=0

=S W=p) (1 =p)1" 1= ).

But
(1—p)(t=p/)=00~p)[1—p/(1-p)
=(1—p,—p).
Therefore
1
Elb]=Nmp, |7
5T
D S P
1~(P—m—p)kl )

IBM J. RES. DEVELOP.




- _i_ oy = mpl—49)
E [ 2 pJ](l @ % (p;+ p)
Hence, with @, = pm,/Zp,m,,
sla) - S £16) =33 [0 (5 o)

1ﬁ

Yue and Wong have obtained similar results [7].
If all pages had the same duration (m, = constant),
this last equation would reduce to the simple expression

M
Eld] =Y pp;/(p;tp).
4 j=1
i2j

In this case (m, = constant) we have
max E[d,]=(M—1)/2

with the maximum realized for uniform page frequencies
p; = 1/M. To prove this, it is enough to use xy/ (x + y)
= (x+ y) /4 with equality only if x=y. Then

p M—1
pip <‘E(p,+p)—%2pl >

Q.E.D.

inj
If is, of course, natural that a uniform page frequency
distribution will give maximum expected distance.
Leaving, now, the case of equal page durations (m; =
constant), we note that since bl2 = b, for each [, we have

E[b?]1=E[b,].
To get the cross products we use, for [, I, i all different,

E[bb,|r,=i; k selections] = 1 — (1 — p,)*

—(1=p )Y+ U=p —p)
so that

Elbb] = 3 m {S (1= (1=p)" = (1=p,)"

=Ll i=0
+ (1 _pI’ _Pl:’)k](l _Pi)kpi},
= 2 771'[1 _pi/ (pi+pl,)

i=L 1
+p,/(p;+p,+pp),

which can be used to get an expression for the variance
of the distance.

If M is large and all the p; are small, the stochastic
dependence between the b, would be weak and it may
therefore be tempting to apply the central limit theorem.
If this argument were valid, the distance d, should be
asymptotically normally distributed. It will, however,
be demonstrated below that this conculsion is, in general,
false.

To do this, let us assume, for the moment, a uniform
distribution p,= 1/M, q,= 0. The probability that n pages

—p/(p;+p)
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have been referenced, conditioned by 1) r,=iand 2) that
k selections have been made, is denoted by

p{n, k)
n=0,1,--M-—1,;

= P(n pages referenced, conditioned as stated);

k=0,1,2,--

We can characterize p(n, k) through a partial differ-
ence equation

pn,k)=pn,k—1)n/(M—1)+pn—1,k—1)
X (M—n)/(M~—1),
fork=1,2,--rand n=1, 2, -+, M — 1. Introduce the

transform (not a generating function!)
t(z) =73 pln, k) 25
k=0

substituting for p(n, k) from above, and summing, yields

t,(z)=p(n, 0) +[n/(M—1)] 2t,(2)
+{M—-—n)/M—-1)]z¢,_ ,(2).

But

p(n, 0) =38, 1,(z) =

so that after some manipulations we get the solution

v = ([T

Introducing the probabilities P(n) = P(d,= n) and using
the fact that £ has a geometric distribution with ratio
(M—1)/M, we get
M—1
W)

1) from above, we get

P =3 () b=y

k=0

Substituting for tn<

P(n)=1/M;n=0,1,--, M- L

This obviously represents a far-from-Gaussian distribu-
tion; indeed, it is a rectangular distribution over the set
of integers (0, 1, 2, -+, n — 1)! This result has a surpris-
ingly simple form and should, perhaps, admit of an intui-
tive explanation and, also, a simpler proof than that given
above. A plausibility argument based on symmetry would
give such an explanation but this, of course, would not
constitute a proof.

A more straightforward but less elegant way of han-
dling this problem would have been to approach it through
the classical occupancy problem, see [8, p 38].

For the case with general p (but still with all g,= 0)
the approach via a partial difference equation will not
work. If we were to enlarge the state space, this approach
would be feasible in principle, but not in practice. We
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Figure 1 Graphical display of the six different regimes of the FORTRAN program MADD.

can, of course, write down an expression for P(n) in
terms of sums involving one, two, three,- - - p’s at a time.
The expression will have alternating signs and involve an
enormous number of multiplications and additions.

Empirical results

In this section, we report some of the results of an ex-
perimental study of page reference patterns (for details,
see [9]). This study clearly establishes the validity of
the regime structure assumed in the model of the pre-
vious sections, although it suggests that some other as-
sumptions—such as strict stochastic independence be-
tween pages—may not be completely valid.

We first describe the method we developed to partition
page reference traces into homogeneous regimes. The
reference traces were obtained from an interpretive sim-
ulator program [10] monitoring the performance of the
execution of any program under the CP-67/CMS oper-
ating system. This monitoring program gathers informa-
tion on the pages referenced at each instruction and re-
cords it in terms of the number of program references to
each page per window of size T. The window size chosen
was T = 1000 because we were not motivated by practi-
cal considerations of scheduler design but, rather, by a
desire to understand the detailed stochastic structure
underlying the page referencing mechanism.

The information was displayed on an interactive cath-
ode ray tube device, and Fig. 1 shows an example of this
display; it was also transferred to tape for processing. In
view of our interest in the regime structure of large pro-
grams, we monitored the execution of a FORTRAN com-
piler designed to operate in about 128000 bytes of main
storage and a PL /1 compiler designed to operate in about
64000 bytes. To determine the existence of stationary
regimes, and to characterize these, we first produced
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listings of the references in each window of the 64 pages:
a sample of such a listing for a FORTRAN compilation
is shown in Fig. 2; the working set size for each window
is given in the last column. This figure also illustrates our
definition of stationary regimes as sets of windows in
each of which the same set of pages (with few excep-
tions) is referenced for some minimum time interval.
This definition is related to the concept of “locality of
reference” [4]. In Fig. 2, the different regimes are parti-
tioned by solid lines according to these heuristic guide-
lines. (The dashed lines indicate partitions arrived at
through our algorithm described in the following section.)
In this particular FORTRAN program (MADD) there are
six distinct regimes. The same six regimes were found in
all eight FORTRAN compilations examined and they clearly
correspond to the six different phases of FORTRAN com-
pilation [11]: Invoke, parse, allocate, unify, generate,
and exit.

Figure | shows a plot against time of working set size
for the same FORTRAN program, and the six regimes of
stationary page referencing behavior are clearly dis-
played and divided by vertical lines. The histograms
(sample frequency functions) for the regimes are dis-
played in Fig. 3 and the sample means, variances and
first-order autocorrelations are given in Table 1. It is
worth noting that similar histograms (some exhibiting
bimodal behavior) are reported in [12]. The histograms
suggest that the frequency functions for each regime have
a characteristic shape peculiar to the corresponding
phase of FORTRAN compilation. They also demon-
strate that stochastic dependence between some pages
must exist, contradicting one of the assumptions in the
analytic model of the previous sections: It is shown there
that if the pages are referenced independently, the fre-
quency function of working set size must be logarithmic-

IBM J. RES. DEVELOP.




FORTRAN PROGRAM 'MABD® - (SSP)
1 XX XXAX X x x 9.
2 XX XXXX X x 8.
3 XX XXX xx XX 9.
4 XXX XX XAX x 9.
5 XXXXKX XXXX x 1.
6 XX XX A AXXX 9.
7 XX XXX X% X 8.
s xX XX AX X x -
9 XXX XX X 6.
10 XXX XX XX X 8.
11 XX XXX X X XX XXX xx o X i5.
12 XX XXX XX XX 9.
13 XKXXXX XXAXXXX X 14,
14 XXXX 4
15 XX XXX X XXXKXX 12. =
16 XX KXXXXXX x XX AX x 5. ()
17 KX XXXXXXX X XXX X x 15. (E
18 XX XXXXXXX x o xx x x ta. g
19 XX XXX XX XX XX x 12. ®
20 XX XXX Xx X X 9. —
21 XXX XX XK XX X i0. 0.9937
22 XX xxx X xx X XX 1.
23 XX XXX X x & x S.
24 XX XXX XX X x x 10
25 XXX XX x X 7.
26 XXX XX XX x X 5.
27 XX XXX & A% XX 10.
28 XX XXX XA A X 9.
29 XXX XX XX XX XX 1.
39 XX XXX X XX Xx X 12.
31 Xx XXX xx X xx 10,
12 xX XX XX x X e
33 XXX XX xa X X 9.
34 XX XXX X XX x XX X 12.
35 XX XXX xx X x 9.
36 AXX XX Xx X X G
37 AXX XX x 6
38 XXX XX XA X X S
39 XX XXX XXX XX XXXX X x XL X 19.
40 XX XXX XXX A XXXX x x X loa 2.6823
41 XX x x X xXX x X X la.
42 XX X X X XXX x x X 14.
43 Xx X X X Axx X X X 14,
44 XX XXX X XKX x x x 5.
45 XX X X A OKXX x « X La.
40 XX X A A XAX A X x la.
47 XX x X A AXX x X x las
“8 XX & X X XXX x x x 14,
49 XX XXX X XKX X X X Laa ~
50 XX X x A KXX X x X La. @
51 XX X x X Axx x x x 14. .
52 XX & n X XxX X x X L4, 5]
53 XX XXX X AXX X X x 15, °
54 XX X X X XXX x x x La. &
x X X X X X
X X £ X x X
XXX X X X X
x X x X X »
X x x X X 2.8836
X X X X X 1.
0.3742
261 AXX X XXKX
262 XXX XXKXAXX
263 AXK X OKXXX
264 XXX XOXXA X AXXX X xXX x
264 XA XX XXX
266 XXX XX XXX
261 XXX XRXX X
268 AXX A XXX
269 XX XXX XXX X XXXX X XXX X
270 XX X X XXX X XXXX X XXx x
271 KX XX XXX X AKXK X XXX X
272 XX X X XXX X XAXX XX XXX X
273 AXX XXNKXXX
274 XXX X XXXxX
215 XX X X XXK A ARXX X ARX X
276 XXX XK XXX
211 KRX XX XXX w
278 XXX XX XXX (13
279 XXX XX XXX "5
230 XXX XXKXXA
281 XX4 X OXXXX 08139 @
282 XX X X XXX X XAXX A OXXX x 4
283 xXX XXKXXX
264 AXX X KAXX
285 XXX X XXX
286 XXX AXXXXX
287 xXx X XXX
288 X XXXX
289 X OXRXX
290 X XAXX
291 X XXXX
292 X XX x
293 XXXX X
294 x X
295 X AXXX
296 XX X X XXX X XXX
297 XXXXXX
298 X XXXXX
299 XX XXX
300 XXXXXX
301 XX Xxx XX XXXXX 1.7909
392 XX XXXXXX XX XX
XK A XXXXX XX X

Figure 2
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xx
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Illustration of the stationary regimes (listing form) of the FORTRAN program MADD.

AXXXXXX
XXAXAKX

x
x
X
x
X
X
XXX XXX X 7.
XxA x X 5.
Xx& XXX X 7.
XXX XXX x 7.
Kxx XXX X 7.
XXX XXX X 7.
Xxx XXX x 7.
xXA Xxx x 7.
XXX XXX x 7. 0.5362
KXA XXX X [ P
xxx xxx x 7.
KX XXX X 1.
X XAXX XXX x x 19,
XX XXXX xxx X XX 21.
XXX XXX X 7.

¢ sunrSay
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Figure 3 Histograms (sample frequency functions) of the FORTRAN program MADD.

ally convex and hence unimodal; regimes 2, 3 and 6 have,
however, bimodal histograms. Table 1 shows means,
variances and autocorrelations for the FORTRAN compila-
tion of another program, PAGETR, in addition to MADD.
(Other FORTRAN compilations gave similar results.) Cor-
responding regimes in the compilations show similar
relations between means and variances, but not consis-
tently enough for us to base a characterization of regimes
on these parameters. The autocorrelation coefficients of
order one indicate that (with the possible exception of
the short regime 4) white noise cannot be the cause of the
variation of working set size within regimes, because such
a coefficient must, in the case of a time-series generated
by white noise, be of the order 1/ (n— 1)1/2, where »n is
the number of observations [13]. In our case, thus, 7 is
the number of windows in a given regime and almost all
the sample autocorrelation coefficients are more than two
standard deviations away from zero. Our results on PL /1
compilations yielded similar though more complex re-
sults, because the number of observed regimes was high-
er and the working set sizes were larger.
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Algorithm for partitioning regimes in page reference
traces.

An algorithm was developed to partition page reference
traces into homogeneous regimes in a manner reflecting
the heuristic guidelines described above. We defined a
stationary regime by a set of pages (or a locality of refer-
ence) common to almost all windows in the regime for
some minimal length of time, that is, each of the 64 pages
(including those not in the locality) is referenced with
some characteristic frequency in each regime. Those
pages that fall in the locality of reference defining aregime
will of course have the highest frequencies. They will
also carry the greatest weight in determining where re-
gimes should be partitioned.

Because of the inter-page dependencies, noted in the
previous section, the existence of these characteristic
frequencies is reflected in the graphs of the sample fre-
quency functions of the working set sizes in Fig. 3. That
is, because of inter-page dependencies, each occurrence
of a working set size (e.g., of size twelve) in a particular
regime will usually be the result of references to the same
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Table 1 FORTRAN compilation results.

Regime Program Windows Mean Variance First-order autocorrelation
1 MADD 1-38 9.8421 6.3528 0.1671
PAGETR 1-38 9.9211 4.5612 0.2591
2 MADD 39-300 10.4084 15.1620 0.2312
PAGETR 39-594 9.5396 13.1379 0.1784
3 MADD 305-383 7.3924 5.8824 0.3342
PAGETR 598-690 8.3763 12.2372 0.3783
4 MADD 385-414 5.9333 0.1333 —0.0344
PAGETR 692-734 5.9535 0.1883 0.1060
5 MADD 416-592 8.0113 0.8294 0.3676
PAGETR 736-1022 8.4913 1.2646 0.2066
6 MADD 594-688 10.6529 30.0376 0.2100
PAGETR 1024-1138 11.6957 29.4240 0.0962

set of (twelve) pages, the majority of which (e.g., eight)
will constitute the locality of references found in almost
every window of the regime. Another working set size,
corresponding to a different window in the same regime
(e.g., fifteen), will usually reflect the same (eight) pages
in the basic locality of reference and (seven) other pages
different from the additional (four) pages in the windows
with working set sizes of, e.g., twelve. With this situation
in mind, we see that the observed characteristic shapes
of the working set size frequency functions indicate char-
acteristic frequencies of reference for each of the 64
pages.

Our algorithm is based on the assumption that a station-
ary regime of page referencing behavior can be charac-
terized by a vector of 64 page-reference frequencies. It
was remarked in the previous section that characteristic
working set size frequencies and, consequently, charac-
teristic frequency vectors correspond to compilations of
different FORTRAN programs. This fact, which is signifi-
cant, is, however, not essential to our algorithm which
depends only on a marked change in frequency vectors
between stationary regimes. Because of this, the algo-
rithm is program-independent and should be capable of
delineating stationary page reference patterns for any
program displaying regime-type referencing behavior.

If a vector of 64 page reference frequencies can charac-
terize a regime, then sample vectors of page reference
frequencies within a regime should differ little over the

2N — 1, all fall into the same regime, the mean square
distance,

i i+N & N 2
D= ”f(z) _f“HH”: [2 (f]( )___fj( +\))2:|1/2’
j=1

should be small. On the other hand, by assuming different
localities of reference and different characteristic page
reference frequencies in different regimes, if the win-
dowsi, i+ 1,--- i+ N — 1 are contained wholly or most-
ly in one regime, and the windows i+ N, i+ N+ 1, -,
i+ 2N — 1 are contained wholly or mostly in the next
regime, then D should be large. In fact, D should be sig-
nificantly larger only if the reference frequencies of a few
pages change radically between regimes.

In accordance with the above remarks, our procedure
is to compute the sample page reference frequency vec-
tors over successive spans of N windows, searching for
points in time where the mean square distance, D, be-
tween the frequency vectors is large. Suppose now that
some sufficiently large value of D is found between fre-
quency vectors computed over the windows i — N, -,
i—1l,and i, -+, i+ N— 1. Then an attempt is made to max-
imize D as this should locate more precisely a partition
point between stationary regimes. The frequency vectors
are adjusted 2N times so that a value of D can be com-
puted between N-vectors centered at each of the 2N
windows i — N,- -+ i—1,i,i+1,--- i+ N— 1. If the max-
imum value of D is sufficiently large, then the particular

span of the regime. Let f‘” = (fl'”; . -,j;m”)) be the sam- window at which the maximum occurred is recognized
ple frequency vector computed over the consecutive as a partition point. [n other words, it is assumed by this
windows numbered i, i+ 1,---, i+ N — 1. Let f""V) = algorithm that if the distance between reference fre-
(fl‘”m, SRR fM‘HN’) be the sample frequency vector quency vectors computed over consecutive N-window

computed over the windows numbered i + N, i+ N + 1,
-+, i+ 2N — 1. Then, if the 2N windows, i, i+ 1,---, i+
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spans is maximized at window j, then the windows j — N,
-+ j—1,andj,- -+, j+ N — 1, will lie in entirely different
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INITIALIZATION
SET: N,pMAX1, DMAX2

READ TAPE 9 HEADER

READ FIRST N WINDOWS & COMPUTE PAGE
FREQ. VECTOR IN FREQ(IL,J) J=1,N

READ NEXT N WINDOWS & COMPUTE PAGE
FREQ. VECTOR IN FREQ (IN,J),J=1,N

i

COMPUTE MEAN SQUARE DISTANCE, DIST(1),
BETWEEN FREQ(/L,J) aND FREQ(IN,J)

K=0

| K=K+1 |

CHANGE INDICES TO EFFECT:
FREQ(ILL,J) = FrEQ(IL,J)
FREQ(/L,J) = FREQ({IN,J)

READ & COMPUTE FREQ. VECTOR FOR
NEXT N WINDOWS IN FREQ (IN,J),J=1,N

OUTPUT RESULTS
& STOP

COMPUTE MEAN SQUARE DISTANCE, DIST(K),
BETWEEN FREQ (/L,J) AND FREQ (IN,J)

DIST(K ).LE.DMAX!

NO

CALL SEARCH

SUBROUTINE SEARCH
LOCATE PRECISE PARTITION POINT
OVER SPAN OF 2N WINDOWS

| rEAD NEXT N wWinbows |

MODIFY INDICES TO EFFECT:
FREQ(IN,J) = FREQ(IL,])
FREQ(/L,J) = FREQ(ILL,J)

l RECOMPUTE FREQUENCY VECTORS FREQ(/L,J) & FREQ(IN,J)

FOR SPANS OF N WINDOWS SHIFTED ONE WINDOW FURTHER IN TIME

¥

COMPUTE MEAN SQUARE DISTANCE, DTEST,
BETWEEN MODIFIED FREQ(/L,J) & FREQ(IN,J)

DTEST.GT.DMAX

DMAX = DTEST

YES

NO

DMAX.LE.DMAX2

NO

NOTE PARTITION POINT AT
WINDOW CORRESPONDING TO DMAX

RETURN

Figure 4 Flowchart of the algorithm used in the delineation of regimes.

regimes with different characteristic page reference fre-
quency vectors. This is, however, an idealization as there
is generally a transition period of at least a few windows
between regimes. It is thus not possible to locate an exact
partition point.

The algorithm just described is outlined in greater de-
tail in the flow chart in Fig. 4. It was programmed in
FORTRAN and, as indicated in the flow chart, it consists
of a main program, REGIME, and a subroutine, SEARCH,
which is called to locate precisely a partition point
through a maximization of D.

Clearly the choice of the value of N, the number of
windows over which sample frequency vectors are cal-
culated, is vital to the success of the algorithm. The value
must be large enough that a good estimate of the actual
characteristic frequency vector is obtained. It must also
be smaller than the length (in number of windows) of
the shortest stationary regime that will be considered.
Also important is the choice of a value of D “sufficiently”
large. There are actually two such values. The first,
DMAX]I, is the value which must be exceeded to warrant
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a window-by-window search for a precise regime parti-
tion point. The second value, DMAX2, must be exceeded
by the maximum value of D in the window-by-window
search over 2N windows (in subroutine SEARCH) in
order for a window to be recognized as a regime partition
point.

The choice of the parameters N, bMAX1 and DMAX2
will depend on the nature of the particular class of pro-
grams being studied. The algorithm was consistently
successful in partitioning the page reference traces for
the FORTRAN compiler according to our design with
the values N = 20, pmax1 = 0.99 and pMax2 = 1.5. This
choice of N means that we will not recognize as station-
ary regimes any spans of fewer than 20 windows or
20000 instructions. Certainly, shorter spans of time are
of little practical significance and a smaller value of N
would make it difficult to estimate accurately the true
characteristic frequency vector.

To the right of the computer printed output in Fig. 2
we have written the value of the distance D between suc-
cessive frequency vectors in intervals of 20 windows.
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The regime partition points for the tWwo FORTRAN pro-
grams, as determined by this algorithm, have been
marked by dashed lines in cases where these points differ
from the heuristically selected partition points marked
by solid lines. The maxima of the distance function cor-
responding to these partitions have been written above
or below the dashed lines. Note that the minimum value
of D at any window recognized as a partition point is
1.6771. In view of the transition periods between re-
gimes, it is clear that this algorithm partitions regimes as
accurately as could be expected.

We point out here that for the pL/1 compilations, the
best results were achieved with values of pMax1l = 1.5
and pMAXx2 = 2.5. These higher thresholds were neces-
sitated by the generally higher working set sizes and
values of D,

We emphasize that our algorithm is an approach to the
problem of regime identification tailored to the problem
at hand. Regime stochastic processes occur in many dif-
ferent applications, and different identification algo-
rithms will be appropriate in each case. For more general
discussions, see [1] and [6], and for different applica-
tions to compumetrics, [2] and [3].

Summary
In the theoretical part of this paper, the consequences of
certain basic assumptions about the random nature of the
page referencing mechanism in virtual memory operating
systems is examined. Among the stochastic dependencies
present in such a system are those between different
time points and those between different pages. In one of
our models, the latter is neglected in comparison with the
former. Subsequent analytic studies in conjunction with
experimental findings are shown to lead to a weakening
of this hypothesis in favor of the notion of a regime sto-
chastic process as an appropriate model for the descrip-
tion of empirical observations on page reference strings.
An attempt is made, also, to correlate the observed
regimes with the known structure of the executing pro-
gram and to collect information on the properties of the
internal regime processes, i.e., those processes condi-
tioned by the one governing the regime transitions.

We look upon this work as a pilot study in the spirit of
statistical inference applied to stochastic process models
in compumetrics.
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