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Patterns in Program  References 

Abstract: This  paper  describes a study of sane of the  characteristics of program  referencing patterns. Program  behavior  is  investigated 
by constructing  stochastic  models  for the page  reference  mechanism and evaluating  the  validity of the  assumptions made through  com- 
parison with empirical  results. The notion of a regime  process is shown to play a useful  role in describing  the  observed  phenomena  math- 
ematically.  The study falls within the realm of a rapidly  growing field of computer  science  known  as  compumetrics,  where  quantitative 
and qualitative  methods  are  being  applied  to  the  study and evaluation of computer  performance. 

Introduction 
The execution of a  program in a multiprogrammed  system 
has  to  be interrupted frequently  for  reference  to informa- 
tion stored in different levels of the storage  hierarchy. 
To discuss  the strategy of the basic  decision algorithm 
appropriate  for  the  system, it is necessary to know  some- 
thing about  the manner in which these  references  to 
stored  information are made. 

When dealing with a large program, such  as an assem- 
bler or a compiler, it is impossible, in practice, to predict 
the references  deterministically,  and it has  been recog- 
nized for a long time that  one has to  resort  to probabilistic 
models in this context. 

The choice of the  correct probabilistic model is far 
from obvious. It is the  purpose of this  paper to elucidate 
the problem by considering an analytic model and to re- 
late  the  results of the analysis to actual measurements. 
Our aim consists in improving our understanding of the 
stochastic  structure underlying the phenomena,  but  not 
yet to suggest  methods for  improvements in the decision 
algorithms of existing operating systems.  The  latter will 
be possible once  the model has been firmly established 
and  validated. 

The model proposed in this  paper should be regarded 
as only a first approximation to  the best one. We could 
no doubt  have obtained higher accuracy by choosing the 
stochastic  process appearing in the  next section to be 
more general,  but  this  seemed to us not  to be called for 
at  the  present preliminary  stage of our investigations. 

We start from  some simple hypotheses  about program 
references, in order  to  arrive  at a model that is more in- 
trinsic than  pure curve-fitting would be: 

I .  Under multiprogramming, each program is given a 
230 “slice” of execution time that cannot be exceeded but 
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may well not be used  up. The size of the time slice can 
vary  considerably  among different systems, but will 
normally be enough for many thousands of operations. 
When we change from one program to  another the 
probabilistic structure can also be expected  to change, 
at  least in an environment with a  heterogeneous  load. 
These  breakpoints,  and their  distribution in time, will 
play an important role in any  realistic model. Some 
other work [ 1-31 is in progress  to  develop statistical 
methods for studying  this problem. 

2. Between  two  breakpoints one can expect more homo- 
geneous  behavior,  both because programs are  exe- 
cuted sequentially, except  for branching,  and  because 
the simplest kind of string information is also sequen- 
tial. One might compare this with the notion of local- 
ity [4]. 

3. Branching makes for less  homogeneous  behavior and 
causes  one of the most obvious  aspects of program 
behavior,  viz., looping. This will lead to  an (approxi- 
mately)  periodic appearance, and with loops within 
loops there can  be many periods present. 

4. On the  other hand,  most  programs  have  a characteris- 
tic behavior at  their beginning (and usually also  at 
their end). Initialization will be needed to  set up 
tables, specify parameters, deal with macros and sub- 
routines, etc. This  also leads to heterogeneous be- 
havior. 

There  are, of course, many other phenomena of pro- 
gram  behavior that  are known empirically although  not 
yet quantified. For  the moment,  however, we shall limit 
ourselves  to  those mentioned above. 

To be  more specific, we consider an operating  system 
that employs the  concept of paging from  and to virtual 
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memory.  Pages are assumed to be of constant size  and 
the  entire storage  hierarchy (main memory and  auxiliary 
storage) in which paging takes place is taken  to contain 
the collection P = { 1, 2 ,  3,.  . ., M }  of pages, where M is 
the total  number of pages. Let m be  the maximum num- 
ber of pages that can  reside in main memory and denote 
the  set of these pages by { 1,  2 ,  3, .  . ., m } .  

During  execution the operating  system  makes  refer- 
ences  to memory and we shall denote by p = (. . ., p-l, po,  
pl. . ..} the reference string of successive pages (not 
necessarily distinct) referred to. Under demand paging, 
a  page that is referenced but is not  resident in main mem- 
ory will be  brought in from  auxiliary  storage, usually in 
place of some  other page which has  to be  pushed out, 
according to  the particular paging algorithm  implemented 
in the operating  system.  A  common  class of such algo- 
rithms is the so-called  stack  algorithm, of which the most 
popular is LRU  (Least Recently Used); let us define 
stack algorithms as in [4]. 

The  set D = { 1, 2 , .  . ., J }  denotes the set of pages of a 
given  program, so that  the members of the  reference 
string p k  E J .  The program  has  been  allocated a main 
memory space of m pages,  where 1 5 m 5 J .  We call a 
subset S of D such  that S contains m or fewer  pages  a 
possible memory  state. Let r be  a reference string and 
A an allocation  algorithm, and let S ( A ,  m, r )  denote  the 
memory state  after A has processed r pages under de- 
mand paging in an initially empty main memory of size m. 
Then A is a stack algorithm if S ( A ,  m - 1, r )  is a subset of 
S ( A ,  m, r ) .  That is, the  contents of the ( m  - 1)-page 
memory are always contained in the m-page memory, so 
that  the memory states  are  “stacked  up”  on  one  another. 

After considering  this definition, it is clear  why,  for 
suah stack  algorithms,  performance is crucially  depen- 
dent  on the  behavior of the  distunce  string, defined as 
follows. Suppose that at time t page r, = i  has  been ref- 
erenced,  and  that  the  next  reference  to page i occurs  at 
time  t + n, + 1 (see  below);  that  is,  between  these  two 
references to page i there  have beeh n, page references, 
but  none to page i. Let d, denote  the  number of distinct 
page references among these nt references. Then  the 
string d = (. . ., d- l ,  do, dl, .  . .) is called the distance  string 
corresponding to  the  reference string r .  

nt page references, 
none of them = i 

I I I I ! 
rt = i YlCl kt+* 

rt+n, 
r,+nt+1 = i 

A page exception will occur  each time that dt = m. 
Consider a substring (ra,  ra+l, ro+s , .  . ., rb) of the refer- 

ence string and denote by N%b the number of pages that 
had to  be brought in from  auxiliary storage during the 
interval [a ,  b ] .  The  ratio R,, = N a b /  (6 -a+  1 )  is called 
the paging rate  and is one of the  criteria  to  be evaluated 
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when judging the  performance of a paged computing 
system.  Notice  that R , ,  is an empirical quantity, not  a 
parameter of any model. 

It should be mentioned, in passing, that paging rates 
can be  measured in at  least two  ways:  either with respect 
to  the flow of instructions (the unit being a time interval 
between two successive instruction executions)  or with 
respect  to new page references.  Because the first method 
is more  informative  when  studying overhead  caused by 
page  faults, we adopt it in this  paper. 

Model of program references 
Let us measure time, as indicated above, in terms of the 
number of instructions  executed. We shall not  be  con- 
cerned with happenings  during individual instruction  exe- 
cutions, but rather with nonoverlapping  and  contiguous 
time  intervals of length T ,  where T is the window of the 
working set: the working set W (  t )  is the binary “vector 
with its ith component equal to  one if the ith page  has, 
zero if it has  not, been referenced in the tth window 
[ ( t  - 1 ) T ,  t T ] .  In  other  words, W (  t )  can  be looked upon 
either as a binary vector  or  as  the  set whose  indicator 
function is this distance. 

The number of elements in W ( t )  is 
M 

# [ W (  t )  ] = ei ( t )  = IIW ( t )  1 1  (the Hamming norm), 

where e , ( t )  is the indicator  function of page i. 
Let us make  the time parameter t continuous and treat 

W (  t )  in terms of the “birth  and death  process” e i (  t )  
(considering one i only) : 

k 1  

mortality p per time unit 

[ bi {birthrate hapncdr time unit 
e ( t )  = or with 

Here  the time unit will be  equal to  the window size  and 
the  birthrate is equivalent to  the  reentry  rate of pages. 

We have  the conditional  probabilities 

PI([) = P[e ( t )  = lle(0) = I ] ,  and 

P o ( [ )  = P [ e ( t )  = 1 le (0)  = 01. 

Omitting subscripts  since both P obey  the  same differ- 
ential  question but with different boundary  conditions, 
we have  (see [ 5 ] ,  p.’459) 

‘ p ( t + h ) = P ( t ) ( l - p h ) + [ l - P ( t ) ] A h + o ( h ) ,  

[ P ( t + h ) - P ( t ) ] / h = A - P ( t ) ( p + A ) + o ( l ) ,  

( d P / d t )  + ( A  + p ) P  = A, 

P(t) = c exp[-(A + p ) t ]  + h / ( A  + p ) .  

We  must have  that  Po(t) + 0 as t - 0 and P,( t )  + 1 as 
t -+ 0; therefore 231 
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and we get  the equilibrium probability ( t  -+ m) 

P [ e ( t )  = I ]  = A /   ( A  + p )  = p ,  

say, which holds of course  for  each page: 

The equilibrium probability ( t  -+ m )  for  the size of the 
working set can  be denoted by P [ w (  t )  = k ]  = wk, say;  the 
whole probability distribution for  the working set is de- 
noted by {w}. Let b ( a )  denote  the Bernoulli distribution 
with parameter a ;  then {w} will be the convolution of M 
distributions with a! = Ai /  ( A i  + pi)  : 

{wl  = n * b[A,/ ( A i  + pil l  
M 

i= 1 

The generating  function of 

n ( 1 - pi + p,z)  = exp 
M 

i= l   i= l  

1 

= exp{M J In(1- p + pz) ~ ( d p ) ,  

where U ( p )  is the distribution  function of the pi.  
The  covariance function of each of the e,(?)  is 

Cov{e(t)} = E [ e ( t ) e ( O ) ]  -$ 

so that  the total spectral  density  becomes 

'c A P "  
27r (A, + py) ' [  1 + ( A  + p)'A2] ' 

because 

exp(--)alt) = - 
1 exp(itA)dA 

2 n  1-, 11 - i d I 2  

It should be noted that  the resulting spectral  density is 
monotonically  decreasing for A P 0. 

The frequency  function of the working set size w ( t )  
can  take many forms. If the p i  are all small it  will be ap- 
proximately Poisson; if the p i  are all close to  one it  will 
be  approximately  inverse Poisson;  and if all pi  are  near 
the  center of the interval (0 ,  1 )  it  will be  approximately 
normal. Convolutions among these  three  cases  can  occur, 
so that  the resulting frequency  function  can take many 
forms. 

We have,  however,  the following result, which limits 
the possible  qualitative appearance of the distribution. 

Assume  that  for each page 0, 1, 2 , 3 ;  . ., N - 1 we  have 
a probability 7rk  of being referenced in a  window of given 

232 size. Assume  also  independence between  pages. This 
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obviously cannot  be strictly  true. We expect,  however, 
stochastic  dependence in time, which we  take into  ac- 
count,  to be  more  important  than dependence in space, 
i.e.,  between  pages.  We do realize, however,  that  our 
assumption requires additional  empirical support, and 
as will  be seen in a later section the empirical results  do 
not always support  our assumptions. Then  the number 
of pages called in a  window will be  a stochastic variable 
N P  = bo + b, +. . ' + bN-l, where  the b, are independent 
Bernoulli variables b, = b(7rk). For  certain special cases 
we  can obtain  closed-form expressions  or  approximations 
for  the distribution of N P :  binomial, Poisson, inverse 
Poisson, normal.  Because these  do not  seem to  occur in 
practice, one is led to  ask  whether it is possible to say 
something  general and qualitative about  the distribution. 
The  question is partially answered by the following 
theorem. 

Theorem Let N P  have the  frequency function p ,  = 

P ( N P = k ) ; k = O ,  I ; . . , N -  l.Thentheratiosp,/p,-, 
are nonincreasing. In  other  words,  the frequency  function 
is logarithmically convex. 

Proof Introduce  the  ratios rllf = pkf/pk-lt;  k = 1, 2 , .  . ., t 
and  assume  that  for a fixed value of t the sequence rkf is 
nonincreasing in k. Since 

we have 

t+1 = 
Pllf( I - 7 r t )  + p k - 1  7r 

Pk- : (  - 7 r t )  + Pk-2 7r 

t f  

'k t t  

- - rkf( 1 - T')  + 7 r f  

1 - 7rt + 7r t  / rk-l' ' 

Because rllf is nonincreasing we have 

rllf( 1 - 2 )  + 7 r f  5 rk-lt( 1 - 7 r t )  + 2 ,  

1 - 7 r t  + d / rk - l f  1 I - 7 r t  + 7rt/rk-''. 

Dividing these inequalities by each other, we obtain 

'I, - 'k-1 . t + l  < f + l  

On  the  other  hand, we have,  for t = 2, 

P ;=( l -7ro) ( l -7r1) ,  

P12 = (1 - 7r0)7r1+ To( 1 - 7r1), 

and p B  = T T ,  

so that 

2 0 1  

0 1  

r22 = P;/P: = 
T7r 

( 1  - 7T0)7r1 + To( 1 - %") 
, and 

r;=P;/Po = 
2 ( I  - T0)7r1 + To( 1 - 7r') 

(1-7r0)(1-7r') 
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This implies that r t  5 rlz since  this is  the  same  as 

7r07r'(1-7r0)(l-7r1)5 [ ( l - 7 r 0 ) 7 r 1 + 7 r 0 ( I - 7 r 1 ) ] 2 ,  

which inequality holds. This proves the  assertion. 

As a consequence we know that  the frequency  func- 
tion of the sum bo + b, +. . .+ bN-, must be of one of the 
following forms: 1 )  nonincreasing, 2 )  nondecreasing  up 
to a point and  then  nonincreasing, or 3 )  nondecreasing. 
This severely limits the theoretical shape of the distribu- 
tion under  the conditions we have imposed: U-shape and 
bimodal shape  are impossible, just to mention  two cases. 

One  consequence of this  theorem is that  the distribu- 
tion of the working set size w (  t )  will be unimodal. (Bi- 
modal distributions,  however, were found in the empirical 
results  as  reported in a  later section, and therefore  the 
assumptions of the theorem cannot be wholly satisfied in 
practice.)  Another significant consequence is the relation 

Var(w) = P,( 1 - P,) 5 P ,  = E [ w l ;  

in other  words,  the working set size  distribution w ( t )  has 
either subnormal or normal,  but never supernormal, vari- 
ation. 

The working set W ( t )  itself can be looked  upon as a 
stochastic  process taking sets as its  values. In addition 
to  the function w = IlW(t)ll we shall consider the follow- 
ing Boolean functions, which are physically meaningful: 

f ( t )  = W ( t )  A [ " w ( t -  I ) ] ,  

representing the pages  referenced in window t but  not 
in t - 1 .  We have 

El lWl=C,  ( 1  - P , P y = C ,  (P"XYIh"+P").  

Similarly, O ( t )  = ( " w ( t ) )  A W ( t  - 1) means that  the 
pages were referenced in window t - 1 but  not in window 
t .  The  expected size of O ( t )  is the  same  as  that of f ( t )  
since 

EllO(t)ll= P"P" - (A"P, lA ,  + P") .  

This is obvious  because  the model is stationary  and we 
must have balance. Also, let L ( t )  = { W ( t )  = W ( t -  I ) } ,  
where  the second  equality sign should be read as a 
Boolean function. The locality is expressed by L ( t )  ; 
its expected size 

EIIL(t)ll=C [ P " ( l  - P y )  + ( 1  - P " ) ( l  - A " ) ]  

A" + PLY - 2AYP" 
= = ( A " +  P")  

also expresses  the locality. Just  as  above,  one  can  also 
get expressions  for  the  spectral  densities of the sizes of 
O ( t ) ,  Z ( t ) ,  and L ( t ) .  

This simple model can  only be expected  to apply in a 
homogeneous  regime, as in the  present section. 
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An informal definition of a regime process starts from 
a  random  mechanism  producing the time points  where 
regimes start  and end and  also  describes  the  transitions 
between  regimes at  these points.  Conditioned by the 
break  points the  process formulates  a stationary  stochas- 
tic process between  two  such  time  points where  the  con- 
ditional probability distribution may depend upon the 
first random  mechanism. For a  precise definition of the 
notion of regime process and its mathematical conse- 
quences  see [6]. 

A regime that exhibits  looping, as described in the 
next section, would require  a modified model with Ay('), 
py periodic functions of t .  This,  however, is a matter 
of the time  scale chosen. If the period of the  outer loop 
is of the  order of the window size T ,  then the  statement 
in the last sentence  can be expected  to hold. On  the  other 
hand, if the period is much  smaller, the looping will not 
be  very  pronounced  and the A", pv can be left as con- 
stants. Finally, if the period is much larger  than T it may 
be sufficient to  treat  the regime as time-homogeneous un- 
less other program events interfere. 

The periodic case will look rather different from the 
purely  homogeneous regime. The distribution {w} will 
be  made  up of contributions belonging to the different 
phases of the  regime. Note  that this  composition will 
have  the effect of a  mixture,  not of a  convolution. Hence 
there need be no  tendency toward the normal distribution 
because  the central limit theorem is not operative. We 
expect  two  or more peaks in the frequency  function,  and 
the spectral  density need no longer be decreasing,  but 
can have several  peaks. 

The effect of initialization (see  the last section) is 
difficult to anticipate in general, and  the  same is true of 
time  intervals with a  gradual  transition  between  regimes. 
In a later section we show  through measurements how 
some actual programs can behave. 

Distribution of distance 
To study the behavior of the  distance string we use the 
following model, which is a discrete-time  version of the 
one used in the previous  section. 

Let p = (pl, p 2 , .  . ., p,) be a discrete probability dis- 
tribution of the total number M of pages; i.e., 0 5 p i 5  1 
and ELl pi = 1. Also, let q = ( q,, qz, .  . ., 4,) be  a vector 
with components which  satisfy 0 5 qi 4 1 .  Our model 
develops  as follows. At time t ,  a  page i is selected from 
the  collection of pages P = { I ,  2,.  . ., i; . ., M }  according 
to  the probability measure p = {pl, pZ; . ., pi; . ., p,}. We 
now stipulate that  subsequent  references  are  made  to 
this page i a number vi - 1 times, where vi has  the geo- 
metric probability distribution 

P ( v i  = n )  = ( I  - qi)qi , n = 1, 2;. .. 
This  means  that qi is the probability of staying within 

( f l  

n-1 
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page i and ( 1 - q i )  that of leaving it. I t  must be admitted 
that this  assumption is far from  convincing  and is made 
for mathematical convenience. ( A  more  resonable ap- 
proximation to real data would be offered by the negative 
binomial distribution, which could  be analyzed by ap- 
pealing to Erlang's method of formulating the problems in 
terms of Markov  chains.)  In  the diagram, pages between 
the long vertical  bars are selected  according to  the 
probability measure ( 1 - qi)  qr-'; the last page before the 
first long vertical  bar  and the first page after  the second 
long vertical  bar are selected  according to the probability 
measure p. 

v i =  1 

+ 
rt = i 

Note  that 
m 

1 

m 

as required. The  expected value of the random  variable 
vi is therefore 

= mi, say. 

After vi occurrences of page i we sample again from P = 

{ 1 ,  2 , .  . ., i, . . ., M }  according to  the probability measure 
p = {pl,  p2,. . ., p i ,  . . ., p,} and  proceed as before. Note 
that  we may, of course, obtain the  same page i again; i.e., 
in the  above diagram we could have j = i. 

Locality is large when qi is close  to unity, and  hence 
when mi is large. 

We shall speak of the p i  as  the page  frequencies and 
of the mi as the  page durations. If the p-distribution is 
well concentrated,  the work load is skewed toward  a 
subset of pages; if the  vector m = { m i }  is large in magni- 
tude,  the work load possesses a high degree of locality. 

This simple model may be criticized on at  least two 
grounds:  First, it is stationary; it is,  however,  known that 
this property is meaningful only in the  context of time 
scale  and can therefore not  be ruled out a  priori. Second 
-and this  objection is more serious,  the model post; 
lates simple random sampling from P = { 1, 2, .  . ., M }  as 
each new page is selected. Empirical studies  are  needed, 
and are  reported  on in a later  section,  to verify this as- 
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To relate  the  vectors p = (pl, pz, .  . ., p,) and q = (ql, 
qz, .  . ., 4") to  data,  the following considerations  are rele- 
vant. 

Let ri be the equilibrium (or  absolute) probability of 
referring to page i at some  given  moment: P (  rt = i )  = ri. 
We can write 

= rj Pji, 
j 

where pji is the transition probability of selecting page i 
at time t after page j has  occurred  at time t - 1 in  Qur 
(Markovian) model. 

The transition  from any  state  at time t - I to  state i at 
time t can, in our Markovian  model,  happen in three 
ways: 

1 .  rt-l = rt = i and we stay within an i substring (with 
probability qi)  ; 

2. rt-l = rt = i and we leave  an i substring (with prob- 
ability 1 - qi )  but  select state i again (with probability 

3 .  rt-l = j ,  rt = i and we leave a j substring (with prob- 
ability 1 - qj ) ,  selecting  a new state i # j (with proba- 
bility p j ) .  

Let  the equilibrium (total) probabilities  be rj and the 
transition  probabilities  be pji. We  have  then, separating 
the  above  three  cases, 

rj = Ti  pji 

Pi) ; 

j 

= riqi + ri ( 1 - qi)pi + rj( 1 - @pi. ( 1 )  
j #  i 

Introducing the notation ai = ri( 1 - qi)  and a = X i  ai, 
we  get from Eq. ( 1 ), 

( 1  - pi)ui =p i  aj = pi(a - a i ) ,  

so that ai = pia, and 

ri = [ p i /  1 - qi)]a =pi  mi a. 

j # i  

The  constant a must be determined  from the condi- 
tion Zi ri = 1, so that a = ( X  pkm,)", and finally 

= pimi/c Pkmk. (2)  

Let Mi denote  the  expected length of a substring  con- 
sisting  entirely of i ' s ;  we have, for  a single substring, 

P ( v i  = n )  = ( 1  - qi)qY-l, and 

E[vi] = mi = 1 / ( 1  - qi) .  

Let si = number of connected i substrings, e.g., 

j i i i i i i i i i i k  
I I I I I  I I I 1 1  1: si = 4. *u ' ' I ,  

v i = 3  v i = 2  v i =  1 v i - 4  

Thus, P ( s i  = s) = pis='( 1 - p i )  and 
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rn m 

E[sj] = 2 sf ( s i  = S )  = sp,""( 1 - p j ) ,  
s=1 s= 1 

m 

= ( 1   - p i )  sp;"= 1 / ( 1  - p i ) .  
8=1 

Hence, 

The conditional  generating  function of this probability is 

g,(z/i)  = E[zn'i] = e''' P(n ,  = nii) 
m 

n=O 

= qj  . 1 + ( 1  - q j )  E[zntIi, 
i-string has  ended] 

M i  = m i E [ s j ]  = m i /  ( I - p i ) .  (3)  
The first term corresponds  to  the situation n = 0 with 

Denote by L the length of a long reference  string, by pt+l  = i being an element of an i-substring: 
ji the frequencies of page references  to page i, and by 1) 

l j , ,  li,, . . ., lini the lengths of the ni connected i-substrings: P ( n t  = " I i )  = z" P ( n t  = OIi )  = ' qi; 

i.e., l i j  will be the length of the  jth connected i-string; e.g., Le., 
I 

1 2  3  4 5 6 7 8 9 1 0 1 1 1 2  L 
I I I I I I I I I I I I  I 

k k X i i j i i i i k X  Y t + l  = I 

I,, = 3 lIj  = 2 l j j  = 1 lZi = 4 I,, = 2 where  the r,+] is selected by the qj  mechanism. 

Then, with convergence in probability, j i /  L + rj ,  and We  proceed to condition the  expectation  further and 
obtaiv 

( l i ,  + l j ,  + ' . ' + l jn i )n j - l  -+ Mi. 

But Eqs. (2 )  and (3) give 

T J M j  = P j (  I - P j )  /%,m,. ( 5 )  X E[znLIi, i-string has  ended, I non-i-strings until i]; 

The unknown parameter  vectors p and q will not always e.g., 
be identifiable. We have,  however, rj  = p i (  1 - pi )Mirr  = 5 ,  = 2: 
where a = (8p,rn,)" so that. with some constant 

1 1 1 1 I l l 1 1  
I I I I I  

x, = i j j  j k k = i 
~ C =  I / a ,  

p i (  I - P i ) M i  = r,C. (6) 

If we  assume  that all p i  5 1 /2,  which will certainly  be 
true in all practical cases, then the pi  are uniquely de- 
termined from Eq. (6) ,  choosing the smaller of the  two 
roots. We select  that (unique) value of C giving unity 
for  the sum of the two  roots p i ;  this sum is clearly  a 
monotonically increasing  function of C. Then  the re- 
lation ( 3 )  determines the other  parameters mi. 

If  all p i  are quite small, we can  use the approximations 

mi E M i ,  and 

Pi E (Ti/ M i )  ( E T i /  M i )  - I ,  

estimating M i  and rj from Eq. ( 4 ) .  In other  cases, it 
will be necessary  to use an iterative procedure, starting 
with Eq. (3) .  

For  the model defined in this section  let us next  de- 
termine  the probability distribution of n,, that is, of the 
length of the reference string  between two equal page 
references rt = rt+nt+l = i. Consider, first, the conditional 
probability f ( n ,  = nl rt = i) : e.g., 

1 2 3 4 5 6 7  
n =  7: 

~ 1 I ~I / I /  

rt = i j j k m j k k rt+n,+l = i 

Clearly, the absolute generating  function of the  stochastic 
variable n, now becomes 

g ( z )  = rj n.,(zli), 
.M 

i = l  

and we can evaluate  the moments of n,: 

E[n,] = g ' ( l )  =x r j g i ' ( l l i ) .  
M 

i = l  235 
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Now, 

Note  that 

as expected, and 

and 

L. . t , j=l , i#j  A .  
1= 1 

Summing over  the  entire M X M square matrix and 
subtracting  the diagonal elements gives 

E [ n t l = ~ ~ P j / ( l - 4 j ) = C . P i / ( l - 4 i )  
i j  I 

= M - c  P i /  ( 1  - 4J )="I. 

- 4i)  
1 

(It  has been  brought to  our  attention  that this  result  can 
also be  obtained more directly by an appeal to  Markov 
Chain  Theory.) 

The distribution of the  distance d, is more complicated. 
To  find its  expected value we write 

where b, = 0 or 1 according to  whether page 1 has or has 
236 not  been  referenced. 

nfo page references, none = i 

I I I I I 
I 

rtO = rt0+1 rtO+z "to+n 
10 0 to 't +n + I  ' 

As we see in diagram above,  we  have  for  the conditional 
expectation of b,, given reference rt = i for t = to and that 
n = n selections are  made  from P = { 1 ,  2 , .  . ., M }  before 
i I S  referenced again (at t = to + n + 1 ) , 

E[b Ir = i ,  n selections  from P before i referenced  again] 

!0 

to 

= 1 - ( 1  - pt' )",  

where we have introduced the conditional probability 

P ( r t = j ; j # i ) = p j ' = p j / ( l - p i ) ;  

j =  1,2;.., i -  1 ,  i +  1;..,M. 

We thus  get 
M 

E[b,] = E[b,lvfn = i ,  n selections # i )  
i=l 

( i # l )  

x P ( r  = i )  X P(exact1y n selections after to 
f 0  

which are # i ) ] .  

However, 

P ( r  = i )  = ri, 

and 

P(exactly n selections after to which are # i )  = 

t0 

m 

P, (1  -&)"(I  - 4 J .  
n=O 

Therefore 

E[b,] =x x v i p i ( 1  - p i ) "  [1 - ( 1  - ~ , ' ) " l ( l  - q i ) .  
m 

i f1 n=O 

m -, 

But 
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Hence, with ri = pimi /xpkmk,  

Yue and Wong have obtained similar results [7]. 

this last equation would reduce  to  the simple  expression 
If all pages had the  same  duration (mi = constant), 

In this case ( m i  = constant) we have 

max E[d,]  = ( M  - 1 ) / 2  

with the maximum realized for uniform page  frequencies 
p i  = 1 / M .  To prove  this, it is enough to  use x y /  (x + y )  
5 ( x  + y )  /4 with equality  only if x = y .  Then 

.I< pip. 1 M -  1 
Z P i + P j  -.x i , j  ( P i + P j ) " ) x P i = T  

, Q.E.D. 
i 

If is, of course, natural that a uniform page frequency 
distribution will give maximum expected distance. 

Leaving,  now, the  case of equal page durations (mi = 

constant),  we  note  that since b: = b, for each 1, we have 

E[b;]  = E [ b , ] .  

To get  the  cross  products  we  use,  for 1, f', i all different, 

E[b,b,,Ir, = i ;  k selections] = 1 - ( 1  - p l ' ) k  

- ( 1  - p J i  + ( 1  - p' - p , , y ,  

so that 

[ 1 - ( 1  - p,')' - ( 1  - p,,')' 

which can be  used to  get  an  expression  for  the  variance 
of the  distance. 

If M is large and all the p i  are small, the  stochastic 
dependence between the b, would be  weak  and it may 
therefore be tempting to apply the central limit theorem. 
If this argument were  valid, the  distance d,  should be 
asymptotically  normally distributed.  It will, however, 
be demonstrated below that this  conculsion  is, in general, 
false. 

To do this,  let us assume,  for  the moment, a uniform 
distribution p i  = 1 / M ,  qi= 0. The probability that n pages 
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have been  referenced,  conditioned by 1 ) r,= i and 2)  that 
k selections have been  made, is denoted by 

p ( n ,  k )  = P ( n  pages referenced, conditioned as  stated) ; 

n = 0 ,  l ; . . , M -  1 ;  

k = O ,  1 ,  2;,. 

We can  characterize p ( n ,  k )  through  a partial differ- 
ence equation 

p ( n ,  k )  = p ( n ,  k -  1 )  n / ( M -  1 )  + p ( n -  1 ,  k -  1 )  

x ( M - n n ) / ( M -  1 1 ,  

f o r k = 1 , 2 ; . . a n d n = 1 , 2 ; . . , M - l I . I n t r o d u c e t h e  
transform (not a generating function!) 

m 

substituting  for p ( n ,  k )  from above, and  summing,  yields 

But 

so that  after some  manipulations we  get  the solution 

Introducing the probabilities P ( n )  = P ( d, = n ) and using 
the  fact  that k has a geometric distribution with ratio 
( M  - l ) / M ,  we  get 

Substituting  for t, ("i ~ ') from above, we get 

This obviously represents a far-from-Gaussian  distribu- 
tion; indeed, it is a  rectangular  distribution over  the  set 
of integers (0 ,  1 ,  2,.  . ., n - 1 ) ! This result has a  surpris- 
ingly simple form  and  should, perhaps, admit of an intui- 
tive  explanation and,  also, a  simpler proof than that given 
above. A plausibility argument  based on symmetry would 
give such an explanation but  this, of course, would not 
constitute a proof. 

A more straightforward but  less elegant way of han- 
dling this  problem would have been to  approach it through 
the classical occupancy problem, see [ 8 ,  p 381. 

For  the  case with general p (but still with all qi = 0) 
the  approach via a partial difference  equation will not 
work. If we were to enlarge the  state space,  this approach 
would be feasible in principle,  but not in practice.  We 



Regime I Regime Regime Regime Regime 
2 I l 3  4 

1; 

i 
I I l l i l l U  I I I I I I I I I I L I  

0  0.08  0.16  0.24  0.32  0.40  0.48  0.56 

Normalized time scale 

Figure 1 Graphical  display of the six different  regimes of the FORTRAN program MADD. 

can, of course, write down  an  expression  for P ( n )  in 
terms of sums involving one,  two, three; . . p ' s  at a time. 
The expression will have alternating signs and  involve an 
enormous number of multiplications and additions. 

Empirical results 
In this  section, we  report some of the  results of an ex- 
perimental  study of page reference  patterns  (for details, 
see [9]). This study  clearly establishes  the validity of 
the regime structure assumed in the model of the pre- 
vious sections, although it suggests that some other  as- 
sumptions - such as strict stochastic  independence be- 
tween pages-may  not be completely valid. 

We first describe  the method we developed to partition 
page reference  traces  into homogeneous regimes. The 
reference traces  were obtained  from an  interpretive sim- 
ulator  program [ I O ]  monitoring the performance of the 
execution of any  program under  the CP-67/CMS oper- 
ating system.  This monitoring  program gathers informa- 
tion on the pages referenced at  each instruction  and re- 
cords it in terms of the number of program references  to 
each page per window of size T .  The window size chosen 
was T = 1000 because  we were not motivated by practi- 
cal considerations of scheduler  design  but, rather, by a 
desire  to  understand  the detailed stochastic  structure 
underlying the page  referencing  mechanism. 

The information was displayed on  an  interactive  cath- 
ode ray tube  device, and Fig. 1 shows an example of this 
display; it was  also  transferred  to  tape for  processing. In 
view of our interest in the regime structure of large pro- 
grams, we monitored the execution of a FORTRAN com- 
piler designed to  operate in about I28000 bytes of main 
storage and a P L / I  compiler  designed to  operate in about 
64000 bytes. To determine  the  existence of stationary 

238 regimes,  and to  charactkrize  these, we first produced 

listings of the  references in each window of the 64 pages: 
a  sample of such a listing for a FORTRAN compilation 
is shown in Fig. 2; the working set size for  each window 
is given in the last  column. This figure also illustrates our 
definition of stationary  regimes as  sets of windows in 
each of which the  same  set of pages (with few excep- 
tions) is referenced for some minimum time  interval. 
This definition is related to  the  concept of "locality of 
reference" [4]. In Fig. 2, the different  regimes are parti- 
tioned by solid lines  according to  these heuristic guide- 
lines. (The  dashed lines indicate  partitions  arrived at  
through our algorithm described in the following section.) 
In this  particular FORTRAN program (MADD) there  are 
six distinct regimes. The  same six regimes  were found in 
all eight FORTRAN compilations  examined and they  clearly 
correspond  to  the six  different  phases of FORTRAN com- 
pilation [ 1 11: Invoke,  parse, allocate, unify, generate, 
and  exit. 

Figure 1 shows  a  plot  against time of working set size 
for  the  same FORTRAN program, and  the six regimes of 
stationary page referencing  behavior are clearly  dis- 
played and  divided by vertical lines. The histograms 
(sample  frequency  functions)  for  the regimes are dis- 
played in Fig. 3 and the sample  means,  variances and 
first-order autocorrelations  are given in Table 1. It is 
worth noting that similar histograms (some exhibiting 
bimodal behavior)  are  reported in [ 121. The histograms 
suggest that  the frequency  functions for  each regime have 
a characteristic  shape peculiar to the  corresponding 
phase of FORTRAN compilation. They  also  demon- 
strate  that  stochastic  dependence  between  some pages 
must exist, contradicting one of the assumptions in the 
analytic model of the previous  sections: It is shown there 
that if the pages are referenced  independently, the  fre- 
quency  function of working set size  must  be logarithmic- 
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Figure 3 Histograms (sample frequency functions) of the FORTRAN program MADD. 

ally convex and  hence  unimodal;  regimes 2 , 3  and 6 have, 
however, bimodal histograms. Table 1 shows  means, 
variances and autocorrelations  for  the FORTRAN compila- 
tion of another program, PAGETR, in addition to MADD. 

(Other FORTRAN compilations gave similar results.)  Cor- 
responding regimes in the compilations  show similar 
relations  between  means  and variances, but  not  consis- 
tently enough for us to  base a characterization of regimes 
on these  parameters.  The  autocorrelation coefficients of 
order  one indicate that  (with  the possible exception of 
the  short regime 4) white  noise cannot be the  cause of the 
variation of working set size within regimes, because such 
a coefficient must, in the  case of a  time-series generated 
by white  noise,  be of the  order 1 / ( n  - l)’”, where n is 
the  number of observations [ 131. In  our  case,  thus, n is 
the number of windows in a given regime and  almost all 
the sample autocorrelation coefficients are more  than  two 
standard deviations away  from zero.  Our  results  on p L / I  

compilations yielded similar though more complex  re- 
sults, because  the  number of observed regimes was high- 

240 er and the working set sizes  were  larger. 
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Algorithm for partitioning regimes in page  reference 
traces. 
An algorithm was  developed to partition page reference 
traces into  homogeneous regimes in a manner reflecting 
the heuristic guidelines described  above. We defined a 
stationary regime by a set of pages (or a  locality of refer- 
ence) common to almost all windows in the regime for 
some minimal length of time, that is, each of the 64 pages 
(including those  not in the  locality) is referenced with 
some characteristic frequency in each regime. Those 
pages that fall in the locality of reference defining a regime 
will  of course  have  the highest  frequencies. They will 
also carry the  greatest weight in determining where re- 
gimes should be  partitioned. 

Because of the inter-page dependencies, noted in the 
previous section,  the  existence of these  characteristic 
frequencies is reflected in the  graphs of the sample  fre- 
quency functions of the working set sizes in Fig. 3. That 
is, because of inter-page dependencies,  each  occurrence 
of a working set size (e.g., of size twelve) in a  particular 
regime will usually be the result of references  to  the  same 
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Table 1 FORTRAN compilation results. 

Regime Program 

1 M A D D  
PAGETR 

Windouls M e u n  Vuriance  First-order  autocorrelation 

1-38  9.842 1 6.3528 
1-38 9.921 1 4.5612 

, 2 M A D D  39-300  10.4084  15.1620 
i PAGETR 39-594  9.5396  13.1379 

3 M A D D  305-383  7.3924  5.8824 
PAGETR 598-690  8.3763  12.2372 

4 M A D D  385-414  5.9333  0.1333 
PAGETR 692-734  5.9535  0.1883 

5 M A D D  4  16-592  8.01 13 0.8294 
PAGETR 736-1022  8.49  I3  1.2646 

0.1671 
0.259 I 

0.23 12 
0.  I784 

0.3342 
0.3783 

-0.0344 
0.1060 

0.3676 
0.2066 

6 M A D D  594-688  10.6529  30.0376  0.2  100 
PAGETR 1024-1  I38  11.6957  29.4240  0.0962 

set of (twelve) pages, the majority of which (e.g., eight) 
will constitute  the locality of references found in almost 
every window of the regime. Another working set size, 
corresponding to a  different window in the same regime 
(e.g., fifteen), will usually reflect the  same  (eight) pages 
in the basic locality of reference and (seven)  other pages 
different from the additional (four) pages in the  windows 
with working set sizes  of, e.g., twelve. With this  situation 
in mind, we see that the observed characteristic  shapes 
of the working set size frequency functions  indicate char- 
acteristic  frequencies of reference  for  each of the  64 
pages. 

Our algorithm is based on  the assumption that a  station- 
ary regime of page  referencing  behavior  can be charac- 
terized by a vector of 64 page-reference  frequencies. It 
was remarked in the previous  section that  characteristic 
working set size  frequencies and,  consequently,  charac- 
teristic  frequency vectors  correspond  to compilations of 
different FORTRAN programs. This  fact, which is  signifi- 
cant, is,  however, not essential to our algorithm which 
depends only on a marked change in frequency vectors 
between stationary regimes. Because of this,  the algo- 
rithm is program-independent and should be  capable of 
delineating  stationary page reference  patterns  for any 
program displaying regime-type  referencing  behavior. 

If a vector of 64 page reference  frequencies can charac- 
terize a regime, then  sample vectors of page reference 
frequencies within a regime should differ little over the 
span of the regime. Let.f'"' = (f1"'; . .,f6,"') be the sam- 
ple frequency vector  computed  over  the  consecutive 
windows  numbered i, i + 1 , .  . ., i + N - 1. Let f"""' = 

(fi'i+iv', . . ., &, ) be the sample  frequency  vector 
computed  over  the windows  numbered i + N, i + N + 1, 
..., i + 2 N -  1.Then,ifthe2Nwindows,i,i+l;..,i+ 

( i + N J  

2N - 1 ,  all fall into the  same regime, the mean square 
distance, 

= I l , f ( t ~  - f l i + . ~ ) l l  = [E 61 (J ; . ( i )  - J ; . ( t + ~ ~ ~ l z ] ~ / ~  

j= l  

should  be small. On the other hand, by assuming  different 
localities of reference  and  different characteristic page 
reference frequencies in different  regimes, if the win- 
dows i, i + 1,. . ., i + N - 1 are contained wholly or most- 
ly  in one regime, and  the  windows i + N ,  i + N + 1 , .  . ., 
i + 2N - 1 are contained wholly or mostly in the next 
regime, then D should be large. In fact, D should be sig- 
nificantly larger only if the  reference frequencies of a few 
pages change radically between regimes. 

In  accordance with the  above  remarks,  our  procedure 
is to  compute  the sample page reference frequency vec- 
tors  over successive spans of N windows,  searching for 
points in time where  the mean square  distance, D,  be- 
tween the frequency vectors is large. Suppose now that 
some sufficiently large value of D is found between  fre- 
quency  vectors computed over  the windows i - N, ..., 
i- I ,  and i; . ., i+ N - I .  Then an attempt is made to max- 
imize D as this should locate  more  precisely  a  partition 
point  between stationary regimes. The  frequency  vectors 
are  adjusted 2N times so that a  value of D can  be  com- 
puted between N-vectors  centered  at  each of the 2N 
windowsi-N;..,i-l,i,i+I;..,i+N-l.Ifthemax- 
imum value of D is sufficiently large,  then the particular 
window at which the maximum occurred is recognized 
as a  partition point. In other  words, it  is assumed by this 
algorithm that if the  distance between reference fre- 
quency vectors  computed  over  consecutive N-window 
spans is maximized at window j ,  then  the  windows j - N ,  
. . ., j - 1 ,  andj; . ., j + N - 1, will  lie  in entirely  different 24 1 
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+ 
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t- 

I READ TAPE 9 HEADER ] 
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FREQ.VECTORIN F R E Q ( l L , J ) , J = l , N  

READ NEXT N WINDOWS & COMPUTE PAGE 
FREQ.VECTORINFREQ(/N,J),J=I,N + 

COMPUTE MEAN SQUARE  DISTANCE, DIST( 1 ), 
BETWEEN  FREQ(/L,J)  AND F R E Q ( / N , J )  +, 

+ 
K = K + 1  

4 ‘  
CHANGE  INDICES TO EFFECT: 
F R E Q ( / L L , J )  = F R E Q ( I L , J )  
FREQ(/L,J)  = F R E Q ( / N , J )  + 
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Figure 4 Flowchart of the algorithm used in  the delineation of regimes. 

SUBROUTINE SEARCH 
LOCATE PRECISE PARTITION POINT 

F R E Q ( / N , J )   = F R E Q ( / L , J )  
FREQ(/L,J)  = F R E Q ( / L L , J )  

t I /s=/s+1 1 + 
.t 

RECOMPUTE  FREQUENCY  VECTORSFREQ(/L,J) & F R E Q ( / N , l )  
FOR SPANS OF N WINDOWS  SHIFTED  ONE  WINDOW  FURTHER IN TIME 

COMPUTE  MEAN  SQUARE  DISTANCE,DTEST, 

BETWEEN  MODIFIED F R E Q ( / L , J )   & F R E Q ( / N , J )  

DMAX = DTEST 

YES 

WINDOW  CORRESPONDlNC TO DMAX 

regimes  with  different characteristic page reference fre- 
quency vectors. This is, however,  an idealization as  there 
is generally a transition period of at  least a few windows 
between regimes. It is thus not  possible to  locate an exact 
partition point. 

The algorithm just described is outlined in greater  de- 
tail in the flow chart in Fig. 4. It  was programmed in 
FORTRAN and,  as indicated in the flow chart, it consists 
of a main program, REGIME, and  a subroutine, SEARCH, 

which is called to  locate precisely  a  partition  point 
through  a  maximization of D. 

Clearly the choice of the value of N, the  number of 
windows over which  sample frequency  vectors  are cal- 
culated, is vital to  the  success of the algorithm. The value 
must  be  large  enough that a good estimate of the  actual 
characteristic  frequency  vector is obtained. I t  must also 
be  smaller  than the length (in  number of windows) of 
the  shortest  stationary regime that will be considered. 
Also important is the choice of a value of D “sufficiently” 
large. There  are actually two such  values. The first, 

242 DMAX I ,  is the value which must be exceeded  to  warrant 
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a  window-by-window search for a  precise regime parti- 
tion point. The second  value, D M A X ~ ,  must be exceeded 
by the maximum value of D in the window-by-window 
search  over 2N windows (in  subroutine SEARCH) in 
order  for a  window to be  recognized as a regime partition 
point. 

The choice of the  parameters N, D M A X ~  and D M A X ~  

will depend  on  the  nature of the particular class of pro- 
grams being studied. The algorithm was consistently 
successful in partitioning the page reference  traces  for 
the FORTRAN compiler  according to  our design with 
the values N = 20, D M A X ~  = 0.99 and D M A X ~  = 1.5. This 
choice of N means  that  we will not recognize as station- 
ary regimes any  spans of fewer than 20 windows or 
20000 instructions. Certainly,  shorter  spans of time are 
of little practical significance and  a  smaller  value of N 
would make it difficult to  estimate  accurately  the  true 
characteristic  frequency  vector. 

To the right of the  computer printed output in Fig. 2 
we  have written the value of the  distance D between suc- 
cessive  frequency  vectors in intervals of 20 windows. 
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The regime partition  points for  the  two FORTRAN pro- 
grams,  as determined by this  algorithm, have been 
marked by dashed lines in cases  where  these points differ 
from the heuristically  selected  partition points marked 
by solid lines. The maxima of the distance function  cor- 
responding to  these partitions have been  written above 
or below the  dashed lines. Note  that  the minimum value 
of D at any window recognized as a  partition  point is 
1.6771. In view of the transition  periods  between  re- 
gimes, it is clear  that this algorithm partitions  regimes as 
accurately  as could be expected. 

We  point out here that for the P L / I  compilations, the 
best  results  were achieved with values of D M A X ~  = 1.5 
and D M A X ~  = 2.5. These higher thresholds were  neces- 
sitated by the generally higher working set sizes  and 
values of D .  

We emphasize  that  our algorithm is an approach  to  the 
problem of regime identification tailored to the  problem 
at hand. Regime stochastic  processes  occur in many dif- 
ferent applications,  and  different identification algo- 
rithms will be appropriate in each case.  For more  general 
discussions,  see [I] and [6], and  for  different  applica- 
tions  to  compumetrics, [2] and [3]. 

Summary 
In  the theoretical  part of this paper, the consequences of 
certain  basic assumptions  about  the random nature of the 
page referencing  mechanism in virtual memory  operating 
systems is examined.  Among the  stochastic  dependencies 
present in such a  system are  those between  different 
time points and those  between different pages. In  one of 
our models,  the latter is neglected in comparison with the 
former. Subsequent analytic studies in conjunction with 
experimental findings are shown to lead to a weakening 
of this hypothesis in favor of the notion of a regime sto- 
chastic process  as an appropriate model for  the descrip- 
tion of empirical observations on page reference strings. 
An attempt is made, also,  to  correlate  the  observed 
regimes with the known structure of the executing pro- 
gram  and to collect  information on the properties of the 
internal regime processes, i.e., those  processes condi- 
tioned by the  one governing  the regime transitions. 

We look upon this work as a pilot study in the  spirit of 
statistical  inference applied to  stochastic  process models 
in compumetrics. 
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