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Predicting  Working  Set  Sizes 

Abstract: Empirical  analyses of data on working set size are  reported.  The  data do not support  the  hypothesis  that  working set sizes 
are normally  distributed. The data suggest  various  algorithms for predicting working set size based on the program’s past history. 
Several  representative  algorithms are discussed and  evaluated. 

Introduction 
Operating system  schedulers and dispatchers must  often 
make decisions about which  programs may run together 
based  upon some (implicit or explicit)  prediction of the 
resources  those programs will require if they are allowed 
to run. The quantities  predicted may be working set size, 
resident set size, I j 0  activity,  and so on. The usual 
technique is what is called here the “naive”  technique, 
namely, to predict that  the program will require those 
resources it required  during  its  last execution interval. 

Exactly  which  quantities should be  considered in mak- 
ing scheduling  decisions is a  subject of active  debate, 
and I do not  intend to  enter this debate  here.  At  least 
one  dispatcher [ 1 1 ,  however,  has  been built that  bases 
its  decisions explicitly on predicted  working set  size, and 
the  intent of this study is to  propose and evaluate a few 
different prediction  techniques for  such a scheduler.  The 
proposed  techniques are suggested by the analysis of 
program trace  data.  The analysis procedure used was a 
crude version of techniques advocated by Box and Jen- 
kins [ 21, and is described in some  detail in the third sec- 
tion.  It would apply  equally well to predicting  quantities 
other than working set size, and may thus be of indepen- 
dent  interest  here  as a way of discovering  possible 
models. 

Many authors [3-71 have discussed the idea of a  pro- 
gram’s working sef ,  defined as  the  resources a  program 
requires  during the execution  interval ( T ,  T + A T )  as T 
varies; AT is known as  the window size, T and AT are 
often  measured in units of the number of instructions 
executed,  and  the  resources  are often taken  to be the 
storage requirements of the program. In this study T is 
measured in instructions, and  the working set is taken  to 
be the  4096-byte pages of storage required by the  pro- 

gram. The working-set size, w, in any interval ( T ,  T + 
A T )  is the number of distinct pages the program refers 
to in the  interval. 

The  approach taken here is largely  empirical  and ad 
hoc;  no particular model is suggested except incidentally 
as possible  motivation for  some of the predictive algo- 
rithms tested.  The  data used are described in the  second 
section, and the  analyses of them in the third section. 
The algorithms are described  and  evaluated in the  fourth 
section. Some remarks and a possible  extension of the 
techniques  are given in the last section. 

The data 
The  data  for this  investigation  were  derived  from pro- 
gram traces of programs running under CMS version 3.1 
[8] on CP-67  at  the  IBM Cambridge Scientific Center. 
The  traces had  already  been reduced  to SIMLOAD files 
for  use with the  CP-67 simulator [9]. This  process di- 
vides  a program’s execution  into  segments defined as 
follows. A segment  includes that portion of the  exe- 
cution of the  program  from the end of the previous 
segment until either a specified maximum number of in- 
structions (usually 1000) have been executed or a  speci- 
fied maximum number  (usually 10 or 15) of 4K pages 
(here K stands  for  kilobytes)  have been  referred to [ lo]. 
The SIMLOAD files consist of records summarizing the 
program’s behavior in each  segment, including in par- 
ticular the  number of instructions  executed  and a list 
of the pages referred  to. 

Because the processing of the  traces  themselves is 
quite lengthy, the working set  data studied here were 
derived directly from  the SIMLOAD files, by aggregating 
successive segments until the cumulative  instruction 22 1 
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Figure 1 Working set size as a  function of time for program 
swpl5. The window is the nominal window  size as defined in 
the  text. 
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Figure 2 Working set size vs time for program swp15 (win 
dow = 5 000 instructions). 
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Figure 3 Working set size vs time for program TRVU (window 
= 5 000 instructions). 

count equaled or  exceeded  the desired  window  size. 
(The corresponding  working set was taken  as  the union 
of the  sets of pages  referred to in those segments 
aggregated.) Thus,  for a nominal window  size of 5 000 
instructions, the  actual window size would be  at  least 
5 000 and might be as long as 5 999 (for a cutoff value of 
1 000 instructions per  segment), and would vary over 
the execution of the program. 

In  the  data used here,  the actual window sizes for 
a nominal 5 000-instruction  window  were  generally 
uniformly distributed over  the possible range. For larger 

222 window sizes,  this effect is less important, in view of the 

I 000-instruction cutoff for segments in the SIMLOAD 

files. The varying  window  size  makes these  data  not 
strictly comparable with most  published studies which 
use an exact, fixed, window  size. On  any particular ma- 
chine, though, different instructions  have generally dif- 
ferent  execution  times. Further, a scheduler would prob- 
ably  not be equipped to  (or want to)  interrupt a running 
program after a specific number of instructions. From 
the point of view of developing  scheduling  algorithms, 
then,  the  approach used here  seems  no more  unrealistic 
than using a fixed window size. Also, the  data used here 
were  examined to  see if any particular  bias  was  intro- 
duced by the varying window size. The only  particular 
effects  noticed  were  occasional negative correlations 
between  actual window size and  working set size,  and 
these were apparently  consequences of some clustering 
(see  the discussion of bimodality below). 

Data  for five programs  were  analyzed. They included 
PERF%, an APL(CMS) execution; MAXMINIS,  a p L / I  

compilation; MEDU, a job consisting of two assemblies 
and two FORTRAN compilations;  and two  other programs 
discussed below. Nominal window sizes of 5 000, 
12 500, 25 000, 50 000, 125 000, 250 000, and 500 000 
instructions  were  used. 

Summary of data  analyses 
Figures 1 through 9 summarize the principal analyses 
performed on  the working set  data. Program swp15, a 
P L / I  compilation, is discussed in some  detail and  com- 
pared with the  other programs.  Essentially two basic 
patterns were observed. A perhaps typical  random fluc- 
tuation in working set size is that illustrated by SWP 15. 
Occasionally,  though,  programs  display  definite cyclical 
patterns  over time, such  as repetitive calling of the  same 
subroutine. This may be only  a  portion of the whole 
execution. TRVU is discussed below to illustrate  this sort 
of behavior; it is an artificial job, designed to  simu- 
late an editing session at a  terminal. It is included here 
as  an illustration of cyclical  behavior, and is not  intend- 
ed to  represent a  realistic sort of job. Program  PERF^^, 
an APL execution,  does display cyclical patterns in part 
of its  execution,  and  it is discussed in a subsequent  sec- 
tion. 

Figure 1 shows  the behavior of working set sizes ( W )  
of S W P ~  5 over  the first 500 000 instructions for different 
nominal window  sizes. The  upper  (heavy) line, or  “en- 
velope,” shows  the  increase in W as  the window size 
increases.  The  pattern shown in Fig. 1 is typical of those 
found in the  other  programs-a  steep  increase followed 
by a leveling off. The  steepness and duration of the in- 
crease varied from program to program,  but the general 
shape was as  depicted in Fig. 1 .  In particular,  this curve 
was always  found to be concave.  The fluctuations in the 
curves  underneath it are  also fairly typical. 
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I Figure 4 Histograms of working set size  for  various  programs 
(nominal window size, SK). 

Figure 2 gives  a plot of W over time for a  particular 
program, swpl5, and  a  particular nominal window size, 
5 000 instructions. The corresponding plot for program 
TRVU is in Fig. 3, where its  repetitive nature  shows up 
clearly. There is perhaps a hint of a  low-frequency  cycli- 
cal pattern in the plot for swp15, but  analysis of the en- 
tire  execution (Fig. 2 is for  the first 500K instructions 
only) shows no  such  tendency. 

Histograms of W are displayed in Fig. 4 for  four pro- 
grams. For both swp15 and MEDU, the histograms are 
quite  clearly bimodal. The histogram is also bimodal for 
TRVU though in view of the small number of distinct val- 
ues of W involved, the bimodality might be considered 
artificial.  PERF^^ displays  more  nearly unimodal behav- 
ior. Bimodal distributions like these have also been re- 
ported by Rodriguez-Rose11 [3, Fig. 61. I found no 
evidence that such  behavior  was attributable  to  the 
varying  actual window size,  though that is a  possibility. 
In any event it seems,  on  the basis of these  data,  that  the 
often  mentioned [4, 51 hypothesis that W is approxi- 
mately normally distributed  should  not  be accepted 
blindly. Compilers,  particularly (as in swp15 and 
MEDU),  often consist of alternate  executions of rela- 
tively large “phases”  and relatively small “interludes,” 
that  update control  blocks  and determine which phase  to 
call in next. In such cases bimodality is probably to be 
expected. 

Figure 5 gives  histograms of W for  four different nom- 
inal window sizes for swpl5. They indicate that  the 
bimodality is not  due simply to a choice of window  size. 
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Figure 5 Histograms of working set size for various nominal 
window sizes AT (program swp15). 

Of  course,  for very large window sizes, the  number of 
data points  becomes so small as  to make a histogram of 
questionable  value,  but, within the range  considered 
here,  there seemed to be no particular evidence  that 
changing the window  size  changed the general nature of 
the results.  Most of the  subsequent  analyses used  a win- 
dow size of 5 000 instructions. 

The main aim of this  investigation was  to  evaluate 
possible  predictive schemes, and the  analyses  depicted 
in Figs. 6 through 9 reflect this. They  are  more  or less in 
the spirit of the  approaches  described by Box and Jen- 
kins [2]. These  approaches look at  the autocorrelation 
functions of the quantities to be analyzed (in this case, 
W )  and of the first, second,  etc. differences of these 
quantities, until a recognizable pattern  appears, which 
suggests  a model to be  examined. In the following analy- 
ses,  no models beyond those suggested by examining 
the  series of W values and its first differences were used 
very  heavily, and  the  analyses themselves were  not par- 
ticularly formal. The interested reader may pursue  these 
ideas in  Box and Jenkins [ 21. 

As remarked above,  the histograms of W are often 
bimodal. But, as Fig. 6 shows,  the distribution of the 
first differences ( A W ) i  = Wi- Wi-l is essentially  unimod- 
a1 and much more nearly normal. So are  those  for  the 
second and third  differences. This unimodality also held 
for various  nominal window sizes, as Fig. 7 illustrates 
for A W ,  and  this  was  typical of other programs as well. 
In view of Figs. 4 and 5, the  joint distribution of the 
differences cannot  be normal (for then that  for W would 



r 

-200 -100 0 100  200 

Figure 6 Histograms of 1st. 2nd, and  3rd differences of work- 
ing set  sizes (AW, A'W, A3W);  program s w p 1 5 ;  nominal win- 
dow  size, 5K. 

Figure 7 Histograms of A W for various nominal window sizes 
A T :  program swp15. 
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be also), but Figs. 6 and 7 suggest that normality would 
be  a much more useful first approximation for  the dif- 
ferences  than  for  the original values. 

The autocorrelation function of a time  series (in this 
case,  the  series W )  is an  important tool in developing 
predictive  schemes  or models. The autocorrelation of 
lag k,  pk, is the correlation  between W i  and Wi+, and the 
autocorrelation function is defined to be pk as a  function 
of k.  Values of pk near 1 or "1 indicate  a  strong (linear) 
relationship between W i  and Wi+k,  whereas  values of p k  
near 0 indicate little or  no linear  relationship.  Alterna- 
tively, we can  interpret this by saying that values of pk 
near k 1  indicate that W i  is useful in (linearly) predicting 
Wi+k.  For  example, if p1 is large, but pk is small for k > 
I ,  it indicates that W i  is useful for predicting Wi+l ,  but 
Wi-l ,  Wi-*, etc.  are not. If a  series  were  cyclical,  repeat- 
ing itself every j intervals,  this would cause pj to be 
large. Examining the  autocorrelation function, then, is 
one way of deciding which quantities to  use in prediction 
methods. 

In Fig. 8, the estimated autocorrelation functions of W 
for  four of the programs are displayed, for lags 1 through 
2 5 .  The cyclical,  repetitive nature of TRVU shows up 
clearly in the large autocorrelation of lag 14. The  other 
programs show a  general trend of a large first-order auto- 
correlation, which tails away as  the lag increases. PERF92 

shows an increase  at lag 2 0 ,  corresponding to  the first 
portion of its execution, which  shows a cyclical pattern 
of period 20 (see discussion in next section). 

The autocorrelation  functions for  the first and  subse- 
quent differences are all similar and  are illustrated for 
SWPIS in Fig. 9. A strong  negative  autocorrelation of 
lag 1, with subsequent  ones fluctuating around  zero, is 
typical. 

Results similar to  these  were obtained for  other win- 
dow sizes as well, although for larger  window  sizes there 
are  fewer  data,  and this fact  can be important in estimat- 
ing the autocorrelation  functions. 

Predictive algorithms 

Discussion 
The autocorrelation  functions in Figs. 8 and 9 show high 
values of pk for small k ( k  = 1,2,  3)  and lower  values for 
k > 3. This suggests that  the past  behavior of a  program 
may indeed  be  used to  get some useful information for 
predicting  its subsequent behavior,  and that most of this 
information is contained in the  two  or  three previous 
observations.  For programs  exhibiting characteristics 
like those of swp15, a procedure  that  bases  its predic- 
tion of the  next value of W on  the  last two values  seems 
reasonable.  Alternatively, one might base the prediction 
on the last few differences AW. In  fact,  because  the dif- 
ferences seemed so much more nearly normally  distrib- 
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uted, with  mean 0, the first metho1 d investigate( S was 
derived by assuming that [ was distrib- 
uted according to a bivariate normal distribution [ 1 11 
with mean vector (0, O ) ,  common  variance (T’, and  corre- 
lation coefficient p. Using  some  estimator of p, say p,  and 
predicting by its expected value given ( A W ) i ,  
we have the  estimator 

( A W ) i + l  = b ( A W i ,  

and we estimate Wi+] by 

W i  + ( A W ) i + l  = W i  + p ( W i  - W i - ] ) .  
A 

A similar estimate can  be  based  directly on the Wi. 
Suppose ( W i ,   W i + l )  is distributed with mean vector 
( p ,  p )  and covariance matrix 

4; 3 .  

Then we can  predict Wi+l  given Wi by pi+] = ii + p (  W i  
- f i ) ,  using some  estimators I; and b of p and p.  

There is no a  priori  reason to limit the  “memory” of 
the algorithm to  just  the immediately  preceding observa- 
tion,  but including more would increase  the complexity 
and storage requirements of the algorithm. The  autocor- 
relations in Figs. 8 and 9 seem to indicate that  the imme- 
diate  predecessor gives  most of the information, too. 
Some  experiments using up to four previous observa- 
tions  were  run,  and while occasionally  they did better 
than the  ones using a  memory of one  observation, it was 
rare. Usually, it appeared  that including more W’s or 
(AW)’s simply added  more  noise  without  improving the 
prediction. These results are  thus  not included below. 

Similarly, one could estimate  and keep  track of many 
autocorrelations, in the hope of detecting periodic  be- 
havior such  as  that shown for TRVU, but  this procedure 
would quickly  become unwieldy. Aside from the prob- 
lems of estimation  and the storage requirements,  there is 
the question of how many to include. As  PERF^^ shows, 
it is also possible for a  program to show  periodic  behav- 
ior  for only one part of its execution,  yet  have  that  part 
affect the  entire autocorrelation function.  The  extra ef- 
fort  seems unlikely to result in much  improvement,  and 
such  algorithms  were not  evaluated. 

Algorithms 
Many  variations on  the kinds of algorithms discussed 
above  are possible. Parameters  such  as p and p could be 
either given once and for all or dynamically  estimated 
for  each program. Various dynamic  estimation schemes 
are possible. It was not  the intent of this  investigation to 
try to pin down  exactly which variant was  “best,” be- 
cause  that might well depend  on  the particular  operating 
system  and  the program  load. Rather, five algorithms 
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Figure 8 Autocorrelation functions p k  of working set size for 
various  programs: nominal window size, 5 K. 

Figure 9 Autocorrelation  functions pk for AW, A’W, A’W; 
program sw~15:  nominal window size, 5K. 
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were chosen  as  representative of the algorithms  suggest- 
ed by the  data,  and they  were  evaluated by testing  them 
against data from five programs. The details of the algo- 
rithms are given in Table 1. Algorithm 1 is the “naive” 
predictor, pi+, = W,. Algorithm 2 predicts I@,+] = p, the 
mean of the W j .  Algorithm 3 is based on A W :  W i + ,  = Wi + 
p,( W ,  - Wi- i ) ,  where pa is the  correlation between 
( A W ) ,  and (AW)i+l.  Algorithm 4 is based  directly on W :  

= p + pw( W j  - p ) ,  where p is the mean of W and 
pw is the  correlation  between W i  and Wi+,. 

The motivations for Algorithms 3 and 4 were  dis- 
cussed earlier.  Algorithms 1 and 2 were  included as a 
basis for comparison. Algorithm 1 is typical of the usual 
approaches in today’s systems. Algorithm 2 would be 
appropriate if W ,  and Wi+, were  independently normally 
distributed with a  common mean p. 

Table 1 Algorithms tested. 

Algorithm I = W j  

Algorithm 2a = p j  

Algorithm 3” l@j+l(3)  = Wi + ( W i  - Wj-l)pu,i 

Algorithm 4“’“ l@i+l(4J = pi + ( W j  - ~ J P , ~  

Algorithm 5d Choose k, to minimize MSE,‘” ( I  5 k 5  4). 
Predict W,,, using Algorithm k,, 

apj = A J B , ,  where 

A ,  = -a,W,; A i  = ( 1  - -a,)Aj-, + -a2Wj(i 1 2)  

B ,  = -a2; B j =  ( 1  - a 2 ) B i - ,  + -a2 ( i  1 2) 

’p U, 1 . = U J  Ti, where 

TI = U ,  = U ,  = 0 

u i = ( 1 - a 3 ) u i ~ l + a 3 ~ W ; - W ; ~ , ~ ~ ~ i ~ l - ~ i ~ ’ ~  

( i ?  3 )  

Ti = ( 1  - a3) + -a,( W i  - W i - l ) 2  

LpuI,( = S i /  Vi ,  where (i  ? 2)  

s,=vi=o 
si = ( 1 - a4)si-l + a4( W i  - Pj) ( Wi-l - pi 

vi= ( I - - a  ) v j - , + a , ( W i - p i ) z  

‘ M S E , ( ~ ~  = 0; MSE,”) = ( 1  / B J  [ (  1 - ~,)MsE;!: 

(i  ? 2)  

(8, 

+ a 5 ( @ , ( k J  - W,) ’ ]  

( i  2 2) ,  

k =  I ,  2, 3, 4. 
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Algorithm 5 is an “empirical Bayes”  algorithm which 
was  prompted by the  observation  that none of algo- 
rithms 1-4 was uniformly best  over all programs tested. 
It  consists of computing all four predictions, keeping 
track of the prediction errors of each  one, and using the 
one which has  been doing best for you lately. 

The  parameters p, pA and pw were  dynamically esti- 
mated, using an exponentially weighted average,  as indi- 
cated in Table 1. The prediction errors in Algorithm 5 
were  also exponentially  weighted. The  results below 
were  obtained using a2 = a3 = a4 = as = 0.05. (Results 
were comparable using any ai < 0.10; ai > 0.10 usually 
gave inferior results.) 

The criterion of measurement was the root-mean- 
square prediction error.  This method was chosen  as 
convenient, and also  because, in practice,  a scheduler 
would be doing  this  estimation for many programs  and 
adding the  results  to  get  an  estimate  for all programs 
combined. The bias in the algorithms tested was small or 
negligible, and thus  the  mean-square  error in the sum is 
the  sum of the  mean-square-errors in the individual pre- 
dictions. Thus,  improvements in predicting for an indi- 
vidual program  should be correspondingly  reflected in 
the  predictor  for  the sum. Similarly, the  predictors  were 
allowed to predict  fractional  values of W (though W is 
an  integer)  because  the predictions for various  programs 
would probably be summed. 

Results 
The  results of the  tests  are given in Tables 2 and 3 .  The 
entries in Table 2 are  the  root-mean-square prediction 
errors  for  each  predictor.  The  entries in each row of 
Table 3 are  the relative  root-mean-square errors, Le., 

RMS error  (predictor i )  

+- min {RMS  error  (predictor i ) } .  

As  Tables 2 and 3 indicate,  Algorithms 2 and 4 are 
perhaps the best of the algorithms considered; Algo- 
rithm 4 being preferable for smaller  window  sizes (5K, 
12.5K, sometimes 25K) and Algorithm 2 for  the larger 
window sizes. The naive predictor, Algorithm 1 ,  is al- 
most never  best; is typically 15 percent  worse (in terms 
of RMS prediction error) than  Algorithm 2 or 4; and 
can be as much as 49.8 percent worse.  Algorithms 3 and 
5 ,  while often better than Algorithm 1 ,  seem to offer no 
particular advantage  over Algorithm 2 or 4. 

As may be seen in Table 2, the  RMS  error in all algo- 
rithms is roughly proportional to the mean value of W ,  
so the  absolute size of W offers no way of choosing be- 
tween  Algorithms 2 and 4. The  better performance of 
Algorithm 4 for small window sizes might be attributable 
to  the fact that small window  sizes mean more data. 
Algorithm 4 has more parameters  to  estimate  than Algo- 
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rithm 2, and it may be that  once it has enough data  to 
estimate them well, it outperforms Algorithm 2. Exami- 
nation of the prediction errors  over time  tended to con- 
firm this, but other  explanations  are possible, too-per- 
haps large and small window sizes  lead to fundamentally 
different  kinds of behavior,  requiring  different  predic- 
tors.  The  data considered here  do not  seem to  support 
this  idea,  but it remains  a possibility. 

Figures 10 and 11 show  the actual  and  predicted val- 
ues of W for  PERF^^ for a 5K nominal window. Figure 
10 is for the  first  part of the execution, where cyclical 
patterns  are  present, using Algorithm 4. At first, Algo- 
rithm 4 is “caught napping” by the sudden drops from 
the  peaks, but by about  the  80th prediction, it is com- 
pensating by not  predicting  such high values. Following 
this part of the  execution,  PERF^^ enters a  phase of near- 

Table 2 Root-mean-square  prediction error  for various  algorithms. 

ly constant values of W (which is not  illustrated).  At  the 
beginning of a subsequent, more  variable phase, 
Algorithm 4 begins to  track  the fluctuations as they  ap- 
pear again. 

By contrast, Algorithm 2 makes little effort to track 
fluctuations, as is shown for  the first 100 predictions of 
 PERF^^ in Fig. 1 I .  In terms of RMS prediction error, 
Algorithm 2 was about 12 percent  worse than Algorithm 
4. It  also  appears, though, that Algorithm 4 has a  lower 
probability of larger errors. 

Remarks and acknowledgment 
As mentioned, the  data considered here  seem  consistent 
with that reported by Rodriguez-Rose11 [3]. My col- 
league Bard [ 121 has independently  experimented with 
algorithms like Algorithm 4 for predicting  resident set 

Progrum 
~~ 

PERF92 (APL 
execution) 

MAXMIN 15 
(PL/ I  
compilation) 

MEDU 
(assemblies 
& FORTRAN) 

SWP15 ( P L / I  
compilation) 

TRVU (edit 
session) 

Nominu/ 
windon, 

size 
( K )  

5 
12.5 
25 
50 

125 
250 

5 
12.5 
25 
50 

125 
250 

5 
12.5 
25 
50 

125 
250 

5 
12.5 
25 
50 

125 
250 

5 
12.5 
25 
50 

1 

2.722” 
4.350 
5.612 
6.678 
8.790 
7.644 

12.095 
14.323 
14.652 
19.66 1 
20.7 10 
28.245 

6.03 1 
5.289 
6.659 
6.749 
6.132 
8.291 

14.878 
15.842 
16.270 
16.962 
16.678 
22.605 

2.106 
2.818 
3.100 
3.145 

2’ 

2.8 15 
3.879 
4.775 
5.952 
7.098 
7.201 

1 1.774 
13.337 
13.3 I6 
16.268 
19.182 
28.855 

5.293 
5.430 
6.0 10 
6.470 
7.050 
8.075 

14.285 
16.38 1 
16.920 
17.659 
15.476 
18.879 

1.791 
1.891 
2.443 
2.591 

3 

2.744 
4.244 
5.133 
6.196 
7.967 
7.773 

11.520 
14.389 
14.239 
20.254 
20.294 
30.048 

5.499 
5.341 
6.2 13 
6.555 
5.956 
7.007 

14.440 
15.784 
16.199 
17.139 
16.736 
20.8 15 

2.090 
2.478 
2.825 
3.173 

~ ~- 

~~ 
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Algorithn?” 
~~ 

4 
”” 

2.5 17 
3.839 
4.799 
6. I09 
7.618 
8.058 

10.737 
13.266 
14.191 
17.891 
21.135 
31.517 

4.936 
4.896 
5.821 
6.203 
6.363 
8.27 1 

13.186 
14.575 
15.850 
18.610 
18.349 
2 1.097 

1.848 
1.88 1 
2.521 
2.849 

~. ___ 

5 

2.124 
4.245 
5.138 
6.203 
8.269 
7.852 

12.095 
14.328 
14.652 
19.661 
20.7  10 
28.245 

5.328 
5.348 
6.659 
6.37 I 
5.962 
8.291 

14.878 
15.845 
16.270 
17.154 
16.678 
20.842 

1.863 
2.028 
2.553 
3.128 

~ _ _ _ _ _ _ _ ~  

. 

Number of 
predictions 

( N )  

683 
310 
156 
79 
31 
16 

227 
95 
48 
24 
10 
5 

87 1 
372 
189 
95 
38 
19 

336 
141 
72 
36 
14 
7 

87 
35 
18 
9 

Meun 
working 

set 
size 

7.416 
8.487 

10.269 
13.089 
17.161 
21.375 

47.991 
60.526 
67.167 
72.9 17 
79.400 
80.200 

16.983 
20.003 
22.175 
24.768 
28.3 I6 
30.053 

42.673 
53.660 
61.597 
68.444 
77.929 
82.57 1 

12.517 
13.686 
14.722 
16.222 

“See  Table 1 for descriptions of algorithms. Values  here  computed using ap  = a3 = a4 = a5 = 0.05. 
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Figure 10 Working set sizes using Algorithm 4; program 
 PERF^^ (1st part); nominal window size, 5 K .  

sizes in VM/370, and has found that they give im- 
proved results  over algorithms such  as Algorithms 1 and 
2. Ghanem  and Kobayashi's model [71 of working set 
behavior, in particular their Eqs. (3.44) and (3.45), lead 
to  predictors similar to Algorithm 4. 

Table 3 Relative RMS prediction  error for various algorithms. 

An interesting byproduct of algorithms like Algo- 
rithm 3 or 4 is the possibility of obtaining  confidence 
bands for the predicted  value as well as point estimates. 
The models  used to  derive  those algorithms  lead to  esti- 
mates of the  variance of the  predictor in terms of CT' and 
p, for example.  A scheduler might take  into  account  the 
confidence to be placed in a  given estimate  and allow 
itself an  appropriate margin of safety when it guesses 
whether  the sum of the  resource  demands is likely to be 
within the  capacity of the  system. 

For example, the model underlying  Algorithm 4 is that 
( W i ,   W i + l )  is normally distributed with mean vector 
(p,  p )  and  covariance matrix 

Under  these conditions, it is easy to show that  the condi- 
tional distribution of Wi+,, given W,,  is normal  with  mean 

MAXMIN 15 

MEDU 

Norninul 
window  Algorithm  Number of 

size predictions 
( N )  

12.5 
683 

25 1.175 1 .ooo 1.075 1.005 
3 10 

50 1.122 1.000 
1.076 156 

1.04 1 I .026 
1.238 1.000 

1.042 79 
1.122 1.073 

1.062 1.000 1.119 I .090 16 
1.165 

1.080 
31 

5 1.127 1.097 1.073 1.000 
12.5 1.080 

1.127 227 

25 
1.005 1.085 1.000 1.080 

1.100 
95 

1.000 
50 

1.069 
1.209 

I .066 1.100 
1.000 

48 

125 
1.245 

1.080 
1.100 1.209 24 

1.000 
250 

1.058 
1 .ooo 

1.102 1.080 10 
1.022 1.064 1.116 1 .ooo 5 

5 1.222 1.072 1.1 14 1.000 
12.5 1.080 

1.079 87 1 
1.109 1.09 1 1.000 

25 
1.092 

1.144 
372 

1.032 
50 

1.067 
1.088 

1.000 1.144 I89 
1.043 

125 
1.057 1.000 1.027 

1.030 
95 

1.184 1 .ooo 1.068 
250 1.183 

1.001 38 
1.152 1.000 1.180 1.183  19 

SWPl5 5 1.128 1.083 1.095 
12.5 I .087 

1 .ooo 1.128 336 
1.124 1.083 

25 1.027 
1.000 1.087 141 

50 
1.068 1.022 I .ooo 1.027 72 

1 .ooo 
125 

1.04 I 1.010 1.011 36 
1.078 

I .097 
1.000 

250 
1.081 

1.197 
1.186 

1 .ooo 
1.078 14 

1.103 1.1 I7 1.104 7 

Program ( K )  I 2 3 4 5 

PERF92 5 1.082" 1.1 19 1.090 1 .ooo 1.082 
1.133 1.010 1.105 1 .ooo 1.106 

125 
250 

TRVU 5 1.176 1.000 1.167 1.040 87 
12.5 
25 
50 

1.498 
1.032 

1.005 1.317 1 .ooo 
1.269 

1.078 
1.000 

35 
1.156 

1.214 
1.032 1.045 18 

1.000 1.225 1.100 1.207 9 

"Entries are ratios of entries in Table 2 to the minimum entries in the rows of Table 1. E.g., the entry in the first row, first column is 
2.722 + 2.5  17 = 1.082. 
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t L = / l . + P ( W i - P ) ,  

which is essentially the formula used in Algorithm 4, and 
variance 

T 2 = U 2 ( 1 - P 2 ) .  

A 100( 1 - a)-percent confidence  interval for Wi+l, given 
Wi,  is then 

[CL - 2,1277 F. + z,,,71> 

where zal2 is the  upper  al2-point of the  standard normal 
distribution. By estimating and 7’ from the data, we 
can  thus obtain an  approximate confidence  interval. The 
confidence  intervals for Algorithms 3 and 4 were evalu- 
ated  for a few programs  and  the  distribution of the pre- 
diction error  was found to  be generally  more  peaked 
than a normal  distribution (e.g., 7 5  percent or more 
within & one  standard  deviation), but  a  normal  approxi- 
mation would probably suffice. 

I thank my colleagues Yonathan Bard and Martin 
Schatzoff for a number of very helpful conversations 
in connection with this  work. 
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