Predicting Working Set Sizes

Peter Bryant

Abstract: Empirical analyses of data on working set size are reported. The data do not support the hypothesis that working set sizes
are normally distributed. The data suggest various algorithms for predicting working set size based on the program’s past history.

Several representative algorithms are discussed and evaluated.

Introduction

Operating system schedulers and dispatchers must often
make decisions about which programs may run together
based upon some (implicit or explicit) prediction of the
resources those programs will require if they are allowed
to run. The quantities predicted may be working set size,
resident set size, I/0O activity, and so on. The usual
technique is what is called here the ‘‘naive” technique,
namely, to predict that the program will require those
resources it required during its last execution interval.

Exactly which quantities should be considered in mak-
ing scheduling decisions is a subject of active debate,
and I do not intend to enter this debate here. At least
one dispatcher [1], however, has been built that bases
its decisions explicitly on predicted working set size, and
the intent of this study is to propose and evaluate a few
different prediction techniques for such a scheduler. The
proposed techniques are suggested by the analysis of
program trace data. The analysis procedure used was a
crude version of techniques advocated by Box and Jen-
kins [2], and is described in some detail in the third sec-
tion. It would apply equally well to predicting quantities
other than working set size, and may thus be of indepen-
dent interest here as a way of discovering possible
models.

Many authors [3-7] have discussed the idea of a pro-
gram’s working set, defined as the resources a program
requires during the execution interval (T, T+ AT) as T
varies; AT is known as the window size, T and AT are
often measured in units of the number of instructions
executed, and the resources are often taken to be the
storage requirements of the program. In this study 7 is
measured in instructions, and the working set is taken to
be the 4096-byte pages of storage required by the pro-

MAY 1975

gram. The working-set size, W, in any interval (T, T +
AT) is the number of distinct pages the program refers
to in the interval.

The approach taken here is largely empirical and ad
hoc; no particular model is suggested except incidentally
as possible motivation for some of the predictive algo-
rithms tested. The data used are described in the second
section, and the analyses of them in the third section.
The algorithms are described and evaluated in the fourth
section. Some remarks and a possible extension of the
techniques are given in the last section.

The data

The data for this investigation were derived from pro-
gram traces of programs running under cMms version 3.1
[8] on CP-67 at the IBM Cambridge Scientific Center.
The traces had already been reduced to SIMLOAD files
for use with the CP-67 simulator [9]. This process di-
vides a program’s execution into segments defined as
follows. A segment includes that portion of the exe-
cution of the program from the end of the previous
segment until either a specified maximum number of in-
structions (usually 1000) have been executed or a speci-
fied maximum number (usually 10 or 15) of 4K pages
(here K stands for kilobytes) have been referred to [10].
The siMLOAD files consist of records summarizing the
program’s behavior in each segment, including in par-
ticular the number of instructions executed and a list
of the pages referred to.

Because the processing of the traces themselves is
quite lengthy, the working set data studied here were
derived directly from the siMLOAD files, by aggregating
successive segments until the cumulative instruction

221

WORKING SET SIZES



222

P. BRYANT

115

Window = 500K

95

75

Working set size W (pages)

55

100 000 200 000 300 000 400 000 500 000

Time (instructions executed)

Figure 1 Working set size as a function of time for program
swpl15. The window is the nominal window size as defined in
the text.

Working set size W (pages)

10 20 30 40 50 60 70 80 90 100

Time (1 unit = 5 000 instructions)

Figure 2 Working set size vs time for program swp15 (win-
dow = 5 000 instructions).

—- =
OOk O
T 1T

_.
o
T

Working set size
W (pages)

1 1 I L 1 1 1 I
10 20 30 40 50 60 70 80 90

Time (1 unit = 5 000 instructions)

Figure 3 Working set size vs time for program TRvU (window
= 5000 instructions).

count equaled or exceeded the desired window size.
(The corresponding working set was taken as the union
of the sets of pages referred to in those segments
aggregated.) Thus, for a nominal window size of 5 000
instructions, the actual window size would be at least
5 000 and might be as long as 5 999 (for a cutoff value of
1 000 instructions per segment), and would vary over
the execution of the program.

In the data used here, the actual window sizes for
a nominal § 000-instruction window were generally
uniformly distributed over the possible range. For larger
window sizes, this effect is less important, in view of the

1 000-instruction cutoff for segments in the SIMLOAD
files. The varying window size makes these data not
strictly comparable with most published studies which
use an exact, fixed, window size. On any particular ma-
chine, though, different instructions have generally dif-
ferent execution times. Further, a scheduler would prob-
ably not be equipped to (or want to) interrupt a running
program after a specific number of instructions. From
the point of view of developing scheduling algorithms,
then, the approach used here seems no more unrealistic
than using a fixed window size. Also, the data used here
were examined to see if any particular bias was intro-
duced by the varying window size. The only particular
effects noticed were occasional negative correlations
between actual window size and working set size, and
these were apparently consequences of some clustering
(see the discussion of bimodality below).

Data for five programs were analyzed. They included
PERF92, an APL(CMS) execution; MAXMINIS, a PL/1
compilation; MEDU, a job consisting of two assemblies
and two FORTRAN compilations; and two other programs
discussed below. Nominal window sizes of 5000,
12 500, 25 000, 50 000, 125000, 250 000, and 500 000
instructions were used.

Summary of data analyses

Figures 1 through 9 summarize the principal analyses
performed on the working set data. Program swpl5, a
PL/1 compilation, is discussed in some detail and com-
pared with the other programs. Essentially two basic
patterns were observed. A perhaps typical random fluc-
tuation in working set size is that illustrated by swpl15.
Occasionally, though, programs display definite cyclical
patterns over time, such as repetitive calling of the same
subroutine. This may be only a portion of the whole
execution. TRvU is discussed below to illustrate this sort
of behavior; it is an artificial job, designed to simu-
late an editing session at a terminal. It is included here
as an illustration of cyclical behavior, and is not intend-
ed to represent a realistic sort of job. Program PERF92,
an ApL execution, does display cyclical patterns in part
of its execution, and it is discussed in a subsequent sec-
tion.

Figure 1 shows the behavior of working set sizes (W)
of swp15 over the first 500 000 instructions for different
nominal window sizes. The upper (heavy) line, or “en-
velope,” shows the increase in W as the window size
increases. The pattern shown in Fig. 1 is typical of those
found in the other programs—a steep increase followed
by a leveling off. The steepness and duration of the in-
crease varied from program to program, but the general
shape was as depicted in Fig. 1. In particular, this curve
was always found to be concave. The fluctuations in the
curves underneath it are also fairly typical.

IBM J. RES. DEVELOP.




75 SWPIS MEDU
50 F 200 L
25 + 100
| 1 1
50 100 20 40
40 200
TRVU PERF92
30 b 150 +
20 | 100
~
% 10 50 -
=]
Y
&
1 L | ) | i
10 12 14 16 10 20 30
w

Figure 4 Histograms of working set size for various programs
(nominal window size, 5K).

Figure 2 gives a plot of W over time for a particular
program, swp15, and a particular nominal window size,
5 000 instructions. The corresponding plot for program
TRVU is in Fig. 3, where its repetitive nature shows up
clearly. There is perhaps a hint of a low-frequency cycli-
cal pattern in the plot for swpl35, but analysis of the en-
tire execution (Fig. 2 is for the first 500K instructions
only) shows no such tendency.

Histograms of W are displayed in Fig. 4 for four pro-
grams. For both swp15 and MEDU, the histograms are
quite clearly bimodal. The histogram is also bimodal for
TRVU though in view of the small number of distinct val-
ues of W involved, the bimodality might be considered
artificial. PERF9?2 displays more nearly unimodal behav-
ior. Bimodal distributions like these have also been re-
ported by Rodriguez-Rosell [3, Fig. 6]. 1 found no
evidence that such behavior was attributable to the
varying actual window size, though that is a possibility.
In any event it seems, on the basis of these data, that the
often mentioned [4, 5] hypothesis that W is approxi-
mately normally distributed should not be accepted
blindly. Compilers, particularly (as in swpi5 and
MEDU), often consist of alternate executions of rela-
tively large “phases” and relatively small “interludes,”
that update contro! blocks and determine which phase to
call in next. In such cases bimodality is probably to be
expected.

Figure 5 gives histograms of W for four different nom-
inal window sizes for swpl5. They indicate that the
bimodality is not due simply to a choice of window size.

MAY 1975

75 30

AT = 5K AT = 12.5K
50 I~ 20
25 +~ 10
! 1 L
15
AT = 25K AT = 50K
10 10
5 —
s °T
5
)
~ { I
0 50 100 0 50 100
w

Figure 5 Histograms of working set size for various nominal
window sizes AT (program swpl15).

Of course, for very large window sizes, the number of
data points becomes so small as to make a histogram of
questionable value, but, within the range considered
here, there seemed to be no particular evidence that
changing the window size changed the general nature of
the results. Most of the subsequent analyses used a win-
dow size of 5 000 instructions.

The main aim of this investigation was to evaluate
possible predictive schemes, and the analyses depicted
in Figs. 6 through 9 reflect this. They are more or less in
the spirit of the approaches described by Box and Jen-
kins [2]. These approaches look at the autocorrelation
functions of the quantities to be analyzed (in this case,
W) and of the first, second, etc. differences of these
quantities, until a recognizable pattern appears, which
suggests a model to be examined. In the following analy-
ses, no models beyond those suggested by examining
the series of W values and its first differences were used
very heavily, and the analyses themselves were not par-
ticularly formal. The interested reader may pursue these
ideas in Box and Jenkins [2].

As remarked above, the histograms of W are often
bimodal. But, as Fig. 6 shows, the distribution of the
first differences (AW), = W,— W,_, is essentially unimod-
al and much more nearly normal. So are those for the
second and third differences. This unimodality also held
for various nominal window sizes, as Fig. 7 illustrates
for AW, and this was typical of other programs as well.
In view of Figs. 4 and 5, the joint distribution of the
differences cannot be normal (for then that for W would

223

WORKING SET SIZES



224

P. BRYANT

150
100 F AW
50 ~
0 1 1 1
100
3= AZw
50
25
0 i ! !
75
Aw
50 -
25
e
2
[7)
&
2
= 0 1 I
—200 —100 0 100 200
w

Figure 6 Histograms of Ist, 2nd, and 3rd differences of work-
ing set sizes (AW, A’W, A’W): program swp15; nominal win-
dow size, 5K.

Figure 7 Histograms of AW for various nominal window sizes
AT, program swpl5.

40

AT = 5K AT = 12.5K
150 30
100 20 -
50 10+
0 1 0 !
30
AT=25K AT = 50K
20 10
& 10 5+
g
g
e L 0 !
—-50 0 50 —-50 0 50 100
w

be also), but Figs. 6 and 7 suggest that normality would
be a much more useful first approximation for the dif-
ferences than for the original values.

The autocorrelation function of a time series (in this
case, the series W) is an important tool in developing
predictive schemes or models. The autocorrelation of
lag k, p,, is the correlation between W, and W, , and the
autocorrelation function is defined to be p, as a function
of k. Values of p, near 1 or —1 indicate a strong (linear)
relationship between W, and W, ., whereas values of p,
near O indicate little or no linear relationship. Alterna-
tively, we can interpret this by saying that values of p,
near =1 indicate that W, is useful in (linearly) predicting
W, For example, if p, is large, but p, is small for k& >
1, it indicates that W, is useful for predicting W,,,, but
W._., W._,, etc. are not. If a series were cyclical, repeat-
ing itself every j intervals, this would cause p; to be
large. Examining the autocorrelation function, then, is
one way of deciding which quantities to use in prediction
methods.

In Fig. 8, the estimated autocorrelation functions of W
for four of the programs are displayed, for lags 1 through
25. The cyclical, repetitive nature of TRvU shows up
clearly in the large autocorrelation of lag 14. The other
programs show a general trend of a large first-order auto-
correlation, which tails away as the lag increases. PERF92
shows an increase at lag 20, corresponding to the first
portion of its execution, which shows a cyclical pattern
of period 20 (see discussion in next section).

The autocorrelation functions for the first and subse-
quent differences are all similar and are illustrated for
swpl15 in Fig. 9. A strong negative autocorrelation of
lag 1, with subsequent ones fluctuating around zero, is
typical.

Results similar to these were obtained for other win-
dow sizes as well, although for larger window sizes there
are fewer data, and this fact can be important in estimat-
ing the autocorrelation functions.

Predictive algorithms

e Discussion

The autocorrelation functions in Figs. 8 and 9 show high
values of p, for small & (k=1, 2, 3) and lower values for
k > 3. This suggests that the past behavior of a program
may indeed be used to get some useful information for
predicting its subsequent behavior, and that most of this
information is contairied in the two or three previous
observations. For programs exhibiting characteristics
like those of swrl5, a procedure that bases its predic-
tion of the next value of W on the last two values seems
reasonable. Alternatively, one might base the prediction
on the last few differences AW. In fact, because the dif-
ferences seemed so much more nearly normally distrib-

IBM J. RES. DEVELOP.




uted, with mean 0, the first method investigated was 1

derived by assuming that [(AW), (AW),,,] was distrib- — . MEDY
uted according to a bivariate normal distribution [11] J——r
with mean vector (0, 0), common variance o, and corre- . - PERFO2

lation coefficient p. Using some estimator of p, say ¢, and 075 sresreeenee Vo

predicting (AW),,, by its expected value given (AW),,
we have the estimator

(AW),,, = p(AW),,

i+1
and we estimate W, by

P
W+ (AW) =W, +p(W,— W,_).

A similar estimate can be based directly on the W
Suppose (W, W) is distributed with mean vector
(u, w) and covariance matrix

1,
o) .
p 1

Then we can predict W, given W, by W, =hA+pW,
— ), using some estimators g and p of u and p.

There is no a priori reason to limit the “memory” of
the algorithm to just the immediately preceding observa-
tion, but including more would increase the complexity
and storage requirements of the algorithm. The autocor-
relations in Figs. 8 and 9 seem to indicate that the imme-
diate predecessor gives most of the information, too.
Some experiments using up to four previous observa-
tions were run, and while occasionally they did better Figure 8 Autocorrelation functions p, of working set size for
than the ones using a memory of one observation, it was various programs: nominal window size, SK.
rare. Usually, it appeared that including more W’s or )

(AW)’s simply added more noise without improving the Figure 9 Autocorrelation functions p, for AW, AW, AW
L. . program swp15; nominal window size, SK.
prediction. These results are thus not included below.

Similarly, one could estimate and keep track of many 0.25
autocorrelations, in the hope of detecting periodic be-
havior such as that shown for TrRvu, but this procedure
would quickly become unwieldy. Aside from the prob-
lems of estimation and the storage requirements, there is o b ‘
the question of how many to include. As PERF92 shows, L
it is also possible for a program to show periodic behav- .
ior for only one part of its execution, yet have that part -
affect the entire autocorrelation function. The extra ef- —/

30

Lag (k)

fort seems unlikely to result in much improvement, and —025 -
such algorithms were not evaluated. K

o Algorithms —
Many variations on the kinds of algorithms discussed —0.50 _i
above are possible. Parameters such as u and p could be B e Adw
either given once and for all or dynamically estimated - L4
for each program. Various dynamic estimation schemes :
are possible. It was not the intent of this investigation to
try to pin down exactly which variant was “best,” be- 0 10 20 30
cause that might well depend on the particular operating
system and the program load. Rather, five algorithms Lag () 225

Py

MAY 1975 WORKING SET SIZES




226

P. BRYANT

were chosen as representative of the algorithms suggest-
ed by the data, and they were evaluated by testing them
against data from five programs. The details of the algo-
rithms are given in Table 1. Algorithm 1 is the “‘naive”
predictor, W,,, = W,. Algorithm 2 predicts W,,, = u, the
mean of the W,. Algorithm 3 is based on AW: W,,, = W, +
p(W, — W,_,), where p, is the correlation between
(AW), and (AW),, .. Algorithm 4 is based directly on W:
Wm =u + py(W,— ), where y is the mean of W and
py, is the correlation between W, and W, .

The motivations for Algorithms 3 and 4 were dis-
cussed earlier. Algorithms 1 and 2 were included as a
basis for comparison. Algorithm 1 is typical of the usual
approaches in today's systems. Algorithm 2 would be
appropriate if W, and W, , were independently normally
distributed with a common mean w.

Table 1 Algorithms tested.

W =w,

i+1

Algorithm 1
Algorithm 2° W7 = p,

. b po®
Algorithm 3° W, =W, 4+ (W, —W,_)p,,

i

Algorithm 4 W, “'=p + (W, — u)p,;

Algorithm 5 Choose k, to minimize MSE," (1 =< k= 4).

Predict W, using Algorithm &,

n, = A,/ B,, where
Ai=c,Wi i A,= (1 —a,)A,_ +a,W(i=2)
B =a,;B;=(1—a,)B,_ +a, (iz2)
bp,“.= U,/ T, where
T,=U,=U,=0
U=(0—a)U_ +o,(W,— W, (W, =W, ,)

(i=3)
T,=0—a)T, , +o,(W,—W,_)
D= S,/ V, where (i=2)
$,=V,=0
S;i=(1—a)S,_ +a,(W,—p)(W,_, —pu,
(i=2)

Vi= (l=a)Vi +a (W~ ©)’
‘MSE," = 0; MSE,*’ = (1/B,)[(1 — a,)MSE®’

i-1

+ as(Wj(k) - W)

Algorithm 5 is an “empirical Bayes” algorithm which
was prompted by the observation that none of algo-
rithms 1-4 was uniformly best over all programs tested.
It consists of computing all four predictions, keeping
track of the prediction errors of each one, and using the
one which has been doing best for you lately.

The parameters u, p, and p,, were dynamically esti-
mated, using an exponentially weighted average, as indi-
cated in Table 1. The prediction errors in Algorithm 5
were also exponentially weighted. The results below
were obtained using o, = a, = a, = a, = 0.05. (Resuits
were comparable using any «; < 0.10; o; > 0.10 usually
gave inferior results.)

The criterion of measurement was the root-mean-
square prediction error. This method was chosen as
convenient, and also because, in practice, a scheduler
would be doing this estimation for many programs and
adding the results to get an estimate for all programs
combined. The bias in the algorithms tested was small or
negligible, and thus the mean-square error in the sum is
the sum of the mean-square-errors in the individual pre-
dictions. Thus, improvements in predicting for an indi-
vidual program should be correspondingly reflected in
the predictor for the sum. Similarly, the predictors were
allowed to predict fractional values of W (though W is
an integer) because the predictions for various programs
would probably be summed.

* Results

The results of the tests are given in Tables 2 and 3. The
entries in Table 2 are the root-mean-square prediction
errors for each predictor. The entries in each row of
Table 3 are the relative root-mean-square errors, i.e.,

RMS error (predictor i)

<+ min {RMS error (predictor i)}.

As Tables 2 and 3 indicate, Algorithms 2 and 4 are
perhaps the best of the algorithms considered; Algo-
rithm 4 being preferable for smaller window sizes (5K,
12.5K, sometimes 25K) and Algorithm 2 for the larger
window sizes. The naive predictor, Algorithm 1, is al-
most never best; is typically 15 percent worse (in terms
of RMS prediction error) than Algorithm 2 or 4; and
can be as much as 49.8 percent worse. Algorithms 3 and
5, while often better than Algorithm 1, seem to offer no
particular advantage over Algorithm 2 or 4.

As may be seen in Table 2, the RMS error in all algo-
rithms is roughly proportional to the mean value of W,
so the absolute size of W offers no way of choosing be-
tween Algorithms 2 and 4. The better performance of
Algorithm 4 for small window sizes might be attributable
to the fact that small window sizes mean more data.
Algorithm 4 has more parameters to estimate than Algo-

1BM J. RES. DEVELOP.




rithm 2, and it may be that once it has enough data to
estimate them well, it outperforms Algorithm 2. Exami-
nation of the prediction errors over time tended to con-
firm this, but other explanations are possible, too—per-
haps large and small window sizes lead to fundamentally
different kinds of behavior, requiring different predic-
tors. The data considered here do not seem to support
this idea, but it remains a possibility.

Figures 10 and 11 show the actual and predicted val-
ues of W for PERF92 for a 5K nominal window. Figure
10 is for the first part of the execution, where cyclical
patterns are present, using Algorithm 4. At first, Algo-
rithm 4 is “‘caught napping” by the sudden drops from
the peaks, but by about the 80th prediction, it is com-
pensating by not predicting such high values. Following
this part of the execution, PERF92 enters a phase of near-

ly constant values of W (which is not illustrated). At the
beginning of a subsequent, more variable phase,
Algorithm 4 begins to track the fluctuations as they ap-
pear again.

By contrast, Algorithm 2 makes little effort to track
fluctuations, as is shown for the first 100 predictions of
PERF92 in Fig. 11. In terms of RMS prediction error,
Algorithm 2 was about 12 percent worse than Algorithm
4. Tt also appears, though, that Algorithm 4 has a lower
probability of larger errors.

Remarks and acknowledgment

As mentioned, the data considered here seem consistent
with that reported by Rodriguez-Rosell [3]. My col-
league Bard [12] has independently experimented with
algorithms like Algorithm 4 for predicting resident set

Table 2 Root-mean-square prediction error for various algorithms.

Nominal Number of Mean
window Algorithm® predictions working

size . . (N) set

Program (K) 1 2° 3 4 5 size
PERF92 (APL S 2.722° 2.815 2.744 2.517 2.724 683 7.416
execution) 12.5 4.350 3.879 4.244 3.839 4.245 310 8.487
25 5.612 4775 5.133 4.799 5.138 156 10.269
50 6.678 5.952 6.196 6.109 6.203 79 13.089
125 8.790 7.098 7.967 7.618 8.269 31 17.161
250 7.644 7.201 7.773 8.058 7.852 16 21.375
MAXMIN 15 5 12.095 11.774 11.520 10.737 12.095 227 47,991
(PL/1T 12.5 14.323 13.337 14,389 13.266 14.328 95 60.526
compilation) 25 14.652 13.316 14,239 14.191 14.652 48 67.167
50 19.661 16.268 20.254 17.891 19.661 24 72.917
125 20.710 19.182 20.294 21.135 20.710 10 79.400
250 28.245 28.855 30.048 31.517 28.245 5 80.200
MEDU 5 6.031 5.293 5.499 4.936 5.328 871 16.983
(assemblies 12.5 5.289 5.430 5.341 4.896 5.348 372 20.003
& FORTRAN) 25 6.659 6.010 6.213 5.821 6.659 189 22.175
50 6.749 6.470 6.555 6.203 6.371 95 24.768
125 6.132 7.050 5.956 6.363 5.962 38 28.316
250 8.291 8.075 7.007 8.271 8.291 19 30.053
SwP15 (PL/1 5 14.878 14.285 14.440 13.186 14.878 336 42.673
compilation) 12.5 15.842 16.381 15.784 14.575 15.845 141 53.660
25 16.270 16.920 16.199 15.850 16.270 72 61.597
50 16.962 17.659 17.139 18.610 17.154 36 68.444
125 16.678 15.476 16.736 18.349 16.678 14 77.929
250 22.605 18.879 20.815 21.097 20.842 7 82.571
TRVU (edit 5 2.106 1.791 2.090 1.848 1.863 87 12.517
session) 12.5 2.818 1.891 2.478 1.881 2.028 35 13.686
25 3.100 2.443 2.825 2.521 2.553 18 14.722
50 3.145 2.591 3.173 2.849 3.128 9 16.222

v . 2
“Entries are [Nl 0 2 (W, — W,.)z], in units of 4K pages.

i=2

"See Table 1 for descriptions of algorithms. Values here computed using o, = a, = o, = oy = 0.05.
227

MAY 1975

WORKING SET SIZES




228

P. BRYANT

= Observed
xooox predicted

X X X
xxxxxxxxxxxxxbm X & x Y
XXKX XX xxxrx X0
1

—= observed
xxooox predicted

x
X
10 M r{‘ . A‘ ox f&« X
X X 4 X X X
\ XXX \
XA XXXXAX ok fo\ X000 X xxod NLOX000kK x
1 |

55 105

20

Time

Figure 10 Working set sizes using Algorithm 4: program
PERF92 (1st part); nominal window size, 5K.

sizes in VM/370, and has found that they give im-
proved results over algorithms such as Algorithms 1 and
2. Ghanem and Kobayashi’s model [7] of working set
behavior, in particular their Eqs. (3.44) and (3.45), lead
to predictors similar to Algorithm 4,

Table 3 Relative RMS prediction error for various algorithms.

An interesting byproduct of algorithms like Algo-
rithm 3 or 4 is the possibility of obtaining confidence
bands for the predicted value as well as point estimates.
The models used to derive those algorithms lead to esti-
mates of the variance of the predictor in terms of ¢ and
p, for example. A scheduler might take into account the
confidence to be placed in a given estimate and allow
itself an appropriate margin of safety when it guesses
whether the sum of the resource demands is likely to be
within the capacity of the system.

For example, the model underlying Algorithm 4 is that
(W, W,,) is normally distributed with mean vector
(¢, p) and covariance matrix

21 p
U[pl]'

Under these conditions, it is easy to show that the condi-
tional distribution of W,_,, given W, is normal with mean

Nominal

window Algorithm Number of

size predictions
Program (K) 1 2 3 4 5 (N)
PERF92 5 1.082% 1.119 1.090 1.000 1.082 683
12.5 1.133 1.010 1.105 1.000 1.106 310
25 1.175 1.000 1.075 1.005 1.076 156
50 1.122 1.000 1.041 1.026 1.042 79
125 1.238 1.000 1.122 1.073 1.165 31
250 1.062 1.000 1.080 1.119 1.090 16
MAXMIN15 5 1.127 1.097 1.073 1.000 1.127 227
12.5 1.080 1.005 1.085 1.000 1.080 95
25 1.100 1.000 1.069 1.066 1.100 48
50 1.209 1.000 1.245 1.100 1.209 24
125 1.080 1.000 1.058 1.102 1.080 10
250 1.000 1.022 1.064 1.116 1.000 5
MEDU 5 1.222 1.072 1.114 1.000 1.079 871
12.5 1.080 1.109 1.091 1.000 1.092 372
25 1.144 1.032 1.067 1.000 1.144 189
50 1.088 1.043 1.057 1.000 1.027 95
125 1.030 1.184 1.000 1.068 1.001 38
250 1.183 1.152 1.000 1.180 1.183 19
swpl5 5 1.128 1.083 1.095 1.000 1.128 336
12.5 1.087 1.124 1.083 1.000 1.087 141
25 1.027 1.068 1.022 1.000 1.027 72
50 1.000 1.041 1.010 1.097 1.011 36
125 1.078 1.000 1.081 1.186 1.078 14
250 1.197 1.000 1.103 1.117 1.104 7
TRVU 5 1.176 1.000 1.167 1.032 1.040 87
12,5 1.498 1.005 1.317 1.000 1.078 35
25 1.269 1.000 1.156 1.032 1.045 18
50 1.214 1.000 1.225 1.100 1.207 9

“Entries are ratios of entries in Table 2 to the minimum entries in the rows of Table 1. E.g., the entry in the first row, first column is

2.722+2.517 = 1.082.

IBM J. RES. DEVELOP.




B=p+p(W,—p),

which is essentially the formula used in Algorithm 4, and
variance

7'2=0'2(1 __pz).

A 100(1 — a)-percent confidence interval for W, given
W,, is then

[ — 2,7, 2+ 2,,7],

where z,, is the upper a/2-point of the standard normal
distribution. By estimating & and 7° from the data, we
can thus obtain an approximate confidence interval. The
confidence intervals for Algorithms 3 and 4 were evalu-
ated for a few programs and the distribution of the pre-
diction error was found to be generally more peaked
than a normal distribution (e.g., 75 percent or more
within = one standard deviation), but a normal approxi-
mation would probably suffice.

I thank my colleagues Yonathan Bard and Martin
Schatzoff for a number of very helpful conversations
in connection with this work.

References and notes

1. J. Rodriguez-Rosell and Jean-Pierre Dupuy, *“The Design,
Implementation and Evaluation of a Working Set Dispatch-
er,” Comm. ACM 16, 247 (1973).

2. G. E. P. Box and G. M. Jenkins, Time Series Analysis:
Forecasting and Control, Holden-Day Publishing Co.,
San Francisco, 1970.

3. J. Rodriguez-Rosell, “Empirical Working Set Behavior,”
Comm. ACM 16, 556 (1973).

4. E. G. Coffman and T. A. Ryan, “A Study of Storage Parti-
tioning Using a Mathematical Model of Locality,” Comm.
ACM 15, 185 (1972).

S. P. J. Denning and S. C. Schwartz, “Properties of the
Working Set Model,” Comm. ACM 15, 191 (1972).

6. P. J. Denning, “Virtual Memory,” Computing Surveys 2, 3
(1970).

7. M. Z. Ghanem and H. Kobayashi, “A Parametric Repre-
sentation of Program Behavior in a Virtual Memory Sys-
tem” Research Report RC-4560, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 (October
1973).

MAY 1975

—e observed
15 & xocxx predicted
10

XXXX XXXXXX
XKXXX oo Y XXXXKX ix
5 XXX-)?(X 1 XXX
3
|

50 100

Time

Figure 11 Working set sizes using Algorithm 2; program
PERF 92 (1st 100 predictions); nominal window size, 5K.

8. CP-67/CMS Manual, Form No. GY20-0590, IBM Data
Processing Division, White Plains, NY 10604 (1971).

9. C. Boksenbaum, S. Greenberg and C. Tillman, ““Simula-
tion of CP-67,” Report No. G320-2093, IBM Cambridge
Scientific Center, Cambridge MA 02139 (May 1973).

10. This is a simplification. A segment may be terminated by
the occurrence of other events such as 1/0, etc. See refer-
ence [9] for details. Thinking of them as they are described
here should lead to no serious misunderstanding for the
purposes of this investigation.

11. Two random variables x and y have a bivariate normal
distribution with mean vector u = (p,, py) and covariance
matrix Z if their joint density function is

flx,y)= (ZW)AI(det 2) exp{—(l/Z)
-1
x('x—"‘z’y—”’y)z (x—lu"r’y_,u'y)’

12. Y. Bard, “Applications of the Page Survival Index (PSI)

to Vitrual-memory System Performance,” IBM J. Res.
Develop. 19, 212 (1975), this issue.

Received May 31, 1974; revised December 9, 1974

The author is located at the IBM Data Processing
Division Cambridge Scientific Center, 545 Technology
Square, Cambridge, MA 02139.

229

WORKING SET SIZES




