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Application of the Page Survival Index  (PSI) to 
Virtual-memory  System  Performance 

Abstract: The  Page  Survival  Index (PSI) was defined in a  preceding  paper  where it was  used to  describe  the  behavior of individual 
programs  running in a  time  sharing  environment. Here  we  show  how  a  system-wide  value of PSI  can  be  calculated on the fly by the 
operating  system. This  value  can  be  used  to  estimate  users’  memory  requirements  and  to  control  system  performance by maintaining 
the  proper  multiprogramming  level.  Simulation  results  show  that a scheduler  based on these  concepts  can  achieve significant improve- 
ments in system  performance. 

1. Introduction 
In this paper we are  concerned with the performance of 
multiprogrammed virtual storage computer  systems. We 
have  shown  previously [ 1, 21 that  the effect of overall 
system activity on the behavior of an individual program 
running in such a system  can be  summarized by means 
of a parameter termed the page survival  index (PSI). 
Furthermore,  the  PSI model made  possible  prediction of 
paging rates when  a specific set of programs was run 
together. In  the  present  paper, we show how overall  sys- 
tem performance is related to  the  PSI and how direct 
control of the  PSI  can form the basis for efficient system 
scheduling. 

The  paper is organized as follows: In Section 2, we 
define the  type of system  to which our results apply. 
Sections 3 and 4 summarize the definitions and  previous 
results relating to  the  PSI.  In Section 5 we show how 
overall  system PSI values  can  be  calculated  by the  oper- 
ating system, and in Section 6 we examine the perfor- 
mance of an  actual system in relation to  the  PSI and 
other paging parameters. Section 7 shows  that  patterns 
established in individual program behavior can be gener- 
alized to  the  entire  system. 

Before going into  the details of the suggested  sched- 
uler, we list some general  principles for  scheduler design 
(Section 8 ) .  In particular, the notions of feed-forward 
(Section 9)  and  feedback  (Section 10) system  control 
strategies are  introduced. Simulation experiments dem- 
onstrating the potential  usefulness and  robustness of 
the proposed scheduler  are described in Section 1 1. The 
Summary (Section 12) includes some  remarks on sched- 

21 2 uling, storage allocation,  and system tuning. 
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2. System characterization 
The  systems  to which this investigation  applies may be 
characterized  as follows: 

Multiprogramming 
Several programs are allowed to  share  system  resources. 
At intervals the  system  selects a subset of all programs 
requesting service,  and only these  are allowed to run. 
The  number of selected  programs is the multiprogram- 
ming  level (MPL), and the selected  programs are said to 
be active. The  active  set  changes from  time to time, as 
some  active  programs terminate or are  deactivated by 
the system and new programs are  activated. Service- 
requesting  programs which are  not  currently  active  are 
said to be in the eligible set. 

Virtual  storage 
Each program has  its own virtual address  space which is 
mapped into real main storage in units of fixed size 
pages.  A  virtual page which has a current image in real 
main storage is called resident. Pages are brought into 
real main storage  on  demand, i.e., if a  program  refer- 
ences a  nonresident  virtual  page,  this page is fetched 
from secondary storage to replace  some other  currently 
resident page. 

Page  replacement  algorithm 
The  entire  set of pageable main storage page  frames is 
available to  each  active program. There is no discrimina- 
tion among  pages on  the basis of ownership. The page to 
be replaced by an incoming page is determined by perus- 
al of reference  bits; pages  not  recently  referenced are 
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replaced first. A typical implementation has a core  table 
with an  entry  for  each pageable page, and  a pointer 
which cycles  around this  table.  A page will be  replaced 
when the  pointer  reaches it, if and only if it had not been 
referenced  since the previous  passage of the pointer. 
One  complete round trip of the pointer is termed a cycle. 
It is easy  to  see [ 1 1  that a page will remain  resident for 
at  least  one  cycle and at most  two cycles following the 
last  reference  to it. On  the  average,  an unreferenced 
page will remain  resident for 1.5 cycles before it is re- 
placed. 

The CP-67 [3]  and VM/370 [4] systems  are precise- 
ly of the type  described  here. Other virtual storage  sys- 
tems may be sufficiently similar to  have  our results  ap- 
plicable. 

3. Program characterization 
It  has been  suggested [ 1 1  that  the behavior of a  program 
running in a system  as  described in the previous  section 
may best be described by a parameter called the PSI. 
The value of this parameter is defined as  the  number of 
interruptions in the  course of program  execution  which 
an unreferenced  resident page can  survive  before it is 
paged out. A high value of the PSI means that  an unref- 
erenced page can  survive a long time,  corresponding to 
periods of light system paging activity,  and conversely. 

From a program’s page  reference  string the  entire 
execution  path (termed  the W-rmlization) of the pro- 
gram  can  be determined, on the assumption that  the PSI 
maintains  a constant value W. From  these  paths  (corre- 
sponding to different values of W) one may compute 
various statistics,  such  as 

A (W) Average resident set size, i.e., average number of 

R ( W )  Average paging rate  (page  exceptions per second 

t ( W )  Average length of execution  interval (seconds of 

f ( W )  Fraction of execution intervals  terminating in 

the program’s pages  resident in main storage. 

of CPU time). 

CPU time between  interruptions). 

page exceptions. 

A  plot of R (W) vs A (W), with W as  parameter, is 
termed the paging characteristic of the program. The 
paging characteristic may be  considered an analog to  the 
well-known parachor  curve, which relates paging rate  to 
storage  allocation for  the program running in a fixed 
storage partition. Plots given in [ 11 show  the  vast reduc- 
tion in page exceptions which occurs when  programs 
share storage  dynamically,  compared to fixed storage 
assignments. 

4. Performance prediction for given  active set 
Suppose a given set of programs  with  known paging 
characteristics  are  to be  activated  together. It  has been 
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Figure 1 Prediction of system paging rate for a round-robin 
dispatcher. 

shown [ 1 ,  21 that  under a  round-robin  dispatching pol- 
icy, the  same value of the PSI, say W*, applies to all the 
programs,  and the  average resident sets of the individual 
programs  sum to  the total  available page frames: 

A i ( q * )  = N ,  ( 1) 
i 

where  the subscript i identifies quantities  characterizing 
the ith program. Furthermore, a complete round-robin 
cycle uses up, on  the  average, X i  t i (W*) seconds of CPU 
time,  and during that period there will occur Zi A(?*) 
page  exceptions. Hence,  the overall average paging rate 
(page  exceptions  per second of CPU time) is 

One verifies easily that f i  = Rit i ,  hence one may rewrite 
( 2 )  as 

where 

T ( W * )  = ti (**I. 
i 

To predict  performance, one first solves equation ( 1 )  for 
V*, then uses ( 2 )  to  compute P .  Rates of other 1 /0  
types  can  be predicted similarly. It  was shown  previous- 
ly [2] that this procedure  works well (predicted paging 
rates  are generally accurate within 10 percent)  for a 
round-robin dispatcher and gives acceptable  results 
(generally within 30 percent)  for  other  dispatchers.  Typi- 
cal results  are  reproduced in Fig. 1 .  

5. Estimation of system PSI 
The  average system-wide PSI value over  any sufficiently 
long (relative  to page survival  time)  period may be  de- 21 3 
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Figure 2 System  performance vs page survival  index. 

fined as follows: Let pl, pp,. . ., p ,  be the list of pages 
replaced by the  system during that period. Suppose page 
p j ,  belonging to program uj,  was  replaced at time Tj ,  and 
suppose  the last  preceding reference  to  that page  was 
made at time fj < T j .  Let nj be the number of essential 
interruptions  (i.e.,  interruptions which left that program 
unrunnable) suffered by program uj during the time peri- 
od between tj and T j .  Then  the  average system-wide PSI 
is given by 

Ts = x n j / m .  (4) 

Equation  (4) is unsuitable for  use in a live operating 
environment, because obtaining the required data would 
entail excessive  overhead.  Fortunately, it is possible to 
obtain  a good approximation for Ts using a minimum of 
data; in fact, all the required data  were available on  the 
CP-67  system  at  the Cambridge Scientific Center.  The 
following system counters  were used: 

P Total  number of page exceptions 
V Total number of virtual I /Os 
W Total  number of core-table  pointer cycles 
M Cumulative  MPL-elapsed time product, i.e., if x ( t )  

is the multiprogramming level at time t ,  then  at time 

m 

j = 1  

T ,  M (  T )  = JOT x( t )  dl. 

Let AP,   AV,  . ' ., denote  the differences  between the 
counter values at  the beginning and  end of our time peri- 
od, which will be assumed  to be of length A T .  The total 
number of essential interruptions suffered by all pro- 
grams during that period is approximately AP + A V ,  and 
the  average MPL is A M I A T ,  so that  the  average num- 
ber of essential interruptions suffered by any  one pro- 
gram is approximately I = ( A P  + Ab') A T /   A M .  On  the 
other  hand, it was  shown  previously that  an unrefer- 
enced  page survives,  on  the  average, 1.5 cycles.  During 
the period AT there  were A W /  1.5 such  average survival 
periods. Hence,  the  average  number of essential  inter- 
ruptions  survived by unreferenced pages was 1.5 I /  A W .  

21 4 But this  is, by definition, the system-wide PSI. Hence \ y s  
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Figure 3 System performance vs paging rate. 

should  approximately  equal the value VS* obtained by 
evaluating 

T s  - 
* - 1.5 ( A P  + A V ) A T  

AMAW ' 

One might ask how good an approximation to Ts is Vr,*. 
In  the  course of the simulation  runs  described  below, 
both vs and Ts* were calculated at  the end of each peri- 
od of 30 seconds  or 10 cycles,  whichever  came first. The 
two values  agreed  very well with each  other in the re- 
gion 0 < vs* 5 20, which fortunately is the  one of great- 
est  interest.  In a  typical  run  containing  40  samples, the 
average values of Ts* and Vr, were 12.61 and  12.67, 
respectively, the  standard deviations were 4.09 and 
4.16, and the correlation between them was 90.5  per- 
cent.  It is concluded,  then,  that vs* is an excellenr esti- 
mate for Vrs. 

When vs exceeds 20, paging activity is so low that 
pages tend to remain resident until the program owning 
them  becomes deactivated.  Under  these conditions 9, 
no longer reflects the  true survival  capability of unrefer- 
enced  pages. This  accounts  for  the  fact  that v, tends  to 
be much lower  than Ts* in this range. 

6. Effect of paging on system performance 
In  order  to  devise a strategy  for controlling  system pag- 
ing, it was necessary  to  determine what effect the vari- 
ous paging-related variables had on system  performance. 
The following analysis  was  based on  data collected un- 
der a real production load over a  one-month  period on 
the  CP-67 system at  the Cambridge Scientific Center. 
The  system configuration contained 768  kbytes of core 
storage, with approximately  130  4096-byte  page  frames 
available for paging. Three  IBM 2301  magnetic drums, 
mounted on two channels,  were used as paging devices. 
The  methods of data collection  and  analysis have been 
described  elsewhere [ 5 ] .  The  data consisted of the val- 
ues of various  system counters recorded at approximate- 
ly 100-second  intervals (less frequently  during  slack 
usage periods).  From  these  counter readings it was  pos- 
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sible to  calculate,  for  each  observation period, the values 
of the following variables: 

Performance variable 
1. Percent problem state time, i.e., the percentage of 

time  during which the CPU was executing user pro- 
grams 

8 K e y  variables 
2. Average multiprogramming level 

4. Average paging rate, page  reads per second 
5. Page steal  ratio, i.e., fraction of pages read which 

replaced pages belonging to  active  users. 

3. YS* 

For  the  purposes of this study,  percent problem state 
time was  chosen  as  the primary performance  criterion. 
The analysis  proceeded with all observations being clas- 
sified into  groups according to the  values of one of the 
key variables. The  average  percent problem state time 
was  computed within each group of observations, and 
plotted against the values of the key variable (Figs. 2 -4).  

It  was determined that performance is not  sensitive to 
the  MPL.  This results  from  the fact  that  the  CP-67 
scheduler  [6]  attempts  to control the  MPL so as  to op- 
timize performance. The  data  do  not suggest that main- 
taining a fixed upper limit on the MPL would be benefi- 
cial. On  the  other hand,  Figs. 2-4 indicate that perfor- 
mance degrades when the paging rate  exceeds 65 page 
reads  per  second, when the steal  ratio exceeds 80 per- 
cent,  or when Vs* falls below 13. Still, it is remarkable 
that excellent  performance is obtained at what might be 
thought of as very high paging rates  and steal  ratios. 
This is due,  at  least partly, to  the simplicity and efficient 
coding of the  CP-67 paging algorithms, which result in 
extremely low CPU overhead per paging operation. 

7. Relation between PSI and program behavior 
The effect of the PSI on the behavior of a specific pro- 
gram is readily derivable  from the ?-realizations or from 
the paging characteristics.  For  instance,  the  average  res- 
ident set sizes A ( ? )  for various  programs are plotted 
as functions of ? in Fig. 5. Most of these programs seem 
to follow similar behavior patterns: initially A(Vr) in- 
creases roughly in proportion  to Vr, but when Vr reaches 
a critical value w',, somewhere  between 7 and 10, the 
curve flattens out.  Further  increases in A (Vr) are pro- 
portional to @, with /3 between 0 and 0.25.  This sug- 
gests that by plotting the ratio A (w') / A  (T,) vs 1Ir/ w',, 
one would obtain  a  generic  representation (Fig.  6), valid 
for a  wide  range of programs. 

Similarly, the paging rates R ( V )  of the various  pro- 
grams  can be plotted  vs w' (Fig. 7 ) .  Initially the paging 
rate  decreases rapidly, in porportion to w'"' (mostly 2 f 
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Figure 7 Program paging rates. 

y 5 4), but again a  break occurs  at qc, and above  that 
value the paging rate  decreases only as Y 1 .  The  break, 
however, is absent in some  cases,  where R(T) is pro- 
portional to V 1  over  the  entire  measurement range. 

These  characterizations apply to specific programs 
whose  execution traces were  analyzed in detail. It is 
possible,  however, to obtain  a similar characterization 
for  the  “average” program  actually running on  the  sys- 
tem in a  production environment.  Most of the required 
data  for  the period under  study were  available, as  de- 
scribed in the previous  section. The  average  resident  set 
sizes could be estimated,  for  each  observation period,  by 
means of the formula 

A* = N I X ,  (6)  

where N is the total number of pageable pages available 
on-the  system and X is the  average  MPL. A plot of A* 
vs Ts* has been  superimposed on Fig. 5. It  appears  that 

9. Feed-forward control 
Ideally, given all required data  and unlimited computing 
resources,  the  scheduler would predict system perfor- 
mance for  each permissible active  set  (in  the  case of a 
priority-ordered eligible list, the  nth permissible set con- 
sists of the n top-priority programs).  It would then 
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the  “average” program behavior is not  dissimilar to  that 
of the specific programs analyzed.  The critical T value 
seems  to be  higher (around 13,  the value below which 
performance degrades,  as shown in Fig. 2) .  However, 
this may be due  to  the  fact  that A* is an  overestimate 
when system  activity is low, because  active programs 
then  occupy  only  a  fraction of the N available  page 
frames. 

A plot of the overall  system-paging rate vs Ts* (su- 
perimposed on Fig. 7)  fails to show a  breakpoint. A 
possible  reason for  that is suggested in Section 12. 

8. Scheduling principles 
Before applying the preceding results  to  the scheduling 
problem, we shall digress briefly to  describe  the princi- 
ples by which the system scheduler  carries  out its func- 
tions. The primary  function of the  scheduler is to  select 
the  set of active programs,  i.e., the  set of users  to be 
multiprogrammed. The  dispatcher  (not discussed  fur- 
ther  here),  chooses which active program will actually 
run at  any particular  moment. 

The  scheduler performs  its  function in two  steps: 
First, each eligible user is assigned  a  priority. Second,  as 
many of the top-priority users  as is deemed appropriate 
are admitted into  the active set.  The priority-assignment 
functions of the  scheduler  are  matters of installation pol- 
icy and will not  be considered  here. We  are primarily 
interested  here in determining how many users should 
be allowed in the  active  set, given that  the  users must  be 
admitted in the predetermined order of their priorities. 

It is generally  recognized that a high MPL improves 
throughput by permitting a high degree of overlap in the 
utilization of various  system resources.  On  the  other 
hand, a high MPL may result in excessive paging. The 
scheduler must limit the  MPL in such a way that main 
storage is not  overcommitted. There  are  two comple- 
mentary strategies  employed to achieve  this  end: (1) 
Feed-forward  control, in which the  scheduler  estimates 
each program’s main storage  requirements  and  admits 
programs  only as long as  their requirements  can  be met; 
and ( 2 )  Feedback  control, in which the  scheduler re- 
duces  the  MPL if performance degrades  due  to  exces- 
sive paging. 

A balanced use of both  control strategies appears  de- 
sirable. In the succeeding sections  we show how the  PSI 
plays  a  crucial role in both feed-forward  and feedback 
control. 



choose  the  set giving best performance (e.g., highest 
percent problem state). Performance  prediction would 
proceed as follows: 

1. Solve Eq. ( 1 )  for W*. 
2.  Predict paging and  other 1 / 0  rates using Eq. ( 2 )  and 

3. Predict CPU utilization using, say, a  cyclic  queuing 
its analogues. 

network model [7].  

For  obvious  reasons this scheme is impractical.  A 
more modest  scheme is suggested by the  results of Sec- 
tion 6: 

1. Select  a minimum acceptable value of the  PSI, say 

2. Continue  to admit  programs to  the  active  set  as long as 
Wrn. 

Xi Ai(Trn)  5 N ,  the total  number of available pages. 

In this  way,  each  program will be guaranteed  enough 
pages for the whole system  to run at  an  acceptable level 
of W. 

It remains now to predict the value A(Wm) for  each 
program's  next  activation. This prediction is made in 
two steps: 

1. Estimate A (Tm) for  the program's previous acti- 
vation. This is accomplished as follows: For  each ac- 
tivation of a user, the system  maintains  a  cumulative 
sum of the number of resident  pages, the sum being 
incremented at  each page exception. Let the  value of 
this  sum at  the end of the activation  period  be S ,  and 
let Q be the number of page exceptions  generated by 
the program  during  this  activation. Then S /Q  is the 
average  number of resident pages (a correction  for 
the initial page build-up period may be applied).  Fur- 
thermore, let Ws* (Eq. 5 )  be calculated for  the period 
in question.  Then we take S / Q  = A (W,*). Fig. 6 may 
now be used to  estimate A (W,) : 

If Ts* < Tc, then A ( T J  = (T,/W,*)A('ly.s*). (7) 

l fT8*  ZW,, thenA(W,) = ( W , / T , * ) p A ( T , * ) ,  (8 )  

where /3 is some small exponent.  The transformation 
from A (W?) to A (W,,,) now proceeds in reverse  order. 
That is, in Eqs. ( 7 )  and (8) replace all occurrences 
of Ws* with W,, and  solve for A (W,,,). However, in 
the  scheduler implementation that we have tested,  we 
simply took A (W,) = A (W,,,), which is quite reason- 
able if W,,, equals or slightly exceeds *?. 

2. Estimate A (T,) for  the next  activation. Some  exper- 
iments on the  prediction of working set sizes [8], and 
also  analysis of successive activations of actual pro- 
grams on a VM / 370  system,  have shown that  the fol- 
lowing technique produces predictions  almost as 
good as  those obtained by the best  linear predictor 
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that could  have  been constructed if the  entire se- 
quence of memory requirements were known in ad- 
vance. 

Let A, be the value ofA ('ly.,,,) computed  for  the kth 
activation of the  user  under consideration.  Let  be 
some  constant  [the system's  default  guess for A (*,,,)I. 
Let 7, be an exponentially  smoothed average of A,, 
A , .  . ., A,, computed by means of 

A,=LyAk"l+ ( l - a ) A , ,  ( 9 )  

where CY is a constant.  Then  the  estimate  for  the next 
activation is 

A,+,* =A, + p ( A ,  - A , )  9 (10) 

where p is a constant.  Theoretically, p should  be the 
lag- 1 autocorrelation coefficient of the A, sequence. 

The  CP-67 and VM/370  systems recognize two  types 
of activations:  interactive (Ql  stays)  and non-interac- 
tive (Q2 stays). A  program becomes a Q1 candidate 
after a console interaction has  taken place. It receives  a 
maximum of 0.25 seconds [9] CPU time during  its Q I  
stay. If not finished, it  will become  a Q2 candidate,  and 
will receive up to 2.5 seconds [ 9 ]  of CPU time  during 
each Q2 stay.  It is necessary  to  have  separate values of 
&, and to  compute  separate values of and A;+l for 
each type of activation.  After each activation, the values 
of x, and A:+, are updated only for  the  type of activation 
just terminated. Conversely, when a  program  becomes 
a candidate  for activation,  only the A:+, for  the  prospec- 
tive  activation type is used for  testing storage availability. 

10. Feedback control 
Feed-forward  control attempts  to run the  system  at a 
W,* level above  some critical  value. It is only  natural 
that  the  scheduler should check periodically to  deter- 
mine whether this goal was achieved, and to  take  correc- 
tive  action if it was not. Control  actions may be  based 
on  other variables as well. For  instance, Figs. 3 and 4 
suggest that limits should  be  imposed on paging rate and 
steal  ratio. 

A typical set of control actions may be described as 

Strutegy 1 (1 )  If at least one control  variable falls out- 
side the prescribed limit, reduce  the maximum allowed 
MPL below the  current level. Allow this limit to be 
reached by attrition, i.e., do not deactivate any  programs 
immediately: (2) However, if all control  variables fall 
outside  their limits, remove some programs  from the ac- 
tive  set immediately:  and ( 3 )  After all variables  have 
returned to their  permitted  operating  ranges, the limit 
imposed in ( 1 ) is gradually  relaxed. 

This  set of rules is somewhat  arbitrary and  many 
others  can be devised.  The following were also tested in 
the simulation experiments described below: 21 7 

follows: 
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Table 1 Principal  *-scheduler  parameters. 

Default Used in 
Parameter vulue Description  equation 

qr 13 for 768-kbyte storage Critical T value used to 7, 8 

*In 13 for  768-kbyte storage 

p ,  65 page reads/ second  Maximum  allowed paging rate 
S M  0.8 Maximum allowed steal  ratio 

active  storage requirement 

interactive storage 
requirement 

constant 

1 1 for 5 12-kbyte storage estimate  storage require- 

Minimum allowed \v value 
ments 

1 1 for 5 12-kbyte storage 

T"' 5 pages Initial  estimated  inter-  9 

A" 20 pages Initial estimated  non-  9 

ff 0.9 Exponential  smoothing  9 

P 0.5 Regression to mean constant 10 
P 0 Exponent  for T > Tc 8 

- ( 2 )  

Table 2 Simulation results: Comparison of CP-67  and *- 
schedulers (all parameters  at default values). 

Main 

size 
storage  Problem  state  time  (percent) 

Workload  (kbyies)  CP-67  scheduler  T-scheduler 

1 768 
2 768 

43.9 49.8 

3 
59.6 63.1 

768  55.6 62.1 
1 512 
2 

28.2 
512 

29.8 

3 
41.3 44.2 

512  43.6 47.0 

Stra tegy  2 Proceed as in strategy 1, except  that in 
step ( l ) ,  instead of limiting hte  MPL explicitly, reduce 
the value of N used in testing whether EAi 5 N .  

Strategy 3 Proceed as in strategy 2,  except  that  as 
soon as  step ( 1) is invoked,  immediately deactivate  as 
many programs as  necessary  to meet the new storage 
restriction. Step ( 2 )  is now superfluous. 

11. Simulation experiments 
A scheduler (called the V-schedu ler )  employing the 
principles of the preceding sections  was implemented 
within a  detailed  trace-driven  simulator of the  CP-67 
system [ I O ] .  The priority-setting  and  dispatching  func- 
tions  were left as in the  CP-67  system  [6].  The  sched- 
uler contains  several  parameters;  the principal ones  are 
listed in Table 1 .  

Each simulator  run  consisted of simulating 660 sec- 
onds of system  operation with 40 logged-on users.  The 
scenario of programs  included executions of assemblies, 
compilations, object programs, APL functions, and file 
editing  commands. Three  distinct combinations of user 

21 8 scenarios  made  up  the  three  workloads  tested.  There 

were  no compute-bound  programs in workload I ,  there 
were some in workload 2 ,  and  more in workload 3. Two 
system  configurations, differing in the  amount of main 
storage available, were simulated. Percent problem state 
time  was again taken as  the primary  performance mea- 
sure, but other performance measures would have yield- 
ed similar conclusions. Experience has shown  that dif- 
ferences of up  to  two  percentage points between runs 
can  be caused by such  external  factors  as  the  user log-in 
order,  or  the initial placement of pages on  the  drums 
[ 1 11. Hence, differences of less  than  this  magnitude 
must  be  considered insignificant. 

Several series of experiments  were carried out.  First, 
the  performance of the T-scheduler  was  compared  to 
that of the  CP-67  scheduler  [6]. For these  runs  the  de- 
fault parameter values  were  used. The  results  appear in 
Table 2, and show  the  V-scheduler  to be superior in  all 
cases.  This is particularly significant, because  the  stan- 
dard  CP-67  scheduler had already  proven its mettle in 
achieving high performance on real systems  over long 
periods of time, as evidenced by the  results shown in 
Figs. 2-4. 

After establishing the  attractiveness of the  q-sched- 
de r ,  one would like to  determine  whether additional  per- 
formance improvements  can be obtained by tuning the 
parameter values to the  particular  workloads at hand. 
Whereas  no  systematic effort to locate  optimum  param- 
eter values  was  made,  a  3 X 2 X 2 factorial  experimental 
design was employed to  determine  the effects of some of 
the  parameters.  Two additional experiments (Nos. 13 
and  14) were  made to  test intermediate  values of Vc. 
The results are displayed in Table 3, and  show  (even 
after formal  statistical analysis)  that  no significant ef- 
fects  exist,  even though it may be said that  the perfor- 
mance  attained  with the original set of parameters could 
always be  exceeded. If one had to make  a choice  at this 
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Table 3 Simulation results: Effect of T-scheduler  parameters (main storage = 512 kbytes; all other  parameters  at default values). 

Experiment 
number 

Feedback 
strutegy 

( s e e  
Section 
(IO) Vr, = *, P 

Workloud 
I 

1 
2 
3 
4 
5 
6 
7 
8 
9 

I O  
11 
12 
13 
14 

2 
2 
2 

1 1  
1 1  
10 
10 
1 1  
1 1  
10 
I O  
I I  
11 
10 
10 
10.5 
10.5 

0 
0.25 

0 
0.25 

0 
0.25 

0 
0.25 

0 
0.25 

0 
0.25 

0 
0.25 

29.8 
32.7 
31.1 
32.3 
32.7 
32.2 
32.5 
3 1.2 
32.9 
3 1.8 
3 1.5 
33.5 
33.4 
3 1.4 

Probem  stute  time  (percent) 
Workloud  Workload 

2 3 

44.2 47.0 
44.0 46.6 
46.6 47.5 
46.1 47.0 
44.2 48.7 
45.0 49.0 
44.4 48.1 
45.8 48.4 
42.1 49.0 
43.7 50.6 
43.3 50.9 
45.7 49.5 
44.3 49.0 
45.9 48.3 

Overall 
average 

40.3 
41.1 
41.7 
41.8 
41.9 
42.1 
41.7 
41.8 
41.3 
42.0 
41.2 
42.9 
42.2 
41.9 

point, one would select the  parameter values for experi- Table 4 Simulation results:  T-scheduler control  on * alone 
merit 12. F~~~ an implementation  viewpoint, however, (main  storage = 5 12 kbytes;  feedback strategy 3; P = 0.25; 

the value p = 0 is preferable so one might choose  the 
values  from  experiment 13. Probem  state  time  (percent) 

A further  series of experiments was carried  out  to Experiment  Workload  Workload  Workload  Overall 
determine  whether  feedback control on 1v alone  was number Vr, ‘ P C  I 2 3 uvrruge 
sufficient, and how the algorithm performed under 
widely different values of Vc and l v m .  These  experiments 

1 5 5 17.9 39.0 41.6 32.8 
2 5 10 31.5 46.1  47.9 41.8 

constituted  a 3 X 3 factorial design in which Vc and Vm 3 5 20 33.4 45.9 49.3 42.9 
were assigned all combinations of the values 5 ,  10, and 4 10 5 30.4 45.0 45.0 40.1 

20, and all limits on paging rate  and steal ratio were 
5 I O  10 33.3 46.9 49.4 43.2 
6 10 20 32.0 44.1  47.6  41.2 

Phl = 200; S, = I ; other  parameters  at default values). 

- 

removed. The results (Table 4)  show  that control on 1Ir 
alone was sufficient to maintain good performance,  and 
that serious  performance  degradation occurred only 
when both l v c  and l v m  were  set  to  extreme values. Best I overall  performance was obtained  when  both l I r c  and l I r m  

had the  “natural” value 10. By and  large,  however, ei- 
ther feed-forward  control alone (Tc 1 IO),  or feedback 
control  alone (Urn? 10) were sufficient to maintain ade- 
quate performance. 

12. Summary 
If one views the value of the PSI as  the prime determi- 
nant of system performance,  then it becomes  clear  that 
the  scheduler should  function by maintaining the PSI at 
a  desirable  level. Hence,  the feed-forward  strategy  aims 
to predict  program storage  requirements  at  that desired 
level,  and the feedback  strategy takes  corrective action 
whenever  the predictions have turned out  to be  drasti- 
cally wrong. 

Previous scheduling  algorithms have generally at- 
tempted to control the paging rate directly. The CP-67 
scheduler [6] attempted  to estimate for  each program 
separately the  amount of storage it would require  to 

7 20 5 32.4 47.1 47.2 42.2 
8 20 10 32.1 45.1 50.7 42.6 
9 20 20 28.5 42.3 47.6 39.5 

page at what was considered  a  desirable rate.  Then, if all 
active programs paged at  that  rate,  the  entire system 
would also page at  that  rate. Such  a scheme,  however, 
does not succeed:  Unless  controls  are maintained on  the 
amount of storage  available to  each  active program, the 
total  available space will split itself among the programs 
according to Eq. ( l ) ,  and each program will assume its 
own paging rate  at  the resulting value of 1v. On  the  other 
hand, controlling the  amount of storage available to  each 
program (as is done in so called working-set [ 121 sched- 
uling algorithms)  appears undesirable. In every  case  that 
we have examined,  unrestricted  sharing of main storage 
produced far  fewer page exceptions than did running the 
same programs in fixed partitions. Furthermore, even if 
fewer  exceptions  were incurred by storage  management 
schemes which impose such  controls, they are likely to 
require more CPU overhead,  and  experience with CP- 
67 and VM/370 has shown that low paging overhead is 21 9 
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more important for good performance  than low paging 
rate. There  are, of course, special cases  where  such con- 
trols may be  required, e.g., when one wishes to guaran- 
tee good response  to special  tasks. 

Examination of Eq. ( 2 )  shows  that overall system 
paging rate  is determined primarily by slow-paging pro- 
grams  (large t i ) .  Fast-paging  programs  (small t i )  have 
relatively little effect. What  happens, essentially, is that 
the fast-paging program  doesn’t get  to run  much, hence 
it can’t  steal too many pages from the  other programs. 
Of course, if all active programs  page fast,  the  entire 
system will also page fast. Figure 8 suggests that on our 
system there  were usually enough slow-paging programs 
around  to keep the overall paging rate from increasing at 
a superlinear  rate,  even when T was below the critical 
level. This is a further  reason  for suggesting that  one 
need not  attempt  to  control  the paging rate of individual 
programs (unless  one  desires  to  guarantee good re- 
sponse  to  these particular programs). 

For  the workloads  considered in the simulation runs it 
appeared  that  no  direct  control of system paging rate 
was  required. In practice,  however,  such control still 
appears  desirable;  otherwise  one could  not prevent  the 
occasional occurrence of active  sets  that page excessive- 
ly even  at usually acceptable levels of T. Unfortunately, 
the  proper paging-rate control level (P , )  is likely to be 
quite configuration-dependent, whereas  the critical 1I’ 
values could be almost configuration-independent. 

The preceding remarks raise the question of system 
tuning: How  can  one  determine  the  best  parameter val- 
ues for a given installation? From  the point of view of 
tuning ease, the T-scheduler  has  two desirable  proper- 
ties: First,  as  demonstrated by the simulation runs, its 
performance is insensitive to fairly wide  variations in the 
parameter Values. Second, good initial values for many 
of the  parameters  are obtainable by simple analysis of 
system performance  data:  The  values of T,,,, P and S,, 
can be read off plots such  as Fig. 2-4; x0(” an~;;ib@) can 
also be derived  from usually available data;  whereas 
qC, p, a, and p are probably sufficiently system-inde- 
pendent  to make the values  used here a good starting 
point at  any installation. If further refinement is desired, 
experiments in which the  parameters  are varied auto- 
matically on-line can  be designed and  carried  out as de- 
scribed in [ 131. 
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