212

Y. BARD

Y. Bard

Application of the Page Survival Index (PSI) to
Virtual-memory System Performance

Abstract: The Page Survival Index (PSI) was defined in a preceding paper where it was used to describe the behavior of individual
programs running in a time sharing environment. Here we show how a system-wide value of PSI can be calculated on the fly by the
operating-system. This value can be used to estimate users’ memory requirements and to control system performance by maintaining
the proper multiprogramming level. Simulation results show that a scheduler based on these concepts can achieve significant improve-

ments in system performance.

1. Introduction

In this paper we are concerned with the performance of
multiprogrammed virtual storage computer systems. We
have shown previously [1, 2] that the effect of overall
system activity on the behavior of an individual program
running in such a system can be summarized by means
of a parameter termed the page survival index (PSI).
Furthermore, the PSI model made possible prediction of
paging rates when a specific set of programs was run
together. In the present paper, we show how overall sys-
tem performance is related to the PSI and how direct
control of the PSI can form the basis for efficient system
scheduling.

The paper is organized as follows: In Section 2, we
define the type of system to which our results apply.
Sections 3 and 4 summarize the definitions and previous
results relating to the PSI. In Section 5 we show how
overall system PSI values can be calculated by the oper-
ating system, and in Section 6 we examine the perfor-
mance of an actual system in relation to the PSI and
other paging parameters. Section 7 shows that patterns
established in individual program behavior can be gener-
alized to the entire system.

Before going into the details of the suggested sched-
uler, we list some general principles for scheduler design
(Section 8). In particular, the notions of feed-forward
(Section 9) and feedback (Section 10) system control
strategies are introduced. Simulation experiments dem-
onstrating the potential usefulness and robustness of
the proposed scheduler are described in Section 11. The
Summary (Section 12) includes some remarks on sched-
uling, storage allocation, and system tuning.

2. System characterization
The systems to which this investigation applies may be
characterized as follows:

e Multiprogramming

Several programs are allowed to share system resources.
At intervals the system selects a subset of all programs
requesting service, and only these are allowed to run.
The number of selected programs is the multiprogram-
ming level (MPL)), and the selected programs are said to
be active. The active set changes from time to time, as
some active programs terminate or are deactivated by
the system and new programs are activated. Service-
requesting programs which are not currently active are
said to be in the eligible set.

o Virtual storage

Each program has its own virtual address space which is
mapped into real main storage in units of fixed size
pages. A virtual page which has a current image in real
main storage is called resident. Pages are brought into
real main storage on demand, i.e., if a program refer-
ences a nonresident virtual page, this page is fetched
from secondary storage to replace some other currently
resident page.

o Page replacement algorithm

The entire set of pageable main storage page frames is
available to each active program. There is no discrimina-
tion among pages on the basis of ownership. The page to
be replaced by an incoming page is determined by perus-
al of reference bits; pages not recently referenced are

IBM J. RES. DEVELOP.

replaced first. A typical implementation has a core table
with an entry for each pageable page, and a pointer
which cycles around this table. A page will be replaced
when the pointer reaches it, if and only if it had not been
referenced since the previous passage of the pointer.
One complete round trip of the pointer is termed a cycle.
It is easy to see [1] that a page will remain resident for
at least one cycle and at most two cycles following the
last reference to it. On the average, an unreferenced
page will remain resident for 1.5 cycles before it is re-
placed.

The CP-67 [3] and VM/370 [4] systems are precise-
ly of the type described here. Other virtual storage sys-
tems may be sufficiently similar to have our results ap-
plicable.

3. Program characterization
It has been suggested [1] that the behavior of a program
running in a system as described in the previous section
may best be described by a parameter called the PSI.
The value of this parameter is defined as the number of
interruptions in the course of program execution which
an unreferenced resident page can survive before it is
paged out. A high value of the PSI means that an unref-
erenced page can survive a long time, corresponding to
periods of light system paging activity, and conversely.
From a program’s page reference string the entire
execution path (termed the W-realization) of the pro-
gram can be determined, on the assumption that the PSI
maintains a constant value ¥. From these paths (corre-
sponding to different values of ¥) one may compute
various statistics, such as

A(¥) Average resident set size, i.e., average number of
the program’s pages resident in main storage.

R(W¥) Average paging rate (page exceptions per second
of CPU time).

t(¥) Average length of execution interval (seconds of
CPU time between interruptions).

f(¥) Fraction of execution intervals terminating in
page exceptions.

A plot of R(¥) vs A(¥), with ¥ as parameter, is
termed the paging characteristic of the program. The
paging characteristic may be considered an analog to the
well-known parachor curve, which relates paging rate to
storage allocation for the program running in a fixed
storage partition. Plots given in [1] show the vast reduc-
tion in page exceptions which occurs when programs
share storage dynamically, compared to fixed storage
assignments.

4. Performance prediction for given active set
Suppose a given set of programs with known paging
characteristics are to be activated together. It has been

MAY 1975

150

- —x— predicted v=6

o

2 == observed +1 4 programs X

§ 100 |- (simulator) ¥= 8\ 6 programs

2 + observed A\

2 (simulator, CP-67

o priority dispatcher) 8 f‘,:\ 10%,

g | \ N

2 g S0 10\9,1; 15%

i 15%

o 5

RE

il !] 1 L L L
0 20 40 60 80 100 120 140
Page frames available

Figure 1 Prediction of system paging rate for a round-robin
dispatcher.

shown [1, 2] that under a round-robin dispatching pol-
icy, the same value of the PSI, say ¥*, applies to all the
programs, and the average resident sets of the individual
programs sum to the total available page frames:

S A4,(¥*) =N, (n

where the subscript i identifies quantities characterizing
the ith program. Furthermore, a complete round-robin
cycle uses up, on the average, %, t,(¥*) seconds of CPU
time, and during that period there will occur 2, f,(¥*)
page exceptions. Hence, the overall average paging rate
(page exceptions per second of CPU time) is

2 A(¥)
AL AN
One verifies easily that f; = R,t,, hence one may rewrite
(2) as

P(¥*) = (2)

POV) =gy S 40F) R, (¥9), (3)

where

T(¥*) =3 1, (¥%).

1

To predict performance, one first solves equation (1) for
¥#* then uses (2) to compute P. Rates of other I/0
types can be predicted similarly. It was shown previous-
ly [2] that this procedure works well (predicted paging
rates are generally accurate within 10 percent) for a
round-robin dispatcher and gives acceptable results
(generally within 30 percent) for other dispatchers. Typi-
cal results are reproduced in Fig. 1.

5. Estimation of system PSI
The average system-wide PSI value over any sufficiently
long (relative to page survival time) period may be de-

213

APPLICATION OF PSI

214

Y. BARD

80 ° ° 80
00,
£ °oe © °©) e © g o ®
] e®0?® e ° 2 00 %0 % 0 %0 0% © o°°
Eg 601, g OOF o000
g °® = & ° e0
o 9Q [c 8 o ©
2E 40 S E 4 °
- l ! L L L il ! 1 I | L] |
5 10 15 20 25 30 30 40 50 60 70 80 90
b Page reads per second

Figure 2 System performance vs page survival index.

fined as follows: Let p,, p,,- -+, p,, be the list of pages
replaced by the system during that period. Suppose page
p;» belonging to program u;, was replaced at time T, and
suppose the last preceding reference to that page was
made at time ; <T; Let n; be the number of essential
interruptions (i.e., interruptions which left that program
unrunnable) suffered by program u; during the time peri-
od between L and 7. Then the average system-wide PSI
is given by

Vo= % nj/m' (4)
j=1

Equation (4) is unsuitable for use in a live operating
environment, because obtaining the required data would
entail excessive overhead. Fortunately, it is possible to
obtain a good approximation for ¥, using a minimum of
data; in fact, all the required data were available on the
CP-67 system at the Cambridge Scientific Center. The
following system counters were used:

Total number of page exceptions

Total number of virtual 1/Os

Total number of core-table pointer cycles
Cumulative MPL-elapsed time product, i.e., if x(7)
is the multiprogramming level at time ¢, then at time
T, M(T) = [, x(t)dt.

Let AP, AV, - -, denote the differences between the
counter values at the beginning and end of our time peri-
od, which will be assumed to be of length AT. The total
number of essential interruptions suffered by all pro-
grams during that period is approximately AP + AV, and
the average MPL is AM /AT, so that the average num-
ber of essential interruptions suffered by any one pro-
gram is approximately I = (AP + AV) AT/AM. On the
other hand, it was shown previously that an unrefer-
enced page survives, on the average, 1.5 cycles. During
the period AT there were AW/ 1.5 such average survival
periods. Hence, the average number of essential inter-
ruptions survived by unreferenced pages was 1.5 I/ AW,
But this is, by definition, the system-wide PSI. Hence ¥,

TE=T™

Figure 3 System performance vs paging rate.

should approximately equal the value ¥ * obtained by
evaluating

1.5 (AP + AV)AT
AMAW

One might ask how good an approximation to ¥ is W *,
In the course of the simulation runs described below,
both ¥, and W * were calculated at the end of each peri-
od of 30 seconds or 10 cycles, whichever came first. The
two values agreed very well with each other in the re-
gion 0 < ¥ * < 20, which fortunately is the one of great-
est interest. In a typical run containing 40 samples, the
average values of ¥ * and ¥, were 12.61 and 12.67,
respectively, the standard deviations were 4.09 and
4.16, and the correlation between them was 90.5 per-
cent. It is concluded, then, that ¥ * is an excellent esti-
mate for V.

When V¥, exceeds 20, paging activity is so low that
pages tend to remain resident until the program owning
them becomes deactivated. Under these conditions ¥,
no longer reflects the true survival capability of unrefer-
enced pages. This accounts for the fact that ¥, tends to
be much lower than ¥ * in this range.

V=

(5)

6. Effect of paging on system performance

In order to devise a strategy for controlling system pag-
ing, it was necessary to determine what effect the vari-
ous paging-related variables had on system performance.
The following analysis was based on data collected un-
der a real production load over a one-month period on
the CP-67 system at the Cambridge Scientific Center.
The system configuration contained 768 kbytes of core
storage, with approximately 130 4096-byte page frames
available for paging. Three IBM 2301 magnetic drums,
mounted on two channels, were used as paging devices.
The methods of data collection and analysis have been
described elsewhere {5]. The data consisted of the val-
ues of various system counters recorded at approximate-
ly 100-second intervals (less frequently during slack
usage periods). From these counter readings it was pos-

IBM J. RES. DEVELOP.

sible to calculate, for each observation period, the values 80 ° ° 0o
. .) [o]
of the following variables: 000 ° o0 R o o
[} [} @ [}
0 -° e © <] °
&~ Performance variable g R
1. Percent problem state time, i.e., the percentage of -
time during which the CPU was executing user pro- Z
Q
grams S °
& 20 -
: g
e Key variables g o
2. Average multiprogramming level = ! L ! l |
3. * 30 40 50 60 70 80 % 100
* S
4. Average paging rate, page reads per second Page steals per 100 page reads
5

. Page steal ratio, i.e., fraction of pages read which
replaced pages belonging to active users.

For the purposes of this study, percent problem state
time was chosen as the primary performance criterion.
The analysis proceeded with all observations being clas-
sified into groups according to the values of one of the
key variables. The average percent problem state time
was computed within each group of observations, and
plotted against the values of the key variable (Figs. 2-4).

It was determined that performance is not sensitive to
the MPL. This results from the fact that the CP-67
scheduler [6] attempts to control the MPL so as to op-
timize performance. The data do not suggest that main-
taining a fixed upper limit on the MPL would be benefi-
cial. On the other hand, Figs. 2-4 indicate that perfor-
mance degrades when the paging rate exceeds 65 page
reads per second, when the steal ratio exceeds 80 per-
cent, or when V. * falls below 13. Still, it is remarkable
that excellent performance is obtained at what might be
thought of as very high paging rates and steal ratios.
This is due, at least partly, to the simplicity and efficient
coding of the CP-67 paging algorithms, which result in
extremely low CPU overhead per paging operation.

7. Relation between PSI| and program behavior
The effect of the PSI on the behavior of a specific pro-
gram is readily derivable from the ¥-realizations or from
the paging characteristics. For instance, the average res-
ident set sizes A(¥) for various programs are plotted
as functions of ¥ in Fig. 5. Most of these programs seem
to follow similar behavior patterns: initially 4(¥) in-
creases roughly in proportion to ¥, but when ¥ reaches
a critical value ¥, somewhere between 7 and 10, the
curve flattens out. Further increases in A(W¥) are pro-
portional to v# with B between 0 and 0.25. This sug-
gests that by plotting the ratio A(¥)/A(¥,) vs ¥/ ¥,
one would obtain a generic representation (Fig. 6), valid
for a wide range of programs.

Similarly, the paging rates R(¥) of the various pro-
grams can be plotted vs ¥ (Fig. 7). Initially the paging
rate decreases rapidly, in porportion to ¥~ (mostly 2 <

Figure 4 System performance vs steal ratio.

40

30 -
© system average

individual programs

20

10

oo
T TT1

A (¥) (pages)

1 2 3 4 6 8 10 20 30

Figure 5 Program storage requirements.

Figure 6 Generic program storage requirements.

¥/¥,) %

4-\

K (P/¥e)°

A(W)/4 (V)

/¥,

APPLICATION OF PSI ‘

MAY 1975

216

Y. BARD

2000

1000 © system average

individual programs

TTTT

T

500

200

100

T TTTTT

50

T

20 =

10 |-

Page reads per second of virtual time

L1411 1 |

Figure 7 Program paging rates.

y = 4), but again a break occurs at ¥, and above that
value the paging rate decreases only as ¥ '. The break,
however, is absent in some cases, where R(W) is pro-
portional to ¥™' over the entire measurement range.

These characterizations apply to specific programs
whose execution traces were analyzed in detail. It is
possible, however, to obtain a similar characterization
for the “average” program actually running on the sys-
tem in a production environment. Most of the required
data for the period under study were available, as de-
scribed in the previous section. The average resident set
sizes could be estimated, for each observation period, by
means of the formula

A*=N/X, (6)

where N is the total number of pageable pages available
on-the system and X is the average MPL. A plot of 4*
vs ¥ * has been superimposed on Fig. 5. It appears that

the “‘average” program behavior is not dissimilar to that
of the specific programs analyzed. The critical ¥ value
seems to be higher (around 13, the value below which
performance degrades, as shown in Fig. 2). However,
this may be due to the fact that A* is an overestimate
when system activity is low, because active programs
then occupy only a fraction of the N available page
frames.

A plot of the overall system-paging rate vs ¥_* (su-
perimposed on Fig. 7) fails to show a breakpoint. A
possible reason for that is suggested in Section 12.

8. Scheduling principles

Before applying the preceding results to the scheduling
problem, we shall digress briefly to describe the princi-
ples by which the system scheduler carries out its func-
tions. The primary function of the scheduler is to select
the set of active programs, i.e., the set of users to be
multiprogrammed. The dispatcher (not discussed fur-
ther here), chooses which active program will actually
run at any particular moment.

The scheduler performs its function in two steps:
First, each eligible user is assigned a priority. Second, as
many of the top-priority users as is deemed appropriate
are admitted into the active set. The priority-assignment
functions of the scheduler are matters of installation pol-
icy and will not be considered here. We are primarily
interested here in determining how many users should
be allowed in the active set, given that the users must be
admitted in the predetermined order of their priorities.

It is generally recognized that a high MPL improves
throughput by permitting a high degree of overlap in the
utilization of various system resources. On the other
hand, a high MPL may result in excessive paging. The
scheduler must limit the MPL in such a way that main
storage is not overcommitted. There are two comple-
mentary strategies employed to achieve this end: (1)
Feed-forward control, in which the scheduler estimates
each program’s main storage requirements and admits
programs only as long as their requirements can be met;
and (2) Feedback control, in which the scheduler re-
duces the MPL if performance degrades due to exces-
sive paging.

A balanced use of both control strategies appears de-
sirable. In the succeeding sections we show how the PSI
plays a crucial role in both feed-forward and feedback
control.

9. Feed-forward control

Ideally, given all required data and unlimited computing
resources, the scheduler would predict system perfor-
mance for each permissible active set (in the case of a
priority-ordered eligible list, the nth permissible set con-
sists of the n top-priority programs). It would then

IBM J. RES. DEVELOP.

choose the set giving best performance (e.g., highest
percent problem state). Performance prediction would
proceed as follows:

1. Solve Eq. (1) for ¥*,

2. Predict paging and other 1/0 rates using Eq. (2) and
its analogues.

3. Predict CPU utilization using, say, a cyclic queuing
network model [7].

For obvious reasons this scheme is impractical. A
more modest scheme is suggested by the results of Sec-
tion 6:

1. Select a minimum acceptable value of the PSI, say
v,

2. Continue to admit programs to the active set as long as
2, A,(¥,) = N, the total number of available pages.

In this way, each program will be guaranteed enough
pages for the whole system to run at an acceptable level
of V.

It remains now to predict the value 4(¥,)) for each
program’s next activation. This prediction is made in
two steps:

1. Estimate A(¥,) for the program’s previous acti-
vation. This is accomplished as follows: For each ac-
tivation of a user, the system maintains a cumulative
sum of the number of resident pages, the sum being
incremented at each page exception. Let the value of
this sum at the end of the activation period be S, and
let Q be the number of page exceptions generated by
the program during this activation. Then §/Q is the
average number of resident pages (a correction for
the initial page build-up period may be applied). Fur-
thermore, let ¥ .* (Eq. 5) be calculated for the period
in question. Then we take S/Q = A(¥,*). Fig. 6 may
now be used to estimate 4 (¥,):

If ¥* < W, then A(V,) = (¥./¥)A(¥F*). (7)
If W * =W, then A(W,) = (V,/¥H)P4(¥*), (8)

where B is some small exponent. The transformation
from A(¥) to 4 (¥) now proceeds in reverse order.
That is, in Egs. (7) and (8) replace all occurrences
of ¥.* with ¥, and solve for 4(¥,). However, in
the scheduler implementation that we have tested, we
simply took 4(¥,) = A(¥_), which is quite reason-
able if ¥_ equals or slightly exceeds V.

2. Estimate A(W¥,,) for the next activation. Some exper-
iments on the prediction of working set sizes [8], and
also analysis of successive activations of actual pro-
grams on a VM /370 system, have shown that the fol-
lowing technique produces predictions almost as
good as those obtained by the best linear predictor

MAY 1975

that could have been constructed if the entire se-
quence of memory requirements were known in ad-
vance.

Let A4, be the value of A(¥) computed for the kth
activation of the user under consideration. Let A_o be
some constant [the system’s default guess for 4(¥,)].
Let A_k be an exponentially smoothed average of A,
A, -+, A,, computed by means of

+ (1 —a) A4, (9)

Ay =o0d,_,
where « is a constant. Then the estimate for the next
activation is

A,

k+1

F=A,t+p(4,— Ay, (10)

where p is a constant. Theoretically, p should be the
lag-1 autocorrelation coefficient of the 4, sequence.

The CP-67 and VM /370 systems recognize two types
of activations: interactive (Q1 stays) and non-interac-
tive (Q2 stays). A program becomes a Q1 candidate
after a console interaction has taken place. It receives a
maximum of 0.25 seconds {9] CPU time during its Q1
stay. If not finished, it will become a Q2 candidate, and
will receive up to 2.5 seconds [9] of CPU time during
each Q2 stay. It is necessary to have separate values of
A,, and to compute separate values of A, and 4%, for
each type of activation. After each activation, the values
of Z; and A}, , are updated only for the type of activation
just terminated. Conversely, when a program becomes
a candidate for activation, only the A} , for the prospec-
tive activation type is used for testing storage availability.

10. Feedback control

Feed-forward control attempts to run the system at a
¥ * level above some critical value. It is only natural
that the scheduler should check periodically to deter-
mine whether this goal was achieved, and to take correc-
tive action if it was not. Control actions may be based
on other variables as well. For instance, Figs. 3 and 4
suggest that limits should be imposed on paging rate and
steal ratio.

A typical set of control actions may be described as
follows:

Strategy 1 (1) If at least one control variable falls out-
side the prescribed limit, reduce the maximum allowed
MPL below the current level. Allow this limit to be
reached by attrition, i.e., do not deactivate any programs
immediately; (2) However, if all control variables fall
outside their limits, remove some programs from the ac-
tive set immediately; and (3) After all variables have
returned to their permitted operating ranges, the limit
imposed in (1) is gradually relaxed.

This set of rules is somewhat arbitrary and many
others can be devised. The following were also tested in
the simulation experiments described below:

217

APPLICATION OF PSI

218

Y. BARD

Table 1 Principal ¥-scheduler parameters.

Default Used in
Parameter value Description equation
v, 13 for 768-kbyte storage Critical ¥ value used to 7,8
11 for 512-kbyte storage estimate storage require-
ents
v, 13 for 768-kbyte storage Minimum allowed ¥ value
11 for 512-kbyte storage
Py 65 page reads/ second Maximum allowed paging rate
Sum 0.8 Maximum allowed steal ratio
A_o‘” 5 pages Initial estimated inter- 9
active storage requirement
a,® 20 pages Initial estimated non- 9
interactive storage
requirement
@ 0.9 Exponential smoothing 9
constant
p 0.5 Regression to mean constant 10
B 0 Exponent for ¥ > ¥, 8

Table 2 Simulation results: Comparison of CP-67 and W-
schedulers (all parameters at default values).

Main
storage Problem state time (percent)
size
Workload (kbytes) CP-67 scheduler Y-scheduler
1 768 439 49.8
2 768 59.6 63.1
3 768 55.6 62.1
1 512 28.2 29.8
2 512 413 44.2
3 512 43.6 47.0

Strategy 2 Proceed as in strategy 1, except that in
step (1), instead of limiting hte MPL explicitly, reduce
the value of N used in testing whether 24, = N.

Strategy 3 Proceed as in strategy 2, except that as
soon as step (1) is invoked, immediately deactivate as
many programs as necessary to meet the new storage
restriction. Step (2) is now superfluous.

11. Simulation experiments

A scheduler (called the W-scheduler) employing the
principles of the preceding sections was implemented
within a detailed trace-driven simulator of the CP-67
system [10]. The priority-setting and dispatching func-
tions were left as in the CP-67 system [6]. The sched-
uler contains several parameters; the principal ones are
listed in Table 1.

Each simulator run consisted of simulating 660 sec-
onds of system operation with 40 logged-on users. The
scenario of programs included executions of assemblies,
compilations, object programs, APL functions, and file
editing commands. Three distinct combinations of user
scenarios made up the three workloads tested. There

were no compute-bound programs in workload [, there
were some in workload 2, and more in workload 3. Two
system configurations, differing in the amount of main
storage available, were simulated. Percent problem state
time was again taken as the primary performance mea-
sure, but other performance measures would have yield-
ed similar conclusions. Experience has shown that dif-
ferences of up to two percentage points between runs
can be caused by such external factors as the user log-in
order, or the initial placement of pages on the drums
[11]. Hence, differences of less than this magnitude
must be considered insignificant.

Several series of experiments were carried out. First,
the performance of the W-scheduler was compared to
that of the CP-67 scheduler [6]. For these runs the de-
fault parameter values were used. The results appear in
Table 2, and show the ¥-scheduler to be superior in all
cases. This is particularly significant, because the stan-
dard CP-67 scheduler had already proven its mettle in
achieving high performance on real systems over long
periods of time, as evidenced by the results shown in
Figs. 2-4.

After establishing the attractiveness of the W-sched-
uler, one would like to determine whether additional per-
formance improvements can be obtained by tunirig the
parameter values to the particular workloads at hand.
Whereas no systematic effort to locate optimum param-
eter values was made, a 3 X 2 X 2 factorial experimental
design was employed to determine the effects of some of
the parameters. Two additional experiments (Nos. 13
and 14) were made to test intermediate values of V..
The results are displayed in Table 3, and show (even
after formal statistical analysis) that no significant ef-
fects exist, even though it may be said that the perfor-
mance attained with the original set of parameters could
always be exceeded. If one had to make a choice at this

IBM J. RES. DEVELOP.

Table 3 Simulation resuits: Effect of ¥-scheduler parameters (main storage = 512 kbytes; all other parameters at default values).

Feedback
st(r;;et:gy Probem state time (percent)
Experiment Section Workload Workload Workload Overall
number (10) Y=V B 1 2 3 average
1 1 11 0 29.8 44.2 47.0 40.3
2 1 11 0.25 32.7 44.0 46.6 41.1
3 1 10 0 31.1 46.6 47.5 41.7
4 1 10 0.25 32.3 46.1 47.0 41.8
5 2 11 0 32.7 44.2 48.7 41.9
6 2 11 0.25 32.2 45.0 49.0 42.1
7 2 10 0 32.5 44.4 48.1 41.7
8 2 10 0.25 31.2 45.8 48.4 41.8
9 3 11 0 32.9 42.1 49.0 41.3
10 3 11 0.25 31.8 43.7 50.6 42.0
I 3 10 0 31.5 43.3 50.9 41.2
12 3 10 0.25 33.5 45.7 49.5 42.9
13 2 10.5 0 33.4 443 49.0 42.2
14 2 10.5 0.25 31.4 45.9 48.3 41.9

point, one would select the parameter values for experi-
ment 12. From an implementation viewpoint, however,
the value 8 = 0 is preferable so one might choose the
values from experiment 13.

A further series of experiments was carried out to
determine whether feedback control on ¥ alone was
sufficient, and how the algorithm performed under
widely different values of ¥, and ¥,,. These experiments
constituted a 3 X 3 factorial design in which ¥, and ¥,
were assigned all combinations of the values 5, 10, and
20, and all limits on paging rate and steal ratio were
removed. The results (Table 4) show that control on ¥
alone was sufficient to maintain good performance, and
that serious performance degradation occurred only
when both ¥, and ¥, were set to extreme values. Best
overall performance was obtained when both ¥, and ¥,
had the “natural” value 10. By and large, however, ei-
ther feed-forward control alone (¥, = 10), or feedback
control alone (¥, = 10) were sufficient to maintain ade-
quate performance.

12. Summary

iIf one views the value of the PSI as the prime determi-
nant of system performance, then it becomes clear that
the scheduler should function by maintaining the PSI at
a desirable level. Hence, the feed-forward strategy aims
to predict program storage requirements at that desired
level, and the feedback strategy takes corrective action
whenever the predictions have turned out to be drasti-
cally wrong.

Previous scheduling algorithms have generally at-
tempted to control the paging rate directly. The CP-67
scheduler [6] attempted to estimate for each program
separately the amount of storage it would require to

MAY 1975

Table 4 Simulation results: ¥-scheduler control on ¥ alone
(main storage = 512 kbytes; feedback strategy 3; 8 = 0.25;
Py = 200; $y = |; other parameters at default values).

Probem state time (percent)

Experiment Workload Workload Workload Overall
number ¥, W, 1 2 3 average

1 5 5 17.9 39.0 41.6 32.8

2 5 10 31.5 46.1 479 41.8

3 5 20 334 459 49.3 42.9

4 10 5 30.4 45.0 45.0 40.1

5 10 10 333 46.9 49.4 432

6 10 20 32.0 44.1 47.6 41.2

7 20 5 324 471 47.2 42.2

8 20 10 32.1 45.1 50.7 42.6

9 20 20 28.5 42.3 47.6 39.5

page at what was considered a desirable rate. Then, if all
active programs paged at that rate, the entire system
would also page at that rate. Such a scheme, however,
does not succeed: Unless controls are maintained on the
amount of storage available to each active program, the
total available space will split itself among the programs
according to Eq. (1), and each program will assume its
own paging rate at the resulting value of ¥. On the other
hand, controlling the amount of storage available to each
program (as is done in so called working-set [12] sched-
uling algorithms) appears undesirable. In every case that
we have examined, unrestricted sharing of main storage
produced far fewer page exceptions than did running the
same programs in fixed partitions. Furthermore, even if
fewer exceptions were incurred by storage management
schemes which impose such controls, they are likely to
require more CPU overhead, and experience with CP-
67 and VM /370 has shown that low paging overhead is

APPLICATION

219

OF PSI

220

Y. BARD

more important for good performance than low paging
rate. There are, of cou-rse, special cases where such con-
trols may be required, e.g., when one wishes to guaran-
tee good response to special tasks.

Examination of Eq. (2) shows that overall system
paging rate is determined primarily by slow-paging pro-
grams (large ;). Fast-paging programs (small ¢,) have
relatively little effect. What happens, essentially, is that
the fast-paging program doesn’t get to run much, hence
it can’t steal too many pages from the other programs.
Of course, if all active programs page fast, the entire
system will also page fast. Figure 8 suggests that on our
system there were usually enough slow-paging programs
around to keep the overall paging rate from increasing at
a superlinear rate, even when ¥ was below the critical
level. This is a further reason for suggesting that one
need not attempt to control the paging rate of individual
programs (unless one desires to guarantee good re-
sponse to these particular programs).

For the workloads considered in the simulation runs it
appeared that no direct control of system paging rate
was required. In practice, however, such control still
appears desirable; otherwise one could not prevent the
occasional occurrence of active sets that page excessive-
ly even at usually acceptable levels of ¥. Unfortunately,
the proper paging-rate control level (P,) is likely to be
quite configuration-dependent, whereas the critical ¥
values could be almost configuration-independent.

The preceding remarks raise the question of system
tuning: How can one determine the best parameter val-
ues for a given installation? From the point of view of
tuning ease, the ¥-scheduler has two desirable proper-
ties: First, as demonstrated by the simulation runs, its
performance is insensitive to fairly wide variations in the
parameter values. Second, good initial values for many
of the parameters are obtainable by simple analysis of
system performance data: The values of ¥, P,,, and §,,,
can be read off plots such as Fig. 2-4; 4,"’ and4,”’ can
also be derived from usually available data; whereas
V., B, a, and p are probably sufficiently system-inde-
pendent to make the values used here a good starting
point at any installation. If further refinement is desired,
experiments in which the parameters are varied auto-
matically on-line can be designed and carried out as de-
scribed in [13].

13. Acknowledgments

The author thanks C. Tillman for implementing the W-
scheduler on the CP-67 simulator and for many valuable
suggestions regarding the design of the scheduler,
P. Bryant and M. Schatzoff for their careful reading of the
manuscript, and P. Callaway for supplying the VM /370
data.

References and note

1. Y. Bard, “Characterization of Program Paging in a Time-
Sharing Environment,” IBM J. Res. Develop. 11, 387
(1973).

2. Y. Bard, “Prediction of System Paging Rates,” Proceed-
ings of Computer Science and Statistics {Seventh Annual
Symposium on the Interface), Iowa State University, 1973,
pp. 138-141.

3. CP-67/CMS System Description Manual, Form No.
GH?20-0802-2, IBM Data Processing Division, White
Plains, NY, 1971.

4. IBM Virtual Machine Facility/ 370, Form No. GC20-1800
(Introduction), IBM Data Processing Division, White
Plains, NY, 1972.

5. Y. Bard, “Performance Criteria and Measurement for a
Time-Sharing System,” IBM Syst. J. 10, 193 (1971).

6. M. Schatzoff and L. H. Wheeler, “CP-67 Paging Priority
Dispatcher,” Technical Report No. 320-2088, IBM Scien-
tific Center, Cambridge, MA, 1973.

7. J. Buzen, ‘“Analysis of System Bottlenecks Using a
Queuing Network Model,” Proceedings of ACM Workshop
on System Performance Evaluation, Harvard University,
1971, pp. 82-102.

8. P. Bryant, “Predicting Working Set Sizes,” /IBM J. Res.
Develop. 19, 221 (1975), this issue.

9. These figures apply to CP-67 running at the Cambridge
Scientific Center. They may differ at other installations,
particularly for VM /370 systems running on different-
speed CPUs.

10. C. Boksenbaum, S. Greenberg, and C. Tillman, “Simula-
tion of CP-67,” Technical Report No. G320-2093, I1BM
Scientific Center, Cambridge, MA, 1973.

11. M. Schatzoff and P. Bryant, “Regression Methods in Per-
formance Evaluation: Some Comments on the State of the
Art,” Proceedings of Computer Science and Statistics
(Seventh Annual Symposium on the Interface), lowa State
University, 1973, pp. 48-57. In particular, see Table §.

12. P. J. Denning, “The Working Set Model for Program Be-
havior,” Commun. ACM 11, 323 (1968).

13. Y. Bard, “Experimental Evaluation of System Perfor-
mance,” IBM Syst. J. 12, 302 (1973).

Received June 20, 1974

The author is located at the IBM Data Processing Divi-
sion Scientific Center, 545 Technology Square, Cam-
bridge, Massachusetts 02139.

IBM J. RES. DEVELOP.

