G. Urschler

Automatic Structuring of Programs

Abstract: A method is described that allows the translation of a traditionally written (unstructured) program into a set of top-down
structured, semantically founded, coro-free moduies. The method reveals not only the logic of a given program in a most natural way,
but it also reduces code duplication to a minimum. It is further shown how the obtained structured program can be mapped back into a
GOTO program in such a way that all GoTos are backwards branches and their number is minimal. The connection between recursively
and iteratively structured programs is demonstrated using the WHILE, DO FOREVER, and multilevel EXIT statements. Extensions of the
method show the structuring of source programs containing block structures and subroutines.

Introduction

The two major disciplines that can be subsumed under
the heading structured programming are the methodolo-
gy of program development and language design. The
methodology proposes to develop reliable and under-
standable programs in a sequence of steps that show
different levels of abstraction, starting with the problem
and ending with the final code, and to do this by step-
wise refinement. The aim of the language design is to
support these ideas by the development of suitable lan-
guage features. There are two obvious ways to do this.
One is to start with specific problem solutions, to find
adequate expressional tools for them (which may also
provide feedback for better solutions), and then to try to
find suitable generalizations. The other is to start with an
existing language (which is an expressional tool for an
infinite number of problem solutions) and develop an
algorithm that automatically transforms an arbitrary
program written in the language into a structured form,
thereby developing a new programming language as
well. We intend this paper to be interpreted primarily in
the latter sense, i. e., as a contribution to language de-
sign. When developing a “structurizer,” we obtain, in
addition, a valuable tool for:

s The automatic structuring of existing unstructured
programs, which should greatly facilitate the reading of
existing programs.

MARCH 1975

» The education of programmers, a whole generation of
whom are said to have been spoiled by FORTRAN.

& The further automatic processing of programs for the
purposes of compilation, optimization, parallelization,
correctness proving, formatting, and editing.

The structuring method described in this paper was
originally developed by the author for the translation of
flow diagrams into maximally parallel form. In [1] it was
shown that the program structure suggested in this paper
is exactly the one required to get dynamic (run-time)
parallelism (i.e., to execute, for instance, independent
iterations of the same loop asynchronously). To assure
the reader that the structuring method presented is not
one of the well-known ones in disguise, the following
comparisons are made:

1. The oldest structuring method is due to Kleene [2],
who showed that finite state machines (which flow
diagrams can be considered to be) are equivaient to
regular expressions. What makes Kleene’s approach
different from ours (and all other control structure
oriented ones) is the equivalence relation between
regular expressions. It is based on the rules of asso-
ciativity, commutativity, and distributivity of the pri-
mitive operations of concatenation and Oring. Most
of these rules do not apply to transformations admis-

181

AUTOMATIC STRUCTURING

182

G. URSCHLER

i

o

——

9
v

1

e

|

Figure 1 Flow diagram skeleton,

sible in program structuring because they make a
program based on a set of computations and deprive
it of its original control structure.

2. Bohm and Jacopini [3] modeled the control structure
at least partially by means of the data flow (using
control switches). In contrast, in this paper no use of
the data flow of a program is made.

3. The method of Manna and Ashcroft [4], as an im-
provement of the Bohm and Jacopini results, treats
program transformations as pure control structure
transformations and thus preserves the program’s
“topology.” The price paid is a possible exponential
increase in program size. With our method, however,
we claim to keep the conciseness of the GoTo.

4. Our method may seem to be a contradiction of the
more negative implications of the results of Ashcroft
and Manna [4], Knuth and Floyd [5], and Bruno
and Steiglitz [6], which proved the WHILE statement
to be inherently weaker than the GoTo statement.
Along these lines Peterson, Kasami, and Tokura [7]
finally came to the conclusion that besides the WHILE

b d e

statement the (more general) DO FOREVER, in
connection with the multilevel EXIT statement and
node splitting (i.e., the copying of program text), is
needed to reach the full capability of the GoTo. In
this paper recursive language constructs are used in-
stead of the above mentioned iterative ones. Because
recursion is a more powerful language concept than
the GoTo, the above results no longer apply. The
proposed language feature itself can be regarded as a
generalization of Dahl’s [8] concept of a recursive
loop.

5. The first attempts to translate an iterative program
into a recursive form are due to McCarthy [9] and
Van Wijngaarden [10]. What makes their approach-
es different from ours is that they form (recursive)
modules on a syntactical rather than a semantical
basis. Their modules always have a maximal scope
(up to the end of the program), whereas our scopes
are minimal and based on the post dominance rela-
tion.

One of the many restrictions of the work reported in
this paper is that the data flow of programs is disregard-
ed, as are many involved optimization problems. This is
not because we think these problems are insignificant,
but is rather a consequence of an attempt to clearly iso-
late the problem.

First we show how simple GOTO programs can be
translated into modular, top-down structured programs
in such a way that the program logic is exposed. As a
next step the obtained program representation is brought
into as concise a form as possible. Afterwards the result-
ing programs are mapped back into GOTO programs in
such a way that all GoTtos are backwards branches and
their number is minimal. Then the connection between
recursively and iteratively structured programs is dem-
onstrated by using the WHILE, DO FOREVER, and muliti-
level ExIT statements. Finally an extension of the method
to a more powerful source language is given, showing
that a recently proposed language feature of Zahn [11]
fits nicely into the proposed language concept.

Translation of GOTO programs into recursively
structured form

In the following text GoTO programs are assumed to be
represented in the form of flow diagrams. Because this
paper deals with control structure transformations, only
the skeleton of these flow diagrams is shown (sometimes
referred to as the outer syntax of the program). Such a
skeleton can be regarded as a finite, directed, and la-
beled graph satisfying the following conditions:

1. It has exactly one beginning (denoted by V) and ex-
actly one end (denoted by A).

IBM J. RES. DEVELOP.

2. Each node in the graph is reachable from V, and A can
be reached from it (i.e., the graph is in reduced form).

3. Edges with the same source have different targets.

4. If two nodes are connected by an edge, at least one of
them is either a junction node (i.e., the target of at
least two different edges) or a ramification node (i.e.,
the source of at least two different edges).

In spite of the abstraction made, all of the assertions
in this paper are intended primarily to be assertions on
programs and not assertions on graphs. Figure 1 shows
an example of a flow diagram skeleton.

Ramification nodes are also referred to as decisions
(they correspond exactly to the decisions of the underly-
ing flow diagram). They are drawn in the usual way as
diamond shaped boxes and are labeled by capital letters
(4, B, . . .). Decisions may have more than two out-
comes, but identical outcomes are assumed to be com-
bined into a single one (expressed by condition 3
above). In any case the outcomes are assumed to be
ordered, as indicated by +, — in Fig. 1; if there are more
than two outcomes, integers can be used.

Nodes that are the source of a single edge only and
are different from V are also referred to as elementary
blocks. They correspond to maximal (expressed by
condition 4 above) sequences of “basic” statements
(i.e., assignment. 1/0, and other data oriented
statements) in the underlying flow diagram. Elementary
blocks are drawn as rectangular boxes and are labeled
by lower-case letters (a, b, -).

Although the denotations of decisions and elementary
blocks are irrelevant for the purpose of this paper, it is
sometimes necessary to refer to them. We do this by
underlying the node labels. Thus A4, B, - denote, for
instance, not further specified Boolean expressions and
a, b, - - denote not further specified sequences of basic
statements.

The example in Fig. 1 was chosen because it is simple
enough not to be confusing and complicated enough to
show the main problems in the structuring process.
(There is a loop in the program, namely d B f C d, that
has two entries and two exits; the program is also
irreducible).

The following definitions can be made with respect to
flow diagram skeletons:

Definition 1 A node N, is a successor of a node N, if
there is an edge in the graph with source N, and target
N,. (In Fig. 1, for instance, A has the two successors b
and ¢, and ¢ has the unique successor d).

Definition 2 A path is a sequence of nodes each of which
(except for the first node) is a successor of the node
immediately preceding it in the path.

MARCH 1975

Definition 3 A path is cycle-free if it contains no node
twice.

Definition 4 A node N, is a post dominator of a node N,
if each path from N, to A contains N,.

Definition 5 A node N, is an immediate post dominator
of a node N, if N, is a post dominator of N, and if in
each path from N, to A N, is the post dominator of N,
occurring first.

One of the first mentions of dominance relations is in
[12]. Since then dominance relations have been widely
used in the optimization area, mainly in the form of the
predominance relation [13].

Proposition 1 Each node different from A has exactly
one uniquely determined immediate post dominator.

Proof Each node different from A has at least one post
dominator, namely A. Let us assume there are two cy-
cle-free paths (cycles do not contribute to post domi-
nators) from a node N to A containing the two post
dominators P, and P, but in reversed order, i.e., N-** P,
-+-P,---Aand N --- P, - P, - A. Then N--- P, - Ais
also a path from N to A, and it does not contain P,,
which is a contradiction. Thus in each cycle-free path
from node N to A, all post dominators of N occur in the
same order, and the uniquely determined first of them is
the immediate post dominator of N.

The determination of the immediate post dominator of
an elementary block is trivial, because in this case imme-
diate post dominator and successor are identical. To
determine the immediate post dominator for a decision
A, all the cycle-free paths from A4 to A are needed, and
the junction point of all of these paths must be found.

In Fig. 1, for instance, the cycle-free paths from 4 to
Aare Ab C gAand A cdBfC g A. The junction point
of these paths is C. Thus C is the immediate post domi-
nator of A. From B only one cycle-free path goes to A,
namely B f C g A. Thus fis the immediate post domina-
tor of C.

This recipe for finding immediate post dominators is
not the best one from an efficiency point of view. For a
better one the reader may refer to [14]. Any of these
algorithms produces a table of the immediate post domi-
nators of all graph nodes. For our example it is as shown
in Table 1.

This table is the key to understanding the entire pro-
gram logic. By analyzing the given program (V) we can
say it starts with a, does some computation depending
on the decision 4 (the module determined by A4), and,
independently of what the input data are, each terminat-
ing computation comes to module C, executes g after-
wards, and finally comes to the end.

AUTOMATIC STRUCTURING

183

184

G. URSCHLER

Table 1 Immediate post dominators.

Node V a A b ¢c d B e f C g

Immediate

post dominator a A C C d B f ¢ C g A

In a more convenient formal notation we express this
main flow of control of the program in the form of the
following equation (or production if we use the terminol-
ogy of the theory of syntax):

V=aACg.

Blocks @ and g are referred to as terminals in this pro-
duction because they already have a meaning (the state-
ment sequence denoted by them) and need no further
definition. Modules V, 4, and C are nonterminals, and
the definition of V is given by the above equation. The
definition of A4 can be derived in two steps. At first it is
shown that 4 is based upon a decision resulting in one of
two possible alternatives. We express this by:

A=)

and read it, for instance, as: IF 4 THEN - * ELSE .

As a next step the two alternatives are constructed. In
the first case (when the condition A4 is true) the state-
ment sequence b is executed first. If we trace the main
flow of control (i.e., the chain of immediate post
dominators) from b to the end we get b C g A. How-
ever, we need the flow of control only ‘“within the
scope” of 4, which means that we have to stop the
chaining process as soon as the immediate post domina-
tor of the surrounding module is reached. This is be-
cause the other part has already been described in an-
other equation.

In our case the surrounding module is A, and its im-
mediate post dominator is C. Thus the alternative b C g
has to be restricted simply to & (the rest belongs to the
main module V). Analogously we get ¢ d B f as the
second alternative of A, and thus we arrive at the equa-
tion:

A= {b|cdB f}.
The two missing modules are finally described by

B={ecdB|J}
C={JOldBfC}

where J denotes the empty alternative.

We refer to V as an unconditional module (no deci-
sion is involved), whereas 4, B, C are conditional ones.
Elementary blocks (a, b, -) can be regarded as uncon-
ditional modules too. They define the sequence of basic
statements that they represent, and the corresponding
equations could be added to the above system.

If a module is defined in terms of itself (such as B and
C), we call it recursive. Thus V and 4 according to this
definition are nonrecursive. A recursive module is the
equivalent of a loop in a GoTo program. Module C
shows a nesting of loops.

The obtained production system is, in terms of the
theory of syntax, a regular one. For the reasons pointed
out in the introduction this result is, however, distinctly
different from the translation of a GOTO program into a
regular expression.

At this point two things are still needed to enable the
reader to properly assess the method. The first is to
show that the new structured program is still equivalent
to the old program. The second is to verify whether the
attribute “structured” can really be applied to the ob-
tained program representation. To be able to prove the
equivalency we show how the new programs can be
executed by a push-down machine with a stack as the
main control element. At the beginning of any execution
this stack contains only V. At each execution step the
top element of the stack is processed as follows:

1. If A is the top element, the stack is “popped up” and
execution ends.

2. If the top element is a terminal (+ A), then the se-
quence of basic statements denoted by it is executed
in exactly the same way that it would be in the corre-
sponding flow diagram. Again the stack is popped up
afterwards.

3. If the top element is a nonterminal, then the corre-
sponding decision (if any) is made and the resulting
alternative replaces the nonterminal on the stack.

Proposition 2 1If the new program is executed according
to the above control mechanism, then the same computa-
tions are performed that are in the corresponding flow
diagram.

Proof (given in more detail in [15]) All that really has
to be shown is that the sequence of stack top elements
in an execution of the new program forms a path of the
original flow diagram. And a sufficient condition for
this is that the stack elements always form a chain of
immediate post dominators. This is so because for ele-
mentary blocks the immediate post dominance relation
is identical with the successor relation, i.e., the next top
element to be processed is, for these blocks, always their
uniquely determined successor. And decision making

IBM J. RES. DEVELOP.

does not bring more than one of the possible successors
of the decision to the top.

To show that ths stack elements always form a chain
of immediate post dominators requires induction as well
as going back to the process of construction of alterna-
tives. Each alternative always forms a chain of immedi-
ate post dominators (according to construction). After
an alternative we always come to the immediate post
dominator of the surrounding module (this was the
means by which alternatives were restricted to the scope
of a decision). Thus when a module is replaced by one
of its alternatives, the chain of immediate post domina-
tors remains undisturbed. This was so from the begin-
ning, when the stack consisted only of V. This com-
pletes the proof.

We now want to analyze the usefulness of the ob-
tained program structure. For one thing it certainly
yields to top-down reading. By looking at, for instance,
V =aA C g, we immediately see that each program
always starts with some initialization a, goes through the
two main modules 4 and C, and ends with g. If we al-
ready have a rough idea of what modules 4 and C do,
this information may be enough. Only if more detail is
needed would we determine the definitions of modules A
and C and continue in this way until the desired level of
detail is reached. For a practical application a good ref-
erencing mechanism might be needed, which again can
be generated automatically (this was done, for instance,
by the automatic editor of the PL /1 definition document
[16], in which the Vienna Definition Language (VDL)
allowed for modular programs only).

The top-down argument holds up to a point, however,
for all kinds of modular programs, which, as the methods
described in [9] and [10] show, in no way guarantees
readability. What really distinguishes the obtained mod-
ules from arbitrary ones is the scope concept. In our
case the scopes are always minimal. Whenever a state-
ment occurs in an alternative of a conditional module,
then whether or not it will be executed inherently is
dependent upon the resolution of the corresponding
condition, and this is true for the statements within this
scope only.

This minimality of decision scopes gives the derived
programs the property that, whenever it is known that
an alternative is to be executed, we know that each
statement contained in it has to be executed too. This
gives a precise look-ahead effect that in [1] led to the
dynamic exploitation of maximal parallelism and that
should be useful for paging techniques as well.

The specific association of predicates with program
blocks shows finally that the obtained modules are of the
same category as the WHILE statement and thus justifies
the attribute “structured” on a semantical rather than a
syntactical basis.

MARCH 1975

Complete modularization
The modularization method described in the last section
ended with a program of the following form:

V=aACyg
A = {b|cdBf}
B = {ecdB|J}
C = {J|dBfC}
If a, b, - are “hidden” modules (i.e., are not to be

expanded at each occurrence but are only referred to
and defined somewhere else), a program representation
is obtained in which the statements of the original flow
diagram occur exactly once. Nevertheless the program
contains redundancies in the form of sequences of mod-
ule references (such as ¢ d B or B f), which occur more
than once and should (for readability reasons) be com-
bined into new unconditional modules. Because these
modules serve the purpose of abbreviation, we refer to
them as abbreviation modules. The above program
shows that there is no unique way of introducing abbrev-
iation modules. One could combine either ¢ d B and d
B or ¢ d and B f into new modules. The procedure to be
described gives one of the possible solutions. It could be
merged with the structuring method of the last section
into a single step. This is not done for reasons of clarity
only.

We start by introducing two new notations. When a
module consists of more than one alternative, we refer
to these alternatives by properly indexing the module’s
name. Thus A, denotes the first alternative of 4, 4, the
second alternative, and so on. FEach (hidden or
nonhidden) module can also be associated with a list of
all those alternatives in which it occurs. With B /C,; A,;
B, we denote, for instance, that B is referred to in C, as
well as in 4, and in B,.

From proposition 1 it is known that the set of all pro-
gram modules is partially ordered by the post dominance
relation. Thus a tree graph can be constructed the nodes
of which are labeled by module names and which shows
exactly this partial ordering. The information contained
in this tree together with the knowledge of which mod-
ules belong to which alternatives is in essence the infor-
mation contained in the program representation derived
in the last section. If we put this information into graphic
form, we obtain what can be called the post dominance
tree of the program. For the given example the post
dominance tree is shown in Fig. 2 (module V is omitted
for convenience).

Each of the alternatives in the graph in Fig. 2 has ex-
actly one begin node and one end node. If alternatives
do overlap (i.e., have nodes in common) we put them in
the order of their end nodes. One alternative thus
comes before another one if its end node is nearer to the
bottom of the tree than the end node of the other one

185

AUTOMATIC STRUCTURING

186

G. URSCHLER

e/B;

c/Ay; B,

d/Cz;Az;B]

P S S S —

B/Cy; A5 B,
al<v
bl/A, 11Cy: A
A/v
Civ; C,
g/

Figure 2 Post dominance tree.

(i.e., alternatives with farther reaching ranges come first).
In Fig. 2 this ordering has already been anticipated. If
overlapping alternatives have the same end node, we say
they form a group. Groups in Fig. 2 are separated by a
semicolon.

The introduction of an abbreviation module in a tree
such as that shown in Fig. 2 is meaningful whenever
there is a sequence of at least two nodes contributing to
at least two different alternatives. Because we want to
keep the number of abbreviation modules minimal, we
want to make the sequences to be abbreviated maximal.
Thus we process the nodes of the above tree in top-
down order (i.e., whenever a node is processed, then all
nodes before it have aiready been processed). Whenever
during this processing a node is reached that satisfies the
above two conditions (involvement of at least two nodes
and at least two alternatives), then an abbreviation
module is to be introduced. Two cases can be distin-
guished:

1. There is more than one alternative with maximal
range (i.e., the first group of alternatives attached to
the node has a cardinality of at least two). In this
case the range of the new module equals this maximal
range.

2. There is only one alternative with maximal range. In
this case the range of the new module equals the sec-
ond highest range.

In Fig. 2 for the first time the need for introducing an
abbreviation module is recognized when the node c¢/A,;

B, is processed. Because there is only one element in the
first group (namely A4,), the range of the new module is
the range of B, (i.e., nodes ¢, d, and B have to be
combined). As soon as both the begin node and the
range of the new module are known, this module is in-
troduced according to the following steps.

1. The begin node of the new module is split in the post
dominance tree, and the old node is made a separate
entry point of the tree. The new node is labeled by
the name of the new module and connected to the
successor of the end node of the new module. For the
above example this looks as shown in Fig. 3 (the
name of the new module being D).

. Attached to the new node are the group(s) of alterna-
tives in which the new module will occur, and these
groups are replaced by the new module within its
range. In terms of the above example, this is as shown
in Fig. 4.

0]

For the newly introduced node no further processing
is needed. In the other involved nodes the number of
contributing alternatives has decreased. By iterating the
above process we get a terminating procedure that com-
pletely modularizes an arbitrarily given program. For the
given example the result is shown in Fig. 5. Directly
from this diagram the folowing new, completely modu-
larized program can be derived:

V=uaACg

A = {b|Df}
B = {eD|}
C = {D|EfC}
D=cE
E=dB

The obtained program form has the property (according
to construction) that no sequence of two or more modules
occurs more than once. The same module may occur
several times, however.

At this point the question naturally arises as to whether
this is the ultimate amount of modularization that can be
achieved. The answer is no, but we can go farther only if
we use data flow information about the program. Into
this category fall, for instance, the taking out of state-
ments of a decision scope (if, for instance, the same state-
ment occurs in all alternatives as the first statement and
it also has no influence on the involved decision), as well
as the recognition of whether or not two different
modules are equivalent (and thus could be merged
into one).

We regard these transformations (which require pro-
gram knowledge beyond the flow of control information)
as part of the optimization of the program and not as
part of the structuring process. Thus they are outside the
scope of this paper.

IBM J. RES. DEVELOP.

c/Ay; By

diCy; A5 By

le/B,
lB/CZ; Ay; By D

f1Cy;5 Ay

Figure 3 Step 1 for the introduction of an abbreviation mod-
ule.

Backtransiation of recursively structured programs
into GOTO programs

In the second section it was shown how a recursively
structured program could be executed by means of a
push-down machine. From a practical point of view this
does not seem to be the best way to do it, at least not
with respect to existing machinery.

A simpler way to execute a module is to make a sub-
routine call of an assembly language type, i.e., to branch
to the module, after storing the return address, and to
return to the stored address after execution of the mod-
ule. Since we started from a pure GoTo program (with
no thought of return addresses) even this looks too
complicated. In this section we therefore show how the
modules can be physically arranged in such a way that
the return, and thus the storing of the return address,
become superfluous.

Because we are interested in the real code arrange-
ment, we add the definitions for the elementary blocks to
the given program. For the chosen example this gives:

V =aACg

A = {b|Df}
B = {eD|T}
C = {D|EFC}
D=cE

E =dB
a=a

& =8

As the next step the “spanning tree” of this program
is formed (a concept that is modeled after the spanning
tree concept of Tarjan [14] but is slightly different).

MARCH: 1975

c/D

d/Cz;D
e/Bl
‘ B/Cy; D l DIAy; B,

f1Cy; Ay

Figure 4 Step 2 for the introduction of an abbreviation mod-
ule.

jc/D je/gl
E/Cy; D D/A,; B,
dIE B/E | owea,
- o | el blA,
alv A9 CIV;C,
gV

Figure 5 Completely modularized post dominance tree.

This tree is constructed top-down, starting with the main
module and expanding each module into its alternatives.
This expansion is done, however, only for modules that
have not been expanded before. If additionally it is as-
sumed that modules to the left are expanded before
modules to the right, we get what has been called a
depth-first spanning tree. For the above program it has
the form shown in Fig. 6.

The tree defines a sequencing relation between its
elements. If we assume A to come after V, then any
element (other than V) in the tree is followed by the
element immediately to its right. If there is no such ele-
ment (as is the case at the end of an alternative), then
that element is followed by whatever comes after its “fa-
ther” (i.e., the module from which that element was de-
rived by expansion).

AUTOMATIC STRUCTURING

187

—d

a A c
: /\ 4
b %] E fC
i oo
b 1
¢ E
|
c
d B
d
e D 03}
|
e

Figure 6 Depth-first spanning tree.

{ — (] e— O

‘.,
|
[,
[~]
/
[SEEE =T
|
In

4

g

Figure 7 Depth-first spanning tree in left-to-right form.

From the logic of the program construction process it
is known that this sequencing relation means a corre-
188 sponding sequencing in the execution as well. Thus 4

G. URSCHLER

has to be executed after a, C after 4, and so on. To
model this execution logic in the physical arrangement
of the modules, the above tree is shown once more in
Fig. 7, but this time with reversed directions (top-down
is translated to left-to-right and vice versa) and using
proper identations.

All that has to be done to interpret this tree as a GOTO
program is the following:

e Module names at the module definition place (lines
to the right) are to be read as labels.

e Module names at a module reference place (no lines
to the right) are to be read as GoTos to the correspond-
ing labels.

In addition the following simplifications can be made:

1. Any GoTos immediately following other GoTos can
be eliminated, because they never can be executed
(in Fig. 7 these are the references to fand C following
the reference to E).

2. Labels not being branched to can be eliminated (V, q,
A, - in Fig. 7).

If we apply this simplification to Fig. 7, the following
result is obtained (written in a PL/I-like programming
style):

Q

]

IF A THEN b; ELSE DO;

>

S
2]

E:
IF

3

THEN DO;

C[-"RP

GOTO D;
END;
5
END;
IF C THEN; ELSE GOTO E;

&5

This program (and such programs in general) contains
only backwards branches, and there is no duplication of
code whatsoever. Because there is no way of avoiding
the backwards branches, we can also say that it is a
GOTO program with a minimal number of GoTos and thus
the best that can be expected in this respect.

Translation of recursively structured programs into
interatively structured ones

The program form obtained in the second and third sec-
tions mirrored precisely the logic of the analyzed pro-
gram. Nevertheless, the specific representation might

IBM J. RES. DEVELOP.

still be objectionable. Although syntax does not add
meaning by itself, it has a psychological importance that
cannot be ignored. To bring, for instance, the program
obtained in the second section into a more appealing
form, the following steps can be performed.

1. Definitions of nonrecursive modules of the form M
= {o|r} (o and T denote arbitrary strings) are written
as M = IF M THEN o, ELSE 7.

2. Module definitions of the form M = {cM|J} are
written as M = WHILE M po o and analogously M
= {J|oM} is translated into M = WHILE 1 M DO 0.
Steps 1 and 2 together give the following result (the
semicolon is used now as a statement delimiter, and
parantheses are used to group statements together).

V=a;A4;C; g

A = IF A THEN b; ELSE (c; d; B; f)
B = wWHILE B po (e; ¢; d)

C = wHILE 1 C po (d; B; f)

3. The method described in the third section for complete
modularization is applied. (Because alternatives may
have shorter ranges now, due to the WHILE construct,
different abbreviation modules can be expected.)
The resnlt is

V=a,4;C;g

A =1F A THEN b; ELSE (D: E)
B = WHILE B po (e; D)

C = wHILE 1 C DO (d; E)
D=c;d

E=B;f

4. In a program representation of this kind many mod-
ules are referred to only once, which is very often
undesirable. In-line expansion of these modules
(which corresponds to an interpretation of the re-
spective module references as macro calls) gives,
together with an adding of the hidden modules, the
following final result.

V =a;
IF A THEN b; ELSE (D; E);
WHILE 1 C DO (d; E);

1 oo

o d
= WHILE B Do (e; D); f

my
f [
I

In the rest of this section we concentrate on step 2,
i.e., on the question of how recursively structured mod-
ules can be expressed in terms of iterative language fea-
tures, such as the IF, WHILE, DO FOREVER, and multilevel
EXIT statements. We restrict ourselves thereby to mod-
ules with only two alternatives.

MARCH 1975

72

o B
034 g4C
ogsB og

Figure 8 Expansion tree.

In the previous section the concept of a depth-first
spanning tree was used. In it module names occurred in
three different ways: to denote the definition place of the
module (there was a subtree under the module’s name),
to denote a back reference (the name occurred within
the definition tree of the module), or to denote a cross
reference (the name occurred outside of the definition
tree).

The existence of cross references indicates that the
module is used independently in different contexts.
Cross references could always be avoided if a copy of
the module were made at each cross reference place,
such that all references become back references only. In
the following text, the concept of an expansion tree is
introduced. It is similar to the spanning tree concept but
has the following differences:

1. The root module can be an arbitrary module M.

2. All those module references and only those module
references are expanded that are not back references
and that yield, directly or indirectly, either M or one
of that module’s ancestors (a module from which it
was derived by expansion).

189

AUTOMATIC STRUCTURING

190

G. URSCHLER

0, EXIT A

/N
/\

0 EXITA

Figure 9 Expansxon tree in partially iterative form.

In contrast to the depth-first spanning tree, modules
are expanded not only at the leftmost occurrence but at
every occurrence that is not a back reference. Thus dur-
ing the expansion process several copies of the same
module may be made. If we distinguish them from each
other by unique names (and correspondingly change
the involved back references), we get a tree that we call
the expansion tree of the module M. An example of an
expansion tree with nested recursion is given in Fig. 8.

One of the basic properties of an expansion tree
(again in contrast to the depth-first spanning tree) is that
only those modules in it are expanded that occur in a
module sequence in a rightmost position. This is so be-
cause otherwise a module M could be expanded into a
sequence such as --- M N ---, where N would be both an
immediate post dominator of M and within the scope of
M. The leaves in the expansion tree are module se-
quences in which no further expansions occur. Such
sequences that do not end with a back reference are
called the exits of the tree.

The basic philosophy of the iterative language feature
is to anticipate eventual recursions from the very begin-
ning. If we do this, then this means, in terms of the ex-
pansion tree, that all references to the root module be-
come redundant and can be deleted. On the other hand
we do have to plug the exits of the tree to avoid the oc-
currence of an invalid iteration in these cases. This can
be done by adding an ExIT M statement to the right of
each exit, which forces the control to leave the module
at these places.

The expansion tree of Fig. 8 is thus brought into the
form shown in Fig. 9 (the circle stands for the anticipat-
ed permanent repetition of the module).

Now the other involved recursive modules have to be
translated into iterative form by processing them in top-
down order in the same way as the root module was
processed. Care has to be taken only of what the exits of
the new subtrees are. Everything that is already plugged
by an EXIT statement can no longer be regarded as an
exit (an exit from a module in a higher position implies
an exit from the modules in a lower position as well).
Exits are now those leaves in the tree where recursive
references have been deleted (o, in Fig. 9). The result
derived from Fig. 9 after proceeding in this way is shown
in Fig. 10.

The resulting tree is always free from any back refer-
ences (recursions). Of course it may contain references
to other “self-contained” recursive modules; these re-
cursions do not show up in the tree, however. Thus it
can always be directly coded by using nested IF state-
ments in connection with labeled DO FOREVER state-
ments. From Fig. 10, for instance, the following code
can be directly derived.

A: DO FOREVER;
IF A THEN DO;
oy
B: DO FOREVER;
IF B THEN (o,; EXIT B); ELSE (o,; IF C THEN
o, ELSE (0, EXIT A));
END B;
ELSE (0,; EXIT A);
END A4;

The DO FOREVER statement, particularly in its nested
versions, is not really convincing with respect to its
readability. We now give the three special cases in
which we can do without it:

1. Module M is defined as M =
writing

{oM|}. Instead of

M: DO FOREVER;
if M THEN o ELSE EXIT M
END M;

we certainly prefer the shorter WHILE M Do o.

IBM J. RES. DEVELOP.

2. Only the left alternative of M is recursive, and the
right alternative is nonempty (this implies that the
recursiveness is an indirect one), i.e., M is defined as

= {o N|r}, and expansion of N gives M again.
Also in this case the module M can be translated sim-
ilarly to 1), but this time the WHILE (analogously to
the 1F) has to be combined with an ELSE clause (con-
taining the right alternative of M). The point of the
ELSE clause is that is belongs to M too and thus is
bypassed by an EX1T M.

3. The module M is recursive in its right alternative
only. In this case the Boolean expression belonging
to M is negated, the alternatives are swapped, and the
module is treated as described under 1) and 2).

Altogether in the translation of a conditional module
M into iterative form the following cases can be distin-
guished:

1. Module M is nonrecursive.
Iterative counterpart: IF statement.

2. Module M is recursive but in one alternative only.
Iterative counterpart: WHILE statement in connection
with the EXIT statement.

3. Module M is recursive in both alternatives.
Iterative counterpart: DO FOREVER statement in con-
nection with the EXIT statement.

If a whole program is translated into iterative form
(and not just a single module), then the modules of the
program should be translated in top-down order, in the
sense of the depth-first spanning tree, and only those
modules need be translated that have been previously
referred to (this saves the redundant translation of those
modules that occur at an intermediate position in other
expansion trees only).

A great inconvenience in the described translation
process is the permissive duplication of code. The dupli-
cation is necessary when the same module occurs within
different “‘contexts.” By context we mean the list of
those ancestor modules that occur in the scope of the
module again. They are exactly the modules that cause
the introduction of the EXIT statements and thus make
the new module context-dependent. Thus we can do
without the duplication if the two module occurrences
are within the same context. Even then the result is not
too impressive. It leads to stand-alone modules contain-
ing EXIT statements that are less readable (because of
the missing target) than the original GOTO statements
were that they replaced.

Altogether a mixture of the iterative and the recursive
approach seems to provide the most satisfying solution
to the structuring problem: To take the IF and WHILE

MARCH 1975

VA

@) EXIT A
-y EXIT B

0, EXIT A

Figure 10 Expansion tree in completely iterative form.

(and perhaps the UNTIL) statements in the simple cases
(where no EXIT statements are involved) and to make use
of (recursive) references in all others.

Extensions

e Multi-exit blocks

One of the most common features in higher level lan-
guages is blocks —either of the simple parentheses-like
type (DO;--- END; Or BEGIN;- - - END;) or of the po loop
type (DO g;- - - END;~where a is the header of the block
controlling the interation). When using blocks, the pro-
grammer associates meaning with them. Thus this struc-
ture should be carried over into the structured program
version. As long as blocks have only one exit the shown
structuring process can be immediately applied. All that
has to be done is to create an unconditional module for
the block. In this section we want to solve the problem
of structuring a program containing blocks with several
exits (i.e., blocks with embedded GoTos that leave the
block abnormally). Consider, for instance, the following
very common program (skeleton) fragment (see [17]):

191

AUTOMATIC STRUCTURING

192

G. URSCHLER

found

not found

cont.

i

Figure 11 Flow diagram skeleton for multi-exit block.

DO_g;
IF B THEN (found; oo CONT);
END;
not-found,

CONT: cont,

A specific interpretation of this skeleton could show,
for instance, a search routine through an array where,
dependent upon the finding of a certain element, dif-
ferent routines (found and not-found) are executed. In
the two-dimensional flow chart skeleton form the above
example could be shown as in Fig. 11. The 4 in Fig. 11
stands for the whole block and « for its header only. The
single arrow ending at the block contour denotes the
conditional exit (depending upon the header); all other
exits are unconditional ones. A programmer confronted
with the task of structuring the above program will nor-
mally end with the following ““structured” version of it:

DO ¢ WHILE 1B;

END;
IF f(a, B) THEN found; ELSE not-found;
cont;

With f(a, B) we thereby denote a test on the outcome of
the search. There are two things wrong with the above
approach. For one it is an example of tricky (and thus

opaque) programming {(the DO loop pretends to do noth-
ing but nevertheless passes a result hidden, for instance,
in a control variable). For the other the connection be-
tween the two program parts is not visible in the flow of
control but simulated in the data flow. Especially if the
two parts are placed remotely from each other or if f(a,
B) is a tricky expression again, the connection may be
quite difficult to find.

If we look at Fig. 11 more carefully, we almost imme-
diately see that the whole block A4 is nothing more than a
kind of decision that requires, instead of evaluating a
simple Boolean expression, execution of a more com-
plex program fragment. Decisions of this kind involve
flow of control. Thus we can no longer limit ourselves to
abstractions of them. To make this fact explicit we intro-
duce a new module type, called a decision module. It
occurs in front of the definition of a conditional module
and is put in parentheses (for instance (@) {--| -—}).
Its meaning is that the selection of alternatives is depen-
dent upon the outcome of this module. For convenience
we assume that the first of these alternatives is the one
that is executed when the block is left normally.

With these preparations we can specify the structuring
process for programs containing multi-exit blocks as fol-
lows:

Step 1 Outmost multi-exit blocks are interpreted as
(visible) decisions, and besides this the structuring pro-
cess is performed as it was before for simple flow diagram
skeletons. For the above example this gives:

V=4, cont
A = (a) {not-found|}

Step 2 The definitions for all decision modules encoun-
tered in step 1 are derived. Because we want to keep the
block structure, this is an almost trivial step. We need,
however, a new notation and introduce (block header/
block body) as a self-explanatory notation for describ-
ing a block.

Step 3 All encountered block bodies are structured
(treating nested blocks in the same way as the outermost
ones). To be able to use the base algorithm for this pur-
pose we need the one-begin and one-end structure of the
respective block bodies. This is achieved by closing all
abnormal exits with a CASE/ statement (where i gives the
connection to the succeeding alternative) and connect-
ing them afterwards to the main exit. For the above
example steps 2 and 3 give:

a = (a/B)
B = {found; cAsE 2|}

IBM J. RES. DEVELOP.

Step 4 As soon as a multi-exit block is regarded as a
kind of a decision, it should contain only code serving
the purpose of making that decision. Thus whenever a
CASEI statement is immediately preceded by some code
that is ‘‘self-contained” (i.e., does not contain other ex-
its out of the same block), this code should be moved
out of the block body and placed in front of the alterna-
tive indicated by the respective CAsSEi statement. For the
above example the resulting structured program text
thus is:

V=A; cont

A = (a) {not-found|found}
a = (a/B)

B = {casE 2|}

If we now look at the definition of module 4, we can
see a much more meaningful structure than the one
shown before. It shows that a (programmed) decision «
has to be performed depending on which one of two
possible alternatives has to be executed. This is exactly
the structure that would be obtained if we had pro-
grammed top-down correctly and used levels of abstrac-
tion. It exposes the search routine @ (which could also
be defined in another way) as well as the resulting ac-
tions, and it gives, independently of their specifications,
the proper connection.

In PL/1 a block with two exits could be coded by
means of a truth value function. For more than two exits
a new language feature (not yet in PL/I) is needed to
obtain a proper structuring tool.

o Label variables

In a GOTO program a GOTO with a label variable as tar-
get is nothing more than a disguised conditional branch
statement (dependent upon the value of the label vari-
able, a branch is made). To be able to define the corre-
sponding conditional module the ‘‘range” of the label
variable at this point has to be determined. This can be
done by either worst case assumptions (all labels occur-
ring in the program) or by making a flow analysis as used
in optimization techniques.

e Subroutines

We assume subroutines to be left by return statements
only. The structuring is then performed quite simply
by structuring each subroutine separately (subroutine
calls are treated as data transformations, i.e., as basic
statements). If a subroutine has several entry points,
then the subroutine is structured as often as there are
entry points, assuming in each case a different entry
point as the program beginning V.

MARCH 1975

As a rather open problem we consider the structuring
of programs involving (recursive) subroutines, label
variables and their aliases, abnormal exits, external and
static attributes in arbitrary combination. Further inves-
tigations along these lines seem to be necessary to get a
deeper understanding of the nature of structured lan-
guage concepts.

Summary
It has been shown that GOTO programs can be trans-
formed into recursively structured ones in such a way
that both the program logic is exposed and the concise-
ness of the GOTO is kept.

An extension of the method to GOTo programs con-
taining block structures and subroutines has been given.

Acknowledgments

The author is grateful for the many useful suggestion
made by the referees, which had a significant impact on
the final version of this paper. He also acknowledges the
influence of the enjoyable paper by Knuth [15].

References

1. G. Urschler, “The Transformation of Flow Diagrams into
Maximally Parallel Form,” Proc. 1973 Sagamore Comp.
Conf. on Parallel Proc., Syracuse University.

2. S. C. Kleene, “Representation of Events in Nerve Nets.”
Automata Studies, Princeton University Press, 1973, p. 3.

3. C. Boehm and G. Jacopini, “Flow Diagrams, Turing Ma-
chines and Languages with only Two Formation Rules,”
Comm. ACM 9, 366 (1966).

4. E. Ashcroft and Z. Manna, ‘“The Translation of GOTO
Programs to WHILE Programs,” Proc. IFIP Congress
1971, p. 250.

5. D. E. Knuth and R. W. Floyd, “Notes on Avoiding GOTO
Statements,” Info. Proc. Letters 1,23 (1971).

6. J. Bruno and K. Steiglitz, “The Expression of Algorithms
by Charts,” J. Assoc. Comput. Mach. 19, 517 (1972).

7. W. W. Peteron, T. Kasami, and N. Tokura, “On the Capa-
bilities of WHILE, REPEAT, and EXIT Statements,”
Comm. ACM 16, 503 (1973).

8. O.)J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured
Programming, Academic Press, London, 1972.

9. J. McCarthy, “Towards a Mathematical Science of Compu-
tation,” Proc. IFIP Cong., North Holland Publishing Co.,
Amsterdam, 1962.

10. A. Van Wijngaarden, “Recursive Definition of Syntax and
Semantics,” Formal Language Description Language for
Computer Programmers, North Holland Publishing Co.,
Amsterdam, 1966.

11. C. T. Zahn, “A Control Statement for Natural Top-Down
Structured Programming,” Symposium on Programming
Languages, Paris, 1974.

12. R. T. Prosser, “Application of Boolean Matrices to the
Analysis of Flow Diagram,” Proc. Fall Joint Computer
Conference 1959, p. 133.

13. E. S. Lowry and C. W. Medlock, “Object Code Optimiza-
tion,” Comm. ACM 12, 13 (1969).

14. R. E. Tarjan, “Depth-First Search and Linear Graph Algo-
rithms,” SIAM J. Computing 1, 146 (1972).

15. G. Urschler, “The Inherent Parallelism of Flow Dia-
grams,” Technical Report TR25.129, IBM Laboratory,
Vienna, Austria, 1972.

AUTOMATIC STRUCTURING

193

16.

194

G. URSCHLER

K. Walk, K. Alber, M. Fleck, H. Goldmann, P. Lauer, E.
Moser, P. Oliva, H. Stigleitner, and G. Zeisel, ““Abstract
Syntax and Interpretation of PL/1,” Technical Report
TR25.098, 1IBM Laboratory, Vienna, Austria, 1969.

. D. E. Knuth, “Structured Programming with GOTO State-

ments,” Report STAN-CS-74-416, Stanford University,
1974.

Received April 2, 1974; revised September 20, 1974

The author is located at the IBM System Development

Division Laboratory, Vienna, Austria.

IBM J. RES. DEVELOP.

