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Automatic  Structuring of Programs 

Abstract: A method is described  that  allows the translation of a traditionally  written (unstructured) program  into a set of top-down 
structured,  semantically  founded,  GoTo-free  modules.  The  method  reveals  not only the logic of a given program in a most natural way, 
but it also reduces code duplication to a minimum. It is further shown how the obtained  structured  program can be mapped back into a 
GOTO program in such a way that all GOTOS are backwards  branches and their  number is minimal. The  connection  between  recursively 
and iteratively  structured  programs is demonstrated using the WHILE, DO FOREVER, and multilevel EXIT statements.  Extensions  of  the 
method show the structuring of source  programs  containing block structures and subroutines. 

Introduction 
The  two major  disciplines that  can be subsumed  under 
the heading structured programming are  the methodolo- 
gy  of program development and language design. The 
methodology proposes  to  develop reliable and  under- 
standable programs in a sequence of steps  that  show 
different  levels of abstraction, starting  with the problem 
and ending with the final code,  and to do this by step- 
wise refinement. The aim of the language  design is  to 
support  these ideas by the  development of suitable  lan- 
guage features.  There  are  two  obvious ways to  do this. 
One  is  to  start with specific problem  solutions, to find 
adequate  expressional  tools  for them (which may also 
provide  feedback for  better  solutions),  and then to try to 
find suitable  generalizations. The  other is to  start with an 
existing language(which is an expressional tool for an 
infinite number of problem solutions)  and  develop  an 
algorithm that automatically  transforms an arbitrary 
program written in the language into a structured  form, 
thereby developing a new programming language as 
well. We  intend  this paper to be interpreted primarily in 
the  latter  sense, i. e., as a contribution to language de- 
sign. When  developing  a “structurizer,” we obtain, in 
addition, a valuable  tool  for: 

The  automatic  structuring of existing unstructured 
programs, which should  greatly  facilitate the reading of 
existing  programs. 
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The education of programmers, a whole  generation of 
whom are said to  have been  spoiled by FORTRAN. 

The  further  automatic processing of programs for the 
purposes of compilation,  optimization,  parallelization, 
correctness proving,  formatting, and editing. 

The  structuring method described in this paper  was 
originally developed  by the  author  for  the translation of 
flow diagrams into maximally parallel form. In [ 1 1  it was 
shown  that  the program structure suggested in this  paper 
is  exactly  the  one required to get dynamic  (run-time) 
parallelism (i.e., to  execute,  for  instance,  independent 
iterations of the  same loop asynchronously). To assure 
the  reader  that  the  structuring method presented  is not 
one of the well-known ones in disguise, the following 
comparisons are made: 

1. The oldest structuring method is  due to Kleene [2], 
who showed that finite state machines (which flow 
diagrams can be  considered to  be)  are equivalent to 
regular expressions.  What  makes Kleene’s approach 
different from  ours  (and all other control structure 
oriented  ones)  is  the equivalence  relation between 
regular expressions. I t  is  based  on  the rules of asso- 
ciativity,  commutativity, and distributivity of the pri- 
mitive operations of concatenation  and odng.  Most 
of these  rules  do not  apply to  transformations admis- 
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Figure 1 Flow diagram skeleton. 

sible in  program structuring  because they make a 
program based  on a set of computations  and  deprive 
it of its original control structure. 

2. Bohm and Jacopini [3] modeled the  control  structure 
at  least partially by means of the  data flow (using 
control  switches).  In  contrast, in  this paper  no  use of 
the  data flow of a  program is made. 

3 .  The method of Manna and Ashcroft  [4],  as  an im- 
provement of the Bohm and  Jacopini results, treats 
program transformations  as  pure  control  structure 
transformations  and  thus  preserves  the program’s 
“topology.” The price paid is a  possible  exponential 
increase in program size. With our  method,  however, 
we claim to keep  the  conciseness of the GOTO. 

4.  Our method may seem  to  be a contradiction of the 
more negative  implications of the  results of Ashcroft 
and  Manna  [4],  Knuth  and  Floyd  [5],  and  Bruno 
and Steiglitz [6], which proved the WHILE statement 
to be inherently weaker  than  the GOTO statement. 
Along these lines Peterson, Kasami, and  Tokura  [7] 

182 finally came  to  the conclusion that besides the WHILE 
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statement  the  (more  general) DO FOREVER, in 
connection with the multilevel EXIT statement  and 
node splitting  (i.e., the copying of program text),  is 
needed to reach  the full capability of the GOTO. In 
this paper  recursive language constructs  are used  in- 
stead of the  above mentioned iterative  ones. Because 
recursion is a more  powerful language concept  than 
the GOTO, the  above  results  no longer  apply. The 
proposed  language feature itself can  be regarded as a 
generalization of Dahl’s [SI concept of a recursive 
loop. 

5. The first attempts  to  translate  an  iterative program 
into a recursive  form  are  due  to  McCarthy  [9]  and 
Van Wijngaarden [ lo]. What makes their  approach- 
es different from ours is that they form  (recursive) 
modules on a syntactical rather  than a semantical 
basis. Their modules  always have a maximal scope 
(up  to  the end of the  program),  whereas  our  scopes 
are minimal and  based  on  the post  dominance  rela- 
tion. 

One of the many restrictions of the work reported in 
this  paper is that  the  data flow of programs is disregard- 
ed,  as  are many  involved  optimization  problems. This is 
not because  we think these problems are insignificant, 
but is rather a consequence of an  attempt  to clearly  iso- 
late  the problem. 

First  we  show how simple GOTO programs  can be 
translated  into modular,  top-down structured programs 
in such a way that  the program logic is exposed. As a 
next step  the obtained  program representation is brought 
into  as  concise a  form as possible. Afterwards  the result- 
ing programs are mapped  back into GOTO programs in 
such a way that all GOTOS are  backwards  branches  and 
their number is minimal. Then  the  connection  between 
recursively and iteratively structured programs is dem- 
onstrated by using the WHILE, DO FOREVER, and multi- 
level EXIT statements. Finally an extension of the method 
to a more  powerful source language is given,  showing 
that a recently  proposed  language feature of Zahn [ 1 11 
fits nicely into  the proposed language concept. 

Translation of GOT0 programs into recursively 
structured form 
In  the following text GOTO programs are assumed to  be 
represented in the  form of flow diagrams.  Because  this 
paper deals  with  control structure transformations,  only 
the  skeleton of these flow diagrams is shown  (sometimes 
referred to as  the  outer  syntax of the  program).  Such a 
skeleton  can  be  regarded as a finite, directed, and la- 
beled  graph  satisfying the following conditions: 

1. It  has  exactly  one beginning (denoted by V) and  ex- 
actly  one  end  (denoted by A).  
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2 .  Each node in the graph is reachable  from V, and A can 
be reached from it (i.e., the graph is in reduced form). 

3. Edges with the  same  source  have different targets. 
4. If two nodes are  connected by an  edge,  at least one of 

them is either a junction node (i.e.,  the target of at 
least two different edges)  or a ramification node  (Le., 
the  source of at  least  two different edges). 

In  spite of the  abstraction made, all of the  assertions 
in this paper  are intended primarily to be assertions  on 
programs  and not assertions  on graphs.  Figure 1 shows 
an example of a flow diagram  skeleton. 

Ramification nodes are also referred to  as decisions 
(they  correspond exactly to  the decisions of the underly- 
ing flow diagram).  They  are  drawn in the usual way as 
diamond shaped  boxes  and  are labeled by capital letters 
( A ,  B ,  . . .). Decisions may have  more  than  two  out- 
comes, but identical outcomes  are  assumed  to be  com- 
bined into a single one  (expressed by condition 3 
above).  In any case  the  outcomes  are assumed to be 
ordered,  as indicated by +, - in Fig. 1 ; if there  are more 
than two  outcomes, integers can be  used. 

Nodes  that  are  the  source of a single edge only and 
are different from V are  also referred to  as elementary 
blocks. They  correspond  to maximal (expressed by 
condition 4 above)  sequences of “basic”  statements 
(i.e., assignment. I /O,  and other  data oriented 
statements) in the underlying flow diagram.  Elementary 
blocks are  drawn  as rectangular boxes  and  are labeled 
by lower-case  letters (a,  6;  . .). 

Although the  denotations of decisions and  elementary 
blocks are  irrelevant  for  the  purpose of this  paper, it is 
sometimes  necessary  to refer to  them. We do this by 
underlying the node labels. Thus _A, E ,  . . . denote,  for 
instance, not  further specified Boolean expressions and 
” a, b, . . . denote not further specified sequences of basic 
statements. 

The  example in Fig. 1 was  chosen  because it is simple 
enough not to be  confusing and complicated  enough to 
show  the main problems in the structuring process. 
(There is a  loop in the program,  namely d B f C  d, that 
has two  entries  and  two  exits;  the program is also 
irreducible). 

The following definitions can  be  made with respect  to 
flow diagram skeletons: 

Dejinition 1 A node N, is a successor of a  node N ,  if 
there is an edge in the graph with source N ,  and  target 
N,. (In Fig. 1 ,  for  instance, A has the  two  successors b 
and c,  and c has  the  unique  successor d ) .  

Dejinition 2 A path is a sequence of nodes  each of which 
(except  for  the first node) is a successor of the node 
immediately  preceding it in the path. 
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Dejinition 3 A path is cycle-free if it  contains  no  node 
twice. 

Dejinition 4 A node N, is a  post dominator of a  node N ,  
if each  path  from N, to A contains N,. 

Dejinition 5 A node N ,  is an immediate post  dominator 
of a node N ,  if N ,  is a post  dominator of N, and if in 
each path from N ,  to A N ,  is the  post  dominator of N ,  
occurring first. 

One of the first mentions of dominance  relations is in 
[ 121. Since  then dominance  relations have been widely 
used in the optimization area, mainly in the  form of the 
predominance  relation [ 131. 

Proposition 1 Each node  different  from A has exactly 
one uniquely determined immediate post dominator. 
Proof Each  node different from A has  at least one  post 
dominator, namely A. Let us assume  there  are  two cy- 
cle-free paths  (cycles  do not contribute  to  post domi- 
nators) from  a node N to A containing the  two  post 
dominators P ,  and P,  but in reversed  order, i.e., N. . . P ,  
. ’ . P; . . A and N --- P, --- P ,  --- A. Then N .  . ’ P ,  --- A is 
also a path from N to A, and it does not  contain P2, 
which is a contradiction.  Thus in each cycle-free  path 
from  node N to A, all post  dominators of N occur in the 
same  order,  and  the uniquely determined first of them is 
the immediate  post dominator of N .  

The determination of the immediate  post dominator of 
an elementary block is trivial, because in this case imme- 
diate post dominator and successor  are identical. To 
determine  the immediate post  dominator  for a decision 
A ,  all the cycle-free paths from A to A are  needed, and 
the  junction point of  all  of these  paths must  be  found. 

In Fig. 1, for instance,  the cycle-free paths from A to 
A are A b C g A and A c d B  f C g A. The  junction point 
of these  paths is C. Thus C is the immediate post domi- 
nator of A .  From B only one cycle-free  path goes  to A, 
namely B f C g A. Thus f is the immediate post domina- 
tor of C. 

This recipe for finding immediate  post dominators is 
not the  best  one  from  an efficiency point of view. For a 
better  one  the  reader may refer to [ 141. Any of these 
algorithms  produces a table of the immediate  post domi- 
nators of all graph  nodes. For our example it is as  shown 
in Table 1. 

This  table is the key to understanding the  entire pro- 
gram logic. By analyzing the given  program (7) we can 
say it starts with u, does  some computation  depending 
on  the decision A (the module  determined by A ) ,  and, 
independently of what the input data  are,  each terminat- 
ing computation comes  to module C ,  executes g after- 
wards, and finally comes  to  the  end. 1 83 
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Table 1 Immediate  post  dominators. 

Node V a A b c d B e f C g  

Immediate 
post dominator a A C C d B f c C g A  

In a more  convenient formal  notation we express this 
main flow of control of the program in the  form of the 
following equation  (or production if we  use  the terminol- 
ogy of the  theory of syntax) : 

V = a A C g .  

Blocks a and g are referred to  as terminals in this pro- 
duction  because they  already have a meaning (the  state- 
ment sequence  denoted by them)  and need no  further 
definition.  Modules V, A ,  and C are nonterminals,  and 
the definition of V is given by the  above  equation.  The 
definition of A can be  derived in two  steps. At first it is 
shown  that A is based  upon  a  decision  resulting in one of 
two possible  alternatives.  We express this by: 

A = (. . .I”-} 

and  read  it,  for  instance, as: IF A THEN. . . ELSE 

As a next  step  the  two  alternatives  are  constructed.  In 
the first case  (when  the condition A is true)  the  state- 
ment  sequence b is executed first. If we  trace  the main 
flow of control (i.e,,  the chain of immediate post 
dominators) from b to  the end we get b C g A. How- 
ever,  we need the flow of control only “within the 
scope” of A ,  which means  that we have  to  stop  the 
chaining process  as  soon  as  the immediate post domina- 
tor of the surrounding  module is reached. This is be- 
cause  the  other  part  has already been  described in an- 
other  equation. 

In  our  case  the surrounding  module is A ,  and  its im- 
mediate  post dominator is C. Thus  the  alternative b C g 
has to be  restricted simply to b (the  rest belongs to  the 
main module V).  Analogously we get c d B f as  the 
second  alternative of A ,  and  thus we arrive  at  the  equa- 
tion: 

A = {blc d B f } .  

The  two missing modules are finally described by 

B = { e c d B I 0 }  
C = { 0 l d  B f C }  

184 where 0 denotes  the  empty  alternative. 
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We refer to V as  an unconditional  module (no deci- 
sion is involved),  whereas A ,   B ,  C are conditional ones. 
Elementary blocks ( a ,  b, . . .) can be  regarded as uncon- 
ditional  modules too.  They define the  sequence of basic 
statements  that they represent, and the corresponding 
equations could be  added to the  above  system. 

If a  module is defined in terms of itself (such  as B and 
C ) ,  we call it recursive. Thus V and A according to this 
definition are nonrecursive.  A  recursive  module is the 
equivalent of a loop in a GOTO program.  Module C 
shows a nesting of loops. 

The obtained  production system  is, in terms of the 
theory of syntax, a regular one.  For  the  reasons pointed 
out in the introduction  this  result is,  however, distinctly 
different from  the translation of a GOTO program into a 
regular expression. 

At this  point two things are still needed to  enable  the 
reader  to properly assess  the method. The first is to 
show  that  the new structured program is still equivalent 
to  the old program. The  second is to verify whether  the 
attribute  “structured”  can really be  applied to  the ob- 
tained  program representation. To be able  to  prove  the 
equivalency we  show how the new programs can be 
executed by a  push-down  machine  with a stack  as  the 
main control  element. At  the beginning of any execution 
this stack  contains only V. At each execution  step  the 
top element of the stack is processed  as follows: 

1. If A is the  top  element,  the  stack  is  “popped  up” and 
execution ends. 

2. If the  top element is a  terminal (C A) ,  then  the  se- 
quence of basic statements  denoted by it is executed 
in exactly the  same way that it would be in the  corre- 
sponding flow diagram. Again the  stack is popped  up 
afterwards. 

3. If the  top element is a  nonterminal, then  the  corre- 
sponding  decision (if any) is made  and  the resulting 
alternative replaces the nonterminal on  the  stack. 

Proposition 2 If the new program is executed according 
to  the  above control  mechanism, then  the  same  computa- 
tions are performed that  are in the corresponding flow 
diagram. 

Proof (given in more  detail in [ 151) All that really has 
to be shown is that  the  sequence of stack top  elements 
in an execution of the new program forms a path of the 
original flow diagram. And a sufficient condition for 
this is  that  the  stack  elements always form a  chain of 
immediate post dominators. This is so because  for ele- 
mentary  blocks the immediate post  dominance relation 
is identical with the  successor relation, i.e., the next top 
element to be  processed is,  for  these blocks, always their 
uniquely determined successor. And decision making 
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does not bring more than  one of the possible successors 
of the decision to  the top. 

To show  that  ths stack  elements  always  form  a  chain 
of immediate  post  dominators requires induction as well 
as going back to  the  process of construction of alterna- 
tives. Each alternative  always forms a  chain of immedi- 
ate post dominators  (according  to  construction).  After 
an alternative we always come  to  the immediate  post 
dominator of the surrounding  module (this  was  the 
means by which  alternatives  were restricted  to  the  scope 
of a decision).  Thus  when a  module is replaced by one 
of its  alternatives,  the chain of immediate post domina- 
tors remains  undisturbed. This was so from  the begin- 
ning, when the stack  consisted  only of V. This  com- 
pletes the proof. 

We now want  to  analyze  the usefulness of the ob- 
tained  program structure.  For  one thing it certainly 
yields to top-down reading. By looking at,  for  instance, 
V = a A C g ,  we immediately see  that  each program 
always starts with some initialization a, goes through the 
two main modules A and C ,  and ends with g .  If we al- 
ready  have a rough idea of what  modules A and C do, 
this  information may be  enough.  Only if more  detail is 
needed would we determine  the definitions of modules A 
and C and continue in this way until the desired level of 
detail is reached.  For a  practical  application a good ref- 
erencing  mechanism might be needed, which again can 
be generated automatically (this was done,  for  instance, 
by the automatic  editor of the PL/I definition document 
[ 161, in which the  Vienna Definition Language (VDL)  
allowed for modular  programs only). 

The top-down  argument  holds up  to a  point, however, 
for all kinds of modular  programs,  which, as  the  methods 
described in [9] and [ 101 show, in no way guarantees 
readability. What really distinguishes the obtained  mod- 
ules from arbitrary  ones is the  scope  concept.  In  our 
case  the  scopes  are  always minimal. Whenever a state- 
ment occurs in an  alternative of a  conditional  module, 
then whether  or not it will be  executed inherently is 
dependent upon  the  resolution of the corresponding 
condition, and this is true  for  the  statements within this 
scope only. 

This minimality of decision scopes gives the  derived 
programs the property that,  whenever  it is known that 
an alternative is  to  be  executed, we know that  each 
statement contained in it  has  to be executed  too.  This 
gives a precise  look-ahead effect that in [ I ]  led to  the 
dynamic exploitation of maximal parallelism and  that 
should  be useful for paging techniques as well. 

The specific association of predicates with program 
blocks shows finally that  the obtained  modules are of the 
same category as  the WHILE statement and thus justifies 
the  attribute  “structured”  on a  semantical rather than a 
syntactical  basis. 

MARCH 1975 

Complete modularization 
The modularization  method described in the last  section 
ended with a  program of the following form: 

V = t r A C g  
A = {blcdBf} 
B = ( e c d B ( 0 )  
c = (0 ldBfCI  

If a, b,  . . . are  “hidden” modules  (i.e., are not to be 
expanded  at  each  occurrence  but  are only  referred to 
and defined somewhere  else), a program representation 
is obtained in which the  statements of the original flow 
diagram occur  exactly  once.  Nevertheless  the program 
contains  redundancies in the form of sequences of mod- 
ule references  (such  as c d B or B f )  , which occur more 
than once  and should (for readability reasons) be com- 
bined into new unconditional  modules.  Because these 
modules serve  the  purpose of abbreviation, we refer to 
them  as abbreviation  modules. The  above program 
shows  that  there is no unique way of introducing abbrev- 
iation  modules. One could combine either c d B and d 
B or c d and B f into new modules. The  procedure  to be 
described gives one of the possible  solutions. It could be 
merged with the structuring  method of the  last section 
into a single step.  This is not done  for  reasons of clarity 
only. 

We start by introducing two new  notations.  When  a 
module consists of more  than one  altemative, we refer 
to  these alternatives by properly indexing the module’s 
name. Thus A ,  denotes  the first alternative of A ,   A ,  the 
second  alternative,  and so on. Each  (hidden  or 
nonhidden) module  can also be  associated with a list of 
all those  alternatives in which it occurs. With BIG,; A,;  
B, we denote,  for  instance,  that B is referred to in C, as 
well as in A,  and in B,. 

From proposition I it is known that the set of all pro- 
gram  modules is partially ordered by the  post dominance 
relation. Thus a tree graph can be constructed  the  nodes 
of which are labeled by module names and which shows 
exactly this  partial  ordering. The information  contained 
in this tree  together with the knowledge of which mod- 
ules belong to which alternatives is in essence  the infor- 
mation  contained in the program representation derived 
in the last  section. If we put this  information into graphic 
form, we obtain what can be called the post dominance 
tree of the program. For  the given example the post 
dominance tree is shown in Fig. 2 (module V is omitted 
for  convenience). 

Each of the  alternatives in the graph in Fig. 2 has  ex- 
actly one begin node and  one  end  node. If alternatives 
do  overlap (i.e., have nodes in common) we put them in 
the  order of their end  nodes.  One  alternative  thus 
comes before another  one if its  end node is nearer  to  the 
bottom of the  tree  than  the  end  node of the  other  one 185 
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r c / A 2 ;  E ,  

1 dlC2; A,; B, 

Figure 2 Post dominance tree. 

(Le., alternatives with farther reaching  ranges come  first). 
In Fig. 2 this  ordering has already  been  anticipated. If 
overlapping alternatives  have  the  same  end node, we say 
they form a  group. Groups in Fig. 2 are  separated by  a 
semicolon. 

The  introduction of an  abbreviation module in a tree 
such  as  that  shown in Fig. 2 is meaningful whenever 
there is a sequence of at  least  two nodes  contributing to 
at  least  two different alternatives.  Because we want to 
keep the number of abbreviation  modules minimal, we 
want to make the  sequences  to be  abbreviated maximal. 
Thus we process  the  nodes of the  above  tree in top- 
down  order (i.e., whenever a node is processed, then all 
nodes  before it have already  been processed).  Whenever 
during  this  processing a node is reached that satisfies the 
above  two conditions  (involvement of at least two  nodes 
and at  least  two  alternatives),  then  an  abbreviation 
module is  to be  introduced. Two  cases  can  be distin- 
guished: 

1. There is more  than  one alternative with maximal 
range  (i.e., the first group of alternatives  attached  to 
the node has a cardinality of at  least  two).  In this 
case  the range of the new module equals this maximal 
range. 

2 .  There is only one alternative  with maximal range. In 
this case  the range of the new  module equals  the  sec- 
ond highest range. 

In Fig. 2 for  the first time the need for introducing an 
abbreviation  module is recognized  when the node CIA,; 

B ,  is processed.  Because there is only one element in the 
first group  (namely A , ) ,  the range of the new module is 
the range of B ,  (i.e.,  nodes c, d, and B have  to be 
combined).  As  soon  as  both  the begin node  and the 
range of the new module are known,  this  module is in- 
troduced according to  the following steps. 

1 .  The begin node of the new  module is split  in the  post 
dominance tree, and the old node is made a separate 
entry point of the  tree.  The new node is labeled by 
the  name of the new  module  and connected to the 
successor of the  end node of the new module. For  the 
above  example this  looks as shown in Fig. 3 (the 
name of the new module  being D )  . 

2 .  Attached  to  the new  node are  the  group(s) of alterna- 
tives in which the new module will occur, and these 
groups  are replaced  by the new module within its 
range. In  terms of the  above example,  this is as shown 
in Fig. 4. 

For  the newly introduced  node no  further processing 
is needed. In  the  other involved nodes  the  number of 
contributing alternatives  has  decreased. By iterating the 
above  process we get a  terminating procedure  that  com- 
pletely modularizes an arbitrarily given program. For  the 
given example  the result is shown in Fig. 5. Directly 
from  this  diagram the folowing new, completely  modu- 
larized  program  can be derived: 

V = aACg 
A = {b lDf )  
B = { e D ( 0 }  
c = ( 0 l E f C )  
D =  cE 
E = dB 

The obtained  program  form has  the  property  (according 
to  construction)  that  no  sequence of two or more modules 
occurs  more  than  once.  The  same module may occur 
several  times,  however. 

At this  point the  question naturally arises as to whether 
this is the ultimate amount of modularization that  can be 
achieved.  The  answer is no,  but we can  go  farther only if 
we  use  data flow information about  the program. Into 
this  category fall, for  instance,  the taking out of state- 
ments of a  decision scope (if, for  instance,  the  same  state- 
ment  occurs in all alternatives  as  the first statement and 
it also has  no influence on the involved decision),  as well 
as the recognition of whether or not two different 
modules are equivalent (and  thus could be merged 
into one). 

We regard these  transformations  (which  require pro- 
gram  knowledge  beyond the flow of control information) 
as part of the optimization of the program and not as 
part of the  structuring process. Thus they are outside the 
scope of this  paper. 
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Figure 3 Step 1 for  the  introduction of an  abbreviation  mod- 
ule. 

Backtranslation of recursively structured programs 
into GOT0 programs 
In the  second section it was shown  how a recursively 
structured program  could be  executed by means of a 
push-down  machine. From a practical  point of view this 
does  not  seem to be the  best way to  do  it,  at  least not 
with respect  to existing  machinery. 

A simpler  way to  execute a  module is to  make a sub- 
routine call of an assembly language type, Le., to  branch 
to the module, after storing the  return  address,  and  to 
return  to  the  stored  address  after  execution of the mod- 
ule. Since we started  from a  pure GOTO program (with 
no  thought of return  addresses)  even this  looks too 
complicated. In this  section we  therefore show  how the 
modules  can be physically arranged in such a way that 
the  return, and thus  the storing of the  return  address, 
become superfluous. 

Because we are  interested in the  real  code  arrange- 
ment, we add  the definitions for  the  elementary blocks to 
the given program. For  the  chosen  example this gives: 

V = uACg 
A = {b lDf)  
B = ( e D l 0 )  
C = {0(EfC} 
D = cE 
E = dB 
u =a 

g = E  

As the  next  step  the “spanning tree” of this  program 
is formed (a concept  that is modeled after  the spanning 
tree  concept of Tarjan [ 141 but is slightly different). 

Figure 4 Step 2 for the  introduction of an  abbreviation  mod- 
ule. 

Figure 5 Completely  modularized  post  dominance  tree. 

This  tree is constructed top-down,  starting with the main 
module and  expanding  each module into  its  alternatives. 
This  expansion is done,  however, only for modules that 
have  not  been  expanded before.  If  additionally it is as- 
sumed  that modules to  the left are  expanded before 
modules to  the right, we get  what  has been called a 
depth-first  spanning tree.  For  the  above program it  has 
the  form  shown in Fig. 6. 

The  tree defines a sequencing  relation between  its 
elements. If we assume A to  come  after V, then  any 
element (other  than V) in the  tree is followed  by the 
element  immediately to its right. If there  is  no  such ele- 
ment (as is the  case  at  the  end of an  alternative),  then 
that element is followed  by whatever  comes  after  its “fa- 
ther” (i.e., the module from which that  element  was  de- 
rived  by expansion). 107 
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Figure 6 Depth-first  spanning  tree. 
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Figure 7 Depth-first  spanning  tree in left-to-right form. 

has  to be executed  after a, C after A ,  and so on. To 
model this execution logic in the physical arrangement 
of the modules, the  above  tree is shown once more in 
Fig. 7, but this  time with reversed directions (top-down 
is translated  to left-to-right and vice versa)  and using 
proper identations. 

All that  has  to be done  to  interpret this tree  as a GOTO 

program is the following: 

Module  names at  the module definition place (lines 
to  the right) are  to  be  read  as labels. 
Module  names at a module reference place (no lines 
to  the right) are  to be  read as GOTOS to  the  correspond- 
ing labels. 

In addition the following simplifications can  be made: 

1. Any GOTOS immediately following other GOTOS can 
be  eliminated, because  they  never  can be executed 
(in Fig. 7 these  are  the  references  tofand C following 
the  reference  to E ) .  

2.  Labels  not being branched  to  can be  eliminated (V, a, 
A ;  . . in Fig. 7). 

If we apply this simplification to Fig. 7, the following 
result is obtained (written in a PL/I-like programming 
style) : 

- a, 
IF LTHEN-b; ELSE DO; 

D:  _c; 
E ;  _d; 
IF B THEN DO; 

e; 
GOTO D ;  

END; 

- f; 
END; 

IF THEN; ELSE GOT0 E ;  
- E?; 

This program (and  such programs in general) contains 
only backwards  branches,  and  there is no duplication of 
code  whatsoever. Because there is no way of avoiding 
the  backwards  branches,  we  can  also  say  that  it  is a 
GOTO program with a minimal number of GOTOS and  thus 
the  best  that can be  expected in  this  respect. 

Translation of recursively structured  programs into 
interatively structured ones 

From  the logic of the program construction  process it The program form obtained  in the  second  and third sec- 
is known that this  sequencing  relation means a corre- tions  mirrored  precisely the logic of the analyzed pro- 

188 sponding  sequencing in the  execution  as well. Thus A gram. Nevertheless,  the specific representation might 
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still be  objectionable.  Although syntax  does not  add 
meaning by itself, it has a psychological importance  that 
cannot be  ignored. To  bring, for  instance,  the program 
obtained in the second section  into a more  appealing 
form,  the following steps  can be  performed. 

1 .  Definitions of nonrecursive modules of the form M 
= {(.IT} (u and 7 denote  arbitrary strings) are written 
as M = I F  THEN u, ELSE 7. 

2. Module definitions of the form M = {uM10} are 
written as M = WHILE M DO u and  analogously M 
= { 0 I u M }  is translated into M = WHILE 1 M DO u. 
Steps 1 and 2 together  give the following result (the 
semicolon is used now as a statement delimiter,  and 
parantheses  are used to  group  statements  together). 

V = a ;   A ;  C; g 

A = IF A_ THEN b; ELSE (c; d ;   B ; f )  
B = WHILE DO ( e ;  c; d )  
C =  WHILE ~ C D O  ( d ;   B ; f )  

3. The method  described in the third  section for  complete 
modularization is applied. (Because  alternatives may 
have  shorter ranges now,  due  to  the WHILE construct, 
different abbreviation  modules can  be  expected.) 
The result is 

V = a ; A ; C ; g  
A = I F A  THEN b ;  ELSE ( D :  E )  
B = WHILE DO ( e ;  D )  
C = WHILE 1 _C DO ( d ;   E )  
D = c ; d  
E = B ; f  

4. In a program representation of this kind many mod- 
ules are referred to only once, which is very often 
undesirable.  In-line  expansion of these modules 
(which  corresponds  to  an interpretation of the re- 
spective module references  as  macro calls)  gives, 
together with an adding of the hidden  modules, the 
following final result. 

v =x, 
I F  A_  THEN^; ELSE ( D ;  E )  ; 
WHILE - I  DO ( d ;  E )  ; 
g 

D = c ; d  
E = WHILE B DO ( e ;  D )  ; f 
d = d  

In  the  rest of this  section we concentrate  on  step 2 ,  
i.e., on the question of how recursively structured mod- 
ules can be expressed in terms of iterative language fea- 
tures,  such  as  the IF,  WHILE, DO FOREVER, and multilevel 
EXIT statements. We restrict  ourselves thereby to mod- 
ules with only two alternatives. 

- 

- - - 
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Figure 8 Expansion tree. 

In  the previous  section the  concept of a depth-first 
spanning tree  was used. In  it module names  occurred in 
three different ways: to  denote  the definition place of the 
module (there was a subtree  under  the module’s name), 
to  denote a back reference  (the  name  occurred within 
the definition tree of the  module),  or  to  denote a cross 
reference  (the  name  occurred  outside of the definition 
tree). 

The  existence of cross  references indicates that  the 
module is used  independently  in  different contexts. 
Cross  references could  always be avoided if a copy of 
the module were  made  at  each  cross  reference place, 
such  that all references become  back references only. In 
the following text,  the  concept of an expansion tree  is 
introduced.  It is similar to  the spanning tree  concept  but 
has  the following differences: 

1. The  root module  can be  an  arbitrary module M. 
2 .  All those module references  and only those module 

references  are  expanded  that  are not  back references 
and  that yield,  directly or indirectly, either M or  one 
of that module’s ancestors (a module from which it 
was  derived by expansion). 189 
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Figure 9 Expansion tree in  partially iterative form. 

In  contrast  to  the depth-first  spanning tree, modules 
are  expanded not  only at  the leftmost occurrence  but  at 
every  occurrence  that is not a back  reference. Thus  dur- 
ing the  expansion  process  several copies of the  same 
module may be  made. If we distinguish  them  from each 
other by  unique  names (and correspondingly  change 
the involved  back references), we get  a tree  that we call 
the  expansion  tree of the module M .  An example of an 
expansion  tree with nested recursion is given in Fig. 8. 

One of the basic  properties of an expansion tree 
(again in contrast  to  the depth-first spanning tree) is that 
only those modules  in it are  expanded  that  occur in a 
module sequence in a rightmost  position. This is so be- 
cause  otherwise a module M could be expanded  into a 
sequence  such  as --- M N ---, where N would be  both  an 
immediate post  dominator of M and within the  scope of 
M .  The leaves  in the  expansion  tree  are module  se- 
quences in which no  further  expansions  occur.  Such 
sequences  that  do  not  end with a  back reference  are 

190 called the  exits of the  tree. 

The basic  philosophy of the iterative  language feature 
is  to  anticipate  eventual  recursions from the very begin- 
ning. If we do this,  then  this means, in terms of the ex- 
pansion tree,  that all references  to  the  root module  be- 
come  redundant  and  can  be  deleted.  On  the  other  hand 
we  do  have  to plug the  exits of the  tree  to avoid the  oc- 
currence of an invalid iteration in these  cases.  This can 
be  done by adding an EXIT M statement to the right of 
each  exit, which forces  the control to  leave  the module 
at  these places. 

The  expansion  tree of Fig. 8 is  thus brought into  the 
form shown  in  Fig. 9 (the circle stands  for  the anticipat- 
ed permanent  repetition of the  module). 

Now  the  other involved recursive modules have to be 
translated  into iterative  form  by  processing them in top- 
down  order in the  same way as  the  root module was 
processed. Care  has  to  be  taken only of what  the  exits of 
the new subtrees  are. Everything that is already plugged 
by an EXIT statement  can  no longer  be  regarded as  an 
exit  (an  exit  from a module  in a higher  position implies 
an  exit  from  the modules in a lower  position as  well). 
Exits  are now those leaves in the  tree  where  recursive 
references  have been deleted (us in Fig. 9) .  The result 
derived  from  Fig. 9 after proceeding in this way is shown 
in Fig. 10. 

The resulting tree is always  free  from  any back  refer- 
ences  (recursions). Of course  it may contain references 
to  other “self-contained” recursive modules: these  re- 
cursions  do  not  show up in the  tree, however. Thus  it 
can  always  be  directly coded by using nested I F  state- 
ments in connection with labeled DO FOREVER state- 
ments. From Fig. 10, for  instance,  the following code 
can  be  directly derived. 

A :  DO FOREVER; 

IF ATHEN DO; 

Ut; 

B :  DO FOREVER; 

IF THEN (C3;  EXIT B ) ;  ELSE (C4; IF c THEN 

a,; ELSE (We; EXIT A ) ) ; 
END B ;  

ELSE (U2; EXIT A )  ; 
END A ;  

The DO FOREVER statement, particularly in its  nested 
versions, is not really convincing  with respect  to  its 
readability.  We  now give the  three special cases in 
which we can do without it: 

1. Module M is defined as M = { u M l 0 } .  Instead of 
writing 

M :  DO FOREVER; 

if M THEN u; ELSE EXIT M ;  
END M ;  

we certainly  prefer the  shorter WHILE M DO u. 
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2 .  Only the left alternative of M is  recursive,  and  the 
right alternative is nonempty (this implies that  the 
recursiveness is an  indirect  one), i.e., M is defined as 
M = ( v  NIT} ,  and  expansion of N gives M again. 
Also in  this case  the module M can be translated sim- 
ilarly to 1 ) ,  but this  time the WHILE (analogously to 
the IF)  has  to be  combined with an ELSE clause (con- 
taining the right alternative of M ) .  The point of the 
ELSE clause  is  that is belongs to M too  and  thus is 
bypassed by an EXIT M .  

3. The module M is  recursive in its right alternative 
only. In this case  the Boolean expression belonging 
to M is negated, the  alternatives  are  swapped,  and  the 
module is treated as described  under 1 ) and 2 ) .  

Altogether in the translation of a  conditional  module 
M into  iterative  form  the following cases can be distin- 
guished: 

1. Module M is nonrecursive. 
Iterative  counterpart: IF statement. 

2 .  Module M is recursive but in one alternative  only. 
Iterative  counterpart: WHILE statement in connection 
with the EXIT statement. 

3. Module M is recursive in both alternatives. 
Iterative  counterpart: DO FOREVER statement in con- 
nection with the EXIT statement. 

If a whole  program is  translated  into iterative form 
(and not just a single module), then the modules of the 
program  should  be translated in top-down order, in the 
sense of the depth-first  spanning tree,  and only those 
modules  need be  translated  that  have been  previously 
referred to (this  saves  the  redundant translation of those 
modules that  occur  at  an intermediate  position in other 
expansion  trees  only). 

A great  inconvenience in the  described translation 
process  is  the permissive  duplication of code.  The dupli- 
cation is necessary when the  same module occurs within 
different “contexts.” By context we mean the list of 
those  ancestor modules that  occur in the  scope of the 
module again. They  are  exactly  the modules that  cause 
the  introduction of the EXIT statements  and  thus make 
the new module context-dependent.  Thus we can  do 
without the duplication if the  two module occurrences 
are within the  same  context. Even  then the result is not 
too impressive. It leads to stand-alone  modules  contain- 
ing EXIT statements  that  are less readable  (because of 
the missing target)  than  the original GOTO statements 
were that  they replaced. 

Altogether a mixture of the  iterative and the  recursive 
approach  seems  to provide the most  satisfying  solution 
to  the  structuring problem: To take  the IF and WHILE 

\ 
Ui EXIT A 

us U6 EXIT A 

Figure 10 Expansion tree in completely iterative form. 

(and  perhaps  the UNTIL) statements in the simple cases 
(where  no EXIT statements  are  involved) and to make use 
of (recursive)  references in all others. 

Extensions 

Multi-exit blocks 
One of the most  common features in higher  level lan- 
guages is blocks-either of the simple parentheses-like 
type ( D O ; .  . . END; or B E G I N ; .  . . END;) or of the DO loop 
type (DO 2;. . . END; - where a is the  header of the block 
controlling the  interation). When using blocks, the pro- 
grammer associates meaning with them. Thus this struc- 
ture should  be carried  over  into  the  structured program 
version. As long as blocks have only one  exit  the shown 
structuring  process can be immediately  applied. All that 
has  to  be  done is to  create  an unconditional  module for 
the block. In this section we want to  solve  the problem 
of structuring a program  containing  blocks  with several 
exits (Le.,  blocks with embedded GOTOS that  leave  the 
block abnormally).  Consider,  for  instance,  the following 
very  common  program (skeleton) fragment (see [ 171) : 191 
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DO*; 

IF - B THEN (found; GOTO C O N T ) ;  

not-found; 

- 
END; 

CONT: E t ;  

A specific interpretation of this skeleton could show, 
for  instance, a search routine  through an  array  where, 
dependent upon the finding of a certain element, dif- 
ferent  routines (found and notlfound) are  executed.  In 
the two-dimensional flow chart skeleton form the  above 
example could be  shown as in Fig. 11 .  The A in Fig. I 1 
stands  for  the whole block and a for its header only. The 
single arrow ending  at the block contour  denotes  the 
conditional exit  (depending upon the  header) ; all other 
exits are unconditional ones. A  programmer  confronted 
with the task of structuring  the  above program will nor- 
mally end with the following “structured” version of it: 

- 

DO g W g l L E  I E; 

IF f(a,J) THEN found;  ELSE not-found; 
s t  ; 

END; 

With f(g, E )  we thereby  denote a test on the  outcome of 
the  search.  There  are  two things wrong with the  above 
approach. For  one it is an example of tricky (and  thus 

opaque) programming (the DO loop pretends  to  do noth- 
ing but  nevertheless passes a result  hidden, for  instance, 
in  a control  variable).  For  the  other  the connection be- 
tween the  two program  parts is not visible in the flow of 
control but simulated in the  data flow. Especially if the 
two  parts  are placed remotely from each other or iff(a_, 

quite difficult to find. 
If we look at Fig. 11  more  carefully, we almost imme- 

diately see  that  the whole block A is nothing more  than a 
kind of decision that  requires, instead of evaluating a 
simple Boolean expression, execution of a more  com- 
plex program  fragment. Decisions of this kind involve 
flow  of control. Thus we can no longer limit ourselves  to 
abstractions of them. To  make  this fact explicit we intro- 
duce a new module type, called a  decision  module. I t  
occurs in front of the definition of a  conditional  module 
and is put  in parentheses (for instance (a) I. . . 1 ---}). 
Its meaning is that  the selection of alternatives is depen- 
dent upon the  outcome of this  module. For convenience 
we  assume  that  the first of these  alternatives is the  one 
that is executed when the block is left normally. 

With these  preparations  we can specify the  structuring 
process for programs  containing multi-exit blocks as fol- 
lows: 

- B )  is a tricky  expression  again, the  connection may be 

Step 1 Outmost multi-exit blocks are  interpreted  as 
(visible) decisions,  and  besides  this the  structuring pro- 
cess is performed as  it was before for simple flow diagram 
skeletons.  For  the  above  example  this gives: 

U = A , H  
A = ( a )  (not-jound(0) 

Step 2 The definitions for all decision  modules encoun- 
tered in step 1 are derived.  Because we want to keep the 
block structure,  this is an almost trivial step.  We  need, 
however,  a new notation  and introduce (block header/ 
block body)  as a self-explanatory  notation for  describ- 
ing a block. 

Step 3 All encountered block bodies are  structured 
(treating nested  blocks in the  same way as  the  outermost 
ones).  To be able to  use  the  base algorithm for  this pur- 
pose we need the one-begin and one-end structure of the 
respective block bodies. This is achieved by closing all 
abnormal exits with a CASEi statement  (where i gives the 
connection to  the succeeding alternative)  and  connect- 
ing them  afterwards to the main  exit. For  the  above 
example  steps 2 and 3 give: 
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Step 4 As soon as a multi-exit block is regarded as a 
kind of a decision,  it should  contain  only code serving 
the purpose of making that decision. Thus  whenever a 
c A s E i  statement  is immediately  preceded  by some  code 
that is “self-contained”  (i.e., does  not contain other ex- 
its out of the  same  block), this code should  be  moved 
out of the block body and placed in front of the  alterna- 
tive  indicated  by the  respective  CASE^ statement.  For  the 
above  example the resulting structured program text 
thus is: 

U = A ; =  
A = ( a )  {not-foundljiound} 

a = (dB) 
B = {CASE 210) 

I f  we now look at the definition of module A ,  we  can 
see a much more meaningful structure than the  one 
shown before. It shows that a (programmed) decision a 
has  to  be performed  depending on which one of two 
possible alternatives has  to be executed.  This is exactly 
the  structure  that would be obtained if we had pro- 
grammed  top-down correctly and  used  levels of abstrac- 
tion. It  exposes  the  search routine a (which could also 
be defined in another  way) as well as  the resulting ac- 
tions,  and  it gives,  independently of their specifications, 
the  proper connection. 

In   PL/I  a block with two exits  could  be coded by 
means of a truth value function. For more  than  two  exits 
a  new language feature  (not  yet in PL/ I )  is needed to 
obtain a proper  structuring tool. 

Label  variables 
In a GOTO program  a GOTO with  a label variable as  tar- 
get is nothing  more than a disguised  conditional  branch 
statement  (dependent upon the value of the label vari- 
able, a branch is made). To be  able to define the  corre- 
sponding  conditional  module the “range” of the label 
variable at this point has to be  determined.  This can be 
done by either worst case  assumptions (all labels occur- 
ring in the  program) or by making a flow analysis as used 
in optimization  techniques. 

Subroutines 
We assume  subroutines  to  be left by return  statements 
only. The  structuring is then performed  quite simply 
by structuring  each  subroutine separately (subroutine 
calls are  treated  as  data transformations, i.e., as basic 
statements). If  a subroutine  has several entry points, 
then  the  subroutine is structured  as often as  there  are 
entry points,  assuming in each  case a different entry 
point as  the program beginning V. 
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As a rather  open problem we consider the  structuring 
of programs  involving (recursive)  subroutines, label 
variables  and their aliases, abnormal  exits,  external  and 
static  attributes in arbitrary combination. Further inves- 
tigations along these lines seem to be  necessary to get a 
deeper understanding of the  nature of structured lan- 
guage concepts. 

Summary 
It  has  been  shown  that GOTO programs  can  be trans- 
formed into recursively structured  ones in such a way 
that  both  the program logic is exposed  and  the concise- 
ness of the GOTO is kept. 

An  extension of the method to GOTO programs  con- 
taining block structures and subroutines  has been given. 
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