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Combinatorial  Solution  to  the  Partitioning of General 
Graphs 

Abstract: This  paper reviews a dynamic programming procedure  for  the partitioning of connected graphs  with  integer-weighted nodes 
and positive  valued  edges. The  upper bound on  the  number of feasible  partitions  generated using this technique  is  shown  to  grow 
factorially in the  number of graph nodes.  The  use of graph properties is then  introduced to  reduce  the  number of feasible  partitions 
generated in the determination of the  optimal  partition. Depending upon the  structure of the  graph,  the  use of these properties can  cause 
a significant reduction in the  computation time and  storage  space required to partition the graph. 

Introduction 
Given a graph G with  integer-weighted nodes  and non- 
negative  edge values,  the partitioning of G consists of 
the allocation of the  nodes in G to clusters  such  that  the 
node  weights of each  cluster  do  not  exceed a given  max- 
imum (i.e., a weight constraint).  The objective of such 
a  partitioning is to assign nodes to  clusters so that  the 
sum of the  edge  values joining  nodes  in different clusters 
is minimal. 

Partitioning  problems of this type  are  encountered in 
the assignment of logic blocks to circuit cards in com- 
puter hardware design [ 1 ,  21 and in the assignment of 
computer information to physical  blocks of storage 
[ 3 , 4 ,  51. 

In this paper we review  a dynamic programming tech- 
nique for generating the optimal  partition of an n-node 
connected graph. This  technique  consists of first assign- 
ing the labels 1 ,  2, . . ., n to  the graph  nodes. On  the  jth 
step of the  procedure,  the feasible  partitions of the 
subgraph with nodes 1 ,  2, . . ., j are  generated from the 
feasible  partitions of the  subgraph containing  nodes 1,2,  
. . ., j - 1 .  The optimal  graph  partition is then a feasible 
partition of the  entire graph. 

We show  that  an  upper bound on  the  number of feasi- 
ble  partitions generated  on  the  jth  step is of order j!. We 
then describe a concept  that  reduces this upper bound 
from  order j! to xj (xj!) W"j where xj is the  number of 
nodes with labels  less than j connected to nodes  with 
labels j or  greater  and W is the weight constraint of a 
cluster. For a graph with values of xj and W << j ,  the re- 
duction  in the number of feasible  partitions that  must  be 
kept  on  the completion of the  jth  step of the  dynamic 
programming procedure is significant. 

We further prove that a  graph with cutpoints  (hence 
two  or more blocks)  can  be partitioned by generating 

the feasible  partitions of each block independently, then 
merging these partitions to find the optimal partition of 
the  entire graph. This  procedure  reduces  the  upper 
bound  in the  number of partitions  generated to find the 
optimal  from n !  to nk! ,  where  the  entire graph has n 
nodes and  the kth block nk nodes. 

The  importance of these  results lies not only in the 
technique  but in the  fact  that  reference [6] contains  an 
implementation of the  procedure whose  growth in com- 
putation  time and  storage  space  on  the  jth  step is of the 
order pj  (lowj), where pj  represents  the  number of fea- 
sible partitions generated  on  the j th step.  Consequently, 
we  have  derived  an  upper bound on  computation time 
for  the partitioning of connected graphs. 

Problem definition and restrictions 
Given a graph G = ( V ,  E )  with  node set V and edge set 
E as in Fig. 1 .  A partition of G is a  collection of k clusters 
of nodes {ci} ( i  = 1 ,  2,. . ., k)  such  that 

k u ci = v, 
i=l 

ci n cj = 0 for all i z j .  

Each node x has  an integer weight w, and  each edge (x, 
y )  a positive  value uXy. As indicated we impose  a weight 
constraint W on  each  cluster  [5]. 

An optimal  partition is defined as some  partition of G, 
P ,  (opt) = {cl, c z , .  . ., c,}, with the  property  that  each 
cluster ci satisfies the weight constraint, 

X E S  

and in which 

W " 5  W ,  

k 
uly is maximal. 

i=l x , y q  
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We impose  several restrictions on the problem  investi- 
gated here.  The nodes of the graph must have nonnega- 
tive integer weights, and  the values of the edges are posi- 
tive. Another restriction is that  the  graph be connected 
(i.e.,  a  path exists from any  node in the graph to all 
other  nodes in the  graph).  Given a  disconnected  graph 
G ,  each  connected subgraph of G is partitioned inde- 
pendently,  i.e., each cluster  consists of nodes  from  the 
same  connected subgraph. 

The final restriction is that a multigraph must  be trans- 
formed into a graph by the following modification. If 
more than  one edge exists  between  two  nodes x and  y, 
then  the several  edges  joining x and y are replaced by 
one with a  value uxy equal  to  the  sum of the values of 
those edges. 

General partitioning algorithm 
In this  section we review [3]  a  partitioning  technique 
that  has  as  its basis a dynamic programming procedure 
similar to  that used in the solution of the one-dimen- 
sional  knapsack  problem [7]. The similarity between 
that problem and the partitioning  problem becomes ap- 
parent  when their properties are compared. 

The one-dimensional  knapsack  problem is that  faced 
by a  mountain  climber  who has a  knapsack that  can car- 
ry a maximum weight of W pounds  and  a  number of dif- 
ferent items he wishes to  carry in the knapsack. Each 
item  has, as well as a weight,  a  value  associated  with it, 
and the  sum of the weights of the  items  exceeds W .  A 
mathematical statement of this problem is the following: 

One-dimensional  knapsack  problem 
Let w X  = weight of item x (x = 1 ,  2,. . ., n) ,  

U, = value of item x, 
w = capacity of knapsack. 

n 

Maximize 2 uxrx subject to  the  constraint 
x= 1 

n 
wxrxz w 

x= 1 

fl if item x is in the knapsack 

The mathematical statement of the partitioning  prob- 
lem given below is seen  to  be  an  extension of the one- 
dimensional  knapsack  problem to  the distribution of in- 
terconnected, weighted items into many knapsacks  or 
clusters,  each of capacity W :  

Let w X  = the weight of node x 
uxy = the value of edge (x, y )  
n = the number of graph  nodes 
N = the number of clusters in the partition 
W = the weight constraint. 

V = {A,B,C,D,EI 
E = ia,b,c,d,el 

Figure 1 A partition of graph G = ( V ,  E )  with a weight con- 
straint of 2 and all nodes having unit weight. 

Then maximize 

subject  to  the  constraints 
n 2 wxrx i  5 W for i = 1 ,  2,.  . ., N 

x= 1 

rd = 1 if node x is in cluster i  and 0 otherwise. 
In  order  to pose the partitioning  problem as  one suit- 

able  for solution by dynamic programming, the graph is 
first labeled [SI. The  jth  step,  or  stage, of the partition- 
ing process  generates  the feasible  partitions of the sub- 
graph  consisting of those  nodes with labels 5 j. These par- 
titions correspond  to  the  states of thejth stage. The par- 
titions of the  subgraph consisting of those  nodes with 
labels no  greater thanj  are  created  from the  partitions of 
the ( j  - 1 )th by adding node j to  these partitions within 
the limitations  imposed by the weight constraint.  The 
policy decision is the determination of which partitions of 
step j - 1 can have node j added to  one of their  clusters 
to  generate feasible  partitions of step j. 

The following definitions are useful in describing the 
basic partitioning process. 

A  k-adjacency of node j is defined as a feasible  parti- 
tion generated  on  step j with  a cluster containing  node j 
whose weight is k. An  example of a 2-adjacency of node 
4 is shown in Fig. 2. A k-adjacency of a node is not 
unique, as  demonstrated in Fig. 2. 

We have already  imposed a weight constraint  on  each 
cluster of a  partition.  A further  constraint [S, 61 im- 
posed on  each  cluster is that  the  nodes contained within 
it  form a connected  subgraph. 171 
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Figure 2 A k-adjacency of node j .  

A feasible partition of a graph G is therefore defined 
as a  partition whose  clusters  each satisfy the following 
properties: 

1 .  The sum of the weights of the  nodes in a cluster must 

2. The  nodes in a cluster must  form  a  connected  sub- 
not exceed W ,  the weight constraint. 

graph of G. 

In  the process of partitioning  a connected graph G the 
172 only  partitions that need to be generated  are  those 
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whose clusters  have a weight not  exceeding the weight 
constraint  and  that contain nodes  that may form  a  con- 
nected subgraph of G. In generating the  set of feasible 
partitions on  step j ,  the weight constraint  is easily tested 
by adding node j to each  cluster of some partition  gener- 
ated on step j - 1 and  rejecting the resulting  partitions 
with a cluster  whose weight exceeds W .  A newly cre- 
ated feasible  partition  must  not  only have  clusters  that 
satisfy the weight constraint, but  its clusters must also 
contain nodes  that presently form a connected subgraph, 
or  form a connected subgraph  with the addition of one 
or more  nodes with labels greater  than j .  Let this  restric- 
tion be called the connectivity  constraint. In  order to 
recognize some  cluster of a  feasible  partition of step j - 1 
to which node j can be added  without violating the  con- 
nectivity constraint, we introduce  the  concept of the 
connected  set. 

The connected set for a node j is defined as  that  set of 
nodes that, if one  or more of them appears in a cluster of 
a  partition generated on step j - 1, guarantees  that  the 
addition of node j to  that  cluster may on  some  step m > j 
form a connected subgraph. The  properties of a node i in 
the  connected  set  for node j ,  denoted by CONN ( j )  , are: 

1.. i < j ;  
2 .  node i 

(a )  is adjacent  to node j ,  or 
(b)  lies on a  path i ,  xl, x 2 , .  . ., x,, j ,  

where 

x w z 5  w 
and 

x E { i ,  xl,. . ., x,, j )  
x1 > j ,  
+2 > j ,  

x, > j .  

The  second  property  guarantees  that a partition with a 
cluster containing two nodes i and j that  are presently 
disconnected,  but  become  connected if nodes xl, x 2 ,  
. . ., x ,  are  added  to  that  cluster, is generated on  step j .  

An illustration of the  connected  set  associated with 
each node of the given graph is shown in Fig. 3. 

Dynamic programming  procedure 
We  now describe  the  dynamic programming procedure 
to  form  the optimal  partition of the graph. The graph is 
assumed  to  have been  labeled. I t  should be noted that 
the particular labeling used affects the partitioning  pro- 
cess;  however,  no general labeling technique is known 
that yields the minimal computation  time. 

The (j - 1)th step of the partitioning algorithm has as 
its states  the feasible partitions of  the subgraph consisting 

IBM J .  RES. DEVELOP. 



of those  nodes with labels <j, denoted by Pj-, .  We then 
add  node j to all partitions in Pj-l with  a cluster satisfying 
the criteria: 

1. The addition of node j does not cause  the  cluster 

2 .  There  exists a node in CONN (j), the  connected  set  for 
weight to  exceed  the weight constraint; 

node j ,  in the  cluster. 

The resulting  partitions are  the  states of step j ,  Pj .  
The value of each partition equals  the summation of 

the values of the edges within the clusters of the parti- 
tion. 

The  dynamic programming process is outlined  below: 

Step I 
For  each node j find the connected set CONN (j). 

Step 2 
j=O, P , = 0  

Step 3 
j = j +  1 

Let  the weight of node j be denoted by wj. Set Pj con- 
sists of the following partitions: 

(a )  Form  the k-adjacencies for k = wj. Each such k-ad- 
jacency is formed by adding a cluster containing 
nodej alone to  the  set of clusters of a  partition in Pj - l .  

(b)  For k = wj + 1, wj + 2, ..., W form the k-adja- 
cencies of nodej. Only those partitions in P j - ,  with at 
least  one  cluster containing a node in CONN (j) can 
be  used in the generation of these partitions. 

Step 4 
Go to Step 3 until j = n for  an n-node  graph. 

Step 5 
Select  the maximal-valued feasible  partition in P,. This 
is the optimal-valued  partition of the graph. 

An  example of the  use of this algorithm is given  in 
Fig. 4. The  results of each  step of the algorithm are 
shown in tabular form. Each row of this table  corre- 
sponds  to a step of the  procedure;  the kth column and 
j th row of the  table contain the k-adjacencies of node j .  

Growth  rate  for  dynamic  programming  procedure 
Although the  dynamic programming procedure  just  de- 
scribed generates  an optimal  partition of a graph  without 
resorting to total  enumeration,  the  question  arises  as to 
the number of feasible  partitions  possible for a connect- 
ed graph. Reference [ 6 ]  shows  the growth  in computa- 
tion time to  vary as 
n 

npj(log, p j ) ,  where pj  = IPjl, 
j=l 

and the  storage  requirements vary as npj ,  where n equals 
the number of graph  nodes. 
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Figure 3 Connected set for a graph in which all nodes have 
unit weight and W = 3. 

Consider first the growth in the cardinality of Pj  for 
total enumeration. To  generate this number we assume 
that  the graph is complete  (every pair of its nodes  are 
adjacent) so that no combination of nodes in some  clus- 
ter is disconnected. Also, no weight constraint is im- 
posed upon  the  clusters.  The  upper bound on  the size of 
Pj is the number of ways in which j distinct objects  can 
be distributed in i nondistinct  cells, where i varies  from 
one  to j and is given by the Stirling number of the sec- 
ond  kind, S ( j ,  i ) .  Thus 

pj  < x S(i, i), where pj  = IPjI. 
j 

i= 1 

A  closed form  for this  summation does  not  appear  to 
exist, but an  upper bound results from the  recurrence 
relationship: 

Pj < ( 1  + C j )  Pj-l. 

where pj  = lPjland cj = ~ C O N N  (i) I. 
This relationship is derived from the fact  that Pj is 

made  up of two subsets: 

1. The 1-adjacencies of Pj ,  of which there  are pj-l, 
2 .  The k-adjacencies of Pj,  where k > 1. 

The size of the  latter  set is bounded by cj pjw1, because 
each node in CONN (i) can generate  no  more than pj-l 
partitions of pj: 

For  the  complete graph ~ C O N N I  (i) I =j  - 1 ; therefore 

p .  < j ! .  173 
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Value 

4 

Figure 4 Dynamic  programming  procedure  for  graph in which 
W = 3 and all  nodes  have unit weight. 

In  reference [6] it is shown that a lower bound on the 
number of feasible  partitions grows  as f', where 1 < f 
< 2. 

Use of graph  properties in partitioning 
The computation  and storage  requirements of the dy- 

174 namic programming procedure grow  factorially in the 
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number of graph  nodes, limiting the utility of this pro- 
cedure should it simply generate all feasible  partitions. 
In this  section we introduce  several concepts  that  take 
advantage of properties of graphs  to significantly reduce 
the computation  time and  storage requirements for  cer- 
tain classes of graphs by reducing the  number of feasible 
partitions generated. 

The first concept  discussed is that of the isolated  set. 

Using  this concept we show  that  the growth in the num- 
ber of partitions  generated on  step j of the partitioning 
process is dependent only on  the number of nodes  with 
labels  less  than j connected  to  nodes with labels greater 
than or  equal  to j and  not on the number of nodes j .  The 
second concept  takes  into  account  the  existence of cut- 
points  and  blocks in a  graph. 

The isolated set 

A  node i is defined to be an element of the isolated set 
for node j ,  denoted ISOL ( j ) ,  if it satisfies the following 
properties: 

1 .  The label i is less thanQ. 
2 .  Node i is not adjacent  to any node with label 3 j .  

Figure 5 illustrates  this definition. 

Several properties of the isolated set result from this 
definition. 

1. The size of ISOL ( j )  is independent of the weight con- 

2 .  The  connected  set and the isolated set  for any  node j 
are mutually  exclusive. This  property follows  from 
the definition of each  set. 

3.  Let CONN (j),,,ax denote  the  set of nodes with labels 
less than j that  are not elements of ISOL ( j ) .  Then 
CONN (j),,, = { i l i  = 1, 2, ..., j - 1 )  - ISOL ( j )  and 
is independent of the weight constraint. 

4. CONN (j),,,ax 2 CONN ( j )  for  every weight constraint 
W .  Note  that CONN ( j)  is a function of W and CONN 

( j ) m a x  is not. 

straint. 

The growth in the size of ISOL ( j )  is a  nondecreasing 
function of k ,  as we show in the following theorem: 

Theorem ISOL (j) ISOL (j + I ) .  

Proof Assume  that ISOL (j) 2 ISOL (j + 1 ) .  Then  there 
exists  at least one node i that is in ISOL (j) but  not in 
ISOL (j + 1 ) .  By definition i is adjacent  to  no node with 
label greater than j ;  consequently it is adjacent  to  no 
node with label greater than j + 1 ,  contrary  to  the  as- 
sumption. Therefore, ISOL (j) ISOL (j + 1 ) .  

We now show that the  concept of the isolated set  can 
be  used to modify the partitioning process so that only  a 
subset of the feasible  partitions of a step of the  process 
must  be generated  on  that  step. 
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We have defined the  set CONN (j) as  those  nodes in 
the  set { 1 ,  2, .  . . , j  - 1 j not in ISOL ( j ) .  Those partitions 
generated on  step j - 1 can  then  be separated  into dis- 
joint  subsets  where  each partition in a subset has the 
same distribution of the  nodes from CONN(~) , , ,  in its 
clusters  as  the  other partitions in that  subset.  Further- 
more,  any cluster in the partition that  contains  one or 
more  nodes  from CONN ( j )max  has  the  same weight as 
the  comparable  cluster in each of the  other partitions in 
the  subset.  An example of two partitions in the  same 
subset is 

(132)  (4) ( 3 > 5 )  and ( 1 )  (3) (4) (2,513 

where CONN (6),,, = {4, 5 j and  each node has unit 
weight. 

Any two partitions in the same subset  are defined as 
similar  partitions. We define the dominant  partition of a 
set of similar partitions as  that partition of maximal val- 
ue. If two or more  partitions are similar and have equal 
maximal values, then one is arbitrarily chosen  as  the 
dominant  partition. 

The reason for separating the  set of feasible  partitions 
of s t ep j  - 1 ,  Pj-l, into  sets of similar partitions is that all 
but the dominant  partition can be  deleted  from each sub- 
set of Pj-l. We show in the appendix that this  result  re- 
duces  the  upper bound on  the number of feasible  parti- 
tions generated on step j from j !  to 

Xj(Xj!) (W"j) 

where .xj = I c o N N ( ~ ) , , , I  and W is the weight constraint. 

For small values of W and xj this  result represents a 
significant reduction in the number of feasible  partitions 
that must  be  generated on  the  jth  step of the partitioning 
process. In  the appendix we prove the isolated set  theo- 
rem,  showing that all but the dominant  partitions of step 
j - 1 can be deleted  from Pj-l. 

An illustration of the results of this theorem is given in 
Fig. 6. 

We note that  the size of the isolated set  for  the  nodes 
of a  graph is a function of the labeling assigned to  the 
graph. No labeling technique is yet known for minimiz- 
ing the number of feasible  partitions,  although [6] de- 
scribes heuristic techniques  for labeling. 

Cutpoints 
A cutpoint of a connected graph G = ( V ,  E )  is defined 
as a node c such  that V - { c j  is the node set of nontrivi- 
al disconnected graph G'. A nonseparable  graph is con- 
nected, nontrivial,  and has  no  cutpoints. A block of a 
graph G is a maximal nonseparable  subgraph of G. An 
illustration of these definitions is given in Fig. 7. 

If a connected graph G has more than  one block, the 
following theorem  proves that it is valid to find the opti- 
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Figure 5 Isolated set. 

Figure 6 Application of isolated set theorem. 

IsoL( 1) = 0 
I S O L ( ~ )  = 0 
ISOL( 3 )  = 0 
I S O L ( 4 )  = (11 
ISOL(5)  = {1,2,3} 

From Fig. 4 the sets of similar partitions in P ,  are: 

S I  
( 1 )  (2 )   (3 )   (4 )  value = 0 ( 1 )  ( 3 )   ( 2 , 4 )  value = 1 
( 1 , 2 ) ( 3 ) ( 4 )  value=5 ( 1 ) ( 2 ) ( 3 , 4 )  value=6 
( 1 , 3 ) ( 2 ) ( 4 )  value=3 ( 1 , 3 ) ( 2 , 4 )  value=4 
(1, 2,   3 ) (4)  value= 8 ( 1 ,  2) (3 ,   4 )  value= 1 1  

s, 

s3 
(3)(1,   2 ,   4)  value=  6 
(2) (1, 3, 4) value = 9 
( I )  (2, 3, 4) value = 7 

Dominant partitions of P, are: 

Set Dominant partition 
s, ( I ,  2, 3)   (4)  value = 8 
s, ( I ,  2) (3 ,  4 )  value= 1 1  
s, (2 )  ( 1 ,  3,  4) value = 9 175 
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E 
Figure 7 Graph with a cutpoint. Splitting node results in blocks 
# I  and #2. 

mal partitions of each block in any order and then com- 
bine these partitions to  generate  an optimal  partition of 

176 G .  A proof of this theorem is given in the appendix. 

Cutpoint 

Block # 1 

Block #2 

Block independence theorem If a  graph G has q blocks, 
where q > 1, then the optimal  partition of G, p(opt) , 
can  be created by first partitioning the blocks  indepen- 
dently, then  combining the resulting  partitions. 

The  existence of cutpoints  (hence blocks) in a  graph 
reduces  the number of partitions  generated on any step 
to a  number  directly  proportional to  the number of parti- 
tions generated if each block were partitioned  indepen- 
dently. A brief summary of one method of partitioning 
such a graph  follows. 

Assume  that a  graph G has q blocks, B,,   B, ,  . . ., B,. 
Let block B, have c, cutpoints. We then partition each 
block B, independently,  omitting the  cutpoints c, from 
any  isolated set  for  the  nodes in B,, and keep the opti- 
mal 1-adjacencies,  2-adjacencies, . . ., W-adjacencies for 
each  cutpoint in B,. Therefore,  no  more  than c,W need 
be kept for block B,. 

When all blocks are partitioned, we then find some 
block with only one  cutpoint in its  node set  and combine 
it with  a block containing the  same cutpoint.  We do so 
by merging the  clusters of the partitions of the  two 
blocks  containing  their  common cutpoint, leaving the 
other  clusters unchanged. This  operation  takes  no  more 
than W (  W + 1) / 2  steps. 

The merger of blocks may reduce  the  number of un- 
merged cutpoints in the resulting subgraph containing 
these  two blocks  by  one. We then find another block 
with one unmerged  cutpoint and merge it with a block 
containing their common cutpoint.  This  procedure con- 
tinues until the optimal  graph  partition is found. 

This technique is correct  because  the blocks  and their 
cutpoints  form a tree called the block-cutpoint  graph 
[8]. Consequently  the method of merging block parti- 
tions is essentially  a modification of the  tree partitioning 
algorithm described in [ 51. 

Examples 
To illustrate the effectiveness of the isolated set on the 
existence of blocks in reducing the partitions generated 
on  each  step of the partitioning process, we now exam- 
ine several graph types  that readily lend themselves  to 
analysis. 

A dramatic  example of the reduction in computation 
time  and storage is the following. Reference  [6]  shows 
that  the minimum number of partitions generated on the 
jth  step  for  the simple k-node tree of Fig. 8 ( a )  is greater 
than 1.6’. Using the analysis above this  bound is reduced 
to  the following: 

lP’1 < Xj(Xj!)W? 

where xj = I C ~ N N (  j),,,axl = 1 for all j > 1. Thus 

lPjl < W ,  where W is the weight constraint. 
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Another graph  whose  value of xj is independent o f j  is 
also shown in Fig. 8(b) .   For  a width parameter h ,  ISOL 

(j) = {iii has label <j- h } .  Thus 

xj = k for  allj, and lPjl < h ( h ! )  W h .  

A  more  careful  analysis results in the  upper bound 

lPjl < Wh. 

An example of the effectiveness of the use of block 
independence in partitioning is given in [ 51. 

An example of the use of the  partitioning  algorithm 
taking advantage of the isolated set  concept is given in 
Fig. 6 .   I t  is instructive  to  compare  the number of parti- 
tions  generated here with the  number generated using 
the dynamic programming procedure alone (Fig. 4). We 
see  that significantly fewer partitions are  generated  on 
each  step by the general  partitioning  algorithm. We 
have,  however, not  made  use of the block independence 
theorem, although the graph  has two blocks. 

Conclusion 
We  have described  a modified dynamic programming 
procedure for the partitioning of connected  graphs with 
integer weighted nodes  and  edges  whose  values are posi- 
tive. The algorithm  employs  the concept of the isolated 
set  to  reduce  the  upper bound in partitioning  a  subgraph 
of the given graph  from  a  number growing factorially in 
the number of subgraph nodes  to  one  that is a  function 
of the  graph  connectivity and graph labeling. 

A further reduction in computation  time is afforded 
for a  graph with cutpoints,  because,  as we have shown, 
such a graph  can be partitioned by block and the block 
partitions  merged. 
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Appendix:  Proof  of theorems 

Isolated Set Theorem The only  partitions of step k - 1  
necessary in generating  the  partitions of step k are  the 
dominant partitions. 

Proof Let G be an n-node graph. A partition p generated 
on some step k in the  process of partitioning G can  be 
represented by a sequence of pairs 
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k  CONN(k) IsoL(/o 

1 0 0 

k-adjacencies 
Step 1 2 3 

1 ( 1 )  = o  

2 ( 1 ) ( 2 ) = 0   ( 1 , 2 )  = 5 

Optimal partition is ( I ,  2 ) ( 3 ,  4, 5 )  with value= 15. 
~~ ~~ ~~ 

Figure 9 Example of graph partitioning  algorithm  application. 
All nodes have unit weight and W = 3. 

where  the first entry of a  pair represents  the  node with 
label i ,  the second entry  the  cluster  to which node i is 
added on step i, and ( ) denotes  the  empty  cluster.  The 
advantage of this  notation over  the nodal representation 
is that it describes precisely how p is generated. An 
example of thknotation is [ I ,  ( ) ] ,  [2, ( ) ] ,  [ 3 ,  (2 ) ] ,  
[4, ( I ) ] ,  [ 5 ,  ( 2 ,  3 ) ] .  This  representation is equivalent 
to  the nodal representation p = (1, 4 )  (2,  3 ,  5 ) .  

Let Pi be  the  set of partitions  generated on step i of the 
partitioning process. We  then define a derivation of a 
partition p from a partition q, where p is in P ,  and 4 is 
in Pj(j < k ) ,  as  the  sequence 

[ j +  1,  C ~ + ~ I ,  [ j +  2 ,  C ~ + ~ I ; . . ,  Ek, ckl.  

This notation is a  variation of the  above  representation 
of p that ignores the  steps leading up to  the generation 
of partition q. 

Let  two partitions f and g generated  on  step k-1 be 
178 similar,  and let f dominate g .  Assume  that  there  exists a 
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partition of G, g,,  derived  from g that  has a greater val- 
ue  than any  partition of G derived fromf. We now show 
that this assumption is false. 

Let a  derivation of g, from g be [ k ,  ck] , [ k  + 1 ,  C,,~], 
. . ., [ n, c,] . Since f and g are similar, there is a partition 
f, derived fromfwith  the derivation [ k ,  C,], [ k  + 1, S,,,], 
. . ., [n ,  C,] such  that  for i = k ,  k + 1; . ., n,  ci and Ci have 
the  same weight and  the  nodes in ci differ from those in 
Ci only if they are in ISOL ( k ) .  Note  that  the  nodes in the 
isolated set of node k share  no  edge with a node  whose 
label is greater  than k - 1. As a consequence,  the values 
of partitions generated  on  steps k ,  k + 1, . . ., n are in- 
dependent of the nodes in ISOL ( k )  that  appear in a cluster 
together with nodes in CONN (k),,,ax. 

Since  clusters ci and Ci ( i  = k,  k + 1,. . ., n )  have  nodes 
that differ only if they are in ISOL ( k ) ,  the sum of the 
values of the  edges in ci and Si can differ by the sum of the 
values of those edges between nodes in ISOL ( k )  con- 
tained in each cluster. Since f dominates g, the sum 
of the values of edges in Ci is  equal  to  or  greater than the 
sum of the edges in ci andf,  dominates g,. Consequent' 
ly, the value off, is greater  than  or  equal  to  the value of 
g,, contrary  to  the assumption made  above.  It is there- 
fore not contrary  to  an optimal policy to  delete all parti- 
tions of pk-l dominated by another partition. 

Block Independence  Theorem If a graph G has q blocks, 
where 4 > 1, then  the optimal  partition of G, p (opt),  can 
be  created by first partitioning the blocks  independently, 
then combining the resulting  partitions. 

Proof Consider  the nodal representation of p (  opt) : 

[ (  I . . . (  ) I [ (  I . . .  ( ) I . . .  [ (  I . . .  ( ) I [ (  I . . .  ( 11 
NCl  NC,  NC, C 
" ". 

Here, NC, represents a  (possibly empty)  set of clusters 
whose  nodes  are  not  cutpoints and are all from  the  same 
block B,. The  set C consists of clusters  each of which 
contains  at  least  one cutpoint. 

The nodal representation of p(opt)  assumes this form 
because of the special properties of a  graph with one  or 
more cutpoints. Since  the only node in a  block B ,  adja- 
cent  to  nodes  not in Bi is a cutpoint, a cluster  that con- 
tains  nodes from B, ,  but  no  cutpoint, must  only  contain 
nodes  from B, as a result of the connectivity constraint. 
This  property justifies the collection of clusters  into  sets 
NC,  for block B ,  in the nodal representation above. 

Each  cluster c E C contains  two  types of nodes; 

1,. A set of cutpoints { k ,  k,; * ., k z } ;  
2. A set of nodes { i l ,  i,, 1 . ., i,, j , ,  j , , .  . .} none of which 

are  cutpoints. 

The  latter  set can  be  partitioned into  subsets by the 
equivalence  relationship BLOCK, where u BLOCK u if u 
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and u are  nodes in the  same block Bi.  If the restriction 
on duplication of nodes implicit in the partitioning  prob- 
lem is removed, then the  cluster c can  be  replaced by a 
set of clusters {el, c,, . . ., c z ) ,  where  these  clusters  have 
the following properties: 

1. Each  cluster ci contains  the union of the  set of nodes 
of c from some block Bj created by the equivalence 
relation BLOCK and the  set of cutpoints of c also in 
block Bj;  

2. x:=, VALUE [ e,] = VALUE [ C ]  , where VALUE [e i ]  equals 

the sum of the values of edges  contained in cluster ci. 

Note  that some cutpoint k may appear in several of the 
clusters making up the  set {e,, c2; . ., cz}. 

When we perform the  process  above  on  each  cluster 
in C ,  the nodal representation of p(opt) is transformed 
to 

[ (  ) . . .  ( ) I . . .  [ (  I . . .  ( ) I [ (  ( ) I . . .  [ (  I . . .  ( 11 
N C l   N C ,  CI c, 
- " v, 

where Ci = a set of clusters of nodes  from block Bi in- 
cluding at  least  one  cutpoint of Bi in each  cluster.  The 
value of the  cover  p(opt)' given by this nodal represen- 
tation equals  that of p(opt)  and is made up of sets of 
clusters ( N C , ,  Ci )  representing  a  partition of block Bi. 
No edge exists from a cluster in the  set ( N C , ,  Ci) to a 
cluster in the  set ( N C j ,  Cj) for i # j because of the dupli- 
cation of cutpoints. 

In conclusion we note  that  one  can  reverse  the pro- 
cess of decomposing p(opt)  into  the  cover p (  opt) ' and 
generate  p(opt) by first finding the partitions of each 
block and the combining these partitions. 

The following theorem develops an  upper bound on 
the number of feasible  partitions generated on the kth 
step of the partitioning process when modified to include 
the  concept of the isolated set. 

Theorem Let CONN (k) = the  set of nodes with labels 
less  than k not in I S O L ( ~ ) ,  i.e. 

C O N N ( k ) , a , = { l , 2 , ~ ~ ~ , k -   l } - ~ ~ o L ( k ) .  

and let 

x k =  ICONN(k),axl. 

For a weight constraint of W there  are  no more  than 

Xk ( X k ! )  ( WZ") 

partitions  generated on  step k of the  partitioning process. 

Proof The partitions of step k - 1 can be separated  into 
disjoint subsets by the  property  that all partitions in a 
given subset  have the same distribution of the nodes in 
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C O N N ( ~ )  in their clusters.  If,  for example, the  set of par- 
t i t ionsofstep4is   P4={(1)(2)(3,4) ,  ( 1 , 2 ) ( 3 , 4 ) ,  (1 ,3)  
( 2 ,  4) ,  and (1, 2 ,  3) (4)) and C O N N ( ~ )  = {3,4}, then the 
subsets of P ,  satisfying the  above  property  are { ( 1,  2) 

Note  that  no limitation is placed on  the  nodes in I s o L ( k )  

in a cluster.  We now show  that any subset of Pk- ]  so 
formed  has no more than W x k  partitions in it,  where W is 
the weight constraint and xk is the maximum size of 
CONN( k)  for  any weight constraint. 

Let P'k-l be  a set of partitions of step k - I each of 
which has the same  distribution of nodes in C O N N ( ~ )  in 
its  clusters. If  a  partition in P'k-l  has a cluster containing 
nodes i,, i,, . . ., i, that  are in CONN ( k ) ,  then every  other 
partition in P'"-, also  has a cluster containing nodes i,, 
i,, . . ., i,. No restriction is placed,  however, on  the nodes 
in I s o L ( k )  in a cluster containing  this subset of CONN ( k ) .  
Consequently  the weight of a cluster of a partition in 
PIk-] containing nodes i , ,  i,, . . ., i ,  need  not be the same 
for  each partition in PIk-,. There  are a  maximum of xk 
nodes in C O N N ( k ) ;  consequently  we  can  distribute  the 
nodes of C O N N ( ~ )  into no  more than xk distinct clusters. 
Any  given cluster  can  assume a weight that  varies from 
one  to W.  Assume then that  every partition in P'k-l  has 
xk clusters  that contain  a  node in C O N N ( ~ )  and  that  every 
such  cluster  can  have a weight that varies  from one  to W .  
The  number of partitions in P'k-l  is then no greater than 
Wxk,  because  this number  represents  the  number of dif- 
ferent combinations of xk clusters,  where  each  cluster 
can assume a weight from one  to W .  This result  follows 
from the isolated set  theorem,  as we now show. 

Assume  that  two partitions in P;-l ,  p and q, have 
clusters such that for every  cluster of p containing a set 
of nodes in CONN ( k ) ,  the  cluster of q containing  the 
same  set of nodes in CONN ( k )  has equal weight. Also, 
assume  that  the value of p is  greater than or equal to  that 
of q. The isolated set  theorem then proves  that q can be 
deleted from PL-,. 

We now prove  that  an  upper bound on  the  number of 
partitions of step k generated  from  the  set P;-l is given 

(3, 41, (1 ) (2 ) (3 ,   4 ) )  and ((1, 3 ) ( 2 ,  4) ,  (1, 2, 3)(4)1.  

by 

X k  W'" 

where  for simplicity we  assume  that W 5 xk. 
Assume  that  each partition is the  set PL-] has r clus- 

ters  that contain at  least  one node in the set CONN (k) .  
Also,  let  each node have unit weight. Node k can then 
be added  to each of the r clusters of a partition in P;-l if 
the weight of the  cluster  to which k is added is less than 
W .  Let P ( i )  denote  the  set of partitions in PL-] whose 
ith cluster, of those  clusters  that contain a node in 
CONN ( k ) ,  has weight less than W .  The number of feasi- 
ble  partitions of step k generated by adding node k to a 
cluster of a partition of Pk-, is then given by 



/ p ( i )  I. 
i = l  

The  upper bound on IP(i) I is given by 

IP(i)l 5 w"'(w-- I ) ,  

and  the maximum value of r is xk;  therefore  no  more than 

XkW"""(W - 1 )  

partitions of step k can  result by adding node k to the 
clusters of the partitions in Pk-l. There  are W X k  l-ad- 
jacencies of step k derived  from  the partitions in Pk-l; 
hence 

Xk ( W - 1 ) WX"-l + W"" 

partitions are  generated from the  subset Pi-l .  If we  as- 
sume that W 5 xk, then 

Xk(W - 1)W"k-l + W"" i XkWX". 
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From  the third  section there  are  fewer than x k !  possi- 
ble  ways to  distribute  the  nodes in C O N N ( ~ )  in clusters; 
hence  the  set Pk-l can  be separated  into  no  more than x k !  
subsets.  Therefore  the  upper bound on  the  number of 
partitions generated  on  step k of the partitioning algo- 
rithm is 

Xk ( X k ! )  WE", 

where xk is independent of the weight constraint. 
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