
170

J.A. LUKES

J.A. Lukes

Combinatorial Solution to the Partitioning of General
Graphs

Abstract: This paper reviews a dynamic programming procedure for the partitioning of connected graphs with integer-weighted nodes
and positive valued edges. The upper bound on the number of feasible partitions generated using this technique is shown to grow
factorially in the number of graph nodes. The use of graph properties is then introduced to reduce the number of feasible partitions
generated in the determination of the optimal partition. Depending upon the structure of the graph, the use of these properties can cause
a significant reduction in the computation time and storage space required to partition the graph.

Introduction
Given a graph G with integer-weighted nodes and non-
negative edge values, the partitioning of G consists of
the allocation of the nodes in G to clusters such that the
node weights of each cluster do not exceed a given max-
imum (i.e., a weight constraint). The objective of such
a partitioning is to assign nodes to clusters so that the
sum of the edge values joining nodes in different clusters
is minimal.

Partitioning problems of this type are encountered in
the assignment of logic blocks to circuit cards in com-
puter hardware design [1 , 21 and in the assignment of
computer information to physical blocks of storage
[3 , 4 , 51.

In this paper we review a dynamic programming tech-
nique for generating the optimal partition of an n-node
connected graph. This technique consists of first assign-
ing the labels 1 , 2, . . ., n to the graph nodes. On the jth
step of the procedure, the feasible partitions of the
subgraph with nodes 1 , 2, . . ., j are generated from the
feasible partitions of the subgraph containing nodes 1,2,
. . ., j - 1 . The optimal graph partition is then a feasible
partition of the entire graph.

We show that an upper bound on the number of feasi-
ble partitions generated on the jth step is of order j!. We
then describe a concept that reduces this upper bound
from order j! to xj (xj!) W"j where xj is the number of
nodes with labels less than j connected to nodes with
labels j or greater and W is the weight constraint of a
cluster. For a graph with values of xj and W << j , the re-
duction in the number of feasible partitions that must be
kept on the completion of the jth step of the dynamic
programming procedure is significant.

We further prove that a graph with cutpoints (hence
two or more blocks) can be partitioned by generating

the feasible partitions of each block independently, then
merging these partitions to find the optimal partition of
the entire graph. This procedure reduces the upper
bound in the number of partitions generated to find the
optimal from n ! to nk! , where the entire graph has n
nodes and the kth block nk nodes.

The importance of these results lies not only in the
technique but in the fact that reference [6] contains an
implementation of the procedure whose growth in com-
putation time and storage space on the jth step is of the
order pj (lowj), where pj represents the number of fea-
sible partitions generated on the j th step. Consequently,
we have derived an upper bound on computation time
for the partitioning of connected graphs.

Problem definition and restrictions
Given a graph G = (V , E) with node set V and edge set
E as in Fig. 1 . A partition of G is a collection of k clusters
of nodes {ci} (i = 1 , 2,. . ., k) such that

k u ci = v,
i=l

ci n cj = 0 for all i z j .

Each node x has an integer weight w, and each edge (x,
y) a positive value uXy. As indicated we impose a weight
constraint W on each cluster [5].

An optimal partition is defined as some partition of G,
P , (opt) = {cl, c z , . . ., c,}, with the property that each
cluster ci satisfies the weight constraint,

X E S

and in which

W " 5 W ,

k
uly is maximal.

i=l x , y q

IBM J. RES. DEVELOP.

We impose several restrictions on the problem investi-
gated here. The nodes of the graph must have nonnega-
tive integer weights, and the values of the edges are posi-
tive. Another restriction is that the graph be connected
(i.e., a path exists from any node in the graph to all
other nodes in the graph). Given a disconnected graph
G , each connected subgraph of G is partitioned inde-
pendently, i.e., each cluster consists of nodes from the
same connected subgraph.

The final restriction is that a multigraph must be trans-
formed into a graph by the following modification. If
more than one edge exists between two nodes x and y,
then the several edges joining x and y are replaced by
one with a value uxy equal to the sum of the values of
those edges.

General partitioning algorithm
In this section we review [3] a partitioning technique
that has as its basis a dynamic programming procedure
similar to that used in the solution of the one-dimen-
sional knapsack problem [7]. The similarity between
that problem and the partitioning problem becomes ap-
parent when their properties are compared.

The one-dimensional knapsack problem is that faced
by a mountain climber who has a knapsack that can car-
ry a maximum weight of W pounds and a number of dif-
ferent items he wishes to carry in the knapsack. Each
item has, as well as a weight, a value associated with it,
and the sum of the weights of the items exceeds W . A
mathematical statement of this problem is the following:

One-dimensional knapsack problem
Let w X = weight of item x (x = 1 , 2,. . ., n) ,

U, = value of item x,
w = capacity of knapsack.

n

Maximize 2 uxrx subject to the constraint
x= 1

n
wxrxz w

x= 1

fl if item x is in the knapsack

The mathematical statement of the partitioning prob-
lem given below is seen to be an extension of the one-
dimensional knapsack problem to the distribution of in-
terconnected, weighted items into many knapsacks or
clusters, each of capacity W :

Let w X = the weight of node x
uxy = the value of edge (x, y)
n = the number of graph nodes
N = the number of clusters in the partition
W = the weight constraint.

V = {A,B,C,D,EI
E = ia,b,c,d,el

Figure 1 A partition of graph G = (V , E) with a weight con-
straint of 2 and all nodes having unit weight.

Then maximize

subject to the constraints
n 2 wxrx i 5 W for i = 1 , 2,. . ., N

x= 1

rd = 1 if node x is in cluster i and 0 otherwise.
In order to pose the partitioning problem as one suit-

able for solution by dynamic programming, the graph is
first labeled [SI. The jth step, or stage, of the partition-
ing process generates the feasible partitions of the sub-
graph consisting of those nodes with labels 5 j. These par-
titions correspond to the states of thejth stage. The par-
titions of the subgraph consisting of those nodes with
labels no greater thanj are created from the partitions of
the (j - 1)th by adding node j to these partitions within
the limitations imposed by the weight constraint. The
policy decision is the determination of which partitions of
step j - 1 can have node j added to one of their clusters
to generate feasible partitions of step j.

The following definitions are useful in describing the
basic partitioning process.

A k-adjacency of node j is defined as a feasible parti-
tion generated on step j with a cluster containing node j
whose weight is k. An example of a 2-adjacency of node
4 is shown in Fig. 2. A k-adjacency of a node is not
unique, as demonstrated in Fig. 2.

We have already imposed a weight constraint on each
cluster of a partition. A further constraint [S, 61 im-
posed on each cluster is that the nodes contained within
it form a connected subgraph. 171

MARCH 1975 PARTITIONING GRAPHS

Figure 2 A k-adjacency of node j .

A feasible partition of a graph G is therefore defined
as a partition whose clusters each satisfy the following
properties:

1 . The sum of the weights of the nodes in a cluster must

2. The nodes in a cluster must form a connected sub-
not exceed W , the weight constraint.

graph of G.

In the process of partitioning a connected graph G the
172 only partitions that need to be generated are those

J.A. LUKES

whose clusters have a weight not exceeding the weight
constraint and that contain nodes that may form a con-
nected subgraph of G. In generating the set of feasible
partitions on step j , the weight constraint is easily tested
by adding node j to each cluster of some partition gener-
ated on step j - 1 and rejecting the resulting partitions
with a cluster whose weight exceeds W . A newly cre-
ated feasible partition must not only have clusters that
satisfy the weight constraint, but its clusters must also
contain nodes that presently form a connected subgraph,
or form a connected subgraph with the addition of one
or more nodes with labels greater than j . Let this restric-
tion be called the connectivity constraint. In order to
recognize some cluster of a feasible partition of step j - 1
to which node j can be added without violating the con-
nectivity constraint, we introduce the concept of the
connected set.

The connected set for a node j is defined as that set of
nodes that, if one or more of them appears in a cluster of
a partition generated on step j - 1, guarantees that the
addition of node j to that cluster may on some step m > j
form a connected subgraph. The properties of a node i in
the connected set for node j , denoted by CONN (j) , are:

1.. i < j ;
2 . node i

(a) is adjacent to node j , or
(b) lies on a path i , xl, x 2 , . . ., x,, j ,

where

x w z 5 w
and

x E { i , xl,. . ., x,, j)
x1 > j ,
+2 > j ,

x, > j .

The second property guarantees that a partition with a
cluster containing two nodes i and j that are presently
disconnected, but become connected if nodes xl, x 2 ,
. . ., x , are added to that cluster, is generated on step j .

An illustration of the connected set associated with
each node of the given graph is shown in Fig. 3.

Dynamic programming procedure
We now describe the dynamic programming procedure
to form the optimal partition of the graph. The graph is
assumed to have been labeled. I t should be noted that
the particular labeling used affects the partitioning pro-
cess; however, no general labeling technique is known
that yields the minimal computation time.

The (j - 1)th step of the partitioning algorithm has as
its states the feasible partitions of the subgraph consisting

IBM J . RES. DEVELOP.

of those nodes with labels <j, denoted by Pj-, . We then
add node j to all partitions in Pj-l with a cluster satisfying
the criteria:

1. The addition of node j does not cause the cluster

2 . There exists a node in CONN (j), the connected set for
weight to exceed the weight constraint;

node j , in the cluster.

The resulting partitions are the states of step j , Pj .
The value of each partition equals the summation of

the values of the edges within the clusters of the parti-
tion.

The dynamic programming process is outlined below:

Step I
For each node j find the connected set CONN (j).

Step 2
j=O, P , = 0

Step 3
j = j + 1

Let the weight of node j be denoted by wj. Set Pj con-
sists of the following partitions:

(a) Form the k-adjacencies for k = wj. Each such k-ad-
jacency is formed by adding a cluster containing
nodej alone to the set of clusters of a partition in Pj - l .

(b) For k = wj + 1, wj + 2, ..., W form the k-adja-
cencies of nodej. Only those partitions in P j - , with at
least one cluster containing a node in CONN (j) can
be used in the generation of these partitions.

Step 4
Go to Step 3 until j = n for an n-node graph.

Step 5
Select the maximal-valued feasible partition in P,. This
is the optimal-valued partition of the graph.

An example of the use of this algorithm is given in
Fig. 4. The results of each step of the algorithm are
shown in tabular form. Each row of this table corre-
sponds to a step of the procedure; the kth column and
j th row of the table contain the k-adjacencies of node j .

Growth rate for dynamic programming procedure
Although the dynamic programming procedure just de-
scribed generates an optimal partition of a graph without
resorting to total enumeration, the question arises as to
the number of feasible partitions possible for a connect-
ed graph. Reference [6] shows the growth in computa-
tion time to vary as
n

npj(log, p j) , where pj = IPjl,
j=l

and the storage requirements vary as npj , where n equals
the number of graph nodes.

MARCH 1975

Figure 3 Connected set for a graph in which all nodes have
unit weight and W = 3.

Consider first the growth in the cardinality of Pj for
total enumeration. To generate this number we assume
that the graph is complete (every pair of its nodes are
adjacent) so that no combination of nodes in some clus-
ter is disconnected. Also, no weight constraint is im-
posed upon the clusters. The upper bound on the size of
Pj is the number of ways in which j distinct objects can
be distributed in i nondistinct cells, where i varies from
one to j and is given by the Stirling number of the sec-
ond kind, S (j , i) . Thus

pj < x S(i, i), where pj = IPjI.
j

i= 1

A closed form for this summation does not appear to
exist, but an upper bound results from the recurrence
relationship:

Pj < (1 + C j) Pj-l.

where pj = lPjland cj = ~ C O N N (i) I.
This relationship is derived from the fact that Pj is

made up of two subsets:

1. The 1-adjacencies of Pj , of which there are pj-l,
2 . The k-adjacencies of Pj, where k > 1.

The size of the latter set is bounded by cj pjw1, because
each node in CONN (i) can generate no more than pj-l
partitions of pj:

For the complete graph ~ C O N N I (i) I =j - 1 ; therefore

p . < j ! . 173

PARTITIONING GRAPHS

Value

4

Figure 4 Dynamic programming procedure for graph in which
W = 3 and all nodes have unit weight.

In reference [6] it is shown that a lower bound on the
number of feasible partitions grows as f', where 1 < f
< 2.

Use of graph properties in partitioning
The computation and storage requirements of the dy-

174 namic programming procedure grow factorially in the

J.A. LUKES

number of graph nodes, limiting the utility of this pro-
cedure should it simply generate all feasible partitions.
In this section we introduce several concepts that take
advantage of properties of graphs to significantly reduce
the computation time and storage requirements for cer-
tain classes of graphs by reducing the number of feasible
partitions generated.

The first concept discussed is that of the isolated set.

Using this concept we show that the growth in the num-
ber of partitions generated on step j of the partitioning
process is dependent only on the number of nodes with
labels less than j connected to nodes with labels greater
than or equal to j and not on the number of nodes j . The
second concept takes into account the existence of cut-
points and blocks in a graph.

The isolated set

A node i is defined to be an element of the isolated set
for node j , denoted ISOL (j) , if it satisfies the following
properties:

1 . The label i is less thanQ.
2 . Node i is not adjacent to any node with label 3 j .

Figure 5 illustrates this definition.

Several properties of the isolated set result from this
definition.

1. The size of ISOL (j) is independent of the weight con-

2 . The connected set and the isolated set for any node j
are mutually exclusive. This property follows from
the definition of each set.

3. Let CONN (j),,,ax denote the set of nodes with labels
less than j that are not elements of ISOL (j) . Then
CONN (j),,, = { i l i = 1, 2, ..., j - 1) - ISOL (j) and
is independent of the weight constraint.

4. CONN (j),,,ax 2 CONN (j) for every weight constraint
W . Note that CONN (j) is a function of W and CONN

(j) m a x is not.

straint.

The growth in the size of ISOL (j) is a nondecreasing
function of k , as we show in the following theorem:

Theorem ISOL (j) ISOL (j + I) .

Proof Assume that ISOL (j) 2 ISOL (j + 1) . Then there
exists at least one node i that is in ISOL (j) but not in
ISOL (j + 1) . By definition i is adjacent to no node with
label greater than j ; consequently it is adjacent to no
node with label greater than j + 1 , contrary to the as-
sumption. Therefore, ISOL (j) ISOL (j + 1) .

We now show that the concept of the isolated set can
be used to modify the partitioning process so that only a
subset of the feasible partitions of a step of the process
must be generated on that step.

IBM J. RES. DEVELOP.

We have defined the set CONN (j) as those nodes in
the set { 1 , 2, . . . , j - 1 j not in ISOL (j) . Those partitions
generated on step j - 1 can then be separated into dis-
joint subsets where each partition in a subset has the
same distribution of the nodes from CONN(~) , , , in its
clusters as the other partitions in that subset. Further-
more, any cluster in the partition that contains one or
more nodes from CONN (j)max has the same weight as
the comparable cluster in each of the other partitions in
the subset. An example of two partitions in the same
subset is

(132) (4) (3 > 5) and (1) (3) (4) (2,513

where CONN (6),,, = {4, 5 j and each node has unit
weight.

Any two partitions in the same subset are defined as
similar partitions. We define the dominant partition of a
set of similar partitions as that partition of maximal val-
ue. If two or more partitions are similar and have equal
maximal values, then one is arbitrarily chosen as the
dominant partition.

The reason for separating the set of feasible partitions
of s t ep j - 1 , Pj-l, into sets of similar partitions is that all
but the dominant partition can be deleted from each sub-
set of Pj-l. We show in the appendix that this result re-
duces the upper bound on the number of feasible parti-
tions generated on step j from j ! to

Xj(Xj!) (W"j)

where .xj = I c o N N (~) , , , I and W is the weight constraint.

For small values of W and xj this result represents a
significant reduction in the number of feasible partitions
that must be generated on the jth step of the partitioning
process. In the appendix we prove the isolated set theo-
rem, showing that all but the dominant partitions of step
j - 1 can be deleted from Pj-l.

An illustration of the results of this theorem is given in
Fig. 6.

We note that the size of the isolated set for the nodes
of a graph is a function of the labeling assigned to the
graph. No labeling technique is yet known for minimiz-
ing the number of feasible partitions, although [6] de-
scribes heuristic techniques for labeling.

Cutpoints
A cutpoint of a connected graph G = (V , E) is defined
as a node c such that V - { c j is the node set of nontrivi-
al disconnected graph G'. A nonseparable graph is con-
nected, nontrivial, and has no cutpoints. A block of a
graph G is a maximal nonseparable subgraph of G. An
illustration of these definitions is given in Fig. 7.

If a connected graph G has more than one block, the
following theorem proves that it is valid to find the opti-

MARCH 1975

Figure 5 Isolated set.

Figure 6 Application of isolated set theorem.

IsoL(1) = 0
I S O L (~) = 0
ISOL(3) = 0
I S O L (4) = (11
ISOL(5) = {1,2,3}

From Fig. 4 the sets of similar partitions in P , are:

S I
(1) (2) (3) (4) value = 0 (1) (3) (2 , 4) value = 1
(1 , 2) (3) (4) value=5 (1) (2) (3 , 4) value=6
(1 , 3) (2) (4) value=3 (1 , 3) (2 , 4) value=4
(1, 2, 3) (4) value= 8 (1 , 2) (3 , 4) value= 1 1

s,

s3
(3)(1, 2 , 4) value= 6
(2) (1, 3, 4) value = 9
(I) (2, 3, 4) value = 7

Dominant partitions of P, are:

Set Dominant partition
s, (I , 2, 3) (4) value = 8
s, (I , 2) (3 , 4) value= 1 1
s, (2) (1 , 3, 4) value = 9 175

PARTITIONING GRAPHS

E
Figure 7 Graph with a cutpoint. Splitting node results in blocks
I and #2.

mal partitions of each block in any order and then com-
bine these partitions to generate an optimal partition of

176 G . A proof of this theorem is given in the appendix.

Cutpoint

Block # 1

Block #2

Block independence theorem If a graph G has q blocks,
where q > 1, then the optimal partition of G, p(opt) ,
can be created by first partitioning the blocks indepen-
dently, then combining the resulting partitions.

The existence of cutpoints (hence blocks) in a graph
reduces the number of partitions generated on any step
to a number directly proportional to the number of parti-
tions generated if each block were partitioned indepen-
dently. A brief summary of one method of partitioning
such a graph follows.

Assume that a graph G has q blocks, B,, B, , . . ., B,.
Let block B, have c, cutpoints. We then partition each
block B, independently, omitting the cutpoints c, from
any isolated set for the nodes in B,, and keep the opti-
mal 1-adjacencies, 2-adjacencies, . . ., W-adjacencies for
each cutpoint in B,. Therefore, no more than c,W need
be kept for block B,.

When all blocks are partitioned, we then find some
block with only one cutpoint in its node set and combine
it with a block containing the same cutpoint. We do so
by merging the clusters of the partitions of the two
blocks containing their common cutpoint, leaving the
other clusters unchanged. This operation takes no more
than W (W + 1) / 2 steps.

The merger of blocks may reduce the number of un-
merged cutpoints in the resulting subgraph containing
these two blocks by one. We then find another block
with one unmerged cutpoint and merge it with a block
containing their common cutpoint. This procedure con-
tinues until the optimal graph partition is found.

This technique is correct because the blocks and their
cutpoints form a tree called the block-cutpoint graph
[8]. Consequently the method of merging block parti-
tions is essentially a modification of the tree partitioning
algorithm described in [51.

Examples
To illustrate the effectiveness of the isolated set on the
existence of blocks in reducing the partitions generated
on each step of the partitioning process, we now exam-
ine several graph types that readily lend themselves to
analysis.

A dramatic example of the reduction in computation
time and storage is the following. Reference [6] shows
that the minimum number of partitions generated on the
jth step for the simple k-node tree of Fig. 8 (a) is greater
than 1.6’. Using the analysis above this bound is reduced
to the following:

lP’1 < Xj(Xj!)W?

where xj = I C ~ N N (j),,,axl = 1 for all j > 1. Thus

lPjl < W , where W is the weight constraint.

J.A. LUKES IBM 3 . RES. DEVELOP.

Another graph whose value of xj is independent o f j is
also shown in Fig. 8(b) . For a width parameter h , ISOL

(j) = {iii has label <j- h } . Thus

xj = k for allj, and lPjl < h (h !) W h .

A more careful analysis results in the upper bound

lPjl < Wh.

An example of the effectiveness of the use of block
independence in partitioning is given in [51.

An example of the use of the partitioning algorithm
taking advantage of the isolated set concept is given in
Fig. 6 . I t is instructive to compare the number of parti-
tions generated here with the number generated using
the dynamic programming procedure alone (Fig. 4). We
see that significantly fewer partitions are generated on
each step by the general partitioning algorithm. We
have, however, not made use of the block independence
theorem, although the graph has two blocks.

Conclusion
We have described a modified dynamic programming
procedure for the partitioning of connected graphs with
integer weighted nodes and edges whose values are posi-
tive. The algorithm employs the concept of the isolated
set to reduce the upper bound in partitioning a subgraph
of the given graph from a number growing factorially in
the number of subgraph nodes to one that is a function
of the graph connectivity and graph labeling.

A further reduction in computation time is afforded
for a graph with cutpoints, because, as we have shown,
such a graph can be partitioned by block and the block
partitions merged.

Acknowledgments
This paper is part of the author’s Ph.D. Thesis at Stan-
ford University, based on work which was supported
there by an IBM Resident Fellowship. The author
thanks Professor H. S. Stone for his continued ad-
vice and encouragement during the development of the
work.

References
I . E. L. Lawler, “Electrical Assemblies with a Minimum

Number of hterconnections,” IRE Trans. Elec. Comput.
11,86, (1962).

2. F. Luccio and M. Sami, “On the Decomposition of Net-
works in Minimally Interconnected Subnetworks,” IEEE
Trans. Circuit Theory CT-16, 184 (1 969).

3. B. W. Kernighan, “Some Graph Partitioning Problems Re-
lated to Program Segmentation,” Ph.D. Thesis, Princeton
University, Princeton, New Jersey, 1969.

4. B. W. Kernighan, “Optimal Sequential Partitions of
Graphs,”J. Assoc. Comput. Mach. 18, 34 (1962).

5. J . A. Lukes, “Efficient Algorithm for the Partitioning of
Trees,” I B M J. Res. Develop. 18, 217 (1974).

MARCH 1975

I
I
I
I

h

!--- g
2A+3 - - -

Figure 8 Maximum level k-node tree (a) , and graph with con-
stant-size connected set (b) , where h is the width parameter.

6. J. A. Lukes, “Combinatorial Solutions to Partitioning Prob-
lems,” Ph.D. Thesis, Stanford University, Stanford, Cali-
fornia, 1972.

7. P. C. Gilmore and R. E. Gomory, “The Theory and Com-
putation of Knapsack Functions.” Oper. Res. 14, 1045
(1966).

8. F. Harary. Graph Theory, Addison-Wesley Publishing Co.,
Reading, Mass., 1969, p. 36.

Appendix: Proof of theorems

Isolated Set Theorem The only partitions of step k - 1
necessary in generating the partitions of step k are the
dominant partitions.

Proof Let G be an n-node graph. A partition p generated
on some step k in the process of partitioning G can be
represented by a sequence of pairs

PARTITIONING GRAPHS

k CONN(k) IsoL(/o

1 0 0

k-adjacencies
Step 1 2 3

1 (1) = o

2 (1) (2) = 0 (1 , 2) = 5

Optimal partition is (I , 2) (3 , 4, 5) with value= 15.
~~ ~~ ~~

Figure 9 Example of graph partitioning algorithm application.
All nodes have unit weight and W = 3.

where the first entry of a pair represents the node with
label i , the second entry the cluster to which node i is
added on step i, and () denotes the empty cluster. The
advantage of this notation over the nodal representation
is that it describes precisely how p is generated. An
example of thknotation is [I , ()] , [2, ()] , [3 , (2)] ,
[4, (I)] , [5 , (2 , 3)] . This representation is equivalent
to the nodal representation p = (1, 4) (2, 3 , 5) .

Let Pi be the set of partitions generated on step i of the
partitioning process. We then define a derivation of a
partition p from a partition q, where p is in P , and 4 is
in Pj(j < k) , as the sequence

[j + 1, C ~ + ~ I , [j + 2 , C ~ + ~ I ; . . , Ek, ckl.

This notation is a variation of the above representation
of p that ignores the steps leading up to the generation
of partition q.

Let two partitions f and g generated on step k-1 be
178 similar, and let f dominate g . Assume that there exists a

J.A. LUKES

partition of G, g,, derived from g that has a greater val-
ue than any partition of G derived fromf. We now show
that this assumption is false.

Let a derivation of g, from g be [k , ck] , [k + 1 , C,,~],
. . ., [n, c,] . Since f and g are similar, there is a partition
f, derived fromfwith the derivation [k , C,], [k + 1, S,,,],
. . ., [n , C,] such that for i = k , k + 1; . ., n, ci and Ci have
the same weight and the nodes in ci differ from those in
Ci only if they are in ISOL (k) . Note that the nodes in the
isolated set of node k share no edge with a node whose
label is greater than k - 1. As a consequence, the values
of partitions generated on steps k , k + 1, . . ., n are in-
dependent of the nodes in ISOL (k) that appear in a cluster
together with nodes in CONN (k),,,ax.

Since clusters ci and Ci (i = k, k + 1,. . ., n) have nodes
that differ only if they are in ISOL (k) , the sum of the
values of the edges in ci and Si can differ by the sum of the
values of those edges between nodes in ISOL (k) con-
tained in each cluster. Since f dominates g, the sum
of the values of edges in Ci is equal to or greater than the
sum of the edges in ci andf, dominates g,. Consequent'
ly, the value off, is greater than or equal to the value of
g,, contrary to the assumption made above. It is there-
fore not contrary to an optimal policy to delete all parti-
tions of pk-l dominated by another partition.

Block Independence Theorem If a graph G has q blocks,
where 4 > 1, then the optimal partition of G, p (opt), can
be created by first partitioning the blocks independently,
then combining the resulting partitions.

Proof Consider the nodal representation of p (opt) :

[(I . . . () I [(I . . . () I . . . [(I . . . () I [(I . . . (11
NCl NC, NC, C
" ".

Here, NC, represents a (possibly empty) set of clusters
whose nodes are not cutpoints and are all from the same
block B,. The set C consists of clusters each of which
contains at least one cutpoint.

The nodal representation of p(opt) assumes this form
because of the special properties of a graph with one or
more cutpoints. Since the only node in a block B , adja-
cent to nodes not in Bi is a cutpoint, a cluster that con-
tains nodes from B, , but no cutpoint, must only contain
nodes from B, as a result of the connectivity constraint.
This property justifies the collection of clusters into sets
NC, for block B , in the nodal representation above.

Each cluster c E C contains two types of nodes;

1,. A set of cutpoints { k , k,; * ., k z } ;
2. A set of nodes { i l , i,, 1 . ., i,, j , , j , , . . .} none of which

are cutpoints.

The latter set can be partitioned into subsets by the
equivalence relationship BLOCK, where u BLOCK u if u

IBM J . RES. DEVELOP.

and u are nodes in the same block Bi. If the restriction
on duplication of nodes implicit in the partitioning prob-
lem is removed, then the cluster c can be replaced by a
set of clusters {el, c,, . . ., c z) , where these clusters have
the following properties:

1. Each cluster ci contains the union of the set of nodes
of c from some block Bj created by the equivalence
relation BLOCK and the set of cutpoints of c also in
block Bj;

2. x:=, VALUE [e,] = VALUE [C] , where VALUE [e i] equals

the sum of the values of edges contained in cluster ci.

Note that some cutpoint k may appear in several of the
clusters making up the set {e,, c2; . ., cz}.

When we perform the process above on each cluster
in C , the nodal representation of p(opt) is transformed
to

[() . . . () I . . . [(I . . . () I [(() I . . . [(I . . . (11
N C l N C , CI c,
- " v,

where Ci = a set of clusters of nodes from block Bi in-
cluding at least one cutpoint of Bi in each cluster. The
value of the cover p(opt)' given by this nodal represen-
tation equals that of p(opt) and is made up of sets of
clusters (N C , , Ci) representing a partition of block Bi.
No edge exists from a cluster in the set (N C , , Ci) to a
cluster in the set (N C j , Cj) for i # j because of the dupli-
cation of cutpoints.

In conclusion we note that one can reverse the pro-
cess of decomposing p(opt) into the cover p (opt) ' and
generate p(opt) by first finding the partitions of each
block and the combining these partitions.

The following theorem develops an upper bound on
the number of feasible partitions generated on the kth
step of the partitioning process when modified to include
the concept of the isolated set.

Theorem Let CONN (k) = the set of nodes with labels
less than k not in I S O L (~) , i.e.

C O N N (k) , a , = { l , 2 , ~ ~ ~ , k - l } - ~ ~ o L (k) .

and let

x k = ICONN(k),axl.

For a weight constraint of W there are no more than

Xk (X k !) (WZ")

partitions generated on step k of the partitioning process.

Proof The partitions of step k - 1 can be separated into
disjoint subsets by the property that all partitions in a
given subset have the same distribution of the nodes in

MARCH 1975

179

PARTITIONING GRAPHS

C O N N (~) in their clusters. If, for example, the set of par-
t i t ionsofstep4is P4={(1)(2)(3,4) , (1 , 2) (3 , 4) , (1 ,3)
(2 , 4) , and (1, 2 , 3) (4)) and C O N N (~) = {3,4}, then the
subsets of P , satisfying the above property are { (1, 2)

Note that no limitation is placed on the nodes in I s o L (k)

in a cluster. We now show that any subset of Pk-] so
formed has no more than W x k partitions in it, where W is
the weight constraint and xk is the maximum size of
CONN(k) for any weight constraint.

Let P'k-l be a set of partitions of step k - I each of
which has the same distribution of nodes in C O N N (~) in
its clusters. If a partition in P'k-l has a cluster containing
nodes i,, i,, . . ., i, that are in CONN (k) , then every other
partition in P'"-, also has a cluster containing nodes i,,
i,, . . ., i,. No restriction is placed, however, on the nodes
in I s o L (k) in a cluster containing this subset of CONN (k) .
Consequently the weight of a cluster of a partition in
PIk-] containing nodes i , , i,, . . ., i , need not be the same
for each partition in PIk-,. There are a maximum of xk
nodes in C O N N (k) ; consequently we can distribute the
nodes of C O N N (~) into no more than xk distinct clusters.
Any given cluster can assume a weight that varies from
one to W. Assume then that every partition in P'k-l has
xk clusters that contain a node in C O N N (~) and that every
such cluster can have a weight that varies from one to W .
The number of partitions in P'k-l is then no greater than
Wxk, because this number represents the number of dif-
ferent combinations of xk clusters, where each cluster
can assume a weight from one to W . This result follows
from the isolated set theorem, as we now show.

Assume that two partitions in P;-l , p and q, have
clusters such that for every cluster of p containing a set
of nodes in CONN (k) , the cluster of q containing the
same set of nodes in CONN (k) has equal weight. Also,
assume that the value of p is greater than or equal to that
of q. The isolated set theorem then proves that q can be
deleted from PL-,.

We now prove that an upper bound on the number of
partitions of step k generated from the set P;-l is given

(3, 41, (1) (2) (3 , 4)) and ((1, 3) (2 , 4) , (1, 2, 3)(4)1.

by

X k W'"

where for simplicity we assume that W 5 xk.
Assume that each partition is the set PL-] has r clus-

ters that contain at least one node in the set CONN (k) .
Also, let each node have unit weight. Node k can then
be added to each of the r clusters of a partition in P;-l if
the weight of the cluster to which k is added is less than
W . Let P (i) denote the set of partitions in PL-] whose
ith cluster, of those clusters that contain a node in
CONN (k) , has weight less than W . The number of feasi-
ble partitions of step k generated by adding node k to a
cluster of a partition of Pk-, is then given by

/ p (i) I.
i = l

The upper bound on IP(i) I is given by

IP(i)l 5 w"'(w-- I) ,

and the maximum value of r is xk; therefore no more than

XkW"""(W - 1)

partitions of step k can result by adding node k to the
clusters of the partitions in Pk-l. There are W X k l-ad-
jacencies of step k derived from the partitions in Pk-l;
hence

Xk (W - 1) WX"-l + W""

partitions are generated from the subset Pi-l . If we as-
sume that W 5 xk, then

Xk(W - 1)W"k-l + W"" i XkWX".

180

J.A. LUKES

From the third section there are fewer than x k ! possi-
ble ways to distribute the nodes in C O N N (~) in clusters;
hence the set Pk-l can be separated into no more than x k !
subsets. Therefore the upper bound on the number of
partitions generated on step k of the partitioning algo-
rithm is

Xk (X k !) WE",

where xk is independent of the weight constraint.

Received July 25,1974; revised November 1 I , I974

The author is located at the IBM System Development
Division Laboratory, 1512 Page Mill Rd., Palo Alto,
California 94304.

IBM J . RES. DEVELOP.

