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What Is a Multilevel  Array? 

Abstract: In intuitive terms, a multilevel array is either a scalar or an  array  each of whose  elements is a multilevel array.  The “seman- 
tics” of multilevel arrays  can  be easily expressed in terms of a  notion of selector, which is basically that of the Vienna  Definition  Lan- 
guage. These selectors  provide  both  a  notational  device for accessing multilevel arrays and a clean  mathematical definition of “multilevel 
array with data domain D.” However,  the definition so obtained  lacks the  recursive flavor of the intuitive definition. By means of an 
axiomatic  characterization of multilevel arrays,  the selector-based definition and the  recursive definition are shown to  be equivalent. 

1. Introduction 
As data  structures  increase in complexity, one finds that 
a  combination of natural  language  description  and  graphi- 
cal examples no longer suffices to  describe  the  structures. 
Mathematical  techniques are needed to specify the se- 
mantics of a  complex data  structure, e.g., how the  data 
items of the  structure  are  accessed, how substructures 
are delineated  and accessed, and how the  structure is 
transformed by the various  applicable operations. 

The need for  techniques  to specify the  semantics of 
data  structures has  been  recognized for several years. A 
number of authors  have proposed  general frameworks  for 
studying data  types and structures;  see,  for example, 
the interesting papers by Gotlieb [ 11, Mealy [2],  Scott 
[ 31, and Turski  [4]  for  four quite  distinct approaches. 
Several authors have  devised specific models for de- 
scribing  complex data  structures;  see,  for  instance, 
Earley’s  V-graphs [ 51, Turski’s  “natural selector” 
model [ 61, and the  data  objects of the Vienna Definition 
Language (VDL)  [7, 81. Our purpose in this paper is 
to study two mathematical definitions of “multilevel 
array.”  Our main result is a  theorem that  exposes a sense 
in which the  two definitions are equivalent. 

In  intuitive terms, a multilevel array is either a scalar 
(i.e.,  a data  item)  or  an  array  each of whose elements 
is a multilevel array  [9]. Special instances of multilevel 
arrays  are  arrays,  arrays of arrays, and  Sitton’s [ 101 
“general arrays,” which are  arrays whose elements  are 
either scalars  or  arrays of scalars. Ghandour and  Mezei 
[ 1 1 ] describe an impressive assortment of operations on 
multilevel arrays  (which they  term genrrul arrays) .  Be- 
cause description of these operations  was their main 
concern, they adopted  an informal approach, depending 
on natural language descriptions  and graphical examples 
to  describe both the entities and operations of interest. 

Further  study of multilevel arrays-and  the develop- 
ment in [ 11, 121 illustrates that  these generalized arrays 
do merit further consideration - will require  an  approach 
that is more  formal than  that of Ghandour and  Mezei. 
It is difficult to illustrate  notions  concerning multilevel 
arrays graphically because of the limitations of the media: 
Examples  cannot  have more than two  dimensions, nor 
can  the  depth of nesting of the  arrays of arrays  of. . . of 
arrays be deeper than  photographic  resolution will per- 
mit. Indeed  the dimensionality  problem exists when one 
describes even ordinary  arrays.  In this simpler case, 
one  overcomes  the limitations of examples by using the 
well-developed mathematical  formalism for  arrays.  For 
instance, say that  one wishes to define an  operation  on 
arrays which reverses  the roles of the  axes; in two di- 
mensions, this is transposition. Then, denoting the  trans- 
formed image of the D-dimensional array A by AA, this 
operation  can be defined precisely by: 

For all positive  integers II,I2,. . ., I D ,  

(AA)[I1;12; ...; ID] =ACID;  ...; 1 2 ; I l I ,  

without recourse  to  the reader’s  dexterity in generalizing 
from simple examples. Our  purpose in this paper is to 
propose a  notion of multilevel array access domain 
which, in the  sense of the  example of defining the  oper- 
ation A ,  will put multilevel arrays on the  same footing 
as ordinary arrays.  The formalism  proposed in Sections 
2B and  3B has  the following desirable  properties: 

1 .  When applied to  an  ordinary  array, it reduces  to  the 
conventional  formalism for  arrays. 

2. It affords one a  precise definition of the term “multi- 
level array” analogous to  the mathematical  defini- 
tion of “array.” 163 
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Figure 1 A P-domain tree, for the set of position names 
P = { 1, 2, 3,  4, 5 } .  

3. It is based on a formalism  applicable to  the multi- 
level version of any  data  structure.  Indeed,  the presen- 
tation in Section 2 is intended to emphasize the 
generality of the notions presented. 

The mathematical  specification of a (class  of)  data 
structure(s) should  not depend  on  the peculiarities of 
particular  notations or  representations.  For this reason, 
a single set-theoretic definition of a class of structures 
is not adequate  to  the  task,  since  such definitions inevi- 
tably fix representations.  For example, the definition of 
“multilevel array”  that emerges from  array  access  do- 
mains is not  related in any  transparent way to  our intui- 
tive recursive definition. A more definitive method of 
specification is called for; and the axiomatic approach 
affords us the  necessary  freedom from representation 
(cf. [ 13, 141 ). In Section 2C, we characterize axiomati- 
cally the  class of multilevel structures;  and we show  that 
the intuitive recursive definition (expressed in suitably 
mathematical terms)  and  the notationally attractive 
access-domain-based definition both define representa- 
tional variants of this  class. 

We close  the  paper with  a  number of illustrations of 
the  use of our formalism. 

2. Domains  and structures 

A .  Strings  and  access  domains 
Given  any  set S ,  we  denote by S* the  set of all finite 
strings of elements of S, including the empty string e, 
Given strings x, Y E S * ,  we  denote by xy the  concatenation 
of x and y .  If z = xyES*, then  we call x a prejix of z ;  thus, 
e is a prefix of every string. 

A set of strings L is prefix-closed if, whenever a string 
z is in L, so also  are all prefixes of z;  L is prefix-free if no 
string in L is a proper prefix of any  other string in L. 
For  any  set L of strings and  any string XU, the  set L“)  
= {ylxyEL} is variously  called the left  quotient of L by  x 
or  the derivative of L with  respect  to  x. If L is prefix- 
closed, then so also is L(x):  ~ Z E L ‘ ~ )  iff xyzEL; prefix- 
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An access  domain over a set S is a finite nonempty 
prefix-closed subset of S * .  There is an  obvious interpre- 
tation of an  access domain A over a finite set S as a 
rooted  directed  tree with edges labeled by elements of 
S (the “simple selectors” [8] ): The strings in A (the 
“composite  selectors” [8]) are  the nodes of the  tree; 
there is an  edge labeled uES from each  node xEA to 
its u-successor XUEA.  (Of  course, if xm g A .  node x 
has  no  u-successor.)  Thus  the  empty string e is the  root 
of the  tree.  Associated with each string x in an  access 
domain A over S is the  set E,  (x) = {u€S IxuEA } of 
extensions of x. 

We call x E A  a jiber precisely when E , ( x )  = 4 (the 
empty  set); returning to  the interpretation of access do- 
mains as  trees, a fiber is a string which describes a  path 
from  the  root  to a leaf. We  let @ ( A )  denote  the  set of 
fibers of A ;   @ ( A )  is clearly prefix-free. 

B.  From  domains  to  structures 
Graphically,  domains  are  trees which indicate how to 
access  the positions of data  structures  and, when these 
data  structures  are multilevel, how to  access  the posi- 
tions of the  substructures  at  the various  levels of the 
structure. 

P-structures. Let P be a nonempty finite set; think of P 
as  the  set of position names of a data  structure.  The P- 
domain is the  access domain A = P U { e }  C P*. Note 
that E , ( e )  = P ,  and E , ( p )  = 4 for PEP;  hence, viewed 
as a tree, A has a root with #P successors, all of which 
are fibers. Figure 1 depicts  the  tree  corresponding  to  the 
{ 1 ,  2, 3, 4, 5)-domain.  In this and  subsequent  portrayals 
of trees,  the  root  node is diamond shaped, leaf nodes  are 
squares,  and interior nodes  are circles. A P-structure 
with data  set D is a total  function  from P to D. We denote 
by [ P  + D ]  the  set of such  functions. 

Let 9 be a set of nonempty  sets; think of 9 as  the 
family of sets of position names of a  kindred family of 
data  structures, e.g., the family of all array-position 
names  or finite-tree-position  names. A 9-structure with 
data D is any P-structure with data D ,  with P E P .  

Multilevel  structures. A multilevel 9-domain is an  access 
domain A over  the  set u9 such  that,  for all ~€4, either 
E, ( x )  = (so x is a fiber),  or E,  ( x ) E 9 .  Thus  each non- 
leaf node has  successors labeled by an  entire  set P € 9  
of position  names. Figure 2 graphically depicts a multi- 
level 9-domain with P= ( ( 1 ,  2, 3},  {( l ,   l ) ,  ( 1 ,  2 ) ,  (2,  

Multilevel 9-domains afford one  not only a graphical 
portrayal of the accessing structure of multilevel data 
structures,  but  also a convenient mechanism for naming 
the positions of the multilevel structure ( so  that they 
can be  referred to  directly). Specifically, the fibers @ ( A )  
of a multilevel 9-domain A comprise a  systematic and 

l ) ,  (2, 2)}, {O,OO, 01,010, Olll}. 
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precise  mechanism for accessing atomic positions of a 
multilevel 9-structure.  The full access domain A is an 
analogous  mechanism for accessing substructures  as 
well as atomic  positions. 

(2.1)  Let D be an arbitrary nonempty set  (the data 
domain) .  A multilevel  9’-structure with data D is 
a  total  function a : @ ( A )  + D ,  where A is a multi- 
level 9-domain. 
For  each string x E A ,  the substructure of a at 
position x is the total  function U,:@(A(~) )  + D de- 
fined by a , ( y )  = u ( x y )  for all y E @ ( A ‘ ” ’ ) .  

We illustrate  this definition in Section  3  when we spe- 
cialize the general development in this  Section to  the 
study of multilevel arrays. 

The initial challenge for any model which specifies 
the  semantics of a family of data  structures must  be the 
specification of the  assignment  operation.  Indeed, defini- 
tion (2.1 ) affords us a  simple  and precise way of specify- 
ing the semantics of assignments  among multilevel 
9-structures. 

(2.2)  Let u and a‘ be multilevel 9-structures with 
multilevel 9-domains A and A‘ and data D and D‘, 
respectively. Let x64 and x ’ 6 4 ’  be arbitrary. 
The assignment  operation uz *- ai ,  yields the 
multilevel 9-structure a“ with 9-domain A” and 
data D defined as follows: 

(a )  D” = D U D’. 

(b)  A ” =   ( A  - { x } A ( ” ’ )  U {x }A’ (” ’ ) .  

(c)  For all z E @ ( A ” ) ,  

Graphically,  the  selector  tree  for A” is obtained 
by replacing the  subtree of A rooted at x by the 
subtree of A’ rooted  at x’ .  

Vienna  objects. There is a  more than casual  relation  be- 
tween our notions of domain  and structure on the  one 
hand  and the  data  objects of VDL [7, 8 ,  141 on  the 
other.  Let S be  the  set of (simple) VDL selectors, and 
let 9 be  the  set of nonempty  subsets of S. Let E be a set 
(of elementary  objects).  Any multilevel 9-structure 
o : @ ( A )  + E is a Vienna  object  since its  graph (= { ( x ,  
u ( x ) ) I x  E @ ( A ) } )  is a characteristic  set; the  strings 
x E A are composite selectors. When one  introduces  the 
special null object R of [7, 8, 141, any Vienna object be- 
comes a multilevel {S}-structure with data E U {a}. The 
replacement operation p of [ 81 is a special case of our  as- 
signment operation  (2.2); specifically, p ( ~ ;  ( x ,  a’)) yields 
the  same result as u, + u‘. Accessing in Vienna objects 

Figure 2 A multilevel 9-domain tree. 

corresponds  to  substructure selection in (2.1):  Where 
we write “ut” [ 151, Lucas [8] would write “x(u).” The 
identity selector is in (2.1 ) automatically: e(u)  = ue = u. 
It  is  clear  that  there  are only  minor extensional dif- 
ferences between multilevel 9-structures with data D 
and Vienna  objects with elementary  objects D. We feel, 
however,  that  our  presentation of these  objects  has ad- 
vantages  over  that of the  papers  on VDL in that it iso- 
lates  the language  used to  access  the  objects defined, all 
the while using only  well-understood  mathematical no- 
tions. 

We turn  our  attention now to a central issue in this 
paper, namely, making precise the  sense in which (2.1) 
captures faithfully the intuitive  notion of multilevel data 
structure. 

C. Abstract  multilevel  structures 
We began in the  Introduction with an intuitive definition 
of “multilevel array.” By means of the  development in 
Section 2B,  we can render this informal notion  precise, 
at  least in terms of 9-structures: A multilevel 9-structure 
with data D is either  an element of D or a 9-structure 
with data “multilevel 9-structures with data D.” The 
awkwardness in this definition disappears  as we recast 
it mathematically. 

(2.3)  The  set of functional  multilevel  9-structures 
with data D is  the smallest set 9 satisfying 

9 = D  U U p E g [ P + 9 ] .  

A minimum solution to this equation is given by: 
So = D ;  = D U UpE9[P + Si] ; and 

S = [ l a .  

We have inserted the qualifier “functional” in (2.3) for, 
while (2.3 ) is fully as precise as (2.1 ) , the  two definitions 
yield different sets of objects. Some reflection on  the two 
definitions will suffice to  establish  the following cor- 165 
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respondence between the  two  sets of defined  objects. Let 
d denote  the  set of multilevel 9-structures  [as defined in 
terms of access  domains in (2.1)].  Define  the functions 
p :  9 + d and p # : d  + 9 as follows. 

Proposition. p : S  + d is a bijection with inverse p”. 
(That  is, p maps 9 one-to-one onto d). 

This Proposition will follow immediately  from the 
general  result of this  section. But note  that  the  statement 
of the Proposition is materially too weak to  convince 
anyone  that (2.1) and (2.3) are defining different  repre- 
sentations of the same  concept.  In  fact,  the Proposition 
really asserts only that d and 9 have  the  same cardinal- 
ity. We  need a correspondence in the  nature of an alge- 
braic  isomorphism, that is, a correspondence which 
preserves some  crucial structure. But what is the crucial 
structure  that  characterizes multilevel data  structures? 

The basic property of multilevel 9’-structures, func- 
tional or  not, is that we can construct new ones and  select 
from old ones in a systematic way. More precisely, 
given any  set PE9 and a multilevel structure  associated 
with each TEP, we  can  construct a  new multilevel struc- 
ture which is totally characterized by this  association. It 
is convenient  and  loses  no generality to identify these 
“associations”  with  functions  from PE9 into  the  set of 
multilevel structures.  Thus, while we  are  under  no com- 
pulsion to  assert  that a (multilevel)  9-structure is a 
function,  we  are saying that  such  structures  can be con- 
structed from  functions. We  are  thus led to  the following 
definition. 

A system of abstract multilevel 9-structures with 
data D is a  pair (9, p) where Y is a set,  and p is a 
total one-to-one function [ 181, 

~ : ( D ’ - ’ U p , q [ P + y l ) + y ,  

subject  to  the well-foundedness (or  induction) 
axiom: 

If Y ’ C Y ;  and if p ( D ) v ’ ;  and if p(u)EY’ for all 
u: P + 9’ ( P E P ) ,  then 9’’ = Y .  

One often associates with !?-structures not only  a 
constructor p, but also a selector function which selects 
out  components of composite  objects.  The  reader  can 166 
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easily convince himself that, by dint of p’s being one-to- 
one,  such  selector  functions  exist automatically  for any 
abstract multilevel structure system. In  fact,  the ex- 
istence of such  selector functions is equivalent to p’s 
being one-to-one. 

Theorem.  Any two  systems of abstract multilevel 9- 
structures with data D are isomorphic. 

Proof. Let (Y,  p )  and (Y’, p ’ )  be two  such  systems. We 
claim that  the following equations (2.5) define an iso- 
morphism between  the  systems. 
(2.5) Define L by: 

( 1 ) For dED, L ( P ( d ) )  = p ‘ ( 4 .  

(2)  For f :  P + Y ,  ~(pLcf)) = p ’ ( L . f f )  [191. 

The  equations in (2.5) define  a  relation between Y and 
9” which, by well-foundedness  [cf. (2.4)],  is total and 
onto. 

Let % be the largest subset of Y on which L is single- 
valued and one-to-one. By (2.5 ( 1 ) ) and the  fact  that p 
and p’ are  one-to-one (2 .4) ,  % contains p(D) .   In  addi- 
tion, by (2.5 ( 2 ) )  and the  fact  that p and p’ are one-to- 
one, !2 must contain pv) for  every function f :  P + !2 
(PEP). By induction, then, % = 9. 

Thus, L is an isomorphism between  the  two  systems, 
which, by its very definition, preserves  the  “makestruc- 
ture” functions. 

It is clear  the (9, l , F )  is a system of abstract multilevel 
9-structures,  where l,? is the identity  function on 9. 
Moreover, letting d again denote  the  objects defined in 
(2.1 ), the  reader  can easily verify that (d, p) is a system 
of abstract multilevel 9-structures,  where p : 9  + d is 
as defined earlier. By the  Theorem, (9, and (d, p)  
are isomorphic. 

I t  would appear  that  the  correspondence in our Prop- 
osition was recognized, at  least intuitively, in [7, 81, but 
it is not easily discerned there,  where  the  two  representa- 
tions  are often  confused. On  the  other  hand,  the need for 
a representation-independent  (axiomatic)  approach is 
recognized in [ 13, 141, but the axiom systems  there fail 
to  characterize multilevel structures  for lack of induc- 
tion axioms.  Standish [ 131 corrects this  shortcoming 
when he  considers his “constructive” models;  however, 
he  does not attempt  any analog of our Isomorphism T h e e  
rem, which result  allows us to  render  precise  the  sense 
in which distinct definitions of “multilevel structure”  are 
equivalent. 

D.  Research  problem 
In  the  next section, we specialize the notions  developed 
here  to  the  case  where  every P is the  set of positions of an 
array. Before we leave the  present  abstract  framework, 
we should  mention an offshoot of this  development which 
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merits further study. Our  access  domains  assume a  tree- 
like structure.  Hence, all substructures of a multilevel 
structure  represent distinct physical data  structures, 
since they are  accessed distinctly. (The intention of the 
qualifier “physical” is that, even though we may find 
u, = uy for  some  substructures, this coincidence can be 
changed by a subsequent assignment. If the  substruc- 
tures u, and cry were “shared,”  no  mere assignment 
statement could ever distinguish them; they  would, in 
fact, be the  same physical data  structure.) Since our 
concern  is with multilevel arrays, this  restriction to tree- 
like selectors  seems  to be a natural  one. However,  were 
we  to study data  structures with  richer interconnections, 
say, multilevel lists, our restriction to tree-like structur- 
ing would be hard  to  justify.  In general, the graphical 
notion of selector should  probably  be an edge-labeled 
directed  acyclic  graph whose  departures  from  tree-hood 
represent  shared  substructures. Although  this  graphical 
generalization of access domain  and selector is a simple 
one,  the corresponding linguistic (or  string-oriented) 
generalization is far  from simple. What kind of analog 
of access domains would maintain the expressional sim- 
plicity of these  sets of strings and,  yet,  convey  the infor- 
mation about  shared  substructures  portrayed so accurate- 
ly by a directed  acyclic graph?  This tempting question 
merits serious consideration. (It goes without saying that 
the linguistic version of cyclic structures, which could, 
for  instance, model recursion in data  structures, repre- 
sents an even stiffer challenge.) 

3. Multilevel arrays 

A. Notation 
Although our notation does not  conform  precisely with 
APL  notation, we shall avoid conflicting with that nota- 
tion so that  the  reader  can  more easily apply our notions 
to  the  operations proposed in [ 1 11. 

Let N denote the  positive integers. For any dEN,  Nd 
is the  set of d-tuples of positive  integers, an  arbitrary 
d-tuple being denoted (n1; . ., n,).  For  nEN, [ n ]  denotes 
the  set { 1, . .., n } ;  thus [n,] X [n,] X . . . X [n,], each 
n,EN,  denotes  that  subset of Nd comprising all and only 
tuples ( k , ;  . ., k , )  for which each  kiE[n,]. 

B .  Arrays  and multilevel arrays 
Arrays. We wish to delimit a collection of sets compris- 
ing all and only  “position  names” of arrays.  The  array 
schemes of [20] yield the  desired collection: 

(3.1 ) Let  d, n,, . . ., nd be positive  integers. The d- 
dimensional  array  scheme of size (n, ,  . . ., n,) is 
the set A = [ n , ]  X .  . . X [n,]. 
Each  element of A is called an  array position. The 
size of the  array  scheme A is denoted PA. 

In accord with the prescription of Section 2, a definition 
of array follows  immediately  from the definition of 
array scheme: 

(3.2 ) Let D be a set (of data). A  d-dimensional D-array 
is a total  function A:A -+ D  where A is a d-dimen- 
sional array scheme. By extension, PA = PA. 

Multilevel arrays.  Let A denote  the collection of all array 
schemes;  that  is, dl= { [n,] X .  . . X  [n,] Id, n,; . ., n,EN}. 

(3.3) A multilevel array  scheme is a multilevel ”-do- 
main. The size of the multilevel array  scheme M 
is pM = pE,(e).  (Recall  that  the  empty string e 
belongs to all access domain and  that  the nonempty 
extension of e is an  array  scheme.).  Thus,  the size 
of M is the size of its “first-level’’ array  scheme. 

A definition of multilevel array follows  directly  from 
(3.3)  and (2.1). 

(3.4)  Let D be a set (of data). A multilevel D-array 
is a total  function M: @ ( M )  -+ D ,  where M is a 
multilevel array scheme. By extension, pM = pM. 
M is proper iff M # {e}. 

C .  Examples 
We  now have formal correspondents of the notions we 
wished to  capture.  Our final task is to illustrate these 
formal  ideas at  work,  both  as  an aid to  the reader’s in- 
tuition and  as evidence of the  descriptive  and manipula- 
tive  capabilities of our  approach. To aid the  reader in 
comparing our  approach with an informal presentation, 
we  draw  our examples from [ 1 1 1. 

A multilevel array with data domain {I, . . ., 6 )  and its 
subarrays. We present  the function M in tabular  form, 
thereby automatically specifying the underlying array 
scheme. M is specified in Table 1 ;  the  associated  tree 
appears in Fig. 3, and the  Ghandour-Mezei [ 111 speci- 
fication of M in Fig. 4(a).  In Figs.  4 (b,  c,  d)  appear, 
respectively, Ghandour and  Mezei’s paths  to  the sub- 
arrays M ( 1 , 2 ) ,   M ( 1 , 2 ) ( 1 ) ,  and M ( 1 , 2 ) ( 1 ) ( 2 )  [21]. 
The  reader can  easily construct  these  subarrays from 
Table 1 and/or pick out their subtrees from Fig. 3 (at 
the  nodes labeled A, B,  3,  respectively). 
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Figure 3 The  tree  representation of the multilevel array M .  

- 

1 
I l j 2 - 3 1 1  
l 5  6 

(dl  

Figure 4 The  Ghandour-Mezei notation for (a) the array M 
and (b-d) “paths” to  three ofM’s substructures. 

Predicates on arrays. Many  ideas  concerning logical 
relations  among arrays follow directly  from definitions 
(3.2)  and  (3.4) [or, even more  basically, from  (2.1)]. 
For  instance,  two multilevel arrays  are identical iff they 
are  equal  as  functions; i.e., they have  the  same sou,rce 
and target and yield the  same argument-value  pairs [22]. 
Our  approach  obviates  the necessity for  the following 
recursive definition from Ghandour  and Mezei [23] : 

168 “Arrays A and B are identical if and only if 

A. L. ROSENBERG AND J .  W. THATCHER 

1. either they are  the  same  scalar, 
2. or they are  empty  arrays of identical structure, 
3.  or  they  have identical  size and  have identical  items 

at the same indices.” 

Similarly, in our model, one  array is an item of another 
[23] iff the  former  array is a substructure of the  latter 
according to (2.1 ). 

Principal order on arrays. Ghandour  and Mezei gen- 
eralize the  APL notion of principal order  on items of 
an  array  as follows [ 241 : 

“The  components  at level N + l  of A follow the  com- 
ponents  at level N of A. Given  the  components I and J 
at level rJ such  that J follows I in principal order,  the 
items of J follow the items of I with each collection of 
items of principal  order.” 

In  our framework the principal order of array  items 
can be defined as follows: Let M : @ ( M )  -+ D be a multi- 
level array. 

Let x and y be strings in M. The  substructure  (or 
“item”) Mx of M precedes  the  substructure My in prin- 
cipal  order precisely when either  (1)  the string x is 
shorter  than  the string y ,  or  (2) x and y are of the  same 
length,  and x precedes y lexicographically. As before, 
established  notions suffice to  describe array-oriented 
concepts if an  appropriate framework is adopted. 

Multilevel 9-domains can  always  be ordered lexi- 
cographically whenever all E.!? are  ordered  (as  are 
array  schemes, which are  themselves  ordered lexi- 
cographically).  Thus,  our notion of multilevel array 
scheme suggests  a  generalization of the  APL principal 
ordering, which is an  alternative  to  that of Ghandour 
and Mezei. Namely, let  lexicographic order  on multi- 
level domains  be the generalized  version of principal 
order  on simple structures. 

The  function  catenate. As our final example, we define, 
within our formulation, the simple operation catenate 
which “hangs” one  vector  on  another.  In  the previous 
two examples,  our point was  to illustrate  how our model 
facilitated  drawing on established  ideas in talking about 
arrays.  Here we indicate  how, even  for simple operations, 
a  formal definition promotes clarity and automatically 
exposes  the accessing structure of the resulting array. 
We  quote from Ghandour  and  Mezei  [25]: 

“The function catenate, denoted by ,, has arguments 
which are  scalars/vectors whose  items are general 
arrays.  Consider Z+A,B. 2 is a vector whose  items are 
the items of A followed by the  items of B.” 

In  our terminology, the operation’s  effects would be 
defined as follows: 
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If A and B are  the  (multilevel)  array  schemes of A and 
B, respectively, then the array  scheme of (A,B) is the 
union of A and C, where C is the  set obtained by uni- 
formly adding pA to  the first “index” of every string in B, 

4. Conclusion 

The benefits of a mathematical  study of multilevel ar- 
rays  are in large  part the benefits of such study of any 
formalizable  entity or phenomenon. The very act of 
constructing a mathematical model forces  one  to ex- 
amine the notions to  be modeled with an  eye  toward 
logical consistency, lack of ambiguity,  and simplicity 
of structure.  Once a model has been developed, it can 
often yield conciseness of description  not  available at 
an informal level,  and  precision  and  clarity that  are well- 
nigh impossible using natural  language,  even  supple- 
mented with examples.  Finally,  and perhaps most im- 
portant,  are  the insights that  the right model can give. 
To illustrate  this  point in the  context of the  present study, 
we need only note that  our view of multilevel arrays 
permits us to  draw on the notions in [5, 7, 8, 141, none 
of which had an  obvious relationship to  arrays [ 2 6 ] ;  
moreover,  once the connections with these  papers were 
crystallized, our model showed us that  the  study of multi- 
level arrays was  actually just a narrow aspect of the  study 
of multilevel data  structures. 
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