What Is a Multilevel Array?

A. L. Rosenberg
J. W. Thatcher

Abstract: In intuitive terms, a multilevel array is either a scalar or an array each of whose elements is a multilevel array. The “seman-
tics” of multilevel arrays can be easily expressed in terms of a notion of selector, which is basically that of the Vienna Definition Lan-
guage. These selectors provide both a notational device for accessing multilevel arrays and a clean mathematical definition of “multilevel
array with data domain D.” However, the definition so obtained lacks the recursive flavor of the intuitive definition. By means of an
axiomatic characterization of multilevel arrays, the selector-based definition and the recursive definition are shown to be equivalent.

1. Introduction

As data structures increase in complexity, one finds that
a combination of natural language description and graphi-
cal examples no longer suffices to describe the structures.
Mathematical techniques are needed to specify the se-
mantics of a complex data structure, e.g., how the data
items of the structure are accessed, how substructures
are delineated and accessed, and how the structure is
transformed by the various applicable operations.

The need for techniques to specify the semantics of
data structures has been recognized for several years. A
number of authors have proposed general frameworks for
studying data types and structures; see, for example,
the interesting papers by Gotlieb [1], Mealy [2], Scott
[3], and Turski [4] for four quite distinct approaches.
Several authors have devised specific models for de-
scribing complex data structures; see, for instance,
Earley’s V-graphs [5], Turski’s ‘‘natural selector”
model [6], and the data objects of the Vienna Definition
Language (VDL) [7, 8]. Our purpose in this paper is
to study two mathematical definitions of “‘multilevel
array.” Our main result is a theorem that exposes a sense
in which the two definitions are equivalent.

In intuitive terms, a multilevel array is either a scalar
(i.e., a data item) or an array each of whose elements
is a multilevel array [9]. Special instances of multilevel
arrays are arrays, arrays of arrays, and Sitton’s [10]
“general arrays,” which are arrays whose e¢lements are
either scalars or arrays of scalars. Ghandour and Mezei
[11] describe an impressive assortment of operations on
mulitilevel arrays (which they term general arrays). Be-
cause description of these operations was their main
concern, they adopted an informal approach, depending
on natural language descriptions and graphical examples
to describe both the entities and operations of interest.

MARCH 1975

Further study of multilevel arrays—and the develop-
ment in [11, 12] illustrates that these generalized arrays
do merit further consideration—will require an approach
that is more formal than that of Ghandour and Mezei.
It is difficult to illustrate notions concerning multilevel
arrays graphically because of the limitations of the media:
Examples cannot have more than two dimensions, nor
can the depth of nesting of the arrays of arrays of - - - of
arrays be deeper than photographic resolution will per-
mit. Indeed the dimensionality problem exists when one
describes even ordinary arrays. In this simpler case,
one overcomes the limitations of examples by using the
well-developed mathematical formalism for arrays. For
instance, say that one wishes to define an operation on
arrays which reverses the roles of the axes; in two di-
mensions, this is transposition. Then, denoting the trans-
formed image of the D-dimensional array A by A4, this
operation can be defined precisely by:

For all positive integers 71, 12, -+, ID,
(MA)Y[I1;12; - ID]=ALID; -~ 312,111,

without recourse to the reader’s dexterity in generalizing
from simple examples. Our purpose in this paper is to
propose a notion of multilevel array access domain
which, in the sense of the example of defining the oper-
ation A, will put multilevel arrays on the same footing
as ordinary arrays. The formalism proposed in Sections
2B and 3B has the following desirable properties:

1. When applied to an ordinary array, it reduces to the
conventional formalism for arrays.

2. It affords one a precise definition of the term “‘multi-
level array” analogous to the mathematical defini-
tion of “array.”

163

MULTILEVEL ARRAYS

164

Figure 1 A P-domain tree, for the set of position names
P=1{1,2,3,4,5}.

3. It is based on a formalism applicable to the multi-
level version of any data structure. Indeed, the presen-
tation in Section 2 is intended to emphasize the
generality of the notions presented.

The mathematical specification of a (class of) data
structure(s) should not depend on the peculiarities of
particular notations or representations. For this reason,
a single set-theoretic definition of a class of structures
is not adequate to the task, since such definitions inevi-
tably fix representations. For example, the definition of
“multilevel array” that emerges from array access do-
mains is not related in any transparent way to our intui-
tive recursive definition. A more definitive method of
specification is called for; and the axiomatic approach
affords us the necessary freedom from representation
(cf. [13, 14]). In Section 2C, we characterize axiomati-
cally the class of multilevel structures; and we show that
the intuitive recursive definition (expressed in suitably
mathematical terms) and the notationally attractive
access-domain-based definition both define representa-
tional variants of this class.

We close the paper with a number of illustrations of
the use of our formalism.

2. Domains and structures

A. Strings and access domains
Given any set S, we denote by S* the set of all finite
strings of elements of S, including the empty string e.
Given strings x, YES*, we denote by xy the concatenation
of x and y. If z= xyES*, then we call x a prefix of z; thus,
e is a prefix of every string.

A set of strings L is prefix-closed if, whenever a string
z is in L, so also are all prefixes of z; L is prefix-free if no
string in L is a proper prefix of any other string in L.
For any set L of strings and any string xEL, the set L’
= {y|xy€L} is variously called the left quotient of L by x
or the derivative of L with respect to x. If L is prefix-
closed, then so also is L™: yz€L'™ iff xy2€L; prefix-
closure of L yields xyEL, which in turn implies yeL .

A. L. ROSENBERG AND J. W. THATCHER

An access domain over a set S is a finite nonempty
prefix-closed subset of S$*. There is an obvious interpre-
tation of an access domain 4 over a finite set S as a
rooted directed tree with edges labeled by elements of
S (the “‘simple selectors™ [8]): The strings in 4 (the
“composite selectors” [8]) are the nodes of the tree;
there is an edge labeled o&€S from each node xEA to
its o-successor xa €A. (Of course, if xo € 4. node x
has no o-successor.) Thus the empty string e is the root
of the tree. Associated with each string x in an access
domain A over § is the set E (x) = {0€S|xc€A} of
extensions of x.

We call xEA4 a fiber precisely when E, (x) = ¢ (the
empty set); returning to the interpretation of access do-
mains as trees, a fiber is a string which describes a path
from the root to a leaf. We let ®(A4) denote the set of
fibers of 4; ®(A) is clearly prefix-free.

B. From domains to structures

Graphically, domains are trees which indicate how to
access the positions of data structures and, when these
data structures are multilevel, how to access the posi-
tions of the substructures at the various levels of the
structure.

P-structures. Let P be a nonempty finite set; think of P
as the set of position names of a data structure. The P-
domain is the access domain 4 = P U {e¢} C P*. Note
that E,(e) = P, and E,(p) = ¢ for pEP; hence, viewed
as a tree, A has a root with #P successors, all of which
are fibers. Figure 1 depicts the tree corresponding to the
{1, 2, 3, 4, 5}-domain. In this and subsequent portrayals
of trees, the root node is diamond shaped, leaf nodes are
squares, and interior nodes are circles. A P-structure
with data set D is a total function from P to D. We denote
by [P — D] the set of such functions.

Let &2 be a set of nonempty sets; think of & as the
family of sets of position names of a kindred family of
data structures, e.g., the family of all array-position
names or finite-tree-position names. A P-structure with
data D is any P-structure with data D, with PEZ.

Multilevel structures. A multilevel #-domain is an access
domain A4 over the set U such that, for all x4, either
E,(x) = ¢ (so xis afiber), or E,(x)EZ. Thus each non-
leaf node has successors labeled by an entire set PEZP
of position names. Figure 2 graphically depicts a multi-
level #-domain with 2 = {{1, 2, 3}, {{1, 1), (1, 2), (2,
1), (2, 2)}, {0, 00, 01, 010, 011} }.

Multilevel #-domains afford one not only a graphical
portrayal of the accessing structure of multilevel data
structures, but also a convenient mechanism for naming
the positions of the multilevel structure (so that they
can be referred to directly). Specifically, the fibers ®(A4)
of a multilevel #-domain A comprise a systematic and

IBM J. RES. DEVELOP.

precise mechanism for accessing atomic positions of a
multilevel #-structure. The full access domain A is an
analogous mechanism for accessing substructures as
well as atomic positions.

(2.1) Let D be an arbitrary nonempty set (the data
domain). A multilevel P-structure with data D is
a total function o:®(4) — D, where A4 is a multi-
level Z-domain.
For each string xEA, the substructure of o at
position x is the total function o :® (A4 @ > Dde-
fined by o (y) = o (xy) for all yED(A™).

We illustrate this definition in Section 3 when we spe-
cialize the general development in this Section to the
study of multilevel arrays.

The initial challenge for any model which specifies
the semantics of a family of data structures must be the
specification of the assignment operation. Indeed, defini-
tion (2.1) affords us a simple and precise way of specify-
ing the semantics of assignments among multilevel
P-structures.

(2.2) Let o and o' be multilevel £-structures with
multilevel -domains 4 and A’ and data D and D’,
respectively. Let x€4 and x'€A4’ be arbitrary.
The assignment operation o, < o, yields the
multilevel #-structure o’ with #-domain 4" and
data D" defined as follows:

(a) D'=DUD".
(b) A" = (4 — {x}4") U {x}4'“".
(c) For all zE®(4"),

o' (z) = {0(2)

ol (y) if z= xy for some yedq' ™",

if 264 — {x}4"’

Graphically, the selector tree for A" is obtained
by replacing the subtree of 4 rooted at x by the
subtree of A’ rooted at x’.

Vienna objects. There is a more than casual relation be-
tween our notions of domain and structure on the one
hand and the data objects of VDL [7, 8, 14] on the
other. Let § be the set of (simple) VDL selectors, and
let 2 be the set of nonempty subsets of S. Let E be a set
(of elementary objects). Any multilevel Z-structure
o:®(4) — E is a Vienna object since its graph (= {(x,
o(x))|lx € ®(A4)}) is a characteristic set; the strings
x € A are composite selectors. When one introduces the
special null object) of [7, 8, 14], any Vienna object be-
comes a multilevel {S}-structure with data E U {Q}. The
replacement operation w of [8] is a special case of our as-
signment operation (2.2); specifically, u(o; (x, o)) yields
the same result as o, < o', Accessing in Vienna objects

MARCH 1975

<11,

Figure 2 A muitilevel #-domain tree.

corresponds to substructure selection in (2.1): Where
we write “o,” [15], Lucas {8] would write “x(c).” The
identity selector is in (2.1) automatically: e(o) =0o,= 0.
It is clear that there are only minor extensional dif-
ferences between multilevel #-structures with data D
and Vienna objects with elementary objects D. We feel,
however, that our presentation of these objects has ad-
vantages over that of the papers on VDL in that it iso-
lates the language used to access the objects defined, all
the while using only well-understood mathematical no-
tions.

We turn our attention now to a central issue in this
paper, namely, making precise the sense in which (2.1)
captures faithfully the intuitive notion of muitilevel data
structure.

C. Abstract multilevel structures

We began in the Introduction with an intuitive definition
of “multilevel array.” By means of the development in
Section 2B, we can render this informal notion precise,
at least in terms of #-structures: A multilevel #-structure
with data D is either an element of D or a #-structure
with data “multilevel Z-structures with data D.” The
awkwardness in this definition disappears as we recast
it mathematically. '

(2.3) The set of functional multilevel P-structures
with data D is the smallest set % satisfying

97=DUUP€9[P—>97].

A minimum solution to this equation is given by:
F,=D;F,,=DU Upey[P - %.]; and
F =UF,. [16].

k3

We have inserted the qualifier “functional” in (2.3) for,
while (2.3) is fully as precise as (2.1), the two definitions
yield different sets of objects. Some reflection on the two
definitions will suffice to establish the following cor-

MULTILEVEL ARRAYS

165

respondence between the two sets of defined objects. Let
& denote the set of multilevel #-structures [as defined in
terms of access domains in (2.1)]. Define the functions
B: ¥ — o and B#:&/ — % as follows.

(A) (1) For deD, B(d) = {(e, d)}; [17],
(2) for f:P — #,
B(f) = {{mw, d)|7€P and (w, d)EB(f(m))}.
(B) (1) For d€D, B*({(e, d}) = d;
(2) say o:®(4) = D and 4 # {e};
then B#((r) E (e) > F
is given by 8% (o) (m) = g*(0,).

Proposition. B:# — ./ is a bijection with inverse g%
(That is, 8 maps & one-to-one onto .«).

This Proposition will follow immediately from the
general result of this section. But note that the statement
of the Proposition is materially too weak to convince
anyone that (2.1) and (2.3) are defining different repre-
sentations of the same concept. In fact, the Proposition
really asserts only that &/ and &% have the same cardinal-
ity. We need a correspondence in the nature of an alge-
braic isomorphism, that is, a correspondence which
preserves some crucial structure. But what is the crucial
structure that characterizes multilevel data structures?

The basic property of multilevel #-structures, func-
tional or not, is that we can construct new ones and select
from old ones in a systematic way. More precisely,
given any set PEZ and a multilevel structure associated
with each w€P, we can construct a new multilevel struc-
ture which is totally characterized by this association. It
is convenient and loses no generality to identify these
““associations’ with functions from PEZ into the set of
multilevel structures. Thus, while we are under no com-
pulsion to assert that a (multilevel) £-structure is a
function, we are saying that such structures can be con-
structed from functions. We are thus led to the following
definition.

(2.4) A system of abstract multilevel P-structures with
data D is a pair (&, u) where % is a set,and p is a
total one-to-one function [18],

p: (DUUpep [P > F]) = 5,

subject to the well-foundedness (or induction)
axiom:

If #'C¥; and if w(D)CY”'; and if w(o)ES’ for all
o:P = ¥ (PEP), then &' = .

One often associates with Z-structures not only a
constructor u, but also a selector function which selects
out components of composite objects. The reader can

A. L. ROSENBERG AND J. W. THATCHER

easily convince himself that, by dint of u’s being one-to-
one, such selector functions exist automatically for any
abstract multilevel structure system. In fact, the ex-
istence of such selector functions is equivalent to u’s
being one-to-one.

Theorem. Any two systems of abstract multilevel -
structures with data D are isomorphic.

Proof. Let (¥, u) and (¥, u') be two such systems. We
claim that the following equations (2.5) define an iso-
morphism between the systems.

(2.5) Define tby:

(1) FordeD, (uld))=p'(d).

(2) Forf:P— %, (M) =p' (ef) [19]

The equations in (2.5) define a relation between . and
&' which, by well-foundedness [cf. (2.4)], is total and
onto.

Let % be the largest subset of & on which ¢ is single-
valued and one-to-one. By (2.5(1)) and the fact that u
and u' are one-to-one (2.4), % contains (D). In addi-
tion, by (2.5(2)) and the fact that u and p’ are one-to-
one, % must contain wu(f) for every function f:P — %
(Pe#). By induction, then, % = <.

Thus, ¢« is an isomorphism between the two systems,
which, by its very definition, preserves the ‘‘makestruc-
ture’ functions.

It is clear the (#, 1(@) is a system of abstract multilevel
P-structures, where 1 is the identity function on .
Moreover, letting ./ again denote the objects defined in
(2.1), the reader can easily verify that (., 8) is a system
of abstract multilevel #-structures, where 8:% — & is
as defined earlier. By the Theorem, (%, llj;) and (&, B)
are isomorphic.

It would appear that the correspondence in our Prop-
osition was recognized, at least intuitively, in [7, 8], but
it is not easily discerned there, where the two representa-
tions are often confused. On the other hand, the need for
a representation-independent (axiomatic) approach is
recognized in [13, 14], but the axiom systems there fail
to characterize multilevel structures for lack of induc-
tion axioms. Standish [13] corrects this shortcoming
when he considers his “constructive” models; however,
he does not attempt any analog of our [somorphism Theo-
rem, which resuit allows us to render precise the sense
in which distinct definitions of “multilevel structure’ are
equivalent.

D. Research problem

In the next section, we specialize the notions developed
here to the case where every P is the set of positions of an
array. Before we leave the present abstract framework,
we should mention an offshoot of this development which

IBM J. RES. DEVELOP.

merits further study. Our access domains assume a tree-
like structure. Hence, all substructures of a multilevel
structure represent distinct physical data structures,
since they are accessed distinctly. (The intention of the
qualifier “physical” is that, even though we may find
o, = o, for some substructures, this coincidence can be
changed by a subsequent assignment. If the substruc-
tures o, and o, were “shared,” no mere assignment
statement could ever distinguish them; they would, in
fact, be the same physical data structure.) Since our
concern is with multilevel arrays, this restriction to tree-
like selectors seems to be a natural one. However, were
we to study data structures with richer interconnections,
say, multilevel lists, our restriction to tree-like structur-
ing would be hard to justify. In general, the graphical
notion of selector should probably be an edge-labeled
directed acyclic graph whose departures from tree-hood
represent shared substructures. Although this graphical
generalization of access domain and selector is a simple
one, the corresponding linguistic (or string-oriented)
generalization is far from simple. What kind of analog
of access domains would maintain the expressional sim-
plicity of these sets of strings and, yet, convey the infor-
mation about shared substructures portrayed so accurate-
ly by a directed acyclic graph? This tempting question
merits serious consideration. (It goes without saying that
the linguistic version of cyclic structures, which could,
for instance, model recursion in data structures, repre-
sents an even stiffer challenge.)

3. Multilevel arrays

A. Notation

Although our notation does not conform precisely with
APL notation, we shall avoid conflicting with that nota-
tion so that the reader can more easily apply our notions
to the operations proposed in [11].

Let N denote the positive integers. For any dEN, N
is the set of d-tuples of positive integers, an arbitrary
d-tuple being denoted {(n,," - -, n,). For nEN, [n] denotes
the set {1,---, n}; thus [n,} X [n,] X -+ X [n,], each
n,EN, denotes that subset of N ¢ comprising all and only
tuples (k,, - -, k) for which each k €[n,].

B. Arrays and multilevel arrays

Arrays. We wish to delimit a collection of sets compris-
ing all and only “‘position names” of arrays. The array
schemes of [20] yield the desired collection:

(3.1) Let d, n,, ---, n, be positive integers. The d-
dimensional array scheme of size (n,,- -, n,) is
the set A= [n,] X - X [n,].
Each element of A is called an array position. The
size of the array scheme A is denoted pA.

MARCH 1975

Table 1 The multilevel array ¥ in tabular form (cf. Figure 3).

M's array scheme Data entries

(1,1) 1
(1,2)(1)<1) 2
(1,2)(1)(2) 3
(1,2)(2) H
(2,1) 5
(2,2) 6

In accord with the prescription of Section 2, a definition
of array follows immediately from the definition of
array scheme:

(3.2) Let D be a set (of data). A d-dimensional D-array
is a total function 4:A — D where A is a d-dimen-
sional array scheme. By extension, p4 = pA.

Multilevel arrays. Let 4 denote the collection of all array
schemes; that is, # = {[n,] XX [n,]ld, n,, - nEN}.

(3.3) A nultilevel array scheme is a multilevel .#-do-
main. The size of the multilevel array scheme M
is pM = pE, (e}. (Recall that the empty string e
belongs to all access domain and that the nonempty
extension of e is an array scheme.) Thus, the size
of M is the size of its “first-level” array scheme.

A definition of multilevel array follows directly from
(3.3) and (2.1).

(3.4) Let D be a set (of data). A multilevel D-array
is a total function ¥: ®(M) — D, where M is a
multilevel array scheme. By extension, pM = pM.
M is proper iff M # {e}.

C. Examples

We now have formal correspondents of the notions we
wished to capture. Our final task is to illustrate these
formal ideas at work, both as an aid to the reader’s in-
tuition and as evidence of the descriptive and manipula-
tive capabilities of our approach. To aid the reader in
comparing our approach with an informal presentation,
we draw our examples from [11].

A multilevel array with data domain {I,---, 6} and its
subarrays. We present the function M in tabular form,
thereby automatically specifying the underlying array
scheme. M is specified in Table 1; the associated tree
appears in Fig. 3, and the Ghandour-Mezei [11] speci-
fication of ¥ in Fig. 4(a). In Figs. 4(b, ¢, d) appear,
respectively, Ghandour and Mezei’s paths to the sub-
arrays M{1,2), M{1,2){(1), and M(1,2)(1)(2) [21].
The reader can easily construct these subarrays from
Table 1 and/or pick out their subtrees from Fig. 3 (at
the nodes labeled A, B, 3, respectively).

167

MULTILEVEL ARRAYS

168

Figure 3 The tree representation of the multilevel array M.

(b) ()

@

Figure 4 The Ghandour-Mezei notation for (a) the array M
and (b-d) “paths” to three of M’s substructures.

Predicates on arrays. Many ideas concerning logical
relations among arrays follow directly from definitions
(3.2) and (3.4) [or, even more basically, from (2.1)].
For instance, two multilevel arrays are identical iff they
are equal as functions; i.e., they have the same source
and target and yield the same argument-value pairs [22].
Our approach obviates the necessity for the following
recursive definition from Ghandour and Mezei [23]:
“Arrays 4 and B are identical if and only if

A. L. ROSENBERG AND J. W, THATCHER

1. either they are the same scalar,

2. or they are empty arrays of identical structure,

3. or they have identical size and have identical items
at the same indices.”

Similarly, in our model, one array is an item of another
[23] iff the former array is a substructure of the latter
according to (2.1).

Principal order on arrays. Ghandour and Mezei gen-
eralize the APL notion of principal order on items of
an array as follows [24]:

“The components at level N+1 of 4 follow the com-
ponents at level N of 4. Given the components I and J
at level N such that J follows I in principal order, the
items of J follow the items of I with each collection of
items of principal order.”

In our framework the principal order of array items
can be defined as follows: Let M:®(M) — D be a multi-
level array.

Let x and y be strings in M. The substructure (or
“item’’) Mx of M precedes the substructure My in prin-
cipal order precisely when either (1) the string x is
shorter than the string y, or (2) x and y are of the same
length, and x precedes y lexicographically. As before,
established notions suffice to describe array-oriented
concepts if an appropriate framework is adopted.

Multilevel #-domains can always be ordered lexi-
cographically whenever all PEZ are ordered (as are
array schemes, which are themselves ordered lexi-
cographically). Thus, our notion of multilevel array
scheme suggests a generalization of the APL principal
ordering, which is an alternative to that of Ghandour
and Mezei. Namely, let lexicographic order on multi-
level domains be the generalized version of principal
order on simple structures.

The function catenate. As our final example, we define,
within our formulation, the simple operation catenate
which “hangs” one vector on another. In the previous
two examples, our point was to illustrate how our model
facilitated drawing on established ideas in talking about
arrays. Here we indicate how, even for simple operations,
a formal definition promotes clarity and automatically
exposes the accessing structure of the. resulting array.
We quote from Ghandour and Mezei [25]:

“The function catenate, denoted by ,, has arguments
which are scalars/vectors whose items are general
arrays. Consider Z«4,B. Z is a vector whose items are
the items of 4 followed by the items of B.”

In our terminology, the operation’s effects would be
defined as follows:

p(4,B)= (pA) + (pB); forall T € [p(4,B)],

IBM J. RES. DEVELOP.

AT if I € [pA]

(4,B)(I)=)
B(I—pA) ifIg [p4].

If A and B are the (multilevel) array schemes of 4 and
B, respectively, then the array scheme of (4,B) is the
union of A and C, where C is the set obtained by uni-
formly adding pA to the first “index” of every string in B,

C=U e {(T + pA)}BD).

4. Conclusion

The benefits of a mathematical study of multilevel ar-
rays are in large part the benefits of such study of any
formalizable entity or phenomenon. The very act of
constructing a mathematical model forces one to ex-
amine the notions to be modeled with an eye toward
logical consistency, lack of ambiguity, and simplicity
of structure. Once a model has been developed, it can
often yield conciseness of description not available at
an informal level, and precision and clarity that are well-
nigh impossible using natural language, even supple-
mented with examples. Finally, and perhaps most im-
portant, are the insights that the right model can give.
To illustrate this point in the context of the present study,
we need only note that our view of multilevel arrays
permits us to draw on the notions in [5, 7, 8, 14], none
of which had an obvious relationship to arrays [26];
moreover, once the connections with these papers were
crystallized, our model showed us that the study of multi-
level arrays was actually just a narrow aspect of the study
of multilevel data structures.

Acknowledgment
We are grateful to the referees for their many incisive
suggestions and criticisms.

References and notes

1. C. C. Gotlieb, “Data types and structures: a synthetic ap-
proach,” Univ. Toronto Technical Report 61, February,
1974,

2. G. H. Mealy, ““‘Another look at data,” Proc. FICC 67, 31,
AFIPS Press, Montvale, N.J., pp. 525-534.

3. D. Scott, “Outline of a mathematical theory of computa-
tion,” Oxford University Computing Laboratory Technical
Monograph PRG-2, November, 1970.

4. W. M. Turski, “Data structures and their ordering,” I4AG
Journal 3, 141 (1970).

§. J. Earley. “Toward an understanding of data structures,”
Comm. ACM 14, 617 (1971).

6. W. M. Turski, “A model for data structures and its applica-
tions,” Part 1. Acta Informatica 1, 26 (1971); Part 11:
Acta Informatica 1, 282 (1972).

MARCH 1975

7. John A. N. Lee, Computer Semantics, Van Nostrand Rein-
hold, New York. 1972.

8. P. Lucas, “Introduction to the method used for the formal
definition of PL/1,” IBM Vienna Technical Report, TR
25.081, October, 1967.

9. We admit scalars as multilevel arrays to simplify the math-
ematical development in Section 2. The reader who balks
at this convention can follow through our development using
“proper”” muiltilevel arrays as defined in definition (3.4) of
Section 3.

10. G. A. Sitton, “Operations on generalized arrays with the
Genie compiler,” Comm. ACM 13, 284 (1970).

11. Z. Ghandour and J. Mezei, “General arrays, operators
and functions,” IBM J. Res. Develop. 17, 335 (1973).

12. T. More, Jr., “Axioms and theorems for a theory of arrays,”
IBM J. Res. Develop. 17, 135 (1973).

13. T. A. Standish, “Data structures, an axiomatic approach,”
Bolt, Beranek, and Newman Automatic Programming
Memo 3, August, 1973.

14. P. Wegner, “The Vienna definition language,” Computing
Surveys 4,5 (1972).

15. In Section 3, we adopt the notationally preferable “ox”
which seems somewhat awkward in (2.1) but which con-
forms better to programming usage.

16. The ‘‘composite” (non-data) elements of # are functions;
they can, therefore, be viewed as sets of ordered pairs of
the form (m, A) where w EPEZ is a VDL simple selector,
and A4 is a multilevel structure. Such pairs appear to be the
named objects of [8} (selector-object pairs in [14]); from
this vantage point, (2.3) underlies the assertion in [8] that
a Vienna object can be described uniquely by a set of named
objects.

17. We are identifying a function with its graph. Recall that e
denotes the empty string.

18. Our “makestructure” function yu seems to correspond to
the somewhat mysterious u, applied to a set of ordered
pairs in the description of Vienna objects.

19. ¢ - f is functional composition: ¢ - f(7) = «(f(w)).

20. A. L. Rosenberg, ““Allocating storage for extendible arrays,”
Journ. ACM 21, 652 (1974).

21. Note that this notation for M’s subarrays can be easily mod-
ified to yield a device for accessing multilevel arrays, which
is consistent with APL’s square bracket notation for ac-
cessing ordinary arrays.

22. We feel that this notion of equality for arrays should re-
place More’s [12] extensionality axiom (1); for here, all
empty arrays (of size (n,, - n,) with some n, = 0) are
equal.

23. Ghandour and Mezei, op. cit., p. 344.

24. 1bid., p. 341.

25. Ibid., p. 337.

26. Of course, the relationship to arrays is obvious to one who
views multidimensional arrays as a special case of lists of
lists of . . . lists. However, as Earley [5] correctly notes,
such a view is inconsistent with the notion of array in lan-
guages such as ALGOL or APL or FORTRAN since it does not
accurately expose their accessing mechanisms for arrays.

“

Received August 15, 1974

The authors are located at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York 10598.

169

MULTILEVEL ARRAYS

