H. Ling
F. P. Palermo

Block-oriented Information Compression

Abstract: Data base statistics play an important role in conventional information compression. For a large data base, the acquisition
of data base statistics becomes a very difficult task. This paper presents a new scheme for information compression that does not use
information statistics. Each information block is represented by two sub-blocks called the alphabet and the generator. The alphabet
contains the linearly independent elements; the generator is computed through the linear combination of the linearly dependent ele-
ments. The total length of these two sub-blocks is generally shorter (never greater) than the original block.

introduction

The underutilization of CPUs and the existence of redun-
dant data are well-known phenomena that will become
more profound when the computer shares more non-
computing loads such as data management and non-
coded information handling.

In 1952 Huffman presented a “two-pass” scheme to
minimize the average number of coding digits per mes-
sage. [1]. In the first pass the statistics of the message
occurrence frequency are collected through scanning.
During the second pass, the shortest code is used to rep-
resent the information with the highest occurrence fre-
quency. A minimum redundant code is introduced. Un-
fortunately, in a large data base, the time required to
collect the data base statistics could limit the usefulness
of this approach.

Recently Raviv [2] has proposed a sampling technique
for obtaining statistics of the message occurrence fre-
quency. For a large information collection, the statistics
vary from file to file; sampling is time consuming. To
compress the information in a large data base of on-line
operation, a one-pass algorithm appears to be more effi-
cient. This method is used to compress the information
without knowing the complete data base statistics or any
characteristics of future incoming information.

The theory is presented first, followed by a considera-
tion of the implementation procedures, the compression
and reconstruction of binary numbers, and lastly some
logical descriptions. To show the step-by-step operation,
an example is included. The possible application of the
method is also discussed.

Theory

In this paper we present a technique to achieve informa-
tion compression by using a shift register. Let 4, be the
information block a,q, - -+ a, to be compressed. A new
block of information is generated each time A4 ; is succes-

MARCH 1975

sively shifted to the left. After the (z— 1)th shift we have
obtained n blocks of information:

A, =aaaaaa0, - -a,
A, =a,aaaaa, - -aX
A, =aaaaa, - a, XX
A, =aXXXX: " XXX, ()

where X of Eq. (1) represents the don’t care case.

When the first linearly dependent block is obtained,
the remaining blocks are also linearly dependent.

The linearly dependent block of Eq. (1) can be elimi-
nated by using the row-reducing method [3]. For exam-
ple, if block [is equal to the linear combination of blocks
i and j, block [is eliminated. Blocks [+ 1 through 4,_,
are obtained through the shifting of block /. Therefore,
when block ! is eliminated, the successive blocks are also
eliminated. After filtering out the linearly dependent
blocks, the linearly independent blocks are as shown
below:

A, =aaaa,a.a5a, - a,
A, =aaaaaa; - aX
A, =auauaaa; - a,XX
A, =aga, " aX XX (2)

By extracting the leading / + 1 digit from each block
of Eq. (2), we obtain a standard array:

a,0,4,0,0,0,0, " Ay,

4,430,450,0,0,° " " Ay

A30,d;0,0,040y° " Qg

UL A1 (3)

141

INFORMATION COMPRESSION

142

We consider first the /th component of each row of Eq.
(3) as a member of the matrix M:

a,a,a,"

273 a

1
A a30,° " " Ay

M=|aa.a; - ay,,

Ay, Ay, 4)

M may contain more elements than 4, To condense
these elements into finite terms, we introduce a new ma-
trix F defined by

FXM=I, (5)
where 1 is the identity matrix. M can be written as
M=FL (6)

Equation (6) shows that if M is a symmetric matrix, F
must be another symmetric matrix. Therefore, if f;; rep-
resents the element of the ith row and jth column, from
(6) we have f;; =fi

Let us consider every element of the standard array as
a member of matrix A. We then have

q,ay " 4 Gy,
ApQyd, """ Qyyy Gy

A=|aaa; - a,, G,

Ay, Gy, |- (7)
By multiplying F and A, we obtain

10000-:-0 o
010000 a,
FXA=]00100---0q,

000100 q,

000001 a,. (8)

Equation (8) shows that M is condensed into an iden-
tity matrix and all the elements beyond «, are compressed
into elements «,a, - - «,. Therefore, an information block

of n digits can be represented by two sub-blocks a.a, " -

a, and a,a, - o, We call the first block a,a, - - q, the
alphabet, and the second block oya, - - - o, the generator.
When A, is compressible, ! is less than n/2.

To compute the a’s, each component of F has to be
calculated first. From (8) we have

Sfuty + fo0, + fpag + 0+ g, =1

fuflz + fi85 + frga, t o+ fua, =0

fufll + fiatiq ot fy8y =0

H. LING AND F. P. PALERMO

JanOy + fonls + frgty + 0+ fya, =0

fm?z + fonly + fosts o fayy, =1
Jary t foalisy ot fly =0

Juy + fpay + fpay +F frg, =0
Ju@y T foay + fpa, + 0+ fya,, =0
fuay T Sty +et by = 1 ()

Because of the symmetry of F, the total number of com-
putations is reduced. The values of « can be written as

i@y T fis@, 0+ fyy, = oy (10-1)
fz1?1+1 + foglpyy T fyly =a, (10-2)
Juluy t Sl o T fuly = o (10-)

Equations (10) show that the linearly dependent ele-
ments can be represented by a,«, -+ - @,. Hence an infor-
mation compression is obtained.

The reconstruction process can be divided into the
following steps:

Step 1 Multiply Eq. (10-1) by a,, (10-2) by a,, - -,
(10-1) by a,; then the summation of these products gives

4y = 4,0, F gy, + 0+ a, (11-1)

Step 2 Multiply Eq. (10-1) by a,, (10-2) by a,, -+,
(10-f) by a,,,; then the summation of products, as in
step 1, gives

a,,= a0, +ao, + -+ a0 (11-2)

In a similar way we obtain all other steps so that the final
step /is obtained.

Step | Multiply Eq. (10-1) by q, (10-2) by a,,,, "
(10-I) by a,, ,; then the summation of these products
gives

a, = ao, + a0, + -+ ay,_ o (11-5

The general term for Egs. (11-1) through (11-]) can
be written as

a,=ae T a0+ ta, o (12)

and it is applicable when generating the digit beyond a,,.
By letting p = [+ 1, we have

Uypy = Gyt a0, 000t a2y (13)

Using Eqgs. (11), (12), and (13), we can reconstruct the

original information block a,a," - - a,.

IBM J. RES. DEVELOP.

Implementation

We have presented an algorithm that enables us to ob-
tain the information compression via computation. The
idle CPU time can be used to compress the linearly de-
pendent elements. The reconstruction process is rather
simple; Eq. (12) shows that a shift register with feedback
is sufficient for reconstruction. The additions in Egs. (1)
through (13) can be further simplified by replacing them
with modulo two addition.

o Compression
The process of compression can be described in four
steps as shown in Fig. 1.

Step I The search for / can be accomplished by the Ex-
CLUSIVE OR operation, adding block i to block & until the
null block is obtained. The value of / is equal to the value
of k.

Step 2 Equation (9) shows that f ;can be written as
fiy =4/, (14)

where A is the determinant of (9) and A, ; is the cofactor.
The determinant A contains al! the elements of the linear-
ly dependent blocks. Using the EXCLUSIVE OR operation
on both row and column, we can transform A into a new
determinant with all the elements along the main diagonal
equal to one and all other elements equal to zero. There-
fore, A has the value 1, and the computation of A is elim-
inated. We have

fi=Ap (15)

A;; canbe a symmetric or a non-symmetric determinant.
A non-symmetric 4,; is equal to one, except for those
usual cases for which a determinant is zero (a row or
column equals zero, or two rows or two columns are
identical). When A, j is symmetric, its value V, can be
written as

V.,=a,a, +a,(a,D a,), (16)

if there are three distinct elements in the determinant,
and as

V.= a,'(a,® a,a,)
+a,[a,' (a, D a,a,') + a,(a, D a,'a)], 17

if there are five distinct elements. The @ symbol repre-
sents the EXCLUSIVE OR operation, and the primed fac-
tors indicate the complements of their respective values.
A general expression can be derived in a similar manner
for more distinct elements.

Step 3 The implementation of a; is shown in Fig. 2, which
is a general representation for Eqs. (10-1) through (10-/).
When 131 e fy are available, o is implemented through
a two-level logic. When the number of inputs to the

MARCH 1975

Step 1 Search
for !
Step 2 Compute
fii
Step 3 Compute
aj

Step 4 Lal ay ... a, @ a, oll

Figure 1 Compression procedure.

fir fp ot
a+1) ﬁ —L
wJ-} € 1@ >

A4

Figure 2 The logical implementation of .

EXCLUSIVE OR gate increases, the number of input levels
may increase due to the fan-in limitation.

Step 4 The final compressed information is shown in the
box below. The first row of M of Eq. (4) is concatenated
with the a; computed from Egs. (10) or logically im-
plemented as shown in Fig. 2.

alazu.al alaz.”al

s Reconstruction

Equation (12) shows that we can reconstruct the original
information by using a simple “shift and add.” The re-
construction procedure is shown in Fig. 3.

The blocks a,a," * *a,and @,a," * &, can be pre-recorded
or received from the on-line operation. The output is the
next digit to be generated. This particular digit g, +p 18
fed back to the shift register R, for generating the suceed-
ing digit. The original information block is obtained from
the output of the shift register R.

Detailed description
We now describe the operational procedure step-by-step,
by means of an example. Let us consider

A,=1011101001110100. (18)
s Compression
Step 1 Find the linearly independent element of

1011101001110100 1.

143

INFORMATION COMPRESSION

144

Generator
| @y @y .0 |

0

2

©

A= apeytag @t a0y

Alphabet

(p=1)

=

Figure 3 The reconstruction procedure.

From Eq. (1) we obtain the following information block
by successive shifting of 4, [Egs. (19-1)-(19-15)]:

A;=01 1101001110100 X
A4,=11 101001 110100XX
A, =11 01001 110100XXX
A,=101001110100XXXX
A;=01001110100XXXXX
A;=1001110100XXXXXX
A, =001 110100 XXXXXXX
A,=01110100XXXXXXXX
A, =11 10100 XXXXXXXXX
Ap=110100XXXXXXXXXX
Ay=10100 XXXXXXXXXXX
A,=0100 XXXXXXXXXXXX
A;=100 XXXXXXXXXXXXX
A,=00 XX XX XXXXXXXXXX
Ag=DXXXXXXXXXXXXXXX

As described in the previous section we obtain a null
block by adding (19-1) and (19-2) to (19-4). Therefore,
there are four linearly independent elements in 4, We
have /[=4.

Step 2 By extracting the four leading bits from A4, and
Eqgs. (19-1)-(19-3), we have

1011
0111
1110
1101} (20)

From equation (15) we obtain

1 = A,,, a symmetric matrix; using (17), A,=1
[z = A, a symmetric matrix; using (17), A,=0
fis = A,; not a symmetric matrix; A,=1.
f..= A,, a symmetric matrix; using (17), A,=1.
f‘21 = -f;Z'

Jos = A, a symmetric matrix; using (18), Ay, =1L

H. LING AND F. P. PALERMO

fo3 = A, nOt 2 symmetric matrix; Ay =1
foa=A,, not a symmetric matrix; A, =1
f31 =1 13°
S = o
foa = Ay, @ symmetrix matrix; using (18), Ay=1
fss = A, a symmetrix matrix; using (18), A,=1
fo=Fw
Jo = o
S =Fsur
fu=A,,, a symmetric matrix; using (18), a,=1

Step 3 From Fig. 2, we have the implementation shown

in Fig. 4. By replacing f,,, f,,, f;,, and f,, with f,,, f,.,
f23> and f,,, respectively, we obtain o, = 1. This process
continues until all the « values are generated. Therefore,

a0, >0 1 0 1.

This result can also be obtained by using Egs. (10-1)-
(10-4).

Step 4 The compressed information is shown as

a,a,a,0, 00,00,

10110101

We have compressed a 16-bit information block into an
8-bit block.

s Reconstruction

From Fig. 3, the first linearly dependent element as is
generated as shown in Fig. 5. After generation of g, q,
is shifted out of register R; a,, a,, and a, are each shifted
upward; and the newly determined « is shifted into the
position where a, had been. From this configuration a,
can be determined. This process continues until all 16
digits are generated. The final digit, a,,, is obtained when
12> 445 Ay, and a,, are located in R,. This same result
can also be obtained by using Eq. (12):

a

a, = a,0, D a,0, D a0, D a0, = 1
a, = a0, @ a0, D a,e, D ae, =0

a, = a0, ® a0, ® a0, D age, = 1

a,g=a,,0, @ a0, @ a,,0, ® a0, = 0.

The original information block 1 0 111010011
1 01 0 0 is reconstructed. In this example, we have
shown the step-by-step procedure used in applying this
method to compress and reconstruct the information

IBM J. RES. DEVELOP.

as

a6

az

ag

Figure 4 The logical implementation of a;.

block. In the compression stage, additional CPU time
is required for the computation of I. The f, ; and a; can be
logically implemented in hardware or in software. In the
reconstruction phase, a simple shift register with some
logic as shown in Fig. 3 is sufficient to reconstruct the
original information block.

Applications

It is commonly known that CPU utilization is less than
100 percent and that it can vary over wide ranges for
different applications. This method can make use of
some of the idle CPU time for information compression.

For non-coded data transmission, such as pictures,
there exists much redundant information. The method
described above can be used to compress this kind of
redundant information on-line, and the bandwidth re-
quirement for the transmission line can thereby be re-
duced. This method can also be used to reduce both
storage space requirements and bandwidth requirements
in computer networks.

In error correction, there are various codes used to
correct multiple errors. Unfortunately, multiple-error
correction codes are inefficient. For example, to transmit
a 16-bit information block with single-error correcting
capability [4], the total required code length is 24 bits.
By using our method, the 16-bit information block can be
compressed into an 8-bit block plus 4 bits to indicate that
[= 8 for this block; for single-error correction capability,
the total code length is thus reduced from 24 bits to 18
bits. This, of course, is true when the message contains
the same degree of redundancy as used in the example.

Discussion
The technique we have used for information compression
is based on mathematical system realization theory [5].
Massey, writing on the application of coding theory to
shift-register synthesis and BCH decoding [6], has
suggested that an additional application of coding theory
would be in the area of data compression. By comparing
Massey’s work with our own, we see that there exists a
link between coding theory and mathematical system
theory in this area.

The method presented in this paper takes the input
string and operates in a parallel fashion to obtain the
alphabet and the generator. The total process requires

MARCH 1975

Figure 5 The reconstruction of the original information block.

! steps. Massey’s method is to take the input string and
iterate serially through n steps to obtain the feedback
connection of the shift registers.

The coefficient of the connection polynomial in [6]
is similar to Eq. (10) in our paper. Massey’s coefficients
are obtained by using the Berlekamp iterative algorithm
[7], whereas our a’s are obtained directly through matrix
multiplication. The reader should be aware that the ratio
of compression is a function of the degree of data redun-
dancy. The 2:1 compression ratio obtained by compress-
ing the data in Eq. (18) is only an illustrative example.

Summary

Unlike the conventional method, information statistics
play no role in the information compression technique
described. Because no statistical information on the data
is available, the current or on-line information is con-
sidered to be relevant to information compression. This
paper has presented an algorithm for such information
compression and considered its implementation. The
simple EXCLUSIVE OR operation and shifting are used in
both compression and reconstruction. These instructions
require very few machine cycles. In many cases, a simple
logic array can be used in data base management to save
storage space and, in on-line operation, to reduce the
bandwidth requirements.

References

1. D. A. Huffman, “A Method for the Construction of Mini-
mum-Redundancy Codes,” Proc. I.R.E. 40, 1098 (1952},

2. J. Raviv, private communication.

3. G. Birkhoff and S. S. MacLane, A4 Survey of Modern Alge-
bra, The Macmillian Co., New York, 1963, p. 176.

4. W. W. Peterson, Error Correcting Codes, John Wiley and
Sons, Inc., New York, 1961, p. 71.

5. R. G. Kalman, T, L. Falb, and M. A. Arbib, Topics in
Mathematical System Theory, McGraw-Hill Book Co.,
Inc., New York, 1969.

6. J. L. Massey, “Shift Register Synthesis and BCH Decod-
ing,” IEEE Trans. Information Theory IT-15, 122 (1969).

7. E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill
Book Co., Inc., New York, 1968.

Received March 6, 1974

H. Ling is located at the IBM Data Processing Product
Group Headquarters, White Plains, New York 10604.
F. P. Palermo is located at the IBM Research Lab-
oratory, Monterey and Cottle Roads, San Jose, Cali-
Sfornia 95193,

145

INFORMATION COMPRESSION

