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Abstract: Data base statistics play an  important role in conventional information compression. For a large  data base, the acquisition 
of data base statistics becomes a very  difficult task. This paper presents a new scheme for information compression that does not use 
information statistics. Each information  block is represented by two sub-blocks called the alphabet and the generator. The alphabet 
contains the  linearly independent elements; the generator is computed through the linear combination of the linearly dependent ele- 
ments. The total  length of these two sub-blocks is generally shorter (never greater) than the original block. 

Introduction 
The underutilization of CPUs and the  existence of redun- 
dant  data  are well-known phenomena  that will become 
more profound  when the  computer  shares  more non- 
computing loads  such  as  data management  and  non- 
coded  information handling. 

In 1952 Huffman presented a “two-pass”  scheme  to 
minimize the  average  number of coding digits per mes- 
sage. [ 11. In  the first pass  the  statistics of the message 
occurrence  frequency  are collected  through  scanning. 
During the  second  pass,  the  shortest  code is used to rep- 
resent  the information with the highest occurrence  fre- 
quency.  A minimum redundant  code is introduced. Un- 
fortunately, in a large data  base,  the time  required to 
collect the  data  base  statistics could limit the usefulness 
of this approach. 

Recently  Raviv [ 21 has proposed a sampling technique 
for obtaining statistics of the message occurrence  fre- 
quency. For a large information  collection, the  statistics 
vary  from file to file; sampling is time consuming. To 
compress  the information in a large data  base of on-line 
operation, a one-pass algorithm appears  to  be  more effi- 
cient. This method is used to  compress  the information 
without knowing the  complete  data  base  statistics  or  any 
characteristics of future incoming information. 

The  theory is presented first, followed by  a  considera- 
tion of the implementation procedures,  the compression 
and reconstruction of binary numbers,  and lastly  some 
logical descriptions. To  show  the  step-by-step  operation, 
an example is included. The possible application of the 
method is  also  discussed. 

Theory 
In this paper  we  present a technique to  achieve informa- 
tion  compression by using a shift register. Let A ,  be  the 
information block ala2 . . . an to be compressed. A new 
block of information is generated  each time A,  is succes- 
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sively shifted to the left. After  the ( n  - 1) th shift we  have 
obtained n blocks of information: 

A,, = a1a2a3a4a5a6a7‘ . . a,  

A ,  = a2a3a4a5a6u,. . . a,X 

A 2  = a3a4a5a6a;..anXX 

An-l = a,XXXX. . . XXX, ( 1 )  

where X of Eq. ( 1 )  represents  the don’t care case. 
When  the first linearly dependent block is obtained, 

the remaining blocks are  also linearly dependent. 
The linearly dependent block of Eq. ( 1 )  can  be elimi- 

nated by using the row-reducing  method [3]. For exam- 
ple, if block 1 is equal  to  the linear  combination of blocks 
i and j ,  block 1 is eliminated.  Blocks I + 1 through A n - ]  
are obtained  through the shifting of block 1. Therefore, 
when block 1 is eliminated, the  successive blocks are  also 
eliminated. After filtering out  the linearly dependent 
blocks,  the linearly independent  blocks are  as shown 
below: 
A, = ala2a3a4a5a6a7. . . a, 

A ,  = a2a3a4a5a6a7 ’ * . a,X 

A 2  = a3a4a5a6a7. . . a,XX 

A[-, = ala,+, . . . a,X . . . XX. (2)  

By extracting  the leading 1 + 1 digit from each block 
of Eq. ( 2 ) ,  we obtain  a standard  array: 

a1a2u3a4a5a6a7 ’ ‘ . ‘ I + ,  

a2a3a4a5a6a7a8 ’ . ’ ‘1+2 

u3a4a5u6a7a8a9 ’ . ’ ‘1+3 

az+1a1+2. . . a,+,+,. (3  1 141 
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We consider first the 1th component of each  row of Eq. 
( 3  ) as a member of the matrix M: 

a1a2a3. . . a, 

a24344 ' ' ' ' I + ,  

M = a3a4a5' .. . 

ala,+, . . . %,,-I (4) 
M may contain  more  elements  than A,. To condense 
these  elements  into finite terms, we introduce a new ma- 
trix F defined by 

F X M = I ,  ( 5 )  

where I is the identity  matrix. M can be  written as 

M = F-II., (6) 

Equation (6) shows  that if M is a symmetric  matrix, F 
must  be another  symmetric matrix. Therefore,  if& rep- 
resents  the  element of the ith row and  jth  column,  from 
(6) we =Ji. 

Let us consider every element of the  standard  array as 
a member of matrix A. We  then  have 

I '1'2'3 ' ' ' ' I + ,  I 

By multiplying F and A, we obtain 

1 0 0 0 o . . . o  a] 

0 1 0 0 o . . . o  a* 

F X A =  0 0 1 0 O . * * O  a3 

0 0 0 1 o . . . o  a4 

0 0 0 0 0 . . . 1  a, . (8)  

Equation (8)  shows  that M is condensed  into  an iden- 
tity  matrix and all the  elements beyond a, are  compressed 
into  elements ala2. . . a,. Therefore,  an information  block 
of n digits can be represented by two sub-blocks ala2.  . . 
a, and ala2 . . . a,. We call the first block ala2 . . . a, the 
alphabet, and  the  second block alaz.  * . ab the generator. 
When A,  is compressible, 1 is less than n / 2 .  

To compute  the a's, each  component of F has  to be 
calculated first. From (8)  we have 

f l P 1  + &,a, + &,a, + . . . + fila, = 1 

& l u Z  + f12'3 + f13.4 +' ' ' + f i la l+ l  = 

142 f l l P ,  + f,2a,+, . . .  

Because of the symmetry of F, the  total  number of com- 
putations is reduced.  The  values of a can  be written as 

Equations  (10)  show  that  the linearly dependent ele- 
ments can be  represented by ala2. . a,. Hence  an infor- 
mation  compression is obtained. 

The  reconstruction  process  can be  divided into  the 
following steps: 

Step 1 Multiply Eq. (10-1) by a,, (10-2) by a2, . . ., 
(10-1) by a,; then the summation of these  products gives 

a,,, = ala1 + a2a2 + . . . + alal, (11-1) 

Step 2 Multiply Eq.  (10-1) by a,, (10-2)  by a3, . . *, 
(10-1) by a,+,; then the summation of products,  as in 
step 1, gives 

a/+2 = azal + a3a2 + . . . + al+lal. (1  1-2) 

In a similar way we obtain all other  steps so that  the final 
step 1 is obtained. 

Step 1 Multiply Eq. (10-1) by a,, (10-2) by a,,,, . .., 
(10-1) by a21-l; then the summation of these  products 
gives 

a2, = ala1 + al+1a2 +. . . + a2,-,a1. (1 14) 

The general term  for  Eqs. ( 1 1-1 ) through ( 1 1-1) can 
be written as 

= + ap+1ff2 + . . . + a,+p-la,' (12) 

and  it is applicable  when  generating the digit beyond u2,. 
By letting p = 1 + 1, we have 

Using Eqs.  (1 1 ) ,  (12),  and  (13),  we can reconstruct  the 
original information  block ala2. . . a,. 
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Implementation 
We have  presented  an algorithm that  enables us to ob- 
tain the information  compression  via  computation. The 
idle CPU time  can  be used to  compress  the linearly  de- 
pendent  elements. The  reconstruction  process is rather 
simple; Eq. ( 1  2 )  shows that a  shift  register with feedback 
is sufficient for  reconstruction.  The additions in Eqs. ( 1 ) 
through ( 13) can  be further simplified by replacing them 
with modulo two addition. 

Compression 
The  process of compression  can  be  described in four 
steps  as  shown in Fig. 1.  

Step I The  search  for 1 can  be  accomplished by the  EX- 
CLUSIVE OR operation, adding block i to block k until the 
null block is obtained. The value of I is equal to  the value 
of k. 

Step 2 Equation (9)  shows  thatXj  can be  written as 

hj  = Aij/A,  (14) 

where A is the  determinant of (9)  and Aij is the  cofactor. 
The  determinant A contains all the  elements of the linear- 
ly dependent blocks.  Using the EXCLUSIVE OR operation 
on both row and column, we can  transform A into a  new 
determinant with all the  elements along the main diagonal 
equal  to  one  and all other  elements equal to  zero.  There- 
fore, A has  the value 1 ,  and  the computation of A is elim- 
inated. We have 

f . .  = A . . ;  

Aij can  be a symmetric or a non-symmetric  determinant. 
A non-symmetric Aij  is equal  to  one,  except  for  those 
usual cases  for which a determinant is zero (a row or 
column equals  zero, or two  rows or two columns are 
identical). When A i j  is symmetric,  its  value V,  can be 
written as 

11 13 (15)  

v, = a,’a, + a,(a, 0 a,),  (16) 

if there  are  three distinct elements in the  determinant, 
and as 

v, = a,’(a, 0 a2as) 

+ a1[a2’(a4 0 a,a,’) + a,(a,‘ 0 a3’a5’)l, (17) 

if there  are five distinct  elements. The 0 symbol  repre- 
sents  the EXCLUSIVE OR operation,  and  the primed fac- 
tors indicate the complements of their respective values. 
A general expression can  be  derived in a similar manner 
for  more  distinct  elements. 

S t e p  3 The implementation of aj is shown in Fig. 2 ,  which 
is a  general representation for Eqs. ( 10- 1 ) through ( 10-1). 
When 4, . . . are available, aj is implemented  through 
a two-level logic. When the number of inputs to  the 
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Step 1 

Step 2 

I Search I 
for 1 I 

Compute 

Compute 

Step 4 a l  a2  . . .  a ,  a la2  ...a, 

Figure 1 Compression procedure. 

EXCLUSIVE OR gate  increases,  the number of input levels 
may increase due to the fan-in limitation. 

Step 4 The final compressed information is  shown in the 
box below. The first  row of M of Eq. (4) is concatenated 
with the aj computed from Eqs. (10) or logically im- 
plemented as shown in Fig. 2 .  

Reconstruction 
Equation  (12)  shows  that we can reconstruct  the original 
information by using a  simple  “shift and  add.”  The re- 
construction  procedure is shown in Fig. 3. 

The blocks a1a2~  . .a, and ap,. . ‘a1 can be pre-recorded 
or received  from the on-line  operation. The  output is the 
next digit to be generated.  This particular digit al+p is 
fed  back to  the shift  register R, for generating the suceed- 
ing digit. The original information block is obtained  from 
the  output of the shift  register R,. 

Detailed description 
We now describe  the operational procedure  step-by-step, 
by means of an example. Let us consider 

A , = 1 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 .  (18) 

Compression 
Step 1 Find the linearly independent element of 

1 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 .  143 
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Generator f,, = A,, not  a  symmetric matrix; 

f,, = A2, not  a  symmetric matrix; 

A2, = I .  

A2, = 1. 

Figure 3 The reconstruction  procedure. 

From  Eq. ( 1 ) we obtain the following information block 
by successive shifting of A ,  [Eqs. (19-1)-( 19-15)]: 

A 1 = O 1 l l O 1 O O 1 l l O 1 O O X  

A 2 = 1 1 1 0 1 0 0 1 1 1 0 1 0 0 X X  

A , = 1 1 0  1 0  0 1 1  1 0  1 0  0 x x x  
A , = 1 0   1 0  0 1 1  1 0   1 0  0 X X X X  

A , = 0 1 0  0 I 1  1 0  1 0  0 x x x x x  
A , = 1 0  0 1 1 1 0  1 0  0 x x x x x x  
A , = 0 0  1 1  1 0   1 0  0 x x x x x x x  
A , = 0 1  1 1  0 1 0  0 X X X X X X X X  

A , = 1 1 1 0  1 0  0 x x x x x x x x x  
A , , = l l O  1 0  0 x x x x x x x x x x  
A , , = 1 0  1 0  0 x x x x x x x x x x x  
A , , = O l  0 0 x x x x x x x x x x x x  
A , , = l O  0 x x x x x x x x x x x x x  
A , , = O O  x x x x x x x x x x x x x x  
A , , = O X X X X X X X X X X X X X X X  

As described in the previous  section we obtain  a null 
block by adding ( 19- 1 ) and ( 19-2) to ( 19-4).  Therefore, 
there  are  four linearly independent elements in A,. We 
have 1 = 4. 

Step 2 By extracting  the  four leading  bits  from A ,  and 
Eqs. (19-1)-(19-3),wehave 

M =  
1 1 1 0  

i I  1 0 1 1  

From  equation ( 15) we obtain 

f,, = A, , ,  a symmetric  matrix; using (17),  A,, = 1. 

f , ,  = A,, a symmetric  matrix; using (17), A,, = 0. 

fI3 = A,, not a symmetric matrix; A,, = 1. 

fI4 = A,, a  symmetric matrix; using ( 17), A,, = 1. 

f2, = fl,, 
1 144 f Z 2  = AI, a symmetric  matrix; using (18) ,  A,, = 1. 

f,, = A,,, a  symmetrix matrix; using 

f,, = A,,, a  symmetrix matrix; using ( 1 8 ) ,  A,, = 1. 

f*l = fl4. 

f4Z =f24' 

f,, = f34. 

f,, = A,,, a symmetric  matrix; using ( 18), A,,= 1. 

Step 3 From Fig. 2 ,  we have  the implementation shown 
in Fig. 4. BY replacing A,, f,,, f,,, and f,, with f,,, fi,, 

f2,, and fz4, respectively, we obtain a, = 1. This  process 
continues until all the a values are generated. Therefore, 

f f 1 f f 2 f f 3 f f 4  + 0 1 0 1. 

This result  can also be obtained by using Eqs.  (10-1)- 
(10-4). 

Step 4 The  compressed information is shown as 

I 

1 0 1 1   0 1 0 1  

We have  compressed a 16-bit information block into an 
8-bit block. 

Reconstruction 
From Fig. 3, the first linearly dependent element us is 
generated as shown in  Fig. 5. After generation of us, CI, 
is shifted out of register R,; a2, a,, and a, are  each shifted 
upward;  and  the newly determined a5 is shifted into the 
position where u4 had  been. From this configuration a6 
can  be determined.  This  process  continues until all 16 
digits are  generated.  The final digit, aI6, is obtained when 
a,,, a,,, a,, and uI5 are located in R,. This  same result 
can also be  obtained by using Eq. ( 12): 

u5 = alal  @ aZaZ @ aga3 @ a p ,  = 1 

u6 = a p ,  @ a3a2 @ a4a3 @ a5a4 = O 

u7 = a,al @ u4a2 @ a p 3  @ u6a4 = 1 

a16 = a12ff1 @ a13ff2 0 a 1 4 f f 3  0 a15ff4 O' 

The original information block 1 0 1 1 1 0 1 0 0 1 1 
1 0 1 0 0 is reconstructed.  In this  example, we have 
shown the  step-by-step  procedure used in applying  this 
method to  compress and reconstruct  the information 
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* 
1 

0 

ai = 0 

Figure 4 The logical implementation of ai. 

block. In  the compression stage, additional CPU time 
is required for  the computation of 1. The&  and aj can be 
logically implemented in hardware  or in software. In  the 
reconstruction  phase, a simple shift register with some 
logic as shown in Fig. 3 is sufficient to  reconstruct  the 
original information  block. 

Applications 
It is commonly known that CPU utilization is less  than 
100 percent and that it can vary over wide ranges  for 
different  applications. This method can  make use of 
some of the idle CPU time for information  compression. 

For non-coded data transmission, such  as pictures, 
there  exists much redundant information. The method 
described above can  be  used to  compress this kind of 
redundant information  on-line,  and the bandwidth  re- 
quirement for  the transmission line can thereby be  re- 
duced.  This method can  also be used to  reduce both 
storage space requirements and bandwidth requirements 
in computer  networks. 

In  error  correction,  there  are various codes used to 
correct multiple errors.  Unfortunately, multiple-error 
correction  codes  are inefficient. For example, to transmit 
a 16-bit information block with single-error  correcting 
capability [4],  the total  required code length is 24 bits. 
By using our method, the 16-bit information block can be 
compressed into an 8-bit block plus 4  bits to indicate that 
1 = 8 for this block;  for single-error correction capability, 
the total code length is thus reduced  from 24 bits to 18 
bits. This, of course, is true when the message contains 
the  same  degree of redundancy as used in the example. 

Discussion 
The technique we  have used for information compression 
is based on mathematical  system  realization theory  [5]. 
Massey, writing on  the application of coding  theory to 
shift-register synthesis and BCH decoding [6],  has 
suggested that  an additional  application of coding theory 
would be in the  area of data  compression. By comparing 
Massey’s work with our  own,  we  see that there  exists a 
link between coding theory and mathematical  system 
theory in this area. 

The method  presented in this  paper takes  the input 
string and  operates in a parallel fashion to obtain the 
alphabet and the  generator.  The total process  requires 

Figure 5 The  reconstruction of the original information  block. 

I steps. Massey’s  method is to  take  the input  string  and 
iterate serially through n steps  to obtain the  feedback 
connection of the shift registers. 

The coefficient of the  connection polynomial in [6] 
is similar to  Eq. (10) in our paper. Massey’s coefficients 
are obtained by using the Berlekamp  iterative algorithm 
[7],  whereas  our a’s are obtained  directly  through  matrix 
multiplication. The  reader should be aware  that  the ratio 
of compression is a  function of the  degree of data redun- 
dancy.  The 2:  1 compression  ratio  obtained  by compress- 
ing the  data in Eq. ( 18) is only an illustrative  example. 

Summary 
Unlike  the conventional  method,  information statistics 
play no role in the information  compression  technique 
described. Because no statistical  information on  the  data 
is available, the  current  or on-line information is con- 
sidered to be  relevant to information  compression. This 
paper  has  presented  an algorithm for  such information 
compression and considered  its  implementation. The 
simple EXCLUSIVE OR operation  and shifting are used in 
both compression and  reconstruction.  These instructions 
require very few machine  cycles. In many cases, a simple 
logic array can be used in data  base management to  save 
storage space  and, in on-line operation,  to  reduce the 
bandwidth  requirements. 
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