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Storage  Hierarchy  Optimization Procedure 

Abstract: The goal of storage  hierarchies is to combine  several  storage  technologies in such  a way as  to  approach  the performance 
of the fastest  component technology  and  the cost of the least  expensive one.  This paper presents optimization  techniques  for  a  storage 
hierarchy  subject to quantity-sensitive component  costs. It is assumed that a finite (and  probably small) set of technologies is available. 
Each technology is characterized by an  access time and  two  cost  parameters. We assume  that statistical  summaries of address  sequences 
are available. We present  solutions to four problems of increasing  complexity: 1 ) minimization of access time for a fixed cost  and pre- 
assigned page sizes; 2 )  optimization of ageneralized price-performance  function under preassigned page sizes; 3 )  minimization of access 
time for a fixed cost when page sizes are allowed to  vary; 4 )  optimization of a  generalized  price-performance  function when page  sizes 
are allowed to vary. 

Introduction 
In the  best of worlds, the storage facility of a computer 
system would be large, fast,  and  cheap. In the real world 
this  triplet of characteristics has  not yet been attained. 
Although many significant strides  have been  made, it has 
not been possible to  devise a single technology  that meets 
all three goals. 

As a consequence, much attention has  been devoted 
to  methods of exploiting the statistical properties of the 
sequence of storage addresses which characterize  the 
communication  between  a processor  and a storage during 
the execution of a computer program [ 1, 21. Parallel ef- 
forts  have  concentrated  on efficient techniques  for gather- 
ing and  presenting  statistical  summaries of typical ad- 
dress  sequences [3, 41. In this paper,  we  assume  the 
existence of these statistical  summaries and  describe how 
they  may be used to optimize  the design of the  storage 
hierarchy. 

Suppose  that we have available B different storage 
technologies. The simplest hardware design for  use in 
exploiting the  statistics of the  address  sequence is a B- 
level hierarchy,  where  Level I is the smallest, fastest, 
and most expensive, and Level B is the largest, slowest, 
and least  expensive.  A request for Po contiguous  bytes is 
directed from the  processor  to  Level 1 .  If Level 1 con- 
tains the  desired Po bytes, they are  transferred  to  the pro- 
cessor, and  the  Level 1 directory is updated  to reflect the 
transaction. If  Level I does not contain the desired Po 
bytes,  the  request is directed to Level 2. If Level  2 con- 
tains  the  desired Po bytes, a block of size p, containing 
those p,, bytes is transferred  from  Level 2 to Level I ,  and 
the  appropriate Po bytes  are simultaneously  transferred 
to  the  processor.  The  directories  at Level 1 and Level 2 
are updated to reflect this  transaction. If Level 1 has be- 
come filled with blocks of p, bytes, it  will be  necessary 

to evict  a block of Dl bytes from Level I to make room 
for  the block coming to it from Level 2. This eviction 
must also be posted to  the Level 1 directory. We assume 
that  the evicted block need  not be pushed  back to Level 
2 since  a  copy is presumed to  exist  at Level 2. The block 
to be evicted is determined by the  replacement algorithm. 
If Level 2 does not contain the  desired bytes,  but Level 
3 does, then p, bytes containing the desired Po bytes  are 
transferred to Level 2; of these, Dl bytes are transferred 
to Level 1 ,  and, of these, Po bytes  are transferred to  the 
processor.  Directories  at  Levels I ,  2, and 3 are  updated 
concurrent with this transaction. If Level 3 does  not con- 
tain the required po bytes,  the  process  continues until the 
required Po bytes  are found at  some level. We assume 
that  the required bytes  are available at Level B with prob- 
ability one. For i = 1, 2 , .  . ., B - 1 ,  let ai be the number of 
blocks of size pi bytes which are resident at  Level i. If 
we  denote by si the size of Level i in bytes, we obtain 

si = ai pi. ( 1 )  

Obviously we are assuming a discrete block organization 
at  each level such that ai and pi are integers  and pi > &,, 
where ai = number of blocks at  Level i and pi = size in 
bytes of an individual block at Level i. 

The size of Level B, sB,  deserves some comment.  The 
minimum size of sB will be 

min s B  = t ~ ~ - ~ .  (2) 

where nB-l = number of distinct blocks of size ref- 
erenced by the  address sequence. Any size of sB larger 
than min sB will add to the cost without improving per- 
formance. We assume  that t ~ ~ - ~  is known. The value of 
t ~ ~ - ~  is referred to  as “program  size in &-,-sized blocks.” 133 
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We  assume  that  the statistical data  are known in the 
form of the following cumulative  distribution function  for 
i =  1 , 2 ; . . , B -  1 :  

G (ai) = Probability that  the  next required address is 4 
available in Level i, when it contains ai 

blocks of Pi bytes. ( 3 )  

The simplest  performance-oriented figure of merit  for 
a storage hierarchy is the  average  access time,  given by 

B 

E = ui Pr(Ri) , (4) 
i=l 

where E is the  average  access time (seconds  j, ui is the 
time  required for  processor  to  access  data  from  Level i 
(seconds), and Pr(Ri) is the probability that  the next 
reference will be  made  to Level i. 

There exist many different replacement algorithms 
[3-51. Of these,  the  Least Recently Used (LRU) seems 
to  represent a good engineering compromise between 
performance and cost.  In addition, LRU  has  two  char- 
acteristics  that  are particularly  applicable to this paper; 
1 )  LRU belongs to a class of algorithms called stack 
algorithms [4], meaning that  the B - I functions implied 
by ( 3  ) can  be  obtained by a single scan of an  address se- 
quence  whose  addresses imply a block size of Po bytes, 
and 2 )  LRU applied to  Levels 1 and 2 of a three level 
storage  hierarchy has  the following properties [ 61 

Pr(Rl)  = G,, (a ,  1 

Pr(R,) = Go,(“,) - G,,(a,) 

W R , )  = 1 - G,,(aJ. ( 5 )  

Slutz  and  Traiger [7] extended  this  result to B-level 
hierarchies and found 

Pr(R1j = GO1 (a1 1 
Pr(Ri) = GPi(ai) - G,t-l(ai-l) for i = 2, 3; . ., B - 1 

Pr(RB) = 1 - Gp,-,(as-l). (6) 

For ( 5 )  and (6 j to hold, it first appeared  that a necessary 
condition is that  the  address  stream from the  processor 
should  be  used to  update  each of the B - 1 directories 
in a B-level hierarchy for  each  address.  Gecsei [8] has 
shown that this  condition is not  necessary  for ( 5 )  and 
(6)  under  LRU.  Instead  Gecsei  has  described a method 
of distributed hierarchy  management using LRU  for 
which (5)  and (6)  still hold. We implicitly assume  Gec- 
sei’s distributed  management  technique in any implemen- 
tation. All we  require mathematically, however, is the 
validity of ( 6 ) .  

Cost considerations 
We assume  the use of a different technology at  each of 
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the higher the  cost.  The actual situation,  however, is 
somewhat more  complex.  Any  candidate  technology has 
the  property  that  the  average  cost per bit is a monotone 
non-increasing  function of the quantity of bits  produced. 
Inspection of several such  functions suggests that they 
are sufficiently well represented by 

( Ci - ci)  Qi = ti, ( 7 )  

where  Ci is the  average  cost per bit of technology i 
(dollars/  bit), Qi is the  quantity produced of technology 
i (bits),  ci is a constant  for technology i (dollars/  bit), 
and ti is the  other  constant  for technology i (dollars). 
Equation (7) can be rewritten in the following form 

Ti = ti + ciQi, (8) 

where Ti is the total cost of technology i (in dollars). 
It then becomes  apparent  that the constants ti and ci 
can  be given a physical interpretation. The  constant ti is 
a “start-up”  cost,  and  the  constant  ci is an incremental 
cost per bit after  the decision is made  to  use technology 
i and  invest the  start-up  cost ti. 

Let Pi be the fixed costs  per unit produced at  Level i 
for  power,  directories, etc. (dollars), N be the number 
of units of the storage  hierarchy to be produced, J be 
the  discretionary  cost per  unit  (dollars), $? be the total 
cost (dollars), and I be the  number of bits per  byte. 
Then  we find 

%? = ti + N 5 (Pi + lciaiPi). ( 9 )  

Let 

i=l i=l 

n B 

.I= (%‘-E ti- N Pi- Nlc,s,)/N. (10) 

Then 
i=1 i=l 

n-1 
J = lciaipi. ( 1 1 )  

i=l 

It  can be seen  that  the right hand  side of ( IO)  begins 
with a  total  cost $?, decrements  that  cost by  the fixed 
costs, and  divides the  discretionary  cost so obtained by 
N to yield the  discretionary  cost  per unit. This is con- 
firmed by ( 1   1 )  where we assume 1, ci, &, and J to be 
already chosen  and  the ai to  be unknown. 
Letting 

ki = IC, (12)  

we may rewrite ( 1 1 )  as  a cost  constraint  equation 

n-1 

H = 0 = N 2 kiaiPi - N J ,  ( 1 3 )  
i = l  

where now the ai must  be chosen  to make H identically 
equal  to  zero. 
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Minimization of access time for a  fixed cost 
The  central problem of this  section is to  choose a1 
through aB”l in such a  way as to minimize E (the  average 
access  time) while obeying the  cost  constraint ( 13) .  We 
approach this problem by using the method of Lagrange 
multipliers. Let 

F = E + A H ,  (14) 

where A is the Lagrange multiplier. We  then express E 
as a  function of the ai by making use of (4)  and (6) so 
that 

E = ulGpl(a,)  + ui [Gpi (a i )  - Gpi-l(ai- l ) l  
H - 1  

i=2 

+ uB[ 1 - GpH-liaB”l) 1. (15) 

Equation (15) can be rewritten in a  more Convenient 
form  as 

where ui - uiCl < 0. 

the  system of equations 
In  order  to find the  values of a1 through aB-l we solve 

n-1 

I H = 0 = N x (kiaiPi) - NJ 
i = l  

The minimum value of E occurs when the solution 
vector is substituted  into ( 16). The solution of this sys- 
tem of B equations in B unknowns is rendered relatively 
easy by the  observation  that  the second line of ( 1 7 )  
involves  only two of the B unknowns, namely ai and A. 
Thus, if we assume a  value for A,  we  can readily compute, 
in turn, ai for i equal to I ,  2 , .  . ., B - I ,  by analytic  or 
numerical  computation  depending on the numerical  form 
assumed for GBi(ai). The resultant  values of the ai can 
then  be  substituted in ( I  3 )  to calculate the value of J 
that  corresponds  to  the assumed  value of A. It  can be 
seen from ( 17) that, if we make the eminently  reasonable 
assumption that 8Gpi(ai) / d a i  is a monotone decreasing 
function of ai, then each of the resultant ai will be a 
monotone  decreasing  function of A. It then  follows  from 
( 1 1 )  that J is a monotone decreasing  function of A. Since 
% may be seen from ( 10) to be  a  monotone  increasing 
function of J ,  it  follows that V is a monotone decreasing 
function of A. 

The last  conclusion is important.  It  means  that we 
choose A,  determine  the optimum ai, calculate the min- 
imum value of E, and  then compute  the value of V 
corresponding to  our  choice of A. We know immediately 
from the monotonicity of %? with A whether  we should 
increase or  decrease A in order  to realize  any  particular V. 

Optimization of a generalized price  performance 
function 
In  the previous  section we have shown that  each ai ap- 
propriate  to be  used in the minimization of E is a mono- 
tone decreasing  function of A. Equation ( 16), however, 
shows  that E is a monotone decreasing  function of each 
of the ai. It follows that  min(E) , the minimum value of 
E for a given A,  is a monotone increasing  function of A. 
Recalling that V is a monotone decreasing  function of 
A, we determine  that  min(E) is a monotone decreasing 
function of V for any fixed set of technologies. This  last 
result also  has intuitive appeal, since it indicates that 
the min (E) can  be improved (made smaller) by increas- 
ing the hierarchy cost. 

The following lemma is proved in Appendix  A 

(0 < p }  {min(E’) = [min(E)]”}. (18) 

This lemma is useful to us in framing  a  generalized  price- 
performance  criterion  which utilizes directly the  results 
of the previous  section. The criterion is the function 

P = E”%?, where p > 0. (19) 

Because E’ is a monotone increasing  function of E, we 
see  that small values of P imply small values of both E 
and V. We state,  therefore,  that  the design that minimi- 
mizes P is the optimum design. 

If we assume  “performance”  to  be proportional to 
the reciprocal of E and further  assume p to be unity, 
then P becomes  the criterion  frequently called the “price- 
to-performance  ratio.” 

The  purpose of the  factor p in ( 19) is to give the  de- 
signer of a storage hierarchy a voice in the relative im- 
portance of E and V to his design. For  example, if the 
storage  were Limed at a market in which it was common 
to  stretch  the state-of-the-art, then a  value of p greater 
than unity would be appropriate.  On  the  other hand, if 
cost were the primary market  factor, a  value of p less 
than  one would reflect this concern. 

A proof of the following theorem is given in Appen- 
dix B 

min(P) = min {[min(E)]”V}. (20) 

From  what  has been  said, it is clear  that  we  can  construct 
a smooth curve of min(E) vs V. Then,  from this curve 
and a choice of p, it is easy  to  construct a smooth curve 
of [min(E)]’ vs %?. Indeed, this curve will exhibit 
[min( E)]” as a monotone decreasing  function of V. 
From  the lemma above, this is equivalent to a curve of 
min(E”) vs %?. The theorem,  therefore, states  that  the 
point on this last curve  whose  coordinates exhibit the 
smallest  product is the optimal  design  point for  the 
minimization of P. 135 
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Figure 1 Graphs of some typical values of mean free path 
[ P , ( a ) ]  vs 01 with pas a parameter. 

Optimization of block sizes 
In  the preceding sections it has been assumed  that  the 
(B - 1)  block sizes of a B-level hierarchy are  to be  cho- 
sen arbitrarily by the designer  before he  employs  our 
techniques.  In  the  current section we  present  an exten- 
sion of our  methods which optimize both  the pi and  the 
ai simultaneously. The practical significance of the cur- 
rent section is to offer guidance to  the designer who must 
choose values of pi. 

Let us return to  the setting of the problem of mini- 
mization of access time for a fixed cost. We pointed out 
that  the solution of the system of equations given by 
(17) is rendered  relatively  easy by observing that  each 
of the ( B  - 1 ) equations of the  form 

” aF aG,i(ff,) - 0 = ( U i  - ui+l) ~ aff, + ANkiPi 
aa, 

involves  only  two unknowns, namely A and ai. 

In  order  to include the pi in the optimization process, 
it is only necessary  to  take partial derivatives of F with 
respect  to pi and ai. From  Eqs. ( l l ) ,  (131,and (14) we 
see  that F is a function of ai and pi. The result is 

We observe  that  for any given i, (21)  and (22)  repre- 
sent  two  equations in the  three  unknowns A ,  ai, and pi, 
If we assume a  value of A ,  then ai and pi may be  readily 
determined by numerical  computation on (2 1 ) and  (22). 
This technique is particularly effective when  (21)  and 
(22)  represent  monotone functions. We  next refer to 
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Figure 2 Some  typical  values of I ,  and S ,  vs block size (PI. 
The  dotted  lines  are  the  best  straightline fits. 

Empirical equations for address  sequence statistics 
All of the foregoing will have practical  application if 
we have  at hand a continuous function representation 
of G (a,)  vs ai with pi as a  parameter. In  order  that 
the method of the previous  section  be  applicable, it is 
necessary that a continuous function representation of 
G (a i )  vs pi with ai as a parameter be  available. 

To this end,  some empirical studies by the  authors 
have shown that  an  adequate  representation of G (a i )  
can be provided by the following approximations. 

Pi 

Pi  

Pi 

where 

I, = Ilpi, and 

s, = SIP”. 

In  Eq. (23) we have deliberately  omitted  any  (level- 
indicating) subscripts from a and p. This is because  the 
statistical data  are  always gathered as though they 
pertained to a two-level storage hierarchy. I t  is the 
property  described by Eq. (6) that  makes  these two-level 
data immediately applicable to a B-level design. 

In (23)  we  have introduced two new functions di- 
rectly  related to GB(.). It  is common to refer to G,(a) 
as a “hit  ratio”,  to M,(a)  as a “miss  ratio”, and  to P , ( a )  
as a “mean  free  path”. 

A  “typical”  sample of statistical data is given in Table 
1. These  data  are essentially the  same  as  that reported 
by Mattson [9]. These  same  data  are plotted in Fig. 1. 
“Best” values of I , ,  i ,  S,, and s have  been  obtained by 
doing a  “least squares” fit on  the  three first degree equa- 
tions  that result  from  taking  logarithms of each of the 
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Table 1 A typical sample of G,(a) as a  function of a and p, 

1.0240E3 
2.048063 
4.0960E3 
8.1920E3 
1.6384E4 
3.2768E4 

16 32 64 

8.9375E:l 9.1458EII 9.2700E: I 
9.3010E-1 9.4789E-I 9.56286-1 
9.4809E- 1 9.68 15E- I 9.7272E-1 
9.80376-1 9.8120E-1 9.83656-1 
9.8910E-1 9.93  136- I 9.9485E-I 
9.93436 I 9.96006 1 9.9716E 1 

128 256 512 I024 

9.2334EIl 
9.5694E- 1 
9.77358-1 
9.8544E-1 
9.9620E-1 
9.9759E 1 

8.8314E:l 
9.48898-1 
9.76486-1 
9.8663E-1 
9.9242E-1 
9.97836 I 

7.9 138E: I 
9.15556-I 
9.6544E-1 
9.86516-1 
9.91756-1 
9.9679E 1 

4.9450EZl 
8.2  1906- I 
9.38056-1 
9.8333E-l 
9.9  139E- I 
9.9597E I 

three  equations of (23).  For  the sample at  hand, this 
procedure  gave  the values 

I I ,  = 0.0698, 
i = 0.553, 
S, = 0.598, 
s = 0.1 15. (24) 

The individual values of I, and S, for  various  values 
of /? as well as the  straight line approximations that  cor- 
respond  to  (23)  are  shown in Fig. 2. 

The  forms of (23) wherein the statistical properties 
of an  address  trace  are summarized in a quadruple, ( f , ,  
i, S,, s ) ,  have been  found to  be of quite wide applicability. 
Therefore,  the  form of (23) will be  used in the  next sec- 
tion in order  to obtain  explicit equations  for  the optimum 
ajandpj ,wherej=  1 ,2 ,3; . . ,B-  1 .  

Explicit equations for the optimization of the aj 
and pj 
In this section we assume  that the statistics of theaddress 
sequence  are reasonably well represented by the equation 

(25) P,( f f ,  = 1 = ~ , p i a S 1 ~ S ,  
1 - GJa) 

From  the relationship  between P,(a) and C,(a) we 
obtain 

dG,(ff)  1 @,(a) 
~- “ - (26) 

aa P,’(a,  d f f  ’ 

and 

Substitution of (26) and (27) in (21)  and  (22) gives 

To simplify our  notation,  we  set 

w. = u. - 3 J + I  ‘j. (30) 

Comparison of (28)  and  (29) yields 

Next we need the partial derivatives of P P j ( a j ) .  From 
(25)  we get 

and 

(33) 

Use of (32)  and  (33) in (31)  and cancellation of com- 
mon factors gives us 

When (34) is solved for In aj the result is 

Several properties of (35)  are worthy of note. 1 ) The 
statistical parameter i has  to be  smaller than  the statis- 
tical parameter S, for  the  existence of an optimal solu- 
tion. In  our  studies of address  sequences, this  condition 
has always  been satisfied. 2 )  By allowing Pj to become 
arbitrarily  large we can establish an  upper bound on aj 
by the relation 

and 
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Figure 3 Graphical  example of access  time  minimization. 

3 )  If we regard aj and pj  as the variables of (35 ) ,  then 
none of the  parameters of (35 )  depend onj.  This means 
that (35 )  is applicable  simultaneously to all levels of a 
B-level storage  hierarchy. 4) We note that A does not  ap- 
pear in (35). This  means  that (35) is applicable simulta- 
neously to all values of the  discretionary  cost  parameter. 

At this  point we recall that  our original intent in this 
section  was to solve  simultaneously (28 )  and (29) for 
an assumed  value of A. Because (35 )  was obtained by 
combining (28 )  and ( 2 9 ) ,  it may substitute  for  one of 
them in the final system of equations. This we choose  to 
do  because of the  inherent simplicity and generality ex- 
hibited by (35). The remaining task is to  substitute (25 )  
into  either (28 )  or (29) and carry  out  the required alge- 
bra.  When (25)  is substituted  into (28 )  we find, in view 
of (30), that 

b.3 
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Figure 4 Graphical  example of optimization. For  the  open- 
circle  curves, AN = 5 ;  for the  asterisk  curves, AN = 0.05; and 
for  the  solid-circle  curves AN = 0.0001, 

Equation (37 )  may be solved for aj, This algebraic 
manipulation yields 

Thus optimum  values of aj and pj may be determined 
by simultaneous  solution of (35 )  and (38 ) .  Numerical 
procedures  are entirely  satisfactory for this purpose, 
particularly  since  both equations  describe  monotone 
relations  between aj and pj. This is true  because  the 
factor (s - i - 1 ) has  always been  negative for any ad- 
dress  sequences  we  have investigated. That condition 
is sufficient, but not necessary,  to make In aj a monotone 
decreasing  function of In pj in (38 ) .  In (35)  it is clear 
that In ai is a monotone increasing  function of In pj. 
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Numerical  examples 
In this  section we assume  that an address  sequence has 
been  processed by an LRU stack algorithm program to 
produce the  statistical parameters: 

I ,  = 0.615 
i  =0.162 
SI = 0.218 
s = 0.246. (39) 

Example for the minimization section  Assume we 
want to  determine the  optimum values of a,, a,, a3 in 
a  four-level storage hierarchy after arbitrarily  setting 

p, = 256 
p, = 1024 
p:, = 2048 

AN = 5.  (40) 

The solution,  obtained by use of (38)  for  the values 
just  chosen, is shown  graphically in Fig. 3, where we 
have  made appropriate  assumptions of the values of 
u , ,  u2, u,, u,, k , ,  k ,  and k,. The optimal  values of a,, a2, 
a:$ can then  be used to  calculate, using (10) and ( I  I ) ,  
the  discretionary  cost  per unit, J ,  and  the total cost, V, 
which correspond  to  our  choice of AN equal to five. 

Example for the optimization  section Assume  we wish 
to optimize the generalized price performance  function 
for  the previous  example. First it  will be necessary to 
calculate the optimal al, az, and a3 for several  values 
of AN. This  is illustrated in Fig. 4 for  three such  values. 
A  value of min(E) and V can be computed by use of 
( I O ) ,  ( 1 I ) and ( l6),  once we have  chosen a  value of 
N .  for  each choice of AN. 

Next a  value of p is selected. Then  the  results of Fig. 
4 will appear  as  three  points  on a  graph such  as  the  one 
in Fig. 5. From Fig. 5 the optimal  operating  point may 
be determined. 

Example for the  optimization of block sizes  section 
The technique  described for optimizing pj can be applied 
in connection with either  the problem of minimizing the 
access time or optimizing the generalized  price-per- 
formance function. In this  example we apply  the tech- 
nique for optimizing the pj to the problem of minimiza- 
tion of access time for a fixed cost. 

Assume we want a  four-level storage hierarchy. Once 
we have obtained  values for u,, u,, u,, u,, k , ,  k, and k, we 
may use (38)  to plot In aj vs In pj for various  values of 
AN. This is done  for  three values of AN in Fig. 6. In ad- 
dition, our solution  must  satisfy (35).  Therefore, if we 
also plot In aj vs In pj from (35),  our solutions lie at  the 
intersections of this plot with the three  graphs of (38) 
for any fixed AN. Naturally the actual plotting of (35) 
and  (38) is not an essential  part of the solution  process. 
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Figure 5 Graphical example of single-product  optimization. 
Each point corresponds to some value of AN. 

In  fact,  because of the monotonicity properties  discussed 
previously, it is quite easy  to  compute  (35)  and  (38) 
interatively until any  desired level of precision is reached. 

Summary 
We have described  optimization  methods to be  used in 
the design of storage  hierarchies. The mathematical  tool 
employed is the method of Lagrange multipliers. We have 
assumed  as  inputs a finite (and probably small)  set of 
candidate technologies,  each characterized by an  access 
time and  two  cost  parameters.  The designer is asked  to 
play an  active role in the design process through his 
choice of certain  parameters which reflect market es- 
timates. 

The block sizes  to be  employed may be selected in 
advance of the optimization if the designer so chooses. 
Alternatively, the techniques have been extended  to 
permit the  process  to optimize block sizes if desired. 

I t  should also  be emphasized that we rely on  the 
typicality of the statistical  summaries of address  traces 
which are available. Verification of this typicality is a 
potentially fruitful area  for  future  research.  The few signs 
and portents which are available to us are encouraging. 
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Appendix A 
Lemma { O  < p} 3 {min (E’) = [min ( E ) ] ” }  
Proof 
By  definition, 

min ( E )  5 E .  

Since  the  logarithm  function  is  monotone  increasing, 

In [min  (E)] 5 In ( E ) .  

Multiplying (A2) by a positive  constant  yields 

pln [min (E)]  5 pln ( E )  

or 

In {[rnin  (E)]”} 5 In ( E ” ) .  

Since  the  logarithm  function  is  monotone  increasing, 

[min  (E)]’5 E’. 

But (AS) is equivalent to 

[min ( E ) ] ”  = min (E’) .  

Appendix B 
Theorem min (E”%?) = min {[min (E)]’??} 
Proof 
For  any fixed V, consider  the  min(E)  corresponding  to 
that V and  also  any other E also  realizable  for  that V. 
From  the  previous  lemma,  we  know  that 

[min  (E)]”  < E’. 

Since %? is positive, ( B  1 )  leads  to 

[ min ( E ) ]  ’V < E’%?. 

But  (B2)  immediately  implies,  as %? is allowed  to  vary, 
that 

rnin { [ rnin (E) ] ’%}  < min (E’%?). 

Thus  from  (B3)  we  see  that  no  realizable  pair ( E ,  %?), 
where E is other  than  min(E)  for  that %‘, can yield the 
minimum  value of (E’%?). But, a minimum of E’%? must 
exist  since  it is restricted t o  positive  values.  Thus,  we 
see  that 

min (E’%‘) = min { [ min (E)  ] ”V} . 

( A I )  

(‘42) 

(A3) 

(A41 

(A5) 

(A6) 

(B1) 

(B2) 

(B3) 

(B4) 

Received March IS, 1974;  revised May27,1974 

The authors are located at the IBM System  Products 
Division Laboratory,  Poughkeepsie,  New  York 12602. 

IBM J .  RES. DEVELOP. 


