J. E. MacDonalid
K. L. Sigworth

Storage Hierarchy Optimization Procedure

Abstract: The goal of storage hierarchies is to combine several storage technologies in such a way as to approach the performance
of the fastest component technology and the cost of the least expensive one. This paper presents optimization techniques for a storage
hierarchy subject to quantity-sensitive component costs. It is assumed that a finite (and probably small) set of technologies is available.
Each technology is characterized by an access time and two cost parameters. We assume that statistical summaries of address sequences
are available. We present solutions to four problems of increasing complexity: 1) minimization of access time for a fixed cost and pre-
assigned page sizes; 2) optimization of a generalized price-performance function under preassigned page sizes; 3) minimization of access
time for a fixed cost when page sizes are allowed to vary; 4) optimization of a generalized price-performance function when page sizes

are allowed to vary.

Introduction

In the best of worlds, the storage facility of a computer
system would be large, fast, and cheap. In the real world
this triplet of characteristics has not yet been attained.
Although many significant strides have been made, it has
not been possible to devise a single technology that meets
all three goals.

As a consequence, much attention has been devoted
to methods of exploiting the statistical properties of the
sequence of storage addresses which characterize the
communication between a processor and a storage during
the execution of a computer program [1, 2]. Parallel ef-
forts have concentrated on efficient techniques for gather-
ing and presenting statistical summaries of typical ad-
dress sequences [3, 4]. In this paper, we assume the
existence of these statistical summaries and describe how
they may be used to optimize the design of the storage
hierarchy.

Suppose that we have available B different storage
technologies. The simplest hardware design for use in
exploiting the statistics of the address sequence is a B-
level hierarchy, where Level 1 is the smallest, fastest,
and most expensive, and Level B is the largest, slowest,
and least expensive. A request for 3, contiguous bytes is
directed from the processor to Level 1. If Level | con-
tains the desired 8, bytes, they are transferred to the pro-
cessor, and the Level 1 directory is updated to reflect the
transaction. If Level 1 does not contain the desired S,
bytes, the request is directed to Level 2. If Level 2 con-
tains the desired 8, bytes, a block of size 8, containing
those B, bytes is transferred from Level 2 to Level 1, and
the appropriate 8, bytes are simultaneously transferred
to the processor. The directories at Level 1 and Level 2
are updated to reflect this transaction. If Level 1 has be-
come filled with blocks of 8, bytes, it will be necessary

MARCH 1975

to evict a block of B, bytes from Level 1 to make room
for the block coming to it from Level 2. This eviction
must also be posted to the Level 1 directory. We assume
that the evicted block need not be pushed back to Level
2 since a copy is presumed to exist at Level 2. The block
to be evicted is determined by the replacement algorithm.
If Level 2 does not contain the desired bytes, but Level
3 does, then B, bytes containing the desired B, bytes are
transferred to Level 2; of these, 8, bytes are transferred
to Level 1, and, of these, B, bytes are transferred to the
processor. Directories at Levels 1, 2, and 3 are updated
concurrent with this transaction. If Level 3 does not con-
tain the required 8, bytes, the process continues until the
required 3, bytes are found at some level. We assume
that the required bytes are available at Level B with prob-
ability one. Fori=1, 2, '+, B— 1, let @, be the number of
blocks of size 8, bytes which are resident at Level i. If
we denote by s, the size of Level / in bytes, we obtain

;=0 B, (1)

Obviously we are assuming a discrete block organization
at each level such that «; and 8, are integers and 3, > 8, ,,
where o; = number of blocks at Level i and 8; = size in
bytes of an individual block at Level i.

The size of Level B, s,, deserves some comment. The
minimum size of s, will be

min s, =B, , n,_,. (2)

where n,_, = number of distinct blocks of size 8,_, ref-
erenced by the address sequence. Any size of s, larger
than min s, will add to the cost without improving per-
formance. We assume that n, , is known. The value of

n,_, is referred to as “program size in 8,_,-sized blocks.”

STORAGE HIERARCHY OPTIMIZATION

133

134

We assume that the statistical data are known in the
form of the following cumulative distribution function for
i=1,2,-,B—1:

G Bi(ai) = Probability that the next required address is
available in Level i, when it contains «;
blocks of g, bytes. (3)

The simplest performance-oriented figure of merit for
a storage hierarchy is the average access time, given by

B
E=% v, Pr(R), (4)
i=1
where E is the average access time (seconds), v, is the
time required for processor to access data from Level i
(seconds), and Pr(R,) is the probability that the next
reference will be made to Level /.

There exist many different replacement algorithms
[3-5]. Of these, the Least Recently Used (LRU) seems
to represent a good engineering compromise between
performance and cost. In addition, LRU has two char-
acteristics that are particularly applicable to this paper;
1) LRU belongs to a class of algorithms called stack
algorithms [4], meaning that the B — 1 functions implied
by (3) can be obtained by a single scan of an address se-
quence whose addresses imply a block size of 8, bytes,
and 2) LRU applied to Levels 1 and 2 of a three level
storage hierarchy has the following properties [6]

Pr(R)) = GB‘(al)
Pr(R,) = Gﬁz(az) — GB‘(al)
Pr(Ry) = 1— G (ay). (5)

Slutz and Traiger [7] extended this result to B-level
hierarchies and found

Pr(R,) = G, (a,)
Pr(R,) =G, () — G, (o) fori=2,3, 4 B—1
Pr(R,) =1- G, (a_,). (6)

For (5) and (6) to hold, it first appeared that a necessary
condition is that the address stream from the processor
should be used to update each of the B — 1 directories
in a B-level hierarchy for each address. Gecsei [8] has
shown that this condition is not necessary for (5) and
(6) under LRU. Instead Gecsei has described a method
of distributed hierarchy management using LRU for
which (5) and (6) still hold. We implicitly assume Gec-
sei’s distributed management technique in any implemen-
tation. All we require mathematically, however, is the
validity of (6).

Cost considerations
We assume the use of a different technology at each of
the B levels, and, loosely speaking, the faster the level

J. E. MACDONALD AND K. L. SIGWORTH

the higher the cost. The actual situation, however, is
somewhat more complex. Any candidate technology has
the property that the average cost per bit is a monotone
non-increasing function of the quantity of bits produced.
Inspection of several such functions suggests that they
are sufficiently well represented by

(Ci - Ci) Q, = ti7 (7)

where C; is the average cost per bit of technology i
(dollars/bit), Q, is the quantity produced of technology
i (bits), c; is a constant for technology i (dollars/bit),
and 4 is the other constant for technology i (dollars).
Equation (7) can be rewritten in the following form

T,=1;,+c,0, (8)

where T, is the total cost of technology i (in doilars).
It then becomes apparent that the constants ¢, and c;
can be given a physical interpretation. The constant ¢, is
a “start-up” cost, and the constant ¢, is an incremental
cost per bit after the decision is made to use technology
iand invest the start-up cost ¢,.

Let P, be the fixed costs per unit produced at Level i
for power, directories, etc. (dollars), N be the number
of units of the storage hierarchy to be produced, J be
the discretionary cost per unit (dollars), € be the total
cost (dollars), and / be the number of bits per byte.
Then we find

B B
€ = 2 t,+N 2 (P, + lc,a,8,). (9)
=1 =1
Let
B B
J=(f€—zti~NzPi-—NchsB)/N. (10)
i=1 i=1
Then
B—1
J= 2 le,a, B, (11
=1

It can be seen that the right hand side of (10) begins
with a total cost %, decrements that cost by the fixed
costs, and divides the discretionary cost so obtained by
N to yield the discretionary cost per unit. This is con-
firmed by (11) where we assume /, ¢, B8;, and J to be
already chosen and the «; to be unknown.

Letting

k= I, (12)

we may rewrite (11) as a cost constraint equation
B-1
H=0=NY kop,—NJ, (13)

i=1

where now the «; must be chosen to make H identically
equal to zero.

IBM J. RES. DEVELOP.

Minimization of access time for a fixed cost

The central problem of this section is to choose «,
through a,_, in such a way as to minimize E (the average
access time) while obeying the cost constraint (13). We
approach this problem by using the method of Lagrange
multipliers. Let

F=E+\H, (14)

where A is the Lagrange multiplier. We then express E
as a function of the «; by making use of (4) and (6) so
that

B-1
E=vGgla)+ vi[GBi(ai) — Gﬁi—

i=2

(a;_,)]

1

+u[1~-G, (e)] (15)

Equation (15) can be rewritten in a more convenient
form as

Bg_1

B—-1
E=Y (v;—v,)G,(e) + vy (16)
o1

where v, — v, < 0.
In order to find the values of a, through ¢, | we solve
the system of equations
B-1
H=0=NY (kap)— NJ
i=1
G, (a;
g(—i=0=(vi—vi+1) —Ei—)+ANkiBi‘ (17)

[

The minimum value of E occurs when the solution
vector is substituted into (16). The solution of this sys-
tem of B equations in B unknowns is rendered relatively
easy by the observation that the second line of (17)
involves only two of the B unknowns, namely «; and A,
Thus, if we assume a value for A, we can readily compute,
in turn, e, for i equal to 1, 2,--+, B — 1, by analytic or
numerical computation depending on the numerical form
assumed for Gﬁi((xi). The resultant values of the «; can
then be substituted in (13) to calculate the value of J
that corresponds to the assumed value of A. It can be
seen from (17) that, if we make the eminently reasonable
assumption that aGBi(ai) /da; is a monotone decreasing
function of «,, then each of the resultant «, will be a
monotone decreasing function of A. It then follows from
(11) that J is a monotone decreasing function of A. Since
% may be seen from (10) to be a monotone increasing
function of J, it follows that % is a monotone decreasing
function of A.

The last conclusion is important. It means that we
choose A, determine the optimum «,, calculate the min-
imum value of E, and then compute the value of ¢
corresponding to our choice of A. We know immediately
from the monotonicity of € with A whether we should
increase or decrease A in order to realize any particular €.

MARCH 1975

Optimization of a generalized price performance
function

In the previous section we have shown that each «, ap-
propriate to be used in the minimization of E is a mono-
tone decreasing function of A. Equation (16), however,
shows that E is a monotone decreasing function of each
of the «;. It follows that min(E), the minimum value of
E for a given A, is a monotone increasing function of A.
Recalling that ¥ is a monotone decreasing function of
A, we determine that min(E) is a monotone decreasing
function of € for any fixed set of technologies. This last
result also has intuitive appeal, since it indicates that
the min(E) can be improved (made smaller) by increas-
ing the hierarchy cost.

The following lemma is proved in Appendix A

{0 < u} > {min(E*) = [min(E)]*}. (18)

This lemma is useful to us in framing a generalized price-
performance criterion which utilizes directly the results
of the previous section. The criterion is the function

P = E"%, where u > 0. (19)

Because E* is a monotone increasing function of E, we
see that small values of P imply small values of both E
and ¢. We state, therefore, that the design that minimi-
mizes P is the optimum design.

If we assume ‘“‘performance” to be proportional to
the reciprocal of E and further assume wp to be unity,
then P becomes the criterion frequently called the “price-
to-performance ratio.”

The purpose of the factor u in (19) is to give the de-
signer of a storage hierarchy a voice in the relative im-
portance of £ and & to his design. For example, if the
storage were aimed at a market in which it was common
to stretch the state-of-the-art, then a value of u greater
than unity would be appropriate. On the other hand, if
cost were the primary market factor, a value of u less
than one would reflect this concern.

A proof of the following theorem is given in Appen-
dix B

min(P) = min {[min(E)]"“¥¢}. (20)

From what has been said, it is clear that we can construct
a smooth curve of min(E) vs €. Then, from this curve
and a choice of u, it is easy to construct a smooth curve
of [min(E)]* vs #. Indeed, this curve will exhibit
[min(E)]* as a monotone decreasing function of €.
From the lemma above, this is equivalent to a curve of
min(E") vs €. The theorem, therefore, states that the
point on this last curve whose coordinates exhibit the
smallest product is the optimal design point for the
minimization of P.

STORAGE HIERARCHY OPTIMIZATION

135

136

At [a]
C o / °
5/ S A n
| S
/ V 3 g/ - -9
% X ~
P o] o/ q
100 |— \@/ o N L o—7" 1 F
= A e / -7 s
— P v % g P Sg X
- ¥ Qf/n o ® /’» g - /xg—{-‘
L o / S Y . S8y
/+ o’ o u/ /+b F x— o)
n é -
- kyn/O// R - ~
3 10 = g . */ i /O/
a2 = - -
= Y, - 7 !
= - f #
g, "/ G
g)
s T 2
= ! Lol L Ll = o RN L1l 1ill
i 10 100 1000 10 100 1000
Number of blocks (e) Block size (3)

Figure 1 Graphs of some typical values of mean free path
[Pﬁ(oc)] vs o with 8 as a parameter.

Optimization of block sizes

In the preceding sections it has been assumed that the
(B — 1) block sizes of a B-level hierarchy are to be cho-
sen arbitrarily by the designer before he employs our
techniques. In the current section we present an exten-
sion of our methods which optimize both the 8, and the
a, simultaneously. The practical significance of the cur-
rent section is to offer guidance to the designer who must
choose values of 8;.

Let us return to the setting of the problem of mini-
mization of access time for a fixed cost. We pointed out
that the solution of the system of equations given by
(17) is rendered relatively easy by observing that each
of the (B — 1) equations of the form

aF aGﬁi(ai)
—ai=0=(vi—vi+l)T+)\NkiBi 21)
involves only two unknowns, namely A and «;

In order to include the B, in the optimization process,
it is only necessary to take partial derivatives of F with
respect to B, and «,. From Eqgs. (11), (13), and (14) we

see that F is a function of «; and ;. The resultis

aF _
4B,

We observe that for any given /, (21) and (22) repre-
sent two equations in the three unknowns A, «;, and 3,
If we assume a value of A, then «; and 8, may be readily
determined by numerical computation on (21) and (22).
This technique is particularly effective when (21) and
(22) represent monotone functions. We next refer to
some fairly extensive data for which this is the case.

3G 5 (@)
- ANk.o.. (22)

Oz(vi—vi+1)_—aﬁ. o2

J. E. MACDONALD AND K. L. SIGWORTH

Figure 2 Some typical values of I, and S, vs block size (8).
The dotted lines are the best straightline fits.

Empirical equations for address sequence statistics
All of the foregoing will have practical application if
we have at hand a continuous function representation
of GBi(ai) vs «; with B; as a parameter. In order that
the method of the previous section be applicable, it is
necessary that a continuous function representation of
GBi(ai) vs 3, with a; as a parameter be available.

To this end, some empirical studies by the authors
have shown that an adequate representation of GBi(ai)
can be provided by the following approximations.

1

N T
Pol) =3) " T= G, @)

= IBaSB,

where
I,= 1,8, and
S,=58. (23)

In Eq. (23) we have deliberately omitted any (level-
indicating) subscripts from a and B. This is because the
statistical data are always gathered as though they
pertained to a two-level storage hierarchy. It is the
property described by Eq. (6) that makes these two-level
data immediately applicable to a B-level design.

In (23) we have introduced two new functions di-
rectly related to GB(a). It is common to refer to GB(a)
as a “‘hit ratio”, to Mﬁ(a) as a ‘‘miss ratio”’, and to Pﬁ(a)
as a “mean free path”.

A “‘typical” sample of statistical data is given in Table
1. These data are essentially the same as that reported
by Mattson [9]. These same data are plotted in Fig. 1.
“Best” values of I, i, §, and s have been obtained by
doing a “least squares” fit on the three first degree equa-
tions that result from taking logarithms of each of the

IBM J. RES. DEVELOP.

Table 1 A typical sample of GB(O‘) as a function of « and 8.

B
B 16 32 64 128 256 512 1024
1.0240E3 8.9375E_1 9.1458E_1 9.2700E"_I 9.2334E_1 8.8314E_1I 7.9138E__1 4.9450E_1
2.0480E3 9.3010E_1 9.4789E_1 9.5628E 1 9.5694E_1 9.4889E 1 9.1555E_1 8.2190E_1
4.0960E3 9.4809E _1 9.6815E_1 9.7272E_1 9.7735E _1 9.7648E _1 9.6544E _1 9.3805E_1
8.1920E3 9.8037E_1 9.8120E_1 9.8365E_1 9.8544E _1 9.8663E_| 9.8651E_I 9.8333F I
1.6384FE4 9.8910E_1 9.9313£_1 9.9485E_I 9.9620E_1 9.9242E 1 9.9175E_1 9.9139E_I
3.2768E4 9.9343E 1 9.9600E 1 9.9716E 1 9.9759E 1 9.9783E | 9.9679E 1 9.9597E 1
three equations of (23). For the sample at hand, this oF 0= (.—v.) 1 apﬁj(o‘j) + ANk (29)
—=0=(v.— v. —_— Q.
+1 7
procedure gave the values 3B, ;o ijZ (o) 9B

1,=0.0698,

i =0.553,

§,=0.598,

s =0.115. (24)

The individual values of I, and S, for various values
of B as well as the straight line approximations that cor-
respond to (23) are shown in Fig. 2.

The forms of (23) wherein the statistical properties
of an address trace are summarized in a quadruple, (/,,
i, §,, s), have been found to be of quite wide applicability.
Therefore, the form of (23) will be used in the next sec-
tion in order to obtain explicit equations for the optimum
ajand,Bj,wh'erej= 1,2,3,-,B—1.

Explicit equations for the optimization of the «;
and g,

In this section we assume that the statistics of the address
sequence are reasonably well represented by the equation

1

_ i §48%
—.———I—GB(a) I.Ba™. (25)

Pyla) =

From the relationship between PB(O‘) and Gﬁ(a) we
obtain

oG 1 oP
ﬂ(a) _ . B(a) ’ (26)
do Py () da

and

GGB(a) _ 1 aPﬁ(a) 27)

B8 Pla) a8
Substitution of (26) and (27) in (21) and (22) gives

OF 1 oP, (a,)

B\
—=0=(v,—v,,) ————>——+ANkB. (28)
J J+1 2 ity
day; PBj (aj) day,
and

MARCH 1975

To simplify our notation, we set

W= = U, (30)

J Jj+1 J
Comparison of (28) and (29) yields
. GPBj(aj) s E)Pﬂj(aj)
T

(31)

Next we need the partial derivatives of PB-(af)' From
(25) we get ’

aP, (a,)
8" R i 8§48 s
e AR (32)
and
AP, (a,)
B; T i §.88 s .
B =1 o " [(In o) ,sB +i]. (33)
J

Use of (32) and (33) in (31) and cancellation of com-
mon factors gives us

5,(8)° = (In a)S 5B, +1i. (34)
When (34) is solved for In a, the result is

no;=s""[1-i/58]. (35)

Several properties of (35) are worthy of note. 1) The
statistical parameter i has to be smaller than the statis-
tical parameter S g for the existence of an optimal solu-
tion. In our studies of address sequences, this condition
has always been satisfied. 2) By allowing B; to become
arbitrarily large we can establish an upper bound on o
by the relation

In o < 1/s. (36)

137

STORAGE HIERARCHY OPTIMIZATION

138

6.5 [X 6.5
Eq. (38) Eq. (38)
level 2 level 3
6.0 — fe 6.0 — e —_—
09 \ \ \I
> Eq.(38) ©
® Q ° o
= (2 level 1
55 — , ke 55 p=~m
& 2, . %
1S4 %
O 3 % (o
o 0,
3 .
>
4.5 — @ o I 45 "
%,
% o]
o, o)
4.0 — | 4.0 — °
| Y
s Inas Q Y
35 - - Joe 35 o
I g s
ey —5
30 |- " < Q 30 —
chy Y AN \
o)
25 \ 9 25 —
o,
! o
20 — | 20
8 N |
15 — 4 | 1.5
@) 0\
1.0 — O, 1.0 —
5 \ &
a
£ 05 | | | | | 503 | ! | 1
3 4 5 6 7 8 9 3 4 5 6 7 8 9
Inf3; g,

Figure 3 Graphical example of access time minimization.

3) If we regard o and B; as the variables of (35), then
none of the parameters of (35) depend on j. This means
that (35) is applicable simultaneously to all levels of a
B-level storage hierarchy. 4) We note that A does not ap-
pear in (35). This means that (35) is applicable simulta-
neously to all values of the discretionary cost parameter.

At this point we recall that our original intent in this
section was to solve simultaneously (28) and (29) for
an assumed value of \. Because {35) was obtained by
combining (28) and (29), it may substitute for one of
them in the final system of equations. This we choose to
do because of the inherent simplicity and generality ex-
hibited by (35). The remaining task is to substitute (25)
into either (28) or (29) and carry out the required alge-
bra. When (25) is substituted into (28) we find, in view
of (30), that

i))5~ i R
WJIIBJ SIB]- ajsl(ﬂj) T _)\NijjIIZBj2 lXjZS‘(B]) . (37)

J. E. MACDONALD AND K. L. SIGWORTH

Figure 4 Graphical example of optimization. For the open-
circle curves, AN = 5; for the asterisk curves, AN = 0.05; and
for the solid-circle curves AN = 0.0001.

Equation (37) may be solved for o;, This algebraic
manipulation yields

In (w;8,/ANk1,) + (s —i— 1) In B
In o, = .
7 s
S8 +1

(38)

Thus optimum values of a; and 3; may be determined
by simultaneous solution of (35) and (38). Numerical
procedures are entirely satisfactory for this purpose,
particularly since both equations describe monotone
relations between a; and B,. This is true because the
factor (s — i — 1) has always been negative for any ad-
dress sequences we have investigated. That condition
is sufficient, but not necessary, to make In @; a monotone
decreasing function of In g; in (38). In (35) it is clear
that In «; is a monotone increasing function of In 3;.

IBM J. RES. DEVELOP.

Numerical examples

In this section we assume that an address sequence has
been processed by an LRU stack algorithm program to
produce the statistical parameters:

1, =0615
i =0.162
S, =0218
s =0.246. (39)

s Example for the minimization section Assume we
want to determine the optimum values of «,, a,, @, in
a four-level storage hierarchy after arbitrarily setting

B, =256
B, = 1024
B, = 2048
AN = 5. (40)

The solution, obtained by use of (38) for the values
just chosen, is shown graphically in Fig. 3, where we
have made appropriate assumptions of the values of
U,s Uy, Uy, Uy, Ky, k, and k,. The optimal values of a;, a,,
a, can then be used to calculate, using (10) and (11),
the discretionary cost per unit, J, and the total cost, €,
which correspond to our choice of AN equal to five.

s Example for the optimization section Assume we wish
to optimize the generalized price performance function
for the previous example. First it will be necessary to
calculate the optimal «,, «,, and «, for several values
of AN. This is illustrated in Fig. 4 for three such values.
A value of min(E) and % can be computed by use of
(10), (11) and (16), once we have chosen a value of
N. for each choice of AN.

Next a value of u is selected. Then the results of Fig.
4 will appear as three points on a graph such as the one
in Fig. 5. From Fig. 5 the optimal operating point may
be determined.

s Example for the optimization of block sizes section
The technique described for optimizing §8; can be applied
in connection with either the problem of minimizing the
access time or optimizing the generalized price-per-
formance function. In this example we apply the tech-
nique for optimizing the B, to the problem of minimiza-
tion of access time for a fixed cost.

Assume we want a four-level storage hierarchy. Once
we have obtained values for v, v,, v,, v,, k;, k, and k, we
may use (38) to plotIn @; Vs In B; for various values of
AN. This is done for three values of AN in Fig. 6. In ad-
dition, our solution must satisfy (35). Therefore, if we
also plot In o; Vs In ,Bj from (35), our solutions lie at the
intersections of this plot with the three graphs of (38)
for any fixed AN. Naturally the actual plotting of (35)
and (38) is not an essential part of the solution process.

MARCH 1975

59
5.8
5.7
o}
56 |-
55
B ©
54 — \
o
53 R Optimal
. \ operating
o point
3 ~
= 52 \o O/OO
3 ~o0. 0 | O __0-0""
£ Too-o— J
g
= 5! B I | | ! 1
145 1.50 .55 1.60 1.65 1.70 1.75 1.80
Total cost (€)

Figure 5 Graphical example of single-product optimization.
Each point corresponds to some value of AN.

In fact, because of the monotonicity properties discussed
previously, it is quite easy to compute (35) and (38)
interatively until any desired level of precision is reached.

Summary

We have described optimization methods to be used in
the design of storage hierarchies. The mathematical tool
employed is the method of Lagrange multipliers. We have
assumed as inputs a finite (and probably small) set of
candidate technologies, each characterized by an access
time and two cost parameters. The designer is asked to
play an active role in the design process through his
choice of certain parameters which reflect market es-
timates.

The block sizes to be employed may be selected in
advance of the optimization if the designer so chooses.
Alternatively, the techniques have been extended to
permit the process to optimize block sizes if desired.

It should also be emphasized that we rely on the
typicality of the statistical summaries of address traces
which are available. Verification of this typicality is a
potentially fruitful area for future research. The few signs
and portents which are available to us are encouraging.

References

1. D. H. Gibson, “Considerations in Block-Oriented Systems
Design,” AFIPS Conference Proceedings, Spring Joint
Computer Conference 30, Academic Press, New York,
New York, 75-80 (1967).

2. C.). Conti, D. H. Gibson, S. H. Pitkowsky, J. S. Liptay,
A. Padegs, “Structural Aspects of the System/360 Model
85, IBM Syst.J. 7,2 (1968).

139

STORAGE HIERARCHY OPTIMIZATION

6.5

level 2 level 3

6.0

L_ Eq.(38) Eq.(38)

Inay

3 4 5

In B;

N
-~
=)
o

Figure 6 Graphical example of the optimization of block sizes.
For the open circle curves, AN = §; for the asterisk curves,
AN = 0.05; and for the closed circle curves, AN = 0.0001.

3. L. A. Belady, “A Study of Replacement Algorithms for
Virtual Storage Computers,” IBM Syst. J. 5, 78 (1966).

4. R. L. Mattson, J. Gecsei, D. R. Slutz, I. L. Traiger, “Eval-
uation Techniques for Storage Hierarchies,”” IBM Syst. J.
9, 78-117 (1970).

5. L. A. Belady and F. P. Palermo, “On-line Measurement of
Paging Behavior by the Multivalued MIN Algorithm,”
IBM J. Res. Develop. 18,2 (1974).

6. J. E. MacDonald, *“Prediction of Three-Level Storage
Performance Through the Use of Two-Level Data,” IBM
Internal Report AR-000573-00-POK (March 19, 1968).

7. D. R. Slutz and I. L. Traiger, “Determination of Hit Ratios
for a Class of Staging Hierarchies,” IBM Internal Report
RJ 1044, (May, 1972)

8. J. Gecsei, “Replacement Algorithms for Staging Hierar-
chies,” IBM J. Res. Develop. 18,316 (1974).

9. R. L. Mattson, “Evaluation of Multilevel Memories,”
IEEFE Trans. Magnetics MAG-7,814 (1971).

J. E. MACDONALD AND K. L. SIGWORTH

Appendix A

Lemma {0 < p} = {min (E*) = [min (E)]*}
Proof

By definition,

min (E) = E. (A1)
Since the logarithm function is monotone increasing,
In [min (E)] < In (E). (A2)

Multiplying (A2) by a positive constant yields

wln [min (E)] < uln (E) (A3)
or
In {[min (E)]“} < In (E*). (A4)

Since the logarithm function is monotone increasing,
[min (E)]* = E*. (AS5)
But (AS5) is equivalent to

[min (E)]* = min (E"). (A6)

Appendix B

Theorem min (E*%) = min {[min (E)]"%}

Proof

For any fixed %, consider the min(E) corresponding to
that € and also any other E also realizable for that &.
From the previous lemma, we know that

[min (E)]* < E*. (B1)
Since ¥ is positive, (B1) leads to
(min (E)]"¢ < E*%. (B2)

But (B2) immediately implies, as € is allowed to vary,
that

min {[min (E)1*¢} < min (E*%). (B3)

Thus from (B3) we see that no realizable pair (E, ¥),
where E is other than min(E) for that %, can yield the
minimum value of (E*#). But, 2 minimum of E*% must
exist since it is restricted to positive values. Thus, we
see that

min (E*¢) = min {[min(E)]*%€}. (B4)
Received March 15, 1974; revised May 27,1974

The authors are located at the IBM System Products
Division Laboratory, Poughkeepsie, New York 12602.

IBM J. RES. DEVELOP.

