
120

J . W. JONES

J. W. Jones

Array Logic Macros

Abstract: A macro design approach is discussed which combines the cost-effective attributes of array logic structures with those of
random logic. These macros utilize the following features: (a) internal feedback registers for performing sequential logic, (b) masking
and submasking to reduce the number of words in the array for certain functions, (c) control of the array’s output level to vary the
apparent size of the array, (d) decoding on input pairs and/or EXCLUSIVE oRing on output pairs for increasing the number of logic lev-
els, and (e) random-access memory in the feedback and its use in interrupt handling. The macros are explained by specific design
examples. This paper also discusses standard logic circuits in combination with an array structure to produce a component that can be
used efficiently in specific data processing areas. The designer may elect to define an array logic macro which is a combination of some
of the features given in this paper. The guideline for this selection is based upon the features necessary in an array structure to be com-
petitive with a random logic LSI chip.

Introduction
The type of array logic considered in this paper is the
dual array configuration [I] , where one array is a pro-
grammable decoder whose output selects words in the
second array [Random Access Memory (RAM) array].
Each word in the decode array can be programmed to
select its associated word in the RAM array. This selec-
tion is based upon matching the contents of the word
with the input variables. The word may be programmed
to match on each of the input variables being TRUE (l) ,
INVERTED (0), or DON’T CARE (0 or 1) .

The decode word is a product (AND) term since the
selection is based upon specific inputs being at a defined
value. The DON’T CARE condition enables the decode ar-
ray to select more than one word simultaneously. The
RAM array generates the sum (OR) of all the selected
words on its output.

Thus, the function performed by the array logic con-
sidered in this paper is the sum of products. This type of

Figure 1 The binary associative array.

AND array OR array

array is programmed to solve Boolean equations which
are expressed in the form of sums of products. The
number of variables that can be processed in the product
is limited to the number of inputs to the decode array,
while the number of sum terms is restricted to the num-
ber of words in the array.

The purpose of this paper is (a) to show how this type
of array logic solves specific problems in a data process-
ing system, and (b) to demonstrate how minor modifica-
tions to this array can significantly expand the variety of
its applications. The dual array structure has the same
characteristics and circuits as an associative array.
Throughout the remainder of this paper, the programma-
ble decode array (which performs the product function)
will be called the AND array; the RAM array (which per-
forms the sum function) will be called the OR array.

Features of array logic
This section describes the features, operation, and attri-
butes of array logic. The next section discusses addi-
tions to array logic for specific applications.

Associative array
An associative array is used for table lookup, and is anal-
ogous to the telephone directory. Just as the telephone
directory contains the names of the subscribers and does
not contain the exhaustive combination of all possible
names, so the associative array translates certain (but
not all) combinations of inputs into outputs.

Phase splitter
(single-bit decoder) Output register

Input

IBM 1. RES. DEVELOP.

The input to the associative array is a binary code,
and a word in the array is said to match the input when
its binary pattern is the same as the pattern in the input
register. The word that matches the input reads out the
contents of its associated word in the OR array. The as-
sociative array performs a translation function. Thus,
the telephone directory analogy demonstrates the advan-
tage of an associative array over a Conventional array,
since a conventional array would have to maintain the
exhaustive combination of all possible names in the al-
phabet. (Table compression techniques are not consid-
ered in this comparison.)

Array logic structure
An implementation of the associative array is shown in
Fig. 1 . The phase splitter on the input to the array en-
ables each word to select either the true (1) or invert
(0) value of the input. The binary state cell makes this
selection at the node between the rows and columns
(Fig. 2) . This unidirectional cell is personalized by re-
moving one of the devices during a mask step or by laser
technique. The truth table for the binary associative cell
is a match when the input and the cell state are the same,
a mismatch when they are different.

The associative function
A word is selected in the associative array when the
states of all the cells in that word match the correspond-
ing input binary bit. The associative array is called the
AND array because the matching process in the word of
an associative array is equivalent to a logical AND func-
tion, whereby the inputs to the AND are defined by the
state of each cell, Le., true (A) , invert (A) , or DON'T

CARE (independent of variable A and both devices re-
moved in the binary state cell shown in Fig. 2) .

The AND operation is performed in the array by the use
of DeMorgan's theorem (A . B . c = A V V C). A
word K in the AND array has N cells and is selected when
Eq. (1) is satisfied. C,, is the cell in word K and related
to input I as position P.

(CK1 = 11) . (CK2 = I ,) . (CK3 = I ,) . - - - . (CKK = I ,)

= Match. (1)

Applying DeMorgan's theorem, we obtain

(C,, + I l l v (CK, # 1,) v (C,, # 1,) v - - - (CKN # I N)

= Match. (2)

The inversion of the total expression (2) is achieved by
the inverting circuit between the AND and OR arrays (see
Fig. 1) . The OR operation (V) in Eq. (2) is performed on
the Word Select line by all the cells in that word. The non-
equivalence in Eq. (2) is achieved by the personality or
state of the cell.

9 Programming the AND array
A simple method for programming the AND array is to
write a 1 or 0 in the word corresponding with the input
variables, depending upon whether the word selected
on the input is TRUE or INVERTed, respectively. Blanks
can be used to represent the DON'T CARE state. This code
is readable when arranged in rows as in the array. Experi-
mental software programs (in APL) have been written
to operate on arrays coded in this manner so as to gener-
ate the information for the chip personalizing mask.

The three coded states can be easily transformed into
the cell states. A match on the TRUE (I) input implies
a mismatch when the input is the INVERSE (0) . This
matching requires a device (e.g., a diode) on the column
which has the inverted input (see Fig. 2) and no device
on the direct column. A match on the INVERTed (0)
input implies a mismatch when the input is TRUE (1) .
This is realized by having a device on the direct columns
and no device in the column which has the inverter (see
Fig. 2) .

The DON'T CARE state is a state of the associative ar-
ray cell which enables the word to be matched with ei-
ther 0 or 1 input to that column. It can be seen from Fig.
2 that if both diodes are open-circuited, then the match-
ing of the associative word is independent of the input.
The fourth state (cell state I 1) has no practical function
since a match cannot be obtained (Table 1).

The DON'T CARE state enables multiple words to be
selected simultaneously in the associative array. The
output from the OR array is the OR of all the selected
words.

Table 1 Truth table for the four-state cell.

Cell stute
Input 00 01 10 I 1

" ". -~

0 Match Mismatch Match
1

Mismatch
Match Match Mismatch Mismatch

Figure 2 The binary state read-only cell

dii Associative word

One of the diodes is open-circuited in the binary state cell

6 Input 121

MARCH 1975 ARRAY LOGIC MACROS

Wu-4 Register

I - I
External 1
stimulus Feedback

External
response

Figure 3 Sequential switching circuit.

Programming the OR array
The OR array is programmed by writing a 1 in the posi-
tion where an output is required when that word is se-
lected. The OR array consists of a binary state device,
i.e., it generates a 0 or a 1 output when selected. A 0 can
be defined by a blank during the programming of the OR
array. An exception to this binary output coding is when
the OR array operates on JK-type flipflops or RS-type
flipflops on the output. In this case, symbols like S-R-T
are necessary to indicate the operation performed by the
flipflop registers: S is the symbol for the setting of the
register, R is the reset, and T is the toggle operator. The
generation of the mask personalization for the J , K, R,
or S input to the flipflop register from the above code
can be done manually or by a software program.

2 1

3 1 1

4 1 1 1

5 1 1 1 1

1

2 0

3 0 0

4 0 0 0

5 0 0 0 0

7"

T Incrementing macro

T

T

T

T

T

T Decrementing macro

T

T

JK- or T-type flipflop

Figure 4 Incrementing and decrementing macros.

Additions to array logic for specific applications
This section considers modifications to the simple array
logic structure so as to expand its range of application.
The modifications are in the form of random logic cir-
cuits which are combined with a single AND/OR array.
This composite combines the ease of design and fabri-
cation that is characteristic of array logic with the effi-
cient use of silicon typical of random logic.

Sequential logic
Sequential logic consists of transforming the internal
state (internal feedback register) and/or generating ex-
ternal outputs according to the current state and the ex-
ternal input.

The register on the output of the OR array may be ei-

Combinational logic
The array solves logical functions which are expressed
as sums of products; hence, the designer must con-
vert his expressions into this form. Furthermore, the

sum terms is minimized so as to use the least number of

ther D-, JK-, RS-, or T-type flipflops or a combination of
these types. In general, the delay (D-type) flipflop is used
where the information is set during each cycle, whereas
the JK-, RS- or T-types are used for sequential switch-
ing purposes. The JK- and T-type flipflops are particu-

ros. The outputs of the JK- or T-type flipflops are fed

quential switching circuit (see Fig. 3).

efficiency Of the array is improved if the number Of larly suited for the incrementing and decrementing mat-

words in the array. (Procedures such as the Quine- back to the AND array to form the memory part of a se-
McCluskey method are useful for such minimization.)

One of the main advantages of array logic is that a li-
brary of tested codes which perform specific functions
can be built up and used as a design aid. These func-
tions, which are expressed as sums of products, are de-
fined as array logic macros. This is a significant advan-
tage for array logic because the interconnection of mac-
ros in random logic can present severe topological
problems. Race conditions are avoided in array logic by
providing a clocked register on the output of the OR ar-
ray. The status of this register is changed by the output
from the OR array at a specific clocked period, and the
rate of the clock is dependent upon the propagation time

122 through the array.

lncrementing and decrementing macros
The incrementing and decrementing macros for a five-bit
counter are shown in Fig. 4. The T symbol in the OR
array indicates the toggle operator on the J K- or T-type
flipflops.

The operation of the incrementer can be explained by
defining the algorithm as a toggle (complement) opera-
tion on all the propagate terms (leading 1 bits) of the
count including the sink (0 bit). Note that the lowest
value of the count is always toggled (word 1 1 , and the
next higher position is toggled only when the lowest bit
is 1 (word 2) . The operation of the other words in the

J . W. JONES IBM J. RES. DEVELOP.

MaskN f [MaskN+ 1 f f

-P N input I N + 1 input

Figure 5 Masking in the AND array.

increment table are self explanatory. It can be seen that
incrementing a count value of three selects words I , 2 ,
and 3 in the incrementing macro.

The decrementing and incrementing macros have sim-
ilar formats, the difference being that the decrementing
macro uses the propagation of the borrow instead of the
carry. (Note that word 1 is shared by both macros.)

Finite state switching
The configuration of the A N D and OR arrays which have
the RS- or JK-type flipflop register in the feedback
(Fig. 3) is a sequential switching element. The current
state which is maintained in the feedback is combined
with the external stimulus in the A N D array to select
words in the OR array. The selected words generate oper-
ations which modify the contents of the feedback register
so as to produce the next state. The state switching algo-
rithm is easily expressed in the form of a sum of products;
however, the encoding of the states should exploit the
DON'T CARE facility in order to minimize the number of
words necessary to define the state transition.

One method of minimizing the state-switching algo-
rithm is to divide the total number of states into subsets
according to common external switching inputs. These
subsets are coded such that each subset can be defined
uniquely by the minimum number of words. Many terms
in the subset are combined into a single word by the use
of the DON'T CARE facility. These words satisfy the
switching conditions necessary to transfer all of the
states in the subset into a new state. The external inputs
should also be encoded into groups that can be ex-
pressed by a single product term by the use of the DON'T

CARE condition. The DON'T CARE facility is significant in
compressing the state transition algorithm. The pro-

Four-bit control field

Four input fields
(W bits wide each)

16x W
product terms I

TTTT
Four output fields (Whits wide each)

Figure 6 Data path switching application.

cedures for selecting and coding subsets, and for coding
the external input, are part of the state-assignment phase
of the design.

Mmsking operation and its application to datcr path
control
The masking function in associative array logic has been
described [2] as a means of degating the input variables
to the A N D array (Fig. 5) . The masked columns in the
A N D array are forced into the DON'T CARE state. The
truth table of the mask operation is given in Table 2 .

Masking in the AND array is important in the control
of data paths, whereby the array becomes an efficient
crosspoint switch. Figure 6 shows four input fields (each
field W bits wide) and four output fields (each field
W bits wide). Each of the four input fields may be
switched to any of the four output fields; hence, there
are 16 possible combinations of data paths. The number
of product terms necessary to perform this function is 16
X W. The particular data path is selected by a four-bit-
wide control field.

Table 2 Truth table of mask operation.

-Match condition
^Mismatch condition 123

MARCH 1975 ARRAY LOGIC MACROS

L

1 :I I I: I !: I , Inputfields (Wbitswideeach)

H t-"- Maskl
- MaskO - + Mask2 select

r l M a s k 3 € 1 - Maskl - Mask2
H Mask3 select

TTTT
Output fields (Wbits wide each)

Figure 7 Data path switching application with masking on
input and output.

The advantage of the mask operator is demonstrated
in Fig. 7, where the same function is performed with
only W product terms. The four-bit control field is di-
vided into two pairs of control bits. The first pair selects
one of four masks for the input to the AND array: the
second pair selects one of four masks for the output of
the OR array. Each of the four masks on the input pro-
vides a mask operator over three of the four input fields,
thereby reconfiguring their associated cells to DON'T

CARE. Similarly, each of the four masks on the output of
the OR array inhibits output on three of the output fields.
A factor of 16 reduction was shown in this application of
masking: however, this ratio varies according to the
number of input and output fields. The masking opera-
tion can be defined so as to enable multiple fan-outs; i.e.,
any single input to the AND array can be switched to any
number of outputs by the selection of mask fields.

Submasking and its application to the overlaying of
macros
Submasking can be defined as the ability to reconfigure a
cell into states other than DON'T CARE: this result is

Figure 8 Separate controls for true and complement of input.

Mask true t6Y
:I Mask complement

124

I. W. JONES

achieved by providing separate controls to each of the
outputs of the decoder (Fig. 8) . Submasking enables
certain sum-of-product terms to be overlaid in the same
words in the array. The merged terms are selected by
the use of submasking, which configures the cell into the
required state. An example of the application of sub-
masking is the provision of the transfer of either the true
or the complement value of a variable between the input
and output by the use of the same product terms. A cell
which is written in the FALSE state (1 1) is configured to
either 01 or 10 by masking the true or complement out-
put of the decoder. Masking the true (direct) output
from the decoder configures the FALSE state cell to the 1
state, whereas masking the complement configures it to
the 0 state (i.e., generates the complement function in
the above example).

The increment and decrement macros (Fig. 4) are
identical tables and can be superimposed by using the
submasking feature.

Control of output and its application to variable array
geometry
Control of the output signal levels (TRUE or INVERSE)

enables a change in the apparent size of the AND/OR

array. This change can be made in both width (number
of product terms) and depth (number of sums of prod-
ucts) of this array.

It is necessary to minimize the number of variables
into the AND array in order to keep the cell utilization
high, because a large number of input variables into the
AND array necessitates a large number of DON'T CARE

states. The number of equivalent circuits of the array is in-
creased by having the ability to do the AND function on
the bus that interconnects the arrays. This increase is
achieved by providing the complement of the output vari-
ables, and thereby performing the dot-AND function on the
external bus. The dot-AND is realized by using De-
Morgan's theorem (e.g., A . B . C=A V B V C). The
outputs are designed so as to provide the inverted vari-
abies A , B , and C . The OR is performed on the bus while
the overall INVERT is coded in the AND array at the des-
tination.

The apparent number of words can be increased by
performing the sum function on the bus that intercon-
nects the arrays. This increase is achieved by the use of
the dot-OR function on the bus.

"

Increasing the number of logic levels in the AND/OR

array
The two levels of logic provided by the AND/OR array
can be supplemented by logic circuits so as to increase
the number of logic levels in the chips. This increased
level of logic improves the applicability of the array.

IBM 1. RES. DEVELOP.

Two-bit decode
One method of increasing the number of logic levels is to
perform partial products on the input variables prior to the
AND array. The provision of a two-bit decode on pairs of
the input variables is one method of achieving two extra
levels of logic. The two-bit decode provides the same
number of minterms to the AND array as a single bit de-
code; that is, A . B , x. B , A . B , A . B are the output
combinations obtained from the two-bit decoder, while
A , B , and B a r e the outputs produced by two single-
bit decoders.

The partial product of a large number of variables can
be performed externally to the chip by the dot-AND fea-
ture discussed in the previous section. This technique
eliminates the wasteful use of input pins to the array,
and also increases the array utilization by not wasting
columns for the unused minterms in the AND array.

EXCLUSIVE OR on the output and its application to the
A N D operation
Another method of increasing the number of logic levels
in the AND/OR array is to divide the OR array into two
arrays (P and Q). Outputs from both sections of the OR

array are connected to an EXCLUSIVE OR circuit, and the
result is connected to the output (Fig. 9) . The EXCLU-

SIVE OR, or pair of outputs, provides the mechanism for
the masking function on the output.

Applications that take advantage of the function pro-
vided by the EXCLUSIVE OR on the array output include
the addition and subtraction operations. The addition of
two arguments is given by A ff B V C ('d is the symbol
for the EXCLUSIVE OR operation), where A and B are the
two arguments and C is the carry term. A '$ B can be ex-
pressed in sum-of-product terms; this sum is coded into
the P array. Similarly, the carry C can be expressed as
a sum of products; this sum is coded into the Q array.
This configuration of standard logic circuits combined
with the A N D / O R array results in a component which
does the addition operation in a single array cycle.

" -

Interrupt handling or event processing
It has been shown that the AND/OR array combined with
a feedback path via a register can perform sequential
logic operations. The inclusion of a random access
memory in the feedback path provides extra storage
function. This storage function can be used to store data
or control information, which gives it the ability to do
multiple sequential logic operations in parallel. An en-
abled interrupt request can be detected in the AND array;
this request initiates the storing of the current status at a
fixed location (D 1) in the random access memory. The
procedure continues by reading out the routine address
from another fixed location (0 2) which is associated
with the specific interrupt. The interrupt processing ter-

MARCH 1975

Input

Figure 9

I

-OR array 4

EXCLUSIVE OR
function

I Output register

The EXCLUSIVE OR function on the array output.

minates by invoking a macro which reads out the saved
word from the location (D 1) , and the dumped program
continues. The number of levels of interrupts that can be
processed is determined by the number of words avail-
able in the random access memory.

Nested interrupts are also possible with this configu-
ration. A sequence of macros may write the entry ad-
dress of another sequence in a word R1 in the random
access memory and save its own address at location R2.
The branching to the macro sequence addressed by R1
is achieved by reading its contents, while the return ad-
dress is restored by invoking a macro which reads the
adjacent address R2. Routines may be nested until all
allocated words in the stack have been used.

Summary
This paper has described the features that can be com-
bined with the basic AND/OR array so as to significantly
improve its efficiency without detracting from its design
and manufacturing advantages. These features include:

Internal feedback register, which provides sequential
logic capability,
Masking and submasking, which provide the ability to
combine several macros into the same words,
Two-bit decode and the EXCLUSIVE OR function, either
of which provides extra logic levels,
The random access memory, within the array feedback,
which provides multiple sequential processing capa-
bility.
At the present time, array logic in the form of the

AND/OR array (with or without a feedback register) is
available for use by the system designer. As a matter of
fact, several small systems that utilize these arrays are
already on the market. Because of the ease of program-
ming and debugging the A N D / O R array logic and the 125

ARRAY LOGIC MACROS

126

J . W. JONES

simplicity with which the array logic chips are produced, 2. B. T. McKeever, “The Associative Memory Structure,”
this macro design approach represents a relatively low AFIPS Conf. Proc., Fall J t . Cornput. Conf. 21, Part 1, 371
cost entry into LSI. (1965).

Acknowledgments
The author thanks J . C. Logue and the staff of his IBM Received April 3, 1974
Fellow Program at the System Products Division Lab-
oratory in Poughkeepsie, New York, for their assistance.

References
1 . J . W. Jones, J . F. Sears, and K. G. Taylor, “Associative The uuthor i s located at the I B M UnitedKingdom Lab-

Store,” Patent No. 2 168409 (France). oratories, Hursley, Winchester, Hampshire, England.

IBM J. RES. DEVELOP.

