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Abstract: Large  Scale Integration, LSI, is the means by which digital circuits have achieved remarkable manufacturing cost reduc- 
tions but, unfortunately, at the  expense of higher  engineering design costs. Programmable Logic Arrays, PLAs, exploit many of the 
benefits of LSI but without the high engineering design costs.  This paper describes an experiment in the  design and implementation of 
a small complex system in array logic. The IBM 7441 Buffered Terminal Control Unit was selected for this  comparison because it is a 
small but complex terminal controller implemented in dual in-line packaged transistor logic, DIP-TL, with small to medium scale inte- 
gration. 

Introduction 
The mixed blessings of Large  Scale  Integration (LSI) at 
the  system level have been discussed by many authors 
on many occasions [ 1 1 .  On  the  one hand, LSI  has been 
successfully  exploited in memory applications; on  the 
other  hand, it is recognized that in the logic area  LSI 
poses a serious  dilemma-it provides the potential for a 
significant reduction in product cost but with the expo- 
sure of  high development  costs.  One might conclude, 
therefore,  that only products with high volume can bene- 
fit from LSI. 

At  the  current level of LSI  there  are  at  least  three 
approached aimed at  the solution to the  LSI dilemma: 
1 .  Microprogramming 
2 .  Microprocessor  on a  chip 
3. Programmable logic array  (PLA) . 

Microprogramming, because it utilizes a  control mem- 
ory which is an  array  structure, fulfills the requirement 
for successfully  exploiting LSI, but it is limited in its 
system  applicability to  the control area. 

The  microprocessor  on a  chip is essentially  a  system 
module that  achieves its high volume by exploiting a high 
volume market  area.  However, it transfers engineering 
complexity to  the  user in the form of software that must 
be written as well as  adapters  that must  be  designed and 
built to interface the  microprocessor with  its  peripheral 

110 hardware. Such  adapters  are, in many cases, low-volume 

products.  In addition, the  microprocessor must, in gen- 
eral, be fabricated out of a  higher  performance  technol- 
ogy than if the function it performed  were  provided in a 
hard-wired  version. 

A PLA can  be  thought of as combining microprogram 
control with random logic in the  same  array.  Thus,  the 
LSI benefits stemming from array  structures can be real- 
ized in the  PLA  for both logic and control. However, 
rather than using an  address  decoder,  as in a  control 
store,  the  PLA  does  an  associative match on  the input 
command  word. This operation will be  explained in 
more detail in the “Review of PLA basics” section. 

The  above discussion  should  not be interpreted by the 
reader  as an attack on microprocessors. Rather, it is in- 
tended  to show that a systems designer  must  consider 
many possibilities before he  can  achieve  an optimum 
solution. The  purpose of this paper is to  acquaint  the 
systems designer with the most  complete  solution avail- 
able  that solves the  LSI dilemma,  namely, the Program- 
mable Logic Array.  The design and implementation  ex- 
perience  substantiating  this  viewpoint will be  presented 
by means of a  design example  that culminated in a 
working system. The experimental  system that  has 
been  implemented in array logic is functionally identical 
to  the IBM 7441 Buffered Terminal Control  Unit 
(TCU) 121. 
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Review of PLA basics 
The form of array logic with which most readers may be 
familiar is the microprogrammed array commonly used 
for control. PLA  shares many of the  characteristics of 
the microprogrammed  array:  simple array  structure, 
standard  "master chip" fabrication,  late  personalization, 
etc.  PLA,  however, is different from the micropro- 
grammed array in two  critical  ways: I )  it uses an asso- 
ciative  technique for addressing (content  addressable), 
and 2) the  array itself is not limited to  control logic 
but integrates both data  path  and control logic in the 
same  array  (see section on  control). 

The review that follows consists of three subtopics: 
the overall structure of the  PLA,  the  macro  concept  and 
macro usage. 

Overall  structure 
The  PLA is a  read-only structure  that is programmed to 
perform both sequential and combinational logic [3]. 
The combinational logic is implemented by means of 
sum-of-product  functions as performed by AND arrays 
and OR arrays in cascade.  The sequential logic is 
achieved by means of storage elements in the form of 
flipflops (registers)  that may be driven in either a 
set/reset  or toggle mode as a  function of the pattern 
stored in a  portion of the OR array  (Fig. 1) .  The feed- 
back register is  connected  to internal  inputs to  the 
AND array through  a feedback path that is internal to  the 
PLA chip. 

The  PLA  has basically a  table  look-up structure, 
where the AND array forms  the look-up  library and  the 
OR array  forms the  resultant output  for  the  operation. 
The AND array  consists of many product terms  (words) 
and is partitioned  into  two  sections: the  external field 
and the feedback field from  the feedback register. Both 
of these fields are processed in parallel in the AND array 
to select words in the OR array.  The OR array performs 
the logical OR operation on the values  written in the se- 
lected  words. The OR array is also partitioned into  two 
fields: one field is gated to  the  external  outputs,  the  other 
operates on the feedback  register. 

The  macro  concept 
It should be  noted  that array logic is well suited to  the 
macro,  or modular, building-block concept.  The  term 
"macro" as used here is a contraction of "macro-func- 
tion." A count-down  counter is an  example of a macro: 
this macro will be explained in more detail  later. There 
is no  concern  about,  or restriction on,  the physical 
location of the macro on  the chip. Our  TCU design shows 
that  macro identity is maintained  and visible within the 
overall  system  design, thus enhancing the readability 
of the pages of PLA personalization. One can  establish 
a library of common  functions to be picked up by any- 
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Figure 1 Functional block diagram of PLA including specific 
data on the chip used in the Terminal  Control Unit (TCU) . 

one without any redesign.  Finally, the reliability of array 
logic macros should be  enhanced, since once debugged- 
always debugged. 

Macro usage 
The internal  feedback  register  provides the facility for 
sequencing the  PLA.  The function of this  register is 
ideal for implementing up/down  counters  or  state 
switching. The  PLA can  be  used as a  sequential logic 
block because  it  has memory in the feedback path  [Fig. 
2(a)].  The  content of part of the  feedback register (state) 
is used to select macros in the  PLA.  These  macros oper- 
ate  on  any combination of input data and  feedback infor- 
mation. The  state  is switched so as  to select a series of 
macros in the  PLA:  these  macros  are selected to per- 
form  a  particular  routine. An  example of a routine is the 
selection of the parity-checking macro in the keyboard 
buffer. If the parity is good,  the  routine  selects  the  next 
macro,  which in turn  transfers  the good parity character 
to  the  storage buffer system. 

A single PLA  can  select a  series of macros by chang- 
ing the  state  or feedback control: however,  several such 
routines would be needed in a  complex system.  The 
selection of the  routines must  be  based on  the initial 
command to  the  PLA.  An example is shown in Fig. 2( b) 111 
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Figure 2 (a) PLA as a sequential logic block. (b)  Hierarchial 
control scheme  for PLAs. 

where  PLA P generates a request  for a  unique  routine in 
PLA Q. The change of state in PLA Q is based on  two 
fields: the external  command  and the internal  feedback 
state.  Words  that  are  coded in PLA Q select  the correct 
sequence of macros in this PLA.  The end of the routine 
is defined by  a state  that  generates  an acknowledgement 
to  PLA  P, which in turn  causes  that  PLA  to  enter  its 
next  state. 

State assignment 
The selection of the  external  commands between the 
PLAs and the internal coding of the feedback states is 
part of the  state assignment procedure.  This  state  as- 
signment (the most difficult part in the coding of the 
arrays)  determines  the efficiency of the  arrays. A macro 
should  only  be written  once in the  PLA. If this  macro  is 
selected  by many routines,  then the designer has  to con- 
sider the value of the  state which selects it. A macro  that 
is shared by many routines has to  have DON'T CARE 

(independent of input) values in its  control field [ 41. The 
number of DON'T CARES is at  least log,N, where N is the 
number of control states  that  share this  macro. 

Another consideration  during the state assignment is 
the state-switching  algorithm. The  states should be se- 
lected so as  to minimize the number of terms  necessary 
to  change  states. 

Functional  description of the TCU 
The  TCU [2] is a buffered terminal device  that can 
store  either 160 or 480 characters, depending  upon cus- 
tomer requirements. The  TCU  controls  the buffer opera- 
tion such  that  its  contents  are  either printed or transmit- 
ted over a  communication line to a central processing 
unit (CPU) . The loading of the buffer is also controlled 
by the TCU;  this is done from either  the  typewriter key- 
board or via the communication line from the  CPU. 

The following brief description of some of the  features 
available in the  TCU is presented  to help the  reader 
appreciate  the functional  complexity that  the  PLA  de- 
sign had to  accommodate. 

The  CPU  addresses  the  TCU  to send it an  output 
message;  this action  requires  the transmission of a se- 
quence of four  control characters.  The  address  sequence 
is: C, followed by D,  followed by the  address, and  then 
a space  character  or  one of the eleven invalid characters. 
The  TCU  has  to respond with its  status when it recog- 
nizes its  address; Le., a Y if its status is such  that it can 
receive  and print the message,  and an N if not. The 
CPU polls the TCU when it  desires  the  TCU to trans- 
mit its  input  message. The poll sequence is a  C  control 
character followed by the  terminal address.  The  TCU 
responds with an N control character if it has  no mes- 
sage,  and  with  a  D  control character followed by the 
message if it is ready to transmit. 

Messages are  checked by parity on each  character, 
and the TCU  has  to  retransmit  the message if the  CPU 
detected  an  error during transmission. The  TCU  counts 
the number of characters  entered into its buffer and 
provides an audible  alarm if the number of characters is 
within ten of the limit. The  TCU will lock the keyboard 
if the number of characters  entered is within two of the 
limit. 

The editing of the  contents of the buffer is achieved 
via the  backspace function, which erases  the last charac- 
ter from the buffer and decrements  the  character count 
by one.  This  operation is initiated by pressing the back- 
space key on the  typewriter  keyboard. 

The  TCU  hardware  consists of a total of 2,058 logical 
circuits, four dual 480 shift  register  modules, and many 
discrete peripheral  circuits. The complexity of its  oper- 
ations  made  the TCU a  suitably challenging test for an 
experimental  implementation of PLA technology. 

Implementation of the PLA version of the TCU 
Implementation of the  TCU in array logic was  accom- 
plished in three distinct phases: 1 )  the design phase, 
which  consisted of mapping the  TCU functional specifi- 
cation  into the  PLA, 2 )  the simulation phase, which fea- 
tured the  APL programming language, and 3 )  the build 
and  test  phase, which produced the actual  working ver- 
sion of the  TCU in array logic, and verified that it was 
functionally  identical to its DIP-TL  (dual in-line pack- 
aged transistor logic) counterpart. 

The decoding of pairs of inputs  (two-bit  decode) 
provides all  of the combinations of ANDS as well as 
EQUIVALENCES, EXCLUSIVE ORS, and  the ORS of the input  
pairs (see  Table 1 ) .  The  output polarity  holds (OPH) 
are equivalent to  D-type flipflops. Outputs Q and a of 
the J K  masterslave flipflops (JKMSFF)  are fed  back to 
the AND array  inputs.  The JKMSFF outputs  (controlled 
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by  a clock)  are  dependent on the  conditions of the J and Table 1 The 16 unique  functions of the  two-bit decoded inputs. 
K inputs  from  the OR array.  Table 2 lists the  input/ 
output conditions; the hold means that  the  output  does A B 
not  change,  and the toggle indicates that  the  output is 
complemented  each  clock cycle. The symbols listed in 
Tables 1 and 2 are used in Figs. 4-6. 

_ _ ~ ~ ~  
Tuw-bit decoding Function Symbol 

AB A B  A B  26 

Design process 
The functions  performed by the TCU were  coded into 
seven PLA chips. The interface logic between  the PLA 
and  the  communication line, the keyboard, and printer 
was implemented in DIP-TL and some special  circuits, 
because  the interface circuits required  electrical charac- 
teristics that were different from those provided by the 
FET arrays. 

The design objective  was to include the  data flow, log- 
ical operations, and the control in a minimum number of 
PLAs. The system requirements  were divided into  four 
subsystems:  the communication subsystem,  the  storage 
subsystem,  the keyboard,  and the printer. Each subsys- 
tem  was  mapped  into the PLAs. Several design itera- 
tions  were made in order  to obtain the best  partitioning 
scheme. The partitioning of the  system  into  seven 
PLAs was  aided by the macro  capability in the PLAs. 
These  macros were  coded  into the PLAs, and were 
moved from  one PLA to another so as  to obtain  opti- 
mum utilization of feedback  registers,  input  and output 
pins,  and number of words used. 

The final partitioning scheme  (which satisfied the 
mapping of the TCU functions  into  seven PLAs) result- 
ed in all the  words being used in all the  arrays. 

Three levels of control  were  devised for the TCU. 
These levels  evolved from both  the  use of macros within 
the PLA and the sequential logic properties of the PLA. 
The sequential logic properties formed the first level of 
control. The second level was necessary  to integrate the 
PLAs into a subsystem; e.g., one PLA being used to 
receive  information from the line at a rate determined by 
another PLA. The third level was used to link the sub- 
systems  together  to provide the overall TCU function. 
This level is demonstrated in the control of the  commu- 
nication  and  printer  priorities in accessing the  storage 
subsystem. 

Partitioning 
The first problem  confronting a designer in LSI is the 
partitioning of the  system  into several subsystems  that 
can  be  packaged efficiently into LSI modules. Array log- 
ic structures discipline the designer in deciding on the 
optimum  partitioning because  macros defining array  per- 
sonalities are available, and  these  macros  are defined for 
specific functions. The designer can select the  group of 
macros  necessary in each  subsystem, and then  deter- 
mine how these macros fit into the arrays. Of the  four 
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subsystems partitioned in the TCU, the communication 
line used  three arrays, and  each of the  other  subsystems 
used one  array. A seventh  array was used to control the 
operations in these  subsystems. 

Control 
The PLA has the  characteristics of an ideal sequential 
logic element-  the internal feedback maintains the  state, 
while the external  input can be used to switch these 
states.  The PLA has solved the traditional  problems of 
undetermined states  (“race  conditions”)  associated with 
sequential logic, the  solution being provided by clocked 
register-register transfer in PLA. The  data flow and 
definitions of some of the  macros contained in each sub- 
system of the  TCU  are shown in Fig. 3. As stated 
above, in PLA, data flow and  control are not separate as 
in the more  conventional  machine design. Figure 3 
shows this  combined data path  and  control  and the fol- 
lowing section describes  the  respective functions. 

Table 2 I n p d o u t p u t  conditions of the IKMS flipflops 
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Storage  operation  and  macro  examples 
The  storage device  used as a  message buffer in the TCU 
is a  dynamic shift register eight bits wide and 480 char- 
acters long. The reading, writing, and formatting of mes- 
sages is described  below. The  routine used  for  restoring 
the  shift  register following a  transmission or printing 
operation is  also  described. 

The message is formatted  into a  variable-length con- 
tiguous  segment in the  shift  register. The first character 
of the message is identified by a  unique  tag bit (T) 
which is written into a  unique  position in the eight-bit- 
wide shift  register  positions. The last character,  End of 
Block (EOB) , is next  to a  unique  marker which is writ- 
ten into  the shift  register  prior to entering the message. 

PLAl interfaces with the shift register  and forms  the 
storage  subsystem; this array is connected in series with 
the circulating data in the shift register and runs syn- 
chronously with it. PLAl is personalized with macros 
(see Fig 4) that  operate  on  the shifted information; these 
macros include the read  and  write  operations. 

Data  gating  macro 
Words one through eight in PLAl comprise a macro 
that gates input field A  directly to  output field A'. As- 
suming that  the value of feedback  register  position 13 is 
1,  then each 1 input in the A field selects a word in the 

group by the  associative  process.  Each selected word in 
turn  generates a corresponding output bit in the  A' field 
(see Fig. 4). 

The setting  and  resetting of the feedback  register posi- 
tion 13 (determined during the design process) is part of 
the state-assignment process. 

Read  macro 
The read macro  (control field = 010) is a sequential 
process  that is initiated  when the read command is re- 
ceived. This  macro copies the  character which is identi- 
fied with the tag into  the  feedback register, and  subse- 
quently gates this character  to  the  printer and the  com- 
munication subsystem.  Another  macro  operation  (con- 
trol field = 110) is used to  move  the tag bit to  the  next 
character so that  the complete  message can  be read out 
serially for printing or transmitting. The  entered message 
can be retransmitted or reprinted  several times; there- 
fore, a routine which restores  the tag  bit to  the first char- 
acter position is necessary.  This routine  involves  invok- 
ing a decrement  macro  on  the  character  count when the 
end of the  message is detected in PLAl and  restoring 
the tag  when the  count  has been decremented  to 1. 

The  count of the number of characters  entered is held 
in the keyboard subsystem.  (This  subsystem  also  has 
the  decrement  macro which will be  described later.) 
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Figure 4 Personality of PLAl 

Write macro 
1) is also a sequen- sequently  written  into the position  next to  the unique 

tial process, and is initiated when the write  command is marker;  the  rest of the  message  and tag are shifted back 
received. The received character is transferred from the one position. The  storage  subsystem signals the end of 
input  bus to  the feedback  register. This  character is sub- each macro operation. 115 

The write macro  (control field = 1 1  
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Figure 5 Decrement  macro in keyboard system. 

Decrement  macro 
The  decrement  macro  inverts  the leading significant bit 
and all lower  order bits (Fig. 5).  

The  number of words selected is  one more  than the 
number of leading zero  bits in the  count  that  is held in 
the feedback  register. Each selected  word reads  out a 
toggle (T)  operator  that  complements  the  content of the 
associated feedback  register  position (words 34-42). 
This  macro is invoked when  the  control field is 1 1 1  1 ,  
and continues until this  control is removed. 

The  decrement  macro is used to restore  the tag  bit to 
the first character position in the  dynamic shift-register 
store.  The new tag  has to be  inserted  when  the  count  has 
been decremented  to 1 ; however, due  to  the propagation 
delays through the  arrays, this signal has  to be generated 
when the  count is being decremented  from five to  four 
(word 43 ) . 
Routine for restoring the count 
The print operation  is  repeatable;  therefore,  because  the 
count  is used to  restore  the tag bit to  the first character 
position, the  count  must  be  restored.  The  decrement 
macro described above is used for restoring the  count. 
This  macro  is initiated  when the tag is detected in the 
position of the  last  character  (EOB) in the message. 

The  decrement  process  continues synchronously  with 
the shift operation in the  store until the value of the 
count  reaches 1 ,  at which  point 480 is added  to  it  (word 
44 in Fig. 5 ) .  The  decrement  operation is stopped when 
the  tag  and  EOB  have  been shifted  through the 480 posi- 
tions in the shift  register,  and are  detected  and  erased. 
The  count is restored  to  the original value since 480 cy- 
cles of decrementing  have been done  and 480 has been 
added  to it. 

Implementation 
Macros form the primitive  functions in a subsystem,  and 
an  operation  such  as printing the  contents of the  store is 
performed  by a series of these primitive functions. 116 
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The  routine  for restoring the tag  from the last to  the 
first character in the  store is initiated  when the  EOB is 
read and  transferred  to  the  printer  subsystem.  This  char- 
acter is decoded in the  printer  and a signal is sent  to  the 
controlling array  (Fig. 6 )  which selects word 39. 

The selection of word 39 sets  the internal states of 
this PLA from the initial all-zero state  to  the specific 
state (JK8, 10 = l ) ,  thereby selecting and reselecting 
word 41. This  state (JK8, 10 = 1 )  can be defined as  the 
“backspace  state”  (word 41) because it involves the 
backspace  macro in the  storage  subsystem.  The “back- 
space  state” is changed to  the  “restore tag state”  (word 
43) when  the  storage  subsystem  responds  that  it  has 
completed the  backspace  operation  (word 42). 

The  “restore tag state”  generates  the  decrement con- 
trol to  the keyboard subsystem  and  the  read  operation  to 
the  storage  subsystem. Word 44 (in addition to word 
43) is selected  when the  keyboard  subsystem  detects 
that  the  count  has been decremented from five to four. 
Words 44 and 43 are oRed together  to  produce  the 
command that  writes  the new tag bit into  the  storage 
subsystem.  The exit  from the  “restore tag state” is 
achieved by matching  word 45 with the operation-com- 
plete signal (S) from the  storage  subsystem. 

Specific operations can  be  performed by chaining 
macros in series. This technique  combined with the  en- 
coding and decoding properties of the PLA form the 
basis of the PLA’s utility. The  above  example  also 
shows  that common macro linkage can  be effected by 
the  use of the DON’T CARE states in the  state assignments 
of the  feedback  (see  “Macro  usage”).  These  techniques 
and  the  ease with which arrays perform the encoding 
and decoding of control  information are major factors 
that  favor  array  structures. 

Simulation methods 
Because of the functional  complexity of the  TCU, com- 
puter simulation was required in the designing of the 
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Figure 6 Part of the controlling  array  showing the routine  for  restoring the tag to  the  first  character. 

PLA version of this system.  The programming language 
selected for this task was APL,  whose  array  structure, 
power of commands, and  interactive terminal approach 
to  the problem made it the logical choice. The following 
paragraphs  provide  a brief description of the  two basic 
parts of the  PLA simulation  task:  chip  simulation an4 
system simulation. 

Chip  simulation 
The general procedures  for chip  simulation are  as fol- 
lows: 
1 .  Each  PLA is entered  into  APL  as a character  array 
with the  same dimensions and symbols as the logic rep- 
resentation. For  example,  the  PLA personality  shown 
in Fig. 4  looks the  same when entered  into  the  APL  sys- 
tem. Two-bit decoding [5] is  preserved, representing  a 
code  for  the I6 logical functions (see  Table 1) .  
2. The actual  simulation was performed with a  hard- 
ware representation of the  array personality. This  array 
conversion was  accomplished  by  a  program that  con- 
verted the  character  array  to a logical (0 or 1 )  numerical 
form so as  to minimize APL  workspace and  facilitate 
subsequent  APL processing. In  the  case of the  PLA 
chip  used in this experiment, a 1 represented  the pres- 
ence of an FET  at  the  junction of the row  and  column, 
and 0 represented  the  absence of an  FET. 
3. The final step of chip  simulation  pertained to multi- 
ple-chip operations, including two-bit decoding of exter- 
nal inputs,  the AND array  and OR array  operations, and 
operation of the JK feedbacks.  The following example 
demonstrates  the suitability of APL  for  such simulation 
tasks. Let W be a set of inputs to a PLA AND array 
(A 1 ) and  let A2 be the OR array.  The following line in 
APL simulates the AND array  (producing matched  prod- 
uct rows) : 

-Alv. AW 

while the  operation of both the AND and OR arrays  and 
production of outputs  is simulated by 

(-Alv. AW) v .  hA2 

System simulation 
Simulation at  the  system level involves the interconnec- 
tion among  chips  and  external inputs and outputs.  The 
usual presence of a  clock on  the inputs or  outputs of 
PLA chips makes this  problem easy  to handle. Our sim- 
ulation of the  TCU was  split into  the following two 
steps: 

1 .  the seven PLA  chips  were simulated to obtain 
outputs  as a  function of inputs  and  array personality, 
and 
2.  the  PLAs  were  interconnected and were  also con- 
nected  with external  inputs/  outputs of the  system. 

Build and test 
It  was relatively easy  to build the  hardware using PLAs 
because  the  PLAs had  been tested and the  entire elec- 
tronic package had been  greatly  reduced.  A 40  cm X 

17.75 cm ( 1 6  X 7 " )  Augat board was  found to be ade- 
quate  to  house  the  entire  electronics of the TCU.  The 
electronics consisted of seven PLA modules, 327 logi- 
cal  circuits, four dual  480-bit dynamic MOS shift regis- 
ter modules,  oscillators,  clock drivers,  and  discrete 
peripheral  circuits. Figure 7 shows  the module  location 
on  the  Augat board. The  PLA module was  attached  to 
a specially made 48-pin socket  for  ease of plugging 
the module into  the board. The existing cabinet,  the 
power supplies, and  the cable of the  DIP-TL version 
of the TCU were used (Fig. 8).  The terminal utilized 
+48V,  &12V, +8.5V,  and %5V power  supplies. The 
+48V  drives the magnetic  relays of the electric type- 
writer. The  212V  are  for powering the TTY interface. 
The  +8SV is used for  the interface  between the  PLAs 
that  have open-drain outputs.  The  PLA itself uses  &5V, 
and the dual  480-bit shift register  requires  +5V and 
- 12v. 

An additional 97 circuits were used for  the engineer- 
ing changes related to  the mechanical  bounce  problem 
of the keyboard  switch of the  typewriter and the product 
term alteration of the  PLA chips. 117 
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Figure 7 Electronics of the PLA version of the TCU. 

The system  clock, which drives  the  PLAs  and  the 
dual 480-bit  shift  registers, is operated  at lMHz ( I ps 
cycle time).  The terminal has  been  successfully  tested 
over a  telephone line to a host  machine  simulator. The 
data transmission rate  was I35 bits (or 15 characters) 
per  second. 

Evaluation of PLA vs DIP-TL 
The  PLA version of the TCU entirely  duplicated the 
system  functions of the  DIP-TL version. The  DIP-TL 

Figure 8 PLA version of the 7441 buffered terminal. 

Acoustic coupler ( 135 BPS) 
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version  consisted of 2,058 logical circuits, four dual 
480-bit dynamic MOS shift register  modules,  oscillators, 
clock drivers,  and  discrete peripheral  circuits. All of 
these  components were  packed on six and one-half 7.5 
cm high, 10 cm wide (3” X 4”) printed circuit cards. By 
way of comparison, had the  PLA version  been  packaged 
on  7.5  cm x 10 cm printed  circuit cards instead of the 
Augat  board, it would have required only 33 of these 
cards.  The comparison between  these  two technologies, 
SSl/MSI  DIP-TL random logic vs LSI  array logic, 
revealed that  the 7 PLAs replaced  1,73  1 logical circuits 
or approximately 250 logical circuits  per  PLA. Of these 
1,731 circuits,  48% were  combinational logic and 52% 
were sequential logic. 

Summary 
This  paper  describes a  successful PLA design  and im- 
plementation experience using LSI. The  ease with which 
a small but  relatively  complex  control unit was imple- 
mented is ample  evidence that  PLA is a practical means 
of utilizing LSI.  The claims for  PLA  are  consistent 
with those noted by other  users in the industry [ 61 and 
are  due mainly to  the following PLA  attributes: 

PLA exploits the  “master  chip”  approach.  PLA real- 
izes  greater benefits than those obtained by micropro- 
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grammed arrays  due  to integration of both the control 
and  data path within the PLA. 
Documentation is much  more compact and  easily 
understood than in previous  designs. The  extensive 
macro capability  allows the establishment of libraries 
of tested logic. 
PLA design  automation procedures match an  array- 
oriented language, APL, to  an array-oriented struc- 
ture, PLA, at  the  same time exploiting the  advantages 
of the interactive APL language. 
From a system point of view, it is notable that  the 

applicability of the experimental findings is based on  the 
PLA characteristics  themselves  and not on  either  the 
technology  used (FET) , or the vehicle (7441 TCU) . 
On  the  one hand,  bipolar PLA can  be  applied where 
high performance is required;  on  the  other hand, PLA 
macro  usage  provides the key to application-oriented 
design in LSI. Since PLA does  not  separate  data path 
and control functions, this programming capability can 
exploit system design  tradeoffs and  extensions  not 
available in traditional  designs. The  advantages of PLA 
increase with LSI complexity;  thus, PLA establishes  a 
growth  path to ultra LSI. 
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