
J. C. Logue
N. F. Brickman
F. Howley
J. W. Jones
w. w. wu

Hardware Implementation of a Small System in
Programmable Logic Arrays

Abstract: Large Scale Integration, LSI, is the means by which digital circuits have achieved remarkable manufacturing cost reduc-
tions but, unfortunately, at the expense of higher engineering design costs. Programmable Logic Arrays, PLAs, exploit many of the
benefits of LSI but without the high engineering design costs. This paper describes an experiment in the design and implementation of
a small complex system in array logic. The IBM 7441 Buffered Terminal Control Unit was selected for this comparison because it is a
small but complex terminal controller implemented in dual in-line packaged transistor logic, DIP-TL, with small to medium scale inte-
gration.

Introduction
The mixed blessings of Large Scale Integration (LSI) at
the system level have been discussed by many authors
on many occasions [1 1 . On the one hand, LSI has been
successfully exploited in memory applications; on the
other hand, it is recognized that in the logic area LSI
poses a serious dilemma-it provides the potential for a
significant reduction in product cost but with the expo-
sure of high development costs. One might conclude,
therefore, that only products with high volume can bene-
fit from LSI.

At the current level of LSI there are at least three
approached aimed at the solution to the LSI dilemma:
1 . Microprogramming
2 . Microprocessor on a chip
3. Programmable logic array (PLA) .

Microprogramming, because it utilizes a control mem-
ory which is an array structure, fulfills the requirement
for successfully exploiting LSI, but it is limited in its
system applicability to the control area.

The microprocessor on a chip is essentially a system
module that achieves its high volume by exploiting a high
volume market area. However, it transfers engineering
complexity to the user in the form of software that must
be written as well as adapters that must be designed and
built to interface the microprocessor with its peripheral

110 hardware. Such adapters are, in many cases, low-volume

products. In addition, the microprocessor must, in gen-
eral, be fabricated out of a higher performance technol-
ogy than if the function it performed were provided in a
hard-wired version.

A PLA can be thought of as combining microprogram
control with random logic in the same array. Thus, the
LSI benefits stemming from array structures can be real-
ized in the PLA for both logic and control. However,
rather than using an address decoder, as in a control
store, the PLA does an associative match on the input
command word. This operation will be explained in
more detail in the “Review of PLA basics” section.

The above discussion should not be interpreted by the
reader as an attack on microprocessors. Rather, it is in-
tended to show that a systems designer must consider
many possibilities before he can achieve an optimum
solution. The purpose of this paper is to acquaint the
systems designer with the most complete solution avail-
able that solves the LSI dilemma, namely, the Program-
mable Logic Array. The design and implementation ex-
perience substantiating this viewpoint will be presented
by means of a design example that culminated in a
working system. The experimental system that has
been implemented in array logic is functionally identical
to the IBM 7441 Buffered Terminal Control Unit
(TCU) 121.

J . C. LOGUE ET AL. IBM J. RES. DEVELOP.

Review of PLA basics
The form of array logic with which most readers may be
familiar is the microprogrammed array commonly used
for control. PLA shares many of the characteristics of
the microprogrammed array: simple array structure,
standard "master chip" fabrication, late personalization,
etc. PLA, however, is different from the micropro-
grammed array in two critical ways: I) it uses an asso-
ciative technique for addressing (content addressable),
and 2) the array itself is not limited to control logic
but integrates both data path and control logic in the
same array (see section on control).

The review that follows consists of three subtopics:
the overall structure of the PLA, the macro concept and
macro usage.

Overall structure
The PLA is a read-only structure that is programmed to
perform both sequential and combinational logic [3].
The combinational logic is implemented by means of
sum-of-product functions as performed by AND arrays
and OR arrays in cascade. The sequential logic is
achieved by means of storage elements in the form of
flipflops (registers) that may be driven in either a
set/reset or toggle mode as a function of the pattern
stored in a portion of the OR array (Fig. 1) . The feed-
back register is connected to internal inputs to the
AND array through a feedback path that is internal to the
PLA chip.

The PLA has basically a table look-up structure,
where the AND array forms the look-up library and the
OR array forms the resultant output for the operation.
The AND array consists of many product terms (words)
and is partitioned into two sections: the external field
and the feedback field from the feedback register. Both
of these fields are processed in parallel in the AND array
to select words in the OR array. The OR array performs
the logical OR operation on the values written in the se-
lected words. The OR array is also partitioned into two
fields: one field is gated to the external outputs, the other
operates on the feedback register.

The macro concept
It should be noted that array logic is well suited to the
macro, or modular, building-block concept. The term
"macro" as used here is a contraction of "macro-func-
tion." A count-down counter is an example of a macro:
this macro will be explained in more detail later. There
is no concern about, or restriction on, the physical
location of the macro on the chip. Our TCU design shows
that macro identity is maintained and visible within the
overall system design, thus enhancing the readability
of the pages of PLA personalization. One can establish
a library of common functions to be picked up by any-

MARCH 1975

11 ' 2 ' 1 8

rwo-bit decoding
Input

(Nine 2-to-4

d 2 3 4 """
36

\

(70 words X 62 bits)
AND array

Feedback
registers
JKMSFF

(13)

output
registers

"

l K l J 1 3 K 1 3 l 6

OR array
(70 words X 42 bits)

-

-
leset

@1 @2 @3 @4 f 5 -5 GND

Figure 1 Functional block diagram of PLA including specific
data on the chip used in the Terminal Control Unit (TCU) .

one without any redesign. Finally, the reliability of array
logic macros should be enhanced, since once debugged-
always debugged.

Macro usage
The internal feedback register provides the facility for
sequencing the PLA. The function of this register is
ideal for implementing up/down counters or state
switching. The PLA can be used as a sequential logic
block because it has memory in the feedback path [Fig.
2(a)]. The content of part of the feedback register (state)
is used to select macros in the PLA. These macros oper-
ate on any combination of input data and feedback infor-
mation. The state is switched so as to select a series of
macros in the PLA: these macros are selected to per-
form a particular routine. An example of a routine is the
selection of the parity-checking macro in the keyboard
buffer. If the parity is good, the routine selects the next
macro, which in turn transfers the good parity character
to the storage buffer system.

A single PLA can select a series of macros by chang-
ing the state or feedback control: however, several such
routines would be needed in a complex system. The
selection of the routines must be based on the initial
command to the PLA. An example is shown in Fig. 2(b) 111

PLA HARDWARE IMPLEMENTATION

output

Feedback (state)

I I 7 PLA P I Acknowlcdgment
State

I

Data in
PLA Q

Data out
+

Scquencc o f states

(b)

Figure 2 (a) PLA as a sequential logic block. (b) Hierarchial
control scheme for PLAs.

where PLA P generates a request for a unique routine in
PLA Q. The change of state in PLA Q is based on two
fields: the external command and the internal feedback
state. Words that are coded in PLA Q select the correct
sequence of macros in this PLA. The end of the routine
is defined by a state that generates an acknowledgement
to PLA P, which in turn causes that PLA to enter its
next state.

State assignment
The selection of the external commands between the
PLAs and the internal coding of the feedback states is
part of the state assignment procedure. This state as-
signment (the most difficult part in the coding of the
arrays) determines the efficiency of the arrays. A macro
should only be written once in the PLA. If this macro is
selected by many routines, then the designer has to con-
sider the value of the state which selects it. A macro that
is shared by many routines has to have DON'T CARE

(independent of input) values in its control field [41. The
number of DON'T CARES is at least log,N, where N is the
number of control states that share this macro.

Another consideration during the state assignment is
the state-switching algorithm. The states should be se-
lected so as to minimize the number of terms necessary
to change states.

Functional description of the TCU
The TCU [2] is a buffered terminal device that can
store either 160 or 480 characters, depending upon cus-
tomer requirements. The TCU controls the buffer opera-
tion such that its contents are either printed or transmit-
ted over a communication line to a central processing
unit (CPU) . The loading of the buffer is also controlled
by the TCU; this is done from either the typewriter key-
board or via the communication line from the CPU.

The following brief description of some of the features
available in the TCU is presented to help the reader
appreciate the functional complexity that the PLA de-
sign had to accommodate.

The CPU addresses the TCU to send it an output
message; this action requires the transmission of a se-
quence of four control characters. The address sequence
is: C, followed by D, followed by the address, and then
a space character or one of the eleven invalid characters.
The TCU has to respond with its status when it recog-
nizes its address; Le., a Y if its status is such that it can
receive and print the message, and an N if not. The
CPU polls the TCU when it desires the TCU to trans-
mit its input message. The poll sequence is a C control
character followed by the terminal address. The TCU
responds with an N control character if it has no mes-
sage, and with a D control character followed by the
message if it is ready to transmit.

Messages are checked by parity on each character,
and the TCU has to retransmit the message if the CPU
detected an error during transmission. The TCU counts
the number of characters entered into its buffer and
provides an audible alarm if the number of characters is
within ten of the limit. The TCU will lock the keyboard
if the number of characters entered is within two of the
limit.

The editing of the contents of the buffer is achieved
via the backspace function, which erases the last charac-
ter from the buffer and decrements the character count
by one. This operation is initiated by pressing the back-
space key on the typewriter keyboard.

The TCU hardware consists of a total of 2,058 logical
circuits, four dual 480 shift register modules, and many
discrete peripheral circuits. The complexity of its oper-
ations made the TCU a suitably challenging test for an
experimental implementation of PLA technology.

Implementation of the PLA version of the TCU
Implementation of the TCU in array logic was accom-
plished in three distinct phases: 1) the design phase,
which consisted of mapping the TCU functional specifi-
cation into the PLA, 2) the simulation phase, which fea-
tured the APL programming language, and 3) the build
and test phase, which produced the actual working ver-
sion of the TCU in array logic, and verified that it was
functionally identical to its DIP-TL (dual in-line pack-
aged transistor logic) counterpart.

The decoding of pairs of inputs (two-bit decode)
provides all of the combinations of ANDS as well as
EQUIVALENCES, EXCLUSIVE ORS, and the ORS of the input
pairs (see Table 1) . The output polarity holds (OPH)
are equivalent to D-type flipflops. Outputs Q and a of
the J K masterslave flipflops (JKMSFF) are fed back to
the AND array inputs. The JKMSFF outputs (controlled

IBM J . RES. DEVELOP.

by a clock) are dependent on the conditions of the J and Table 1 The 16 unique functions of the two-bit decoded inputs.
K inputs from the OR array. Table 2 lists the input/
output conditions; the hold means that the output does A B
not change, and the toggle indicates that the output is
complemented each clock cycle. The symbols listed in
Tables 1 and 2 are used in Figs. 4-6.

_ _ ~ ~ ~
Tuw-bit decoding Function Symbol

AB A B A B 26

Design process
The functions performed by the TCU were coded into
seven PLA chips. The interface logic between the PLA
and the communication line, the keyboard, and printer
was implemented in DIP-TL and some special circuits,
because the interface circuits required electrical charac-
teristics that were different from those provided by the
FET arrays.

The design objective was to include the data flow, log-
ical operations, and the control in a minimum number of
PLAs. The system requirements were divided into four
subsystems: the communication subsystem, the storage
subsystem, the keyboard, and the printer. Each subsys-
tem was mapped into the PLAs. Several design itera-
tions were made in order to obtain the best partitioning
scheme. The partitioning of the system into seven
PLAs was aided by the macro capability in the PLAs.
These macros were coded into the PLAs, and were
moved from one PLA to another so as to obtain opti-
mum utilization of feedback registers, input and output
pins, and number of words used.

The final partitioning scheme (which satisfied the
mapping of the TCU functions into seven PLAs) result-
ed in all the words being used in all the arrays.

Three levels of control were devised for the TCU.
These levels evolved from both the use of macros within
the PLA and the sequential logic properties of the PLA.
The sequential logic properties formed the first level of
control. The second level was necessary to integrate the
PLAs into a subsystem; e.g., one PLA being used to
receive information from the line at a rate determined by
another PLA. The third level was used to link the sub-
systems together to provide the overall TCU function.
This level is demonstrated in the control of the commu-
nication and printer priorities in accessing the storage
subsystem.

Partitioning
The first problem confronting a designer in LSI is the
partitioning of the system into several subsystems that
can be packaged efficiently into LSI modules. Array log-
ic structures discipline the designer in deciding on the
optimum partitioning because macros defining array per-
sonalities are available, and these macros are defined for
specific functions. The designer can select the group of
macros necessary in each subsystem, and then deter-
mine how these macros fit into the arrays. Of the four

0
0
0
0
0
0
0
0
1
I
I
I
I
1
I
I

0
0
0
0
I
1
I
1
0
0
0
0
I
1
I
I

0
0
I
I
0
0
1
1
0
0
I
I
0
0
I
I

0
1
0
I
0
I
0
1
0
1
0
I
0
I
0
I

DON’T CARE
A + B
A +B
- A
A + B

B
A = B

- A . B
A + B

P P
P N

N P
I .

‘ I
E E
I 1
N N
u u
‘ 0
1 0
0 ‘
0 1
0 0
D D

Notes: DON’T CARE-word line active independent Of A and B .
F A ~ s E - Word line inactive independent ofA and B (not used)

subsystems partitioned in the TCU, the communication
line used three arrays, and each of the other subsystems
used one array. A seventh array was used to control the
operations in these subsystems.

Control
The PLA has the characteristics of an ideal sequential
logic element- the internal feedback maintains the state,
while the external input can be used to switch these
states. The PLA has solved the traditional problems of
undetermined states (“race conditions”) associated with
sequential logic, the solution being provided by clocked
register-register transfer in PLA. The data flow and
definitions of some of the macros contained in each sub-
system of the TCU are shown in Fig. 3. As stated
above, in PLA, data flow and control are not separate as
in the more conventional machine design. Figure 3
shows this combined data path and control and the fol-
lowing section describes the respective functions.

Table 2 I n p d o u t p u t conditions of the IKMS flipflops

~

0 0
0 1 Reset R
I 0 Set S
I I Toggle T

Hold

113

MARCH 1975 PLA HARDWARE IMPLEMENTATION

~

114

Line in
Terminal
address

2 1 8 -
PLA 2

Serialize Write
Deserialize
Detect char.

Clear I 480
Backspace

Inject char. Restore T
Advance T

' Dual

2nd char.
1st char.

Line out
0 . 7). - 1 1 81 4.

J

) 3 2 1 5)

Mode control Store control
conditions Read/write

Current mode
Next mode Keyboard

Subroutines
Priorities

41 d

Frequency div. Shift rcgister for
Bit char. sample 1) Chcck parity
Line response 2) Count + 1
Subroutines 3) Count - 1 3) Count -1

Figure 3 Data flow of PLAs in TCU.

Storage operation and macro examples
The storage device used as a message buffer in the TCU
is a dynamic shift register eight bits wide and 480 char-
acters long. The reading, writing, and formatting of mes-
sages is described below. The routine used for restoring
the shift register following a transmission or printing
operation is also described.

The message is formatted into a variable-length con-
tiguous segment in the shift register. The first character
of the message is identified by a unique tag bit (T)
which is written into a unique position in the eight-bit-
wide shift register positions. The last character, End of
Block (EOB) , is next to a unique marker which is writ-
ten into the shift register prior to entering the message.

PLAl interfaces with the shift register and forms the
storage subsystem; this array is connected in series with
the circulating data in the shift register and runs syn-
chronously with it. PLAl is personalized with macros
(see Fig 4) that operate on the shifted information; these
macros include the read and write operations.

Data gating macro
Words one through eight in PLAl comprise a macro
that gates input field A directly to output field A'. As-
suming that the value of feedback register position 13 is
1, then each 1 input in the A field selects a word in the

group by the associative process. Each selected word in
turn generates a corresponding output bit in the A' field
(see Fig. 4).

The setting and resetting of the feedback register posi-
tion 13 (determined during the design process) is part of
the state-assignment process.

Read macro
The read macro (control field = 010) is a sequential
process that is initiated when the read command is re-
ceived. This macro copies the character which is identi-
fied with the tag into the feedback register, and subse-
quently gates this character to the printer and the com-
munication subsystem. Another macro operation (con-
trol field = 110) is used to move the tag bit to the next
character so that the complete message can be read out
serially for printing or transmitting. The entered message
can be retransmitted or reprinted several times; there-
fore, a routine which restores the tag bit to the first char-
acter position is necessary. This routine involves invok-
ing a decrement macro on the character count when the
end of the message is detected in PLAl and restoring
the tag when the count has been decremented to 1.

The count of the number of characters entered is held
in the keyboard subsystem. (This subsystem also has
the decrement macro which will be described later.)

J . C. LOGUE ET AL. IBM J. RES. DEVELOP.

Control
S

-A'+ -c t i t
1 l........

.1. l............... ... l..............
........... 1 1 1 1 1

............. CIRCULATE B B I T ON SHORT PATH A a I 2 1 C

S SET B B I T INTO JK1:LONC PATH
............. T (I F JK11-0)

...............
l..............
.1............. l 1.. 1. 1

....
6

1

7
9 l....
L

10 .1...
11 ..1..
12 ... 1.
13 1
14
15

.....

.....
............
l...........
.1..........
l...........

1
........

1

............ 1 1 0.1 1. 1. 1. 1. 1. 1. 1. 01. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0 u. 0 0 0 0 .

.S A

..s 8 ... s I s 2 s 1 s c
1

16 I
17 O.................
1P . o
19 .. o.
20 ... (I..............
21 o.
2 2 o.
23 O
1 C O

16 1.....111
2s 1 111

27 1....111
2 1 1...111
19 1..111
30 1.111
3 1 1111
32
33
SI
35
36
37
S I
39
I O 010
C1 010
e1 010
5 1 010
LC 010
55 010
I6 010
e7 001
L I 000
e9 010
51 000
50 l.......OlO

51 00110010.......101
> 3 O.......lPP
5L 011
5 5 111
56 11111110......~110
57 l.......llO
56 000
59 l.......lUU

........

.......

61 11111111.. 111
60 1111111........111

6 1 1111111........111
65 UUEEEEl........O@O
bb EEWEE1........00@
C5 EEEEUUl........000
(6 UUWUU1.......*000
67 EEUUWO........000
b1 UUEEUUO.......*000
b9 UUUUEEO........OoO
70 EEEEEEO........000

.....

................
l...............
.l.............. .. l.............

....... S T
R............ SET B B I T INTO JK1 : LONG PATH

8

. R A 2

. . R 8 3 ... R b I

. . . . I (........ 2 5 R 1 6 R C 7 R T I
S............ SET B B I T FROM EXTERNAL BUS TO JI:
. S A
. . s 8 ... s I s 2 s 1 s c READ JKl TO DUAL 1110 B I T B : LON(............. 2 A 3 I I C 5 2 6 1 7 C I T READ JKl TO EXTERNAL BUS B I T B 2 A 3 I b b 5 1

: l :WRITE
2
1
4
5
6
7
; PATH 1..........10

.l.........lO .. 1........10
1

1..
.l.
. . I

......
1......10

.10

.l.. .. . 1 0 .. 1....10 .. .l.. .10
1

... l........ 1 l...... l..... l.... 1.. 1. 1

...
1..

1 1

..... l.......1..

........ 1..OO o... 1.1. 1
1111111.. 1.10

o...

.............

.........

........... 1.
1..1.........

1

lllll........

..... I.......

............

.............

............. l....... l........

6 1
7 C

CLEAR DUALL1O:GENERATE G o o 0 PARITY INVALID CHA
END OF CLEAR :GENERATE LOAD POINTER AND T B I T

.....
RRRRR . . ss.

........ S.. RR

.... S.S. RR.
IRRR.RRRS
. S . . S . S R R S ss. R SSSR R s RS S.SR ... s S..RS

........

.........

...1
111

:AD; S E T ~ P
.TECTED RE
:SET JK AN
CKSPACE:

,TH DUAL C I O TO JK
lUlRED CHARACTER; CLOSE PATH ;EN0
I SET SHORT ?ATH;AFTER CLEAR
IETECT INVALID CHAR ENTER LONGPATH
!VANCE T WRITE;END

' CYCLE DELAY ONE CYCLE
1;SET LONG PATH

'ION; OVERYRITTEW LAST CHAR
T ;GATE T 011 VIA SHORT PATH

!VAWE 1: NO MORE DATA
ED LOAD W l N T L R SWITCH TO LONOPATY

:WERATE LOAD WINTER GO TO SHORT)
011 TO F I R S T CHARACTER ONLY

I
L
L
L
I
I
I
I

FOR RESTORE T;INHIBIT OTHER T
~ K S P A C E - A
IJECT T B1
l l T E ; F I R S
IVANCE T 0
IVANCE T B
IROR CONDl
tKSPACE 1
lITE;OETEC
Il1E;ADD 1
IITE;END(G
LRITY ERR0
LRlTY ERR0
LRITY ERRO
LRITY ERRO
LRITY ERRO
LRITY ERRO
LRlTY ERRO
LRITY ERRO

............ lo... o. . .
.............. 1 1 ll.......
11111.1.......

l.......
l.......

....... l.......
l.......
l.......

....... l....... l....... l.......

......
.......

....

..
11
..
..

........
111111..

a
....
,.Ol
..lo 1 oo. oo... 0.1... 1...1 YR

P I
P I
P I
P I
P I
P I
P I
P I

........ 1...1 1...1 l...l 1...1 1...1 1...1 1...1
\------------AND array -1

Figure 4 Personality of PLAl

Write macro
1) is also a sequen- sequently written into the position next to the unique

tial process, and is initiated when the write command is marker; the rest of the message and tag are shifted back
received. The received character is transferred from the one position. The storage subsystem signals the end of
input bus to the feedback register. This character is sub- each macro operation. 115

The write macro (control field = 1 1

MARCH 1975 PLA HARDWARE IMPLEMENTATION

Control

3I 11
35 11
36 11
37 11

40 11
39 11

41 11
42 11
43 11
II 11

3a 11

1

1
1

1
1

1
1

1
1
1
1

.1
1

I

1
1

I
1

. I 1
1
I

...............

............. 0 o i l OOO..oooo.. 00000.... .. .OOOOOO.. ooooooo....
OUQ000101....
.oooooooo..
000000001.. ..

..

................
1.11

Figure 5 Decrement macro in keyboard system.

Decrement macro
The decrement macro inverts the leading significant bit
and all lower order bits (Fig. 5).

The number of words selected is one more than the
number of leading zero bits in the count that is held in
the feedback register. Each selected word reads out a
toggle (T) operator that complements the content of the
associated feedback register position (words 34-42).
This macro is invoked when the control field is 1 1 1 1 ,
and continues until this control is removed.

The decrement macro is used to restore the tag bit to
the first character position in the dynamic shift-register
store. The new tag has to be inserted when the count has
been decremented to 1 ; however, due to the propagation
delays through the arrays, this signal has to be generated
when the count is being decremented from five to four
(word 43) .
Routine for restoring the count
The print operation is repeatable; therefore, because the
count is used to restore the tag bit to the first character
position, the count must be restored. The decrement
macro described above is used for restoring the count.
This macro is initiated when the tag is detected in the
position of the last character (EOB) in the message.

The decrement process continues synchronously with
the shift operation in the store until the value of the
count reaches 1 , at which point 480 is added to it (word
44 in Fig. 5) . The decrement operation is stopped when
the tag and EOB have been shifted through the 480 posi-
tions in the shift register, and are detected and erased.
The count is restored to the original value since 480 cy-
cles of decrementing have been done and 480 has been
added to it.

Implementation
Macros form the primitive functions in a subsystem, and
an operation such as printing the contents of the store is
performed by a series of these primitive functions. 116

J . C. LOGUE ET AL.

........ T.. . . DECREMENT T A I L L FOR RESTORIMG T B I T : B I T 1 T 2 T 3 T. I T. 5 ... T 6 .. T. 7

.T........... - !
Y

S RESIDUE COUNT OF 5:GENERATE INJECT T B I T CTR
I

SSSS....R RESIDUE COUNT OF 1,GENERATE MODULO La0
............

The routine for restoring the tag from the last to the
first character in the store is initiated when the EOB is
read and transferred to the printer subsystem. This char-
acter is decoded in the printer and a signal is sent to the
controlling array (Fig. 6) which selects word 39.

The selection of word 39 sets the internal states of
this PLA from the initial all-zero state to the specific
state (JK8, 10 = l) , thereby selecting and reselecting
word 41. This state (JK8, 10 = 1) can be defined as the
“backspace state” (word 41) because it involves the
backspace macro in the storage subsystem. The “back-
space state” is changed to the “restore tag state” (word
43) when the storage subsystem responds that it has
completed the backspace operation (word 42).

The “restore tag state” generates the decrement con-
trol to the keyboard subsystem and the read operation to
the storage subsystem. Word 44 (in addition to word
43) is selected when the keyboard subsystem detects
that the count has been decremented from five to four.
Words 44 and 43 are oRed together to produce the
command that writes the new tag bit into the storage
subsystem. The exit from the “restore tag state” is
achieved by matching word 45 with the operation-com-
plete signal (S) from the storage subsystem.

Specific operations can be performed by chaining
macros in series. This technique combined with the en-
coding and decoding properties of the PLA form the
basis of the PLA’s utility. The above example also
shows that common macro linkage can be effected by
the use of the DON’T CARE states in the state assignments
of the feedback (see “Macro usage”). These techniques
and the ease with which arrays perform the encoding
and decoding of control information are major factors
that favor array structures.

Simulation methods
Because of the functional complexity of the TCU, com-
puter simulation was required in the designing of the

IBM J . RES. DEVELOP.

39 O.O.OOO..lO....... .. 1....00000. S.S. . . READ CIRCLE B:BRANCH TO BACKSPACE

42 l.......... .. 1....10100. SS.R. BACKSPACED OVER CIRCLE B:TO RESTORE T
4 3 O 1100. 1111..1......... RESTORE T B I T TO START OF RECORD

45 l.......... 1100. l....... RR... END m V m C F 1

......... ..
41 O 0100. 11...1.1........ BACKSPACE
40 ll....... 1....10000. ll.............. .S.R...R..SS. END OF EXCHANGE OFF LINE:TO ENTER MODE
44 10..11....... 1100. ll....... INJECT T B I T CONTROL

'iy Control Control (keyboard (PLA subsystem) 1)

Figure 6 Part of the controlling array showing the routine for restoring the tag to the first character.

PLA version of this system. The programming language
selected for this task was APL, whose array structure,
power of commands, and interactive terminal approach
to the problem made it the logical choice. The following
paragraphs provide a brief description of the two basic
parts of the PLA simulation task: chip simulation an4
system simulation.

Chip simulation
The general procedures for chip simulation are as fol-
lows:
1 . Each PLA is entered into APL as a character array
with the same dimensions and symbols as the logic rep-
resentation. For example, the PLA personality shown
in Fig. 4 looks the same when entered into the APL sys-
tem. Two-bit decoding [5] is preserved, representing a
code for the I6 logical functions (see Table 1) .
2. The actual simulation was performed with a hard-
ware representation of the array personality. This array
conversion was accomplished by a program that con-
verted the character array to a logical (0 or 1) numerical
form so as to minimize APL workspace and facilitate
subsequent APL processing. In the case of the PLA
chip used in this experiment, a 1 represented the pres-
ence of an FET at the junction of the row and column,
and 0 represented the absence of an FET.
3. The final step of chip simulation pertained to multi-
ple-chip operations, including two-bit decoding of exter-
nal inputs, the AND array and OR array operations, and
operation of the JK feedbacks. The following example
demonstrates the suitability of APL for such simulation
tasks. Let W be a set of inputs to a PLA AND array
(A 1) and let A2 be the OR array. The following line in
APL simulates the AND array (producing matched prod-
uct rows) :

-Alv. AW

while the operation of both the AND and OR arrays and
production of outputs is simulated by

(-Alv. AW) v . hA2

System simulation
Simulation at the system level involves the interconnec-
tion among chips and external inputs and outputs. The
usual presence of a clock on the inputs or outputs of
PLA chips makes this problem easy to handle. Our sim-
ulation of the TCU was split into the following two
steps:

1 . the seven PLA chips were simulated to obtain
outputs as a function of inputs and array personality,
and
2. the PLAs were interconnected and were also con-
nected with external inputs/ outputs of the system.

Build and test
It was relatively easy to build the hardware using PLAs
because the PLAs had been tested and the entire elec-
tronic package had been greatly reduced. A 40 cm X

17.75 cm (1 6 X 7 ") Augat board was found to be ade-
quate to house the entire electronics of the TCU. The
electronics consisted of seven PLA modules, 327 logi-
cal circuits, four dual 480-bit dynamic MOS shift regis-
ter modules, oscillators, clock drivers, and discrete
peripheral circuits. Figure 7 shows the module location
on the Augat board. The PLA module was attached to
a specially made 48-pin socket for ease of plugging
the module into the board. The existing cabinet, the
power supplies, and the cable of the DIP-TL version
of the TCU were used (Fig. 8). The terminal utilized
+48V, &12V, +8.5V, and %5V power supplies. The
+48V drives the magnetic relays of the electric type-
writer. The 212V are for powering the TTY interface.
The +8SV is used for the interface between the PLAs
that have open-drain outputs. The PLA itself uses &5V,
and the dual 480-bit shift register requires +5V and
- 12v.

An additional 97 circuits were used for the engineer-
ing changes related to the mechanical bounce problem
of the keyboard switch of the typewriter and the product
term alteration of the PLA chips. 117

MARCH 1975 PLA HARDWARE IMPLEMENTATION

D480 PLA (Store 1) PLA I DIP-T L Keyboard Line SELECTRIC magnetic
clock driver

I
interface integrators drivers
resistors

pre-amp and drivers

I I \ /

Figure 7 Electronics of the PLA version of the TCU.

The system clock, which drives the PLAs and the
dual 480-bit shift registers, is operated at lMHz (I ps
cycle time). The terminal has been successfully tested
over a telephone line to a host machine simulator. The
data transmission rate was I35 bits (or 15 characters)
per second.

Evaluation of PLA vs DIP-TL
The PLA version of the TCU entirely duplicated the
system functions of the DIP-TL version. The DIP-TL

Figure 8 PLA version of the 7441 buffered terminal.

Acoustic coupler (135 BPS)

118

J. C. LOGUE ET A LL.

version consisted of 2,058 logical circuits, four dual
480-bit dynamic MOS shift register modules, oscillators,
clock drivers, and discrete peripheral circuits. All of
these components were packed on six and one-half 7.5
cm high, 10 cm wide (3” X 4”) printed circuit cards. By
way of comparison, had the PLA version been packaged
on 7.5 cm x 10 cm printed circuit cards instead of the
Augat board, it would have required only 33 of these
cards. The comparison between these two technologies,
SSl/MSI DIP-TL random logic vs LSI array logic,
revealed that the 7 PLAs replaced 1,73 1 logical circuits
or approximately 250 logical circuits per PLA. Of these
1,731 circuits, 48% were combinational logic and 52%
were sequential logic.

Summary
This paper describes a successful PLA design and im-
plementation experience using LSI. The ease with which
a small but relatively complex control unit was imple-
mented is ample evidence that PLA is a practical means
of utilizing LSI. The claims for PLA are consistent
with those noted by other users in the industry [61 and
are due mainly to the following PLA attributes:

PLA exploits the “master chip” approach. PLA real-
izes greater benefits than those obtained by micropro-

IBM J. RES. DEVELOP.

grammed arrays due to integration of both the control
and data path within the PLA.
Documentation is much more compact and easily
understood than in previous designs. The extensive
macro capability allows the establishment of libraries
of tested logic.
PLA design automation procedures match an array-
oriented language, APL, to an array-oriented struc-
ture, PLA, at the same time exploiting the advantages
of the interactive APL language.
From a system point of view, it is notable that the

applicability of the experimental findings is based on the
PLA characteristics themselves and not on either the
technology used (FET) , or the vehicle (7441 TCU) .
On the one hand, bipolar PLA can be applied where
high performance is required; on the other hand, PLA
macro usage provides the key to application-oriented
design in LSI. Since PLA does not separate data path
and control functions, this programming capability can
exploit system design tradeoffs and extensions not
available in traditional designs. The advantages of PLA
increase with LSI complexity; thus, PLA establishes a
growth path to ultra LSI.

Acknowledgments
Special thanks and appreciation go to C. E. Ruoff and
people in departments reporting to him for their efforts
in developing the PLA chips and for their support in
personalizing these chips. The authors also thank M. F.

MARCH 1975

Heilweil for his assistance during the early stages of the
design process, and acknowledge the help of W. D. Ben-
edict and R. B. Battistoni in understanding the TCU and
in other valuable ways.

References and notes
I . J . C. Logue, “Large Scale Integration-Status and Utiliza-

tion,” presented at the Second International Symposium on
Microelectronics, Munich, Germany, October 1966.

2. “IBM 7441-11 1980-9 Buffered Terminal Maintenance
Manual,” Report SY22-6913-1, IBM Corporation, White
Plains, New York, 1972.

3. J . W. Jones, J . F. Sears, and K. G . Taylor, “Associative
Store,” French Patent #2168409.

4. J . W. Jones, “Array Logic Macros,” IBM J . Res. Develop.
19, 120 (1975), this issue.

5 . A. Weinberger, “Functional Memory Using Multistate As-
sociative Cells,” U . S. Patent #3761902.

6. W. N . Carr and J . P. Mize, M O S I LSI Design and Applica-
tion, McGraw-Hill Book Co., Inc., New York 1972.

Received April 3 , 1974

The authors are located at the IBM System Products
Division Laboratory in Poughkeepsie. New York 12602.

119

PLA HARDWARE IMPLEMENTATION

