98

H. Fleisher
L. 1. Maissel

An Introduction to Array Logic

Abstract: After a discussion of the reasons for choosing to implement logic in array form, a detailed description of the nature of array
logic is given. Topics specifically discussed include general array structures and implementation, influence of decoder partitioning,
design of logic arrays, output phase, “split”” variables, feedback in logic arrays, and reconfiguration.

Introduction

Although there will always be a need for logic which
offers the best possible performance regardless of cost,
most logic necessarily falls into either the cost/perfor-
mance class or the low cost/marginal performance class.
Thus, an important aspect of the logic designer’s job
is his constant search for the best possible compromise
between performance and unit cost. The kind of curve
which determines the designer’s decision is illustrated
in Fig. 1. Two important quantities are shown; B, the
base or threshold cost that shifts the curve to the right
or left, and C, the knee of the curve.

In the past, when logic circuits were built of discrete
components, or even from small unit logic blocks such
as NAND or NOR gates, the knee of the curve was fairly
easy to determine. Cost depended directly on the num-
ber of components used and, as it turned out, an average
of three to six units of delay also coincided with a mini-
mum number of circuits. Fewer levels of delay implied a
significant increase in cost whereas adding delay gave
little or no cost improvement. The base of the curve, B,
was also fairly well defined, being determined by such
things as total time spent in design and, to a lesser ex-
tent, by the number of different applications for a given
cluster of logic. Assembly costs were essentially a func-
tion of the number of circuits, whereas the individual
components cost the same in whatever circuits they
happened to be used.

With the advent of large scale integration (LSI) the
factors that determine this cost/performance curve have
begun to change drastically. To begin with, cost must be
considered in terms of total silicon area as opposed to
the number of devices enclosed within that area. This

H. FLEISHER AND L. I. MAISSEL

fact determines the shape of the curve in Fig. 1 but not
its displacement B. The latter is affected by a host of
quantities including manual design time, automated de-
sign costs (DA), etc. In particular, the larger the num-
ber of chips actually manufactured for any given design,
the smaller B becomes. In addition, once chips start to
come off the line, we must consider the cost of testing
them. Finally, as chips get larger their yield goes down
(unless there is some kind of redundancy scheme), and
the possibility of failure in subsequent life also increases
with chip complexity.

The net results of the comments above are that in to-
day’s world we can get good value for our expenditures
only if we make large quantities of any given chip. In
practice, relatively few chips see the kind of widespread
use that is necessary to make their cost really competi-
tive. This arises because of engineering changes that are
associated with design errors as well as with changes in
philosophy as a machine is developed. The problem ex-
tends well past the release date of the machine because
of late improvements, specific customer requirements,
changes in philosophy, etc. This will be particularly true
in the future with the coming emphasis on the translation
of much of what is today’s software into firmware and
the replacement of some of our current firmware with
hardware.

A major attempt to minimize this problem is the so-
called “master slice” approach. In this scheme no chip is
completely unique until after final metallization. Thus,
the chip consists of an assemblage of unit-logic devices
positioned where they are anticipated to be useful to
each other. The final circuit is given its own specific

IBM J. RES. DEVELOP.

“personality” (or pattern of interconnections) via the
top level of metallization. Such an approach is necessarily
wasteful since it is impossible to optimize the placement
of the unit-logic devices to suit all possible future cir-
cuits. This statement is supported by the fact that there
are many master slice types available. These slices, of
course, are then individually personalized into many
more chip types.

Is there, then, any situation in which a single chip,
once designed, receives extended usage? The answer is
‘yes’ if we consider semiconductor memory technology.
It is further worth noting that several features that are
associated with large chips designed for memory are
absent in random logic chips of comparable size. These
include easy testability and redundancy. One therefore
wonders whether some of the distinct advantages that
memory technology enjoys over logic technology might
not be applied to the latter. The intent to do this is a
strong motivation for array logic.

Array logic

In this paper “‘array logic” is defined as the use of mem-
ory-like structures for performing logic. Array logic
should not be confused with cellular or iterative arrays
[1] which have a closer structural relation to master-
slice approaches embodying random logic.

Array logic functions by presenting the bits in the
data path to the memory-like structures as ‘“‘address bits.”
Decoding of this address starts the process whereby a
pre-determined result is extracted from the array. Be-
cause the functions generated by such an array depend
only on the “personality” (i.e., bit content) of the array,
logic can, in principle, be changed at the same rate at
which memory can be written. The idea of performing
logic in this manner is by no means new. Small lookup
tables can be found in many of today’s machines and, in
fact, the IBM 1620 worked in this fashion. We should
also note that microcode, which has now become almost
universal, is a form of lookup table, replacing conven-
tional logic. The switch to microcode was dictated by
considerations of cost rather than performance, as well
as by the high frequency of change involved in the de-
velopment of control logic. The latter is reflected in the
growing popularity of writable control stores.

Array logic is embodied in a memory-like structure
wherein the variables are used as address bits and the
output bits that have been selected are combined to yield
a single bit which is the value of the function stored in
the array for the particular combination of input bits.

An associatively addressed memory array called Func-
tional Memory [2] has been proposed as a substitute
for conventional logic. However, this array had several
deficiencies that become apparent later in this paper.

MARCH 1975

Performance

Unit cost

Figure 1 Cost-performance curve for logic circuits.

We now review some of the reasons why array logic
was, until recently, insufficiently attractive to be widely
adopted and discuss what has changed so as to make this
picture rather different today.

Past problems

1. Arrays were too large to be competitive. With rela-
tively small chips available, the amount of logic that
could be placed on a single array chip was unacceptably
small. This problem was aggravated by the fact that
techniques for minimizing the size of such arrays were
still undeveloped.

2. Array logic was unfamiliar to many logic designers.
Aside from the normal conservatism with which any
new technology is inevitably greeted, array logic could
not offer the tremendous improvement in readability
which made microcode so attractive as a replacement
for hard-wired control logic. If anything, many designers
feared that arrays might be more difficult to interpret
than conventional logic.

3. Array logic was poorly matched with available device
technologies. As already stated, array logic is a memory-
like technology. However, technologies designed and
optimized for memory purposes are not necessarily op-
timized for logic. Thus, for example, writing speed is
equally as important as reading speed for memory; but
for logic, writing is relatively infrequent compared with
reading. Furthermore, the latter must be as fast as possi-
ble whereas writing speed need not be fast at all. In ad-
dition, some arrays are commercially available today in
read-only technologies [3].

4. Although the logic performed by an array logic chip
could easily be modified, this advantage was often offset

99

INTRODUCTION TO ARRAY LOGIC

100

by an associated change in the connections between
chips, sometimes called a “yellow wire” change. It is of
relatively little value to be able easily to change the
function of the array logic chip if this now requires us to
make a time consuming and costly ‘“yellow wire”
change.

Why array logic makes sense today

1. The engineering change problem is going to get
worse. As the amount of logic per chip increases, it is
self-evident that the chance of an engineering change
being associated with that particular chip is going to in-
crease. As the complexity of machines increases and, as
already noted earlier, more and more function is placed
in hardware, it is likely that one might not wish to com-
mit all hardware in a permanent manner. A good analogy
to this is the current emphasis on writable control stor-
age for microcode. Although the control store is not
changed very often, it is changed often enough to make
the rewrite feature advisable.

2. Design techniques for array logic have improved sig-
nificantly. Computation of the personality for an array
logic chip by conventional methods requires a high de-
gree of skill and is very difficult for large arrays that
handle complex functions. Fortunately, a number of new
design aids are now available to ease this burden. These
are discussed in a later section of this paper and have
been considered in more detail by Hong, Cain and
Ostapko [4].

3. Improved device technologies. Higher densities are
currently achievable in semiconductor technologies
ranging from read-only FET to high-speed read/write

Figure 2 Truth table for the two-bit adder.

Truth table

A B C D

0 0 0 0 0 0 0 AB Addend
0 0 0 1 0 0 1 +CD Augend
0 0 1 0 0 1 0

o 0 1 1 o 1 1 K5, Sum
0 1 0 0 0 0 1

0 1 0 1 0 1 0

0 1 1 0 0 1 1

0 1 1 1 1 0 0

1 0 0 0 0 1 0

1 0 0 1 0 1 1

1 0 1 0 1 0 0

1 0 1 1 1 0 1

1 1 0 o 0o 1 1

1 1 0 1 1 0 0

1 1 1 0 1 0 1

1 1 1 1 1 1 0

K S, S,

H. FLEISHER AND L. 1. MAISSEL

bipolar. Read-mostly technologies are approaching feasi-
bility and there are exploratory efforts on the horizon
that will make array logic highly competitive, because
it provides low power and minimum space.

4. Additional interconnection flexibility between arrays
is now possible. This technique will be discussed later.

5. There is evidence that designing in array logic, using
the design aids mentioned in 2 above, materially short-
ens the design cycle. The impact here is clearly econom-
ic as well as providing more flexibility to the designer.

Design of logic arrays

We use the two-bit adder (Fig. 2) as a vehicle to aid us
in the following discussion. The two-bit adder accepts
four input variables A, B, C and D and generates three
outputs S, S, and K, which are the zero-order and first-
order sums and a carry, respectively. Figure 2 shows the
truth table for this piece of logic. One way to implement
this would be in a conventional random access memory.
If the memory were interrogated by some combination of
four bits, the latter information would filter through a
four-bit decoder which would then “find” the correspond-
ing output line in the truth table. This type of table is
limited to small problems because the number of rows
is 2% where N is the number of input variables. For as
few as 16 inputs we would need in excess of 65 000 rows
to contain the full problem.

Each term of the input table is referred to as a min-
term, i.e., an AND function (product term) of all the vari-
ables. The Boolean equation for each output can be ob-
tained as the or of those minterms opposite which there
is a one in the output table. Thus the Boolean expression
for the carry, for example, contains the minterms 0111,
1010, 1011, 1101, 1110, and 1111 which are equiva-
lent to ABCD, ABCD, ABCD, ABCD, ABCD, and
ABCD.

After the usual algebraic manipulations of Boolean
algebra, the three equations for zero- and first-order
sums (S, and §,) and for the carry (K) may be written
as

S,=BD V BD (N

§,=ABC V ABC VACD v ACD VABCD V ABCD:;
(2)

K =AC VABD Vv BCD, (3)

where the symbol V represents the OR operation.

The same information that is stored as shown in Fig. 2
can be stored and accessed in a somewhat different
manner. Instead of having one single decoder where four
inputs expand to 16 rows, we could use four one-input
decoders. Such decoders are sometimes called phase
splitters or true-complement generators. They are illus-

IBM J. RES. DEVELOP.

8

B []I I rl B
B
C | !I 1 lﬁ C
C

I=Inverter

Figure 3 Four one-input decoders.

trated in Fig. 3, which shows that the number of rows
needed for four inputs has been reduced from 16 to
eight. It is clear that as the number of input variables
grows larger, the saving in terms of number of rows be-
comes proportionately greater; as compared with ¥
rows for a conventionally addressed table, this structure
requires 2N rows. For example, for a 16-input problem
the number of rows would be reduced from over 65 000
to only 32.

However, there is a penalty for the tremendous com-
pression obtained in the number of rows. Whereas a
single decoder that accepts all inputs can generate any
function of the input variables in a single column of the
truth table, the one input decoder scheme generates only
simple products of the input variables in a single column.
Some examples are shown in Fig. 4. The function rep-
resented by any given column is obtained by selecting
the appropriate output from each decoder and then
ANDing all of these together. (The output of a decoder
line is a 1 if the line is ON and the personality stored
there is a 1.) For this reason we call this the AND array.
We also note that the personality associated with any
given variable can be (0), (l) or (1). (O> is not nor-

1/°\0 1/°\0
mally used, but it can be interpreted as an “inhibit™ value
assigned to the variable, because it forces that column
to be 0 independently of the other variables. In the case
1 ,
1) we have a DON'T
CARE situation for that particular variable. This is
functionally equivalent to eliminating the variable in a
Boolean simplification operation because, with personality

where the personality (or state) is (

(}) stored, the variable will not influence the AND op-

. . 0
eration for that column. Similarly, () corresponds to

1
1
x=1, and (0> corresponds to x = 0.

The neutral word “column” was used in the paragraph
above to identify the group of bits containing the logic

MARCH 1975

a w »
Ao Hle 1o
o — oo —
o ool =ul lo
—_ = o] |~

[U:I
=16)
| e
o |-

BD
ABC
ABCD

Figure 4 Some functions that can be generated in a single
word by one-input decoders.

function. Note that in the case of a conventional truth-
table the “column” of the text is mapped into a bit
column of a word-addressed memory. On the other hand,
the “column” of the partitioned array, regardless of the
partitioning, is mapped into a word column, by exten-
sion of the use of “word” in identifying the readout of
an associatively addressed memory.

Most functions are represented by the or of several
product terms, so the one-input decoder array requires,
in general, a second array that ors the various product
terms together to obtain the desired function. This sec-
ond array is referred to as an or-array or or-box.

Bearing this structure in mind, we can illustrate the
“mapping” of a two-bit adder into a table based on this
structure. This is shown in Fig. 5. To simplify the rep-
resentation of information in the AND box, we adopt the

following formalism: a 0 corresponds to the (é) state

Figure 5 Mapping the two-bit adder into an array addressed
through one-input decoders.

In] Outt In|
A B C D

AA4ABBCCDD KS S ABCD
BD 11011110 1 1 0
BD 1 110 1 101 1 0 1

ABC 1 0 1 0 0 1 1 1 1 0 0 1

ABC 0 1 1 0 1 0 1 1 1 1 00
ACD 1 0 1 1 0 1 1 0 1 0 1 0
ACD 0 1 11 1 010 1 1 00
ABCD 1 0 0 1 1 0 0 1 1 0101
ABCD 0 1 0 1 0 1 0 1 1 1 1 1 1

AC 01110111 1 1 1
ABD 0 1 0 1 1 1 0 1 1 11 1
BCD 1 1 01 0 1 0 1 1 1 11
Actual bit personality of Equivalent
the AND array representa-

tion of the

bit pattern

shown at

the left

101

INTRODUCTION TO ARRAY LOGIC

102

Two-input decoder approach

In Out
AC BD K 8 S
BDVBD 0 1 1 0 1
(ACVAC)(BVD) o 1t 1 o]t 1 1t 0 1
(ACVAC)BD 1 00 1o o o 1 1
(Ave)BD [0 1t 1|0 0 0 1 1
Ac [0 0 o0 1 1
AND array OR array

(Two-bit adder)

Input decoders drive “cells” as follows:

XY

Figure 6 Mapping the two-bit adder into an array addressed
through two two-input decoders.

in Fig. 4, a 1 corresponds to the (?) state, and a blank

. 1
(in the AND array) corresponds to the < 1) Or DON’T CARE

0
because the output of the word concerned would always
be zero. The 1’s stored in the or-box show which prod-
uct terms stored in the AND-array are to be ored to
generate the required functions. Note that a blank in the
OR-box does not mean DON’T CARE. Instead, it means
that no connection is made from the corresponding AND
gate to the OR gate.

Ignoring for the moment the or-box (on the right in
Fig. 4), we note that each term in Egs. (1) - (3) that de-
fines the three output functions of the two-bit adder has
been generated in an AND array table of 88 bits. If we now
add the 33 bits of the or-box we have a total of 121 bits,
compared to only 48 bits that were needed to do the job
in the conventional table lookup scheme shown in Fig. 2.
Even so, this way of storing the information does have
two important advantages. First, the totality of one-input
decoders is considerably cheaper than a single large
decoder. This cost spread becomes greater with a larger
number of input variables. Second, inspection of Fig. 5
also shows that the original Boolean expressions which
were used to generate the array personality are easily
read out again. In other words, the personality for such

0 . . .
state. Note that the () state here is assigned no meaning

H. FLEISHER AND L. I. MAISSEL

an array is readily generated by a simple one-to-one
translation of the Boolean expression directly into
the table. The advantages of this may not be apparent
in the current example, but for large problems (i.e.,
many variables) this is important because the generation
of the full truth table is something which would be very
difficult for the logic designer to do. These reasons ex-
plain why one-input decoder arrays of this type are be-
coming increasingly popular, several versions being
commercially available [3].

s Partitioning of inputs

Returning now to the Boolean equations for the two-bit
adder, we observe that Eqs. (2) and (3) can be factored
as shown below.

§,=(ACVAC) - (BVD) V(AC VAC) - BD (4)

K=A4ACV ((A4VC) -BD (5)

Equations (1), (4), and (5) show that we have been able
to express each product term as products of functions of
the variables 4 and C only or of variables B and D only.

This observation suggests that we might be able to
derive some benefit by using only two decoders, rather
than four, and feed variables 4 and C into one decoder
and variables Band D into the other [5]. Using a format
similar to that of Fig. 5, we map the factored Boolean
expressions of Egs. (1), (4), and (5) into the table
shown in Fig. 6. (A blank here represents a DON'T CARE
or 1111.) As in Fig. 5, we AND the personality bits se-
lected by each decoder; these results in turn are pre-
sented to the or-box. It is apparent that by using the
two-input decoders (as opposed to the one-input
decoders) the total number of decoder outputs has not
been changed, but the number of words (rows in this
example) has been reduced from 11 to five. Thus, in-
cluding the or-box, the total bit count has been reduced
to 55, an amount nearly comparable to the table lookup
case but still with the advantage of lower cost decoders.

The question arises as to whether the saving achieved
here through the use of two-input decoders is universal
or merely a special case for this particular example.
Might not one-bit decoders prove to be superior in other
cases? This is best answered by reference to Fig. 7
which compares the maximum and minimum number of
bits needed to implement any function of 16 variables as
a function of the bits per decoder or, conversely, the
number of decoders. The or-box is not included in the
count. For simplicity, we consider only symmetric parti-
tioning, although in principle there is no reason why the
decoders should ali be of equal size.

The maximum and the minimum number of bits need-
ed to express any function addressed through a single
decoder (table lookup case) are the same and are equal

IBM J. RES. DEVELOP.

220 220
AR o188 L
216 216
214 L\ 214
212 - 212 -
) Q1o L Jlo
B B g
= 20 5 27
2 g
E 26 b -E 26 L
5
z 2 | | I = 2 | | L
1 2 4 8 16 1 2 4 8 16
Number of decoders Number of decoders
16 8 4 2 1 16 8 4 2 1
Bits per decoder Bits per decoder

Figure 7 Maximum and minimum number of bits needed to
implement any function of 16 variables as a function of decoder
size.

to 2'°. For any other partition, however, the discrepancy
between the minimum and maximum number of possible
bits can be very great. We also note that the maximum
possible is 2*° (& 10%) for the one-input decoder case
whereas the minimum, 2° = 32, is the same for both the
two-input and one-input cases. (See Appendix A.) This
latter observation is quite general so it follows that we
can never lose (in terms of bit count) by going to two-
input decoders and may, of course, gain significantly.
The identity in minimum bit count for one-bit and two-
bit decoders results from the fact that two one-bit decod-
ers provide the same number of output lines as one two-
bit decoder.

Thus, for many functions, the number of bits required
for their implementation varies drastically as a function
of the partitioning that is used. An example of this is the
EXCLUSIVE OR whose dependence on the choice of de-
coder partitioning is illustrated in Fig. 8. This particular
example was chosen because the numbers concerned are
readily calculable from first principles. (See Appendix
B.) For this particular case a minimum bit count is ob-
tained when four decoders of four inputs each are used.
The choice of partitioning can be critical because, in this
example, the result varied from a minimum of 2° bits,
through 2'® bits for table lookup, to 2°° bits for the case
of one input per decoder.

Other factors influencing minimization of arrays
o Choice of correct output phase

Let us return for a moment to the Boolean expressions
for the two-bit adder. The carry K and the first order

MARCH 1975

Figure 8 Number of bits needed to implement the EXCLUSIVE
or of 16 variables as a function of number of bits per decoder.

sum §, were given in Eqs. (3) and (4), respectively. One
form of the complement of the expression for K is

K= (ACVAC) - (BVD)VAC. (6)
It is immediately apparent that, by choosing the comple-
ment of the carry, we can express it so that it contains a
term which also appears in the expression for the first
order sum.

Thus, still using the partition 4, C — B, D, we can map
the two-bit adder into the array as shown in Fig. 9. This
reduces the total bit count needed to implement a two-
bit adder to 44, a figure that is actually less than for the
table lookup case; in addition, we have the saving in the
cost of the decoders.

e Sharing of output columns

We note in Fig. 9 that a row of the or-box contains
more than a single 1. Thus, in this example, the third
word, representing the function (4C VAC) - (B VD), is
shared by two outputs, the carry complement and the
first order sum. In general, any minimization technique
must seek to take advantage of the possible sharing of
words between outputs [6]. This implies that we cannot
afford to generate personality separately for each output
but must consider the total problem for all the outputs at
one time. The minimization techniques to which we re-
fer later are all of this type.

o Split variables

To this point we have assumed that each variable ap-
pears at one and only one decoder, although we have not
restricted the size of these decoders. It is, however, also

INTRODUCTION TO ARRAY LOGIC

103

In Out

AC BD K 8 S
BDVBD 0 1 1 0 1
(ACVAC)BD 1 0 0 110 0 0 1 1
(ACVAC)(BVD) o 1 1 0 1 1 1 0 1{1
AC |1 0 0 0 1
AND array OR array

(Two-bit adder)

Figure 9 Mapping the two-bit adder into an array addressed
through two two-input decoders but with the carry term com-
plemented.

BVACVBC

A
AB AC

(AvBy(Ave) | o 1 1 1 1 1 0 1

Figure 10 Minimization of a three-variable function by in-
creasing effective number of variables to four, one of which
appears twice.

In

AB
CD 00 01 10 11 A B C D
00 1 1 0 1 0 ¢
01 1 0 0 0
10 0 1 1 1
" ! <:><> 10 U1 pont
1 1 1 1 CAREs
DON'T
CAREs

Figure 11 A function of four-variables containing three min-
terms and two DON’T CARE min-terms.

Figure 12 Array implementation of function in Fig. 11 using
only the min-terms.

In Out

(ABvAB)CD| 0 1 1 01 0o 0 o

AB(CDvVCD)| 0 1 0 0 1 0 0 t

AB CcD

(ABVAB)(CDbveb)yl 0 1 1 0|1 0 0 1

Figure 13 Array implementation of the function in Fig. 11 in-
cluding one of the DON’T CARE min-terms.

possible that the same variable may be used as input to
more than one decoder. It is not often that the addition
of another variable to the problem actually leads to a
smaller result, but such situations can arise. For exam-
ple, consider the expression

AB Vv AC V BC
which, by suitable factoring, becomes
(AVB)-(AVC).

By using two decoders, one accepting inputs 4, B and
the other accepting inputs 4, C, this function maps into
a single word (as shown in Fig. 10) for a bit count in the
AND array of eight. Any other arrangement of decoders
(e.g. AB, C) requires at least two words to implement
the function for a bit count of at least 12.

The reason the split variable method can be powerful
is that it creates a large number of DON’T CARE min-
terms. These are minterms about which we don’t care
whether or not they appear in any particular output.
These minterms DON’T CARE are not to be confused with
input variable DON’T CARE. As an example of the latter,
in a function of 4, B, and C, if we have the term AB, we
say that C is a DON'T CARE since the function does not
depend on the value of C.

* Maximum use of minterm DON’T CARES

Usually when an engineer is formulating his logic design
he writes down those input conditions for which certain
outputs must be at 1 and it is tacitly assumed that for all
other input conditions the outputs must be at 0. How-
ever, more detailed analysis can often show that there
are many input conditions which are really DON’T CARES
for certain outputs and the more of these that can be list-
ed by the engineer, the better will be the minimization
that can be obtained. The significance of these poN’T
CARE conditions is that the minterms to which they cor-
respond need not be accounted for when a solution to
the problem is being generated. On the other hand, the
availability of a DON'T CARE may make it possible to
generate a word that would otherwise not be possible.
We illustrate this in Fig. 11 where we show a function of
four variables, partitioned 4B, CD, which comprises

!

104 three minterms and two DON’T CARE minterms. In the

H. FLEISHER AND L. I. MAISSEL IBM J. RES. DEVELOP.

absence of the DON'T carREs we would need two words
to express the function as shown in Fig. 12, whereas by
choosing to use one of the DON’T CAREs, we are now
able to generate the one-word solution shown in Fig. 13.

Physical implementation of logic arrays

In terms of what has been said so far, a logic array re-
quires, in addition to the decoding function, a means for
storing bit personality, a means for ANDing decoder out-
puts within each word and, finally, a means for oring the
results of these AND operations. This simplest way of
implementing the AND and OR operations is shown in
Fig. 14, where the bit personality is symbolically shown
as opens and shorts (zeros and ones, respectively). Sig-
nals from various decoder lines of different partitions
are thus driven down to the inverters (1) that lie just
before the or-box. A single short (logical one) is suffi-
cient to power a word line and, because the signal is then
inverted, this is seen to be logically equivalent to ANDIng
the complements of the outputs from the individual de-
coders (DeMorgan’s rule).

For a read-only store the switches are readily imple-
mented almost as shown in Fig. 14 but for read /write
logic the ideal element to perform the job of these
switches (directly as shown) is not yet available. The
next best thing is a small memory cell which serves to
latch each intersection to either O or 1. By also placing
an AND gate at each intersection the same net effect as
the switch and diode pairs of Fig. 14 is achieved. This
device is illustrated in Fig. 15. An approximation to the
ideal switch that is available at this time is found in
MNOS technology where the switch could be replaced
by the channel region of the MNOS device, as shown in
Fig. 16.

In all cases, the additional circuitry needed to change
the switches whenever desired adds to the total circuitry
on the chip. We may also observe that in certain tech-
nologies (notably FET) a zero (short) may be a pre-
ferred state for the device because no voltage appears
across the gate under this condition, whereas a device in
the one (open) state has the potential for failure in the
future. Hence minimization programs designed to give
the maximum number of zeros in the minimum solution
are desirable, and such techniques have been developed
[4]. Conversely, in other technologies we might want
just the reverse, and this can be done as well. For exam-
ple, in an ideal technology such as that shown in Fig. 14,
we still have to face the problem of loading in the vari-
ous lines as current is drawn through them. In such a
case the lower the number of ones stored in the array,
the less will be the loading and hence the greater the
speed. We may also note that techniques for doing dot
ANDIing and thus eliminating the need for an inverter
step are also possible.

MARCH 1975

W

Decoders
[
|
__
[
/ / Wl

el
o

g L 5153
/ / S, 83V 5,8,
7 /

Figure 14 Idealized implementation of the AND and OR oper-
ations in a logic array.

P =two-state memory cell

A = AND gate

N OO P —

Figure 15 Use of small memory cells and an AND gate at each
intersection to implement a logic array.

<

From decoders

MNOS
G / device
ate

To OR box

Figure 16 Use of MNOS devices to implement array logic.

Other possible candidates for array logic are CMOS
(Complementary MOS) and chalcogenide-type bistable
resistors. 105

INTRODUCTION TO ARRAY LOGIC

106

In — Decoder AND array

OR box — Out

Figure 17 The three basic “‘boxes” of a logic array.

Personality changes and their effect on interactions
between chips
To recapitulate, a logic array consists of three main
sections as shown in Fig. 17. These are the decoder, the
AND array and the or-box. Up to this point we have
assumed that decoding is done with conventional cir-
cuits. For example, each variable, as it comes in, is split
into true and complement forms. The signals from these
lines are then combined through a group of AND gates,
providing an output line for each possible combination
of values of the input variables.

There are several disadvantages to a conventional
(fixed) decoder of this type:

1. As we have already noted, optimization of a given
function or set of functions depends on the correct
choice of partitioning. If, because of the fixed decoder,
the partitioning is pre-committed, the number of func-
tions that a given chip can be made to store may be lim-
ited.

2. When one logic array drives several others, the vari-
ables emerging from one array may be in a different or-
der (permutation) from that required to input a second
or third array. In this case, extra hardware must be in-
terposed to obtain flexibility of interconnection.

3. If a failure should occur inside the decoder itself, the
entire logic array is useless.

4. It is clear that if we have spare words present in the
AND and or arrays, we can deactivate a word line that
contains bad bits and substitute one of the spares. How-
ever, this procedure would be wasteful if the bits were to
lie along the same decoder line. We would then have to
disable one word for every bad bit. It would be prefera-
ble if we could also have a few spare decoder lines. This
option is not possible with a fixed decoder.

To eliminate these disadvantages it has been proposed
to replace the conventional (fixed) decoder with an ar-
ray decoder of the type shown in Fig. 18, building it

H. FLEISHER AND L. I. MAISSEL

from the same technology as the principal arrays them-
selves [7]. In the example shown in Fig. 18 the three
variables A, B, C, are partitioned into (4, B) and C.
Because it has been constructed from an array, this de-
coder can have several spare lines and the decoder out-
puts can be generated in any arbitrary order. For example,
by simple personalization change we can interchange the
AB and the C output lines without disturbing the order,
A, B, C, in which the inputs enter the decoder.

Major disadvantages of this type of decoder might be
that it is slower than a conventional decoder and it might
use more space on the chip. However, as shown in Fig.
19, with the array decoder one could drive many other
array chips without worrying about any changes in per-
mutation since the variables coming in to a chip will
always be in the same order. Furthermore, through the
OR-box, we can permute the emerging variables into the
same order.

By repersonalizing the decoder, we could, if we chose,
use it to implement a conventional random access mem-
ory or an associative memory. Thus, in a system con-
taining a large number of array chips where we might
want some local storage, we would be able to use array
logic technology directly to make these small local
memories.

Feedback in logic arrays

Most pieces of logic involve considerable feedback, ei-
ther within or between various blocks of combinational
logic. In the former case, a considerable saving in chip
pads can be achieved if the feedback is performed on the
chip itself. In the most general case we would like to
have the freedom to feed any signal from the or-box
back into the decoder. This can be done through a
“feedback box” which is simply another or-box located
in the empty quadrant that can be seen in Fig. 17. To
avoid race conditions, a register is placed between the
OR-box and the feedback box to allow the gating of sig-
nals. \A possible chip layout of this type is shown in
Fig. 20.

In some commercially available array logic chips,
feedback on the chip is hard-wired so that some of the
outputs are permanently committed to being fed back.
Also, hardware exists where, instead of an intervening
register, each output that is fed back goes through a
four-state (J-K) flip-flop. This arrangement has the ad-
vantage of storing the state of each output line rather
than requiring it to be regenerated on each cycle, but it
is somewhat more expensive.

Reconfiguration

We have thus far argued for array logic on the basis of
significantly lower cost as a trade-off for a moderate
drop in performance. There is, also, a unique feature of

IBM J. RES. DEVELOP.

1 0 0 1 0 0 I AB
1 0 1 0 0 0 1 AB
0 0 0 0 0 1

— _...____.____________..._.________}____.

Figure 18 Personalized decoder.

array logic in that it can be changed in situ. Thus, in the-
ory, we could store the personalities for a large number
of logic arrays on a suitable medium (such as, for exam-
ple, a Direct Access Storage Device (DASD)) and, as
needed, write these into a machine that has been built
with a relatively small number of chips.

Such an idea is reminiscent of the cache in a two-level
memory, but we must bear in mind that the usefulness of
the paging concept, which the memory cache embodies,
depends on any given page being resident in the cache
for time periods that are on the average substantially
longer than the time needed to write a page into the
cache. At the present state of the computer art it would
be difficult to fulfill the equivalent condition for stored or
virtual logic. However, we should bear in mind that
many operations are currently performed in a highly
sequential manner using a relatively small number of
logic blocks. The latter are used in virtually all opera-
tions that the machine performs and it is only the se-
quencing that changes (under microprogram control)
from one operation to the next.

As improvements in LSI allow us to use increasingly
larger chips, it will become possible to reduce the extent
to which various operations have to be performed as a
series of small steps. This, in turn, will reduce the extent
to which the same logic blocks can be shared by dif-
ferent sequences and virtual logic will provide a viable
alternative, particularly under multiprogramming or
time-sharing conditions where time spent in reconfigur-
ing will not mean time lost to the CPU.

MARCH 1975

A
In Out < In Out
B
B
XPS g In Out
(a)
A
In Out g In Out
A
B In Out
C
(b)

Figure 19 Array logic chips with personalized decoders can
drive several other similar chips without requiring an intermedi-
ate cross-point switch. (a) Conventional arrangement; (b)
same logic with personalized decoders.

20 inputs / Chip boundary

I e a
I “ e
Phase splitters
{
i 40 36
|
: Personalized 4 AND
decoder £ array 64
| Phase splitters Inverters
50
l T Feedback) OR array
14 o
| l OR array
L e
5856 OR bits 12 outputs

100 inverters
80 phase splitters
24 registers

Figure 20 A chip layout with built-in, but alterable, feed-back.

Appendix A: Calculation of minimum and maximum
number of bits needed to implement functions of
16 variables as a function of decoder size

The plots of minimum and maximum numbers of bits in
the AND array needed to implement a function are illus-
trated in Fig. 7 for 16 variables, and show extreme

107

INTRODUCTION TO ARRAY LOGIC

108

Table 1 Total number of bits needed to implement a 16-input
EXCLUSIVE OR.

No. Inputs Total
of per number of
decoders decoder bits in AND array
1 16 2'* = 65,536
2 8 2 = 1024
4 4 2’ =512
8 2 22 = 4096
16 1 2% = 1,048,576

cases. That is, some functions of 16 variables will map
into the minimum curve, some functions of 16 variables
will map into the maximum curve, and the remainder
will map into the space between the min- and max-
curves,

Because we have restricted ourselves to symmetric
partitioning, it is clear that if we have n variables and
p parts (decoders), we will have v = n/p variables per
part (decoder). The number of output lines from each
decoder then becomes 2° = 2"”, Therefore, the number
of bits per column, B, , becomes
B, =p-2"=p2""
Tabulating B, for n = 16, and p ranging fromp=1top
= 16, we have

P B min
1 216
2 2°
4 2°
8 2°

16 2°

B, plotted as a function of p, is shown as the lower
curve of Fig. 7.

To obtain the plot of the maximum number of bits
required to map a function, we must characterize the so-
called “worst case” functions. Such functions, when
mapped into an array of a given partitioning will require
the maximum number of columns. These columns must
have a different bit pattern in each partition when com-
pared with bit patterns in the same partition for all other
columns needed to implement the function.

For example, consider 16 variables partitioned into
two groups of eight variables each. In this case, p = 2,
and B, = 2°. We can visualize any function of 16 vari-

H. FLEISHER AND L. I. MAISSEL

ables being mapped into a Karnaugh map of 256 rows
and 256 columns, with a “worst case” function being
identified as having a different bit pattern in each of the
256 columns and rows of the Karnaugh map. Since each
column of the Karnaugh map maps into a column of the
AND array, it is clear that a “worst case” function of 16
variables, partitioned into p = 2, will require 256 col-
umns at 512 bits per column. This may be written in
power of two notation as 2° X 2°=2" - 26,

We continue this analysis for p = 4, 8, and 16, and
write the general expression:

B =P 2"

This is tabulated below for n = 16, and plotted as the
upper curve in Fig. 7.

P B

[« W ST N S R

Appendix B: Calculation of the number of bits
needed to implement the excLusive oR function of
16 variables as a function of decoder size

The EXCLUSIVE OR function may be stated as follows:
The function has value 1 iff an odd number of inputs
each have value 1. Because this must be true indepen-
dently of partitioning, we must examine what effect, if
any, partitioning the variables will have on mapping the
EXCLUSIVE OR into an array.

For p = 1 (16 inputs into a single decoder), the Ex-
CLUSIVE OR maps into a single bit column of 2 (=
65K) bits. For p= 16 (1 input per decoder), the num-
ber of columns needed is 2*°, since there are 2'° min-
terms in the canonical formulation of the 16 variable
EXCLUSIVE OR. For this part, each column contains 2°
bits of storage, so the total number of bits needed for
mapping the function in this array is 2° X 2'> = 2*° bits.

It is clear that the EXCLUSIVE OR function is a “worst
case’”’ function for one input per decoder partitioning.

When we examine the other parts (eight inputs per
decoder, four inputs per decoder, and two inputs per
decoder), we note that we can use the structure of the
function to determine its mapping into these arrays.

Thus for eight inputs per decoder, we need two decod-
ers for the 16 inputs. Because the function is symmetric,
the inputs may be arbitrarily grouped: (x, «--- X,),
(Xg "+ X,6). We can then write the EXCLUSIVE OR Of 16
variables as XOR(16) = XOR(x, " ** X;) * XOR(X," - - X;¢) V
XOR(x, "+ * - xg) * XOR(x, " - - x,.). Each half of the right
hand side of this equation is mapped into a single column

IBM J. RES. DEVELOP.

of the two-decoder driven array, and the function is ob-
tained by oring the two outputs. Since each column con-
tains 512 = 2° bits, the total number of bits needed is 2 -
2° = 2'° = 1024 bits. The argument used above can be
readily extended to the other array configurations; for
the four decoder driven array, the number of columns
required is eight. Since there are 64 = 2° bits per col-
umn, the total number of bits is 2° X 2° = 2° = 512, For
the eight decoder driven array, we need 128 = 2" col-
umns. With 2° bits per column, we get 2° - 27 = 2= 4096
bits as the total number of bits. The results are tabulated
in Table 1.

References
1. W. H. Kautz, “Programmable Cell Logic,”” Recent Develop-
ments in Switching Theory, Academic Press, Inc., New
York, 1971, Chap. 1X.
2. P. L. Gardner, “Functional Memory and its Micropro-
gramming Implications,” Technical Report TR 12.091. 1BM
Corporation, Poughkeepsie, New York, 1970.

MARCH 1975

3. W. N. Carr and J. P. Mize, MOS /LSI Design and Applica-
tions, Texas Instruments Electronics Series, McGraw-Hill
Book Company, Inc., New York, 1972.

4. S. J. Hong, R. G. Cain, and D. L. Ostapko, “MINI: A
Heuristic Approach for Logic Minimization,” IBM J. Res.
Develop. 18, 443 (1974).

5. H. Fleisher, A. Weinberger, and V. Winkler, “The Writable
Personalized Chip,” Comput. Des. 9, No. 6,59 (1970) and
H. Fleisher, A. Weinberger, and V. Winkler, “Partitioning
Logic Operations in a Generalized Matrix System,” U.S.
Patent #3,593,317, July 13, 1971.

6. H. Fleisher and L. 1. Maissel, ‘“‘Reconfigurable Machine,”
IBM Technical Disclosure Bulletin, IBM Corporation,
Armonk, New York, March 1974.

7. S. Y. H. Su and D. L. Dietmeyer, “Computer Reduction
of Two-level, Multiple Output Switching Circuits,” /EEE
Trans. Comput. C-18, 58 (1969).

Received January 17, 1974

The authors are located at the IBM System Products
Division Laboratory, Poughkeepsie, New York 12602.

109

INTRODUCTION TO ARRAY LOGIC

