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An Introduction to Array  Logic 

Abstract: After a discussion of the reasons  for  choosing to implement logic in array form. a detailed description of the nature of array 
logic is given. Topics  specifically discussed include  general array structures and implementation,  influence of decoder partitioning, 
design of logic arrays, output phase, “split” variables, feedback in logic arrays, and reconfiguration. 

Introduction 
Although there will always be  a  need for logic which 
offers the  best possible performance  regardless of cost, 
most logic necessarily  falls  into either  the  cost/perfor- 
mance class  or  the low cost/marginal performance class, 
Thus,  an  important  aspect of the logic designer’s job 
is his constant  search  for  the  best possible  compromise 
between performance and unit cost. The kind of curve 
which determines  the designer’s decision is illustrated 
in Fig. 1. Two important  quantities are  shown; B, the 
base  or threshold cost  that shifts the  curve  to  the right 
or left,  and C,  the  knee of the curve. 

In  the  past, when logic circuits were built of discrete 
components,  or  even from small unit logic blocks  such 
as NAND or NOR gates,  the knee of the  curve was fairly 
easy to determine. Cost  depended directly on  the num- 
ber of components used and,  as it turned out,  an  average 
of three  to six units of delay also coincided  with a mini- 
mum number of circuits.  Fewer levels of delay implied a 
significant increase in cost  whereas adding  delay  gave 
little or  no  cost improvement. The  base of the  curve, B, 
was also fairly well defined, being determined by such 
things as total  time  spent in design and,  to a lesser ex- 
tent, by the  number of different applications for a given 
cluster of logic. Assembly costs were  essentially  a func- 
tion of the number of circuits, whereas  the individual 
components  cost  the  same in whatever circuits  they 
happened to be used. 

With the  advent of large scale  integration (LSIj  the 
factors  that  determine this cost/performance  curve  have 
begun to  change drastically. To begin with, cost must  be 
considered in terms of total silicon area  as  opposed  to 

98 the number of devices  enclosed within that  area.  This 

fact  determines  the  shape of the curve in Fig. I but  not 
its displacement B. The  latter is affected by a host of 
quantities including manual design time, automated  de- 
sign costs  (DA  j,  etc.  In particular, the larger the num- 
ber of chips  actually  manufactured for any given design, 
the smaller B becomes. In addition, once chips start  to 
come off the line, we must consider  the  cost of testing 
them.  Finally, as chips get larger  their yield goes  down 
(unless  there is some kind of redundancy scheme  j,  and 
the possibility of failure in subsequent life also  increases 
with chip  complexity. 

The net results of the  comments  above  are that in to- 
day’s world we can  get  good  value for  our  expenditures 
only if we make large quantities of any given chip. In 
practice, relatively few  chips see  the kind of widespread 
use  that is necessary  to make their  cost really competi- 
tive. rhis  arises  because of engineering changes  that  are 
associated with design errors  as well as with changes in 
philosophy as a  machine is developed. The problem ex- 
tends well past  the  release  date of the machine because 
of late  improvements, specific customer  requirements, 
changes in philosophy, etc.  This will be particularly true 
in the  future with the coming emphasis on  the translation 
of much of what is today’s  software  into  firmware and 
the replacement of some of our  current firmware with 
hardware. 

A  major attempt  to minimize this  problem is the so- 
called “master slice” approach.  In this scheme  no chip is 
completely  unique until after final metallization. Thus, 
the chip consists of an assemblage of unit-logic devices 
positioned where they are anticipated to be useful to 
each  other.  The final circuit is given its  own specific 
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“personality” (or  pattern of interconnections) via the 
top level of metallization. Such an approach is necessarily 
wasteful since it is impossible to optimize the placement 
of the unit-logic devices to suit all possible future cir- 
cuits. This  statement is supported by the  fact  that  there 
are many master slice types available. These  slices, of 
course,  are then individually personalized into many 
more  chip types. 

Is there,  then, any  situation in which a single chip, 
once designed,  receives extended usage? The  answer is 
‘yes’ if we consider semiconductor memory  technology. 
It is further worth  noting that several features  that  are 
associated with large chips  designed for memory are 
absent in random logic chips of comparable size. These 
include easy testability and redundancy. One  therefore 
wonders  whether some of the distinct advantages  that 
memory technology  enjoys over logic technology might 
not be  applied to  the latter. The  intent  to  do this is a 
strong  motivation for  array logic. 

Array logic 
In this paper  “array logic” is defined as the use of mem- 
ory-like structures  for performing logic. Array logic 
should  not be confused with cellular or iterative arrays 
[ I ]  which have a closer structural  relation to master- 
slice approaches embodying  random logic. 

Array logic functions by presenting the bits in the 
data path to  the memory-like structures  as  “address bits.” 
Decoding of this address  starts  the  process whereby  a 
pre-determined  result is extracted from the  array. Be- 
cause  the functions  generated by such  an  array depend 
only on the “personality”  (i.e., bit content) of the  array, 
logic can, in principle,  be  changed at  the  same  rate  at 
which memory  can be written. The idea of performing 
logic in this  manner is by no means  new. Small lookup 
tables can be  found in many of today’s  machines and, in 
fact,  the IBM 1620 worked in this  fashion.  We  should 
also note  that microcode, which has now  become  almost 
universal, is a form of lookup table, replacing conven- 
tional logic. The switch to microcode  was  dictated by 
considerations of cost  rather than performance,  as well 
as by the high frequency of change  involved in the de- 
velopment of control logic. The  latter is reflected in the 
growing popularity of writable  control stores. 

Array logic is embodied in a  memory-like structure 
wherein the variables are used as  address bits and  the 
output bits that have  been  selected are combined to yield 
a single bit which is the value of the  function  stored in 
the  array  for  the particular  combination of input  bits. 

An associatively addressed memory array called Func- 
tional Memory [2] has been  proposed as a substitute 
for conventional logic. However, this array had several 
deficiencies that become apparent  later in this  paper. 
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Figure 1 Cost-performance  curve  for  logic  circuits. 

We  now  review  some of the  reasons why array logic 
was, until recently, insufficiently attractive  to be widely 
adopted  and  discuss  what  has changed so as  to make  this 
picture rather different today. 

Past problems 
1. Arrays were too large to be competitive. With rela- 
tively small chips  available, the  amount of logic that 
could be placed on a single array  chip was  unacceptably 
small. This problem  was  aggravated by the  fact  that 
techniques  for minimizing the size of such  arrays were 
still undeveloped. 

2 .  Array logic was unfamiliar to many logic designers. 
Aside from the normal conservatism with which any 
new  technology is inevitably greeted,  array logic could 
not offer the tremendous improvement in readability 
which made  microcode so attractive  as a replacement 
for hard-wired  control logic. If anything,  many  designers 
feared  that  arrays might be more difficult to  interpret 
than  conventional logic. 

3. Array logic was  poorly  matched with available  device 
technologies. As already stated,  array logic is a  memory- 
like technology. However, technologies  designed and 
optimized for memory purposes  are not necessarily  op- 
timized for logic. Thus,  for  example, writing speed is 
equally as  important  as reading  speed for  memory; but 
for logic, writing is relatively  infrequent compared with 
reading. Furthermore,  the  latter must be as  fast  as possi- 
ble whereas writing speed  need  not  be  fast at all. In ad- 
dition,  some arrays  are commercially  available today in 
read-only  technologies [ 3 1. 
4. Although the logic performed by an  array logic chip 
could easily be modified, this advantage was  often offset 99 
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by an  associated  change in the  connections  between bipolar.  Read-mostly  technologies are approaching  feasi- 
chips, sometimes called a “yellow  wire”  change. It is of bility and there  are  exploratory efforts on  the horizon 
relatively little value to be able easily to  change  the  that will make  array logic highly competitive, because 
function of the  array logic chip if this now requires us to it provides low power and minimum space. 
make a time  consuming  and  costly “yellow wire” 
change. 4. Additional  interconnection flexibility between arrays 

is now possible. This technique will be discussed later. 

Why  array logic makes  sense today 
1.  The engineering change problem is going to  get 
worse.  As  the  amount of logic per chip increases, it is 
self-evident that  the  chance of an engineering change 
being associated with that particular  chip is going to in- 
crease.  As  the complexity of machines increases  and,  as 
already  noted earlier, more  and  more  function is placed 
in hardware, it is likely that  one might not wish to  com- 
mit all hardware in a permanent  manner.  A good analogy 
to this is the  current  emphasis  on writable control  stor- 
age for microcode.  Although the  control  store is not 
changed  very often, it is changed  often  enough to make 
the  rewrite  feature advisable. 

2. Design  techniques  for  array logic have improved sig- 
nificantly. Computation of the personality for  an  array 
logic chip by conventional methods requires a high de- 
gree of skill and is very difficult for large arrays  that 
handle  complex  functions. Fortunately, a  number of new 
design  aids are now available to  ease this burden.  These 
are  discussed in a later section of this paper and have 
been  considered in more  detail by Hong,  Cain  and 
Ostapko [4]. 

3. Improved  device technologies. Higher  densities  are 
currently  achievable in semiconductor technologies 
ranging from read-only FET to high-speed read/write 

Figure 2 Truth table for the two-bit adder. 

Truth table 

A B C D  

0 0 0 0  0 0 0 AB Addend 
0 0 0 1  0 0 1 +CD Augend 
0 0 1 0  0 1 0  
0 0 1 1  0 1 1  

” 

K S , S ,  Sum 

0 1 0 0  0 0 1  
0 1 0 1  0 1 0  
0 1 1 0  0 1 1  
0 1 1 1  1 0 0  
1 0 0 0  0 1 0  
1 0 0 1  0 1 1  
1 0 1 0  1 0 0  
1 0 1 1  1 0 1  
1 1 0 0  0 1 1  
1 1 0 1  1 0 0  
1 1 1 0  1 0 1  
1 1 1 1  1 1 0  

100 K S I  So 

5. There is evidence  that designing in array logic, using 
the design  aids  mentioned in 2 above, materially short- 
ens  the design  cycle. The  impact  here  is clearly  econom- 
ic  as well as providing more flexibility to  the designer. 

Design of logic arrays 
We  use the two-bit adder  (Fig. 2 )  as a  vehicle to aid us 
in the following discussion. The two-bit adder  accepts 
four input  variables A ,  B ,  C and D and  generates  three 
outputs So,  SI and K ,  which are  the  zero-order and first- 
order  sums  and a carry, respectively.  Figure 2 shows  the 
truth table for this  piece of logic. One way to implement 
this would be in a  conventional  random access memory. 
If the memory  were  interrogated by some combination of 
four bits, the  latter information would filter through a 
four-bit decoder which would then “find” the  correspond- 
ing output line in the  truth table. This  type of table is 
limited to small problems because  the number of rows 
is 2N where N is the number of input  variables. For as 
few as 16 inputs we would need in excess of 65 000 rows 
to contain the full problem. 

Each  term of the input  table is referred to  as a min- 
term, i.e., an AND function (product  term) of all the vari- 
ables. The Boolean equation  for  each  output can  be ob- 
tained as  the OR of those minterms opposite which there 
is a one in the  output table. Thus  the Boolean  expression 
for  the  carry,  for example, contains  the minterms 01 1 1 ,  
1010, 1011, 1101, 1110, and 1 1 1 1  which are equiva- 
lent  to ZBCD,  AFCD,  ABCD,  ABCD,  ABCD, and 
ABCD. 

After  the usual algebraic  manipulations of Boolean 
algebra, the  three  equations  for zero- and first-order 
sums (So and SI) and for  the  carry ( K )  may be  written 
as 

S , = B D V B D  ( 1 )  

(2) 
SI = ABC V ABC V ACD V ACf i  V ABED V ABCD; 

K = AC V ABD V BCD, (3)  

where  the symbol V represents  the OR operation. 
The  same information that is stored  as shown in Fig. 2 

can be stored  and  accessed in a somewhat different 
manner. Instead of having one single decoder  where  four 
inputs expand to 16 rows, we could  use four one-input 
decoders. Such decoders  are sometimes called phase 
splitters or true-complement generators.  They  are illus- 
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Figure 3 Four one-input decoders. 

trated in Fig. 3, which shows  that  the number of rows 
needed for  four  inputs  has been  reduced from 16 to 
eight. It is clear that as  the number of input  variables 
grows  larger, the saving in terms of number of rows be- 
comes proportionately greater;  as  compared with 2N 
rows  for a conventionally addressed  table, this structure 
requires 2 N  rows. For example, for a  16-input  problem 
the number of rows would be  reduced  from over 65 000 
to only 32. 

However,  there  is a  penalty for  the  tremendous com- 
pression  obtained in the number of rows. Whereas a 
single decoder  that  accepts all inputs  can  generate any 
function of the input  variables in a single column of the 
truth table, the  one  input  decoder  scheme  generates only 
simple products of the input  variables in a single column. 
Some  examples  are  shown in Fig. 4. The function  rep- 
resented by any given  column is obtained by selecting 
the  appropriate  output from each  decoder and  then 
ANDing all  of these together. (The  output of a decoder 
line is a 1 if the line is ON and the personality stored 
there  is a 1 .) For this reason we call this the AND array. 
We also  note  that  the personality  associated  with any 

given  variable  can be ( y ) ,  (i) or (:). ( 3  is not  nor- 

mally used,  but it can be interpreted  as  an “inhibit”  value 
assigned to  the variable, because it forces  that column 
to be 0 independently of the  other variables. In  the  case 

where  the personality (or  state) is we  have a DON’T 

CARE situation for  that particular  variable. This  is 
functionally  equivalent to eliminating the variable in a 
Boolean simplification operation because, with personality 

(i) stored,  the variable will not influence the AND op- 

eration for  that column.  Similarly, corresponds  to 

x = 1, and (i) corresponds  to x = 0. 

The neutral word “column”  was  used in the paragraph 
above  to identify the  group of bits  containing the logic 

(3 

(? 

c 11 01 11 
I I 

01 11 11 
A T I  

I c 0 1  11 0 1  
B T I  I I 

1 1  n l  1 1  

c o  
D 

1 1 

1 1 0 
T 

BP 
“B“ 
ABCD 

Figure 4 Some  functions that can be  generated in a single 
word by one-input  decoders. 

function. Note  that in the  case of a conventional truth- 
table  the “column” of the  text is mapped into a bit 
column of a  word-addressed  memory. On  the  other  hand, 
the “column” of the partitioned array, regardless of the 
partitioning, is mapped into a word column,  by  exten- 
sion of the  use of “word” in identifying the  readout of 
an associatively addressed memory. 

Most functions are  represented by the OR of several 
product  terms, so the one-input decoder  array requires, 
in general, a second array  that ORS the various product 
terms  together  to  obtain  the  desired function. This  sec- 
ond  array is referred to  as  an  oa-array  or OR-box. 

Bearing this structure in mind, we can  illustrate the 
“mapping” of a two-bit adder  into a  table  based on this 
structure.  This is shown in Fig. 5 .  To simplify the rep- 
resentation of information in the AND box,  we  adopt  the 

following formalism: a 0 corresponds  to  the (i) state 

Figure 5 Mapping the two-bit  adder  into an array  addressed 
through  one-input  decoders. 

rn4 OutT In4  

A B C D  

A A  B B  F C  b D  K S, So 
- 
- BD 1 1 0 1 1 1 1 0  1 
” BD 1 1 1 0 1 1 0 1  1 
ABC 1 0 1 0 0 1 1 1  
A B C O 1 1 0 1 0 1 1  

1 
1 

XCD 1 0 1 1 0 1 1 0  1 
A ~ ~ O I l I I O I O  1 
A B C D I O O  I I 0 0  I 1 
ABCDO I O  I O  1 0  1 1 
AC 0 1 1 1 0 1 1 1  1 
ABD 0 1 0 1 1 1 0 1  1 
BCD 1 1 0 1 0 1 0 1  1 

Actual bit  personality of 
the AND array 

A B C D  
1 0  
0 1  

0 0  1 
1 0 0  
0 1 0  
1 0 0  
0 1 0 1  
1 1 1 1  
1 1  
1 1  1 

1 1 1  
Equivalent 
representa- 
tion of the 
bit pattern 
shown at 
the left 101 
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BD v ED 

(ACVAC)(BV6) 

(ACVAC)BD 

( A  V C )  BD 

AC 

Two-input decoder approach 

In o u t  

1 t 
AC BD K SI so 

AND array OR array 
(Two-bit adder) 

Input decoders drive “cells” as follows: 

X Y  

Figure 6 Mapping the two-bit adder into an array addressed 
through two two-input decoders. 

in Fig. 4, a 1 corresponds  to  the  state,  and a blank 

(in  the AND array)  corresponds  to  the  or DON’T CARE 

state.  Note  that  the  state  here is assigned no meaning 

because  the  output of the word concerned would always 
be zero. The 1’s stored in the  oa-box  show which prod- 
uct terms  stored in the AND-array are  to be oaed  to 
generate  the required  functions. Note  that a blank in the 
oa-box  does not mean DON’T CARE. Instead, it means 
that  no connection is made from  the corresponding AND 

gate  to  the OR gate. 
Ignoring for  the moment the  oa-box (on the right in 

Fig. 4), we note  that  each term in Eqs. ( 1 )  - (3 )  that  de- 
fines the  three  output functions of the two-bit adder  has 
been generated in an A N D  array  table of 88 bits. If we now 
add the 33 bits of the OR-box we have a total of 121 bits, 
compared to only 48 bits that  were needed to  do  the  job 
in the conventional table lookup scheme shown in Fig. 2.  
Even so, this way of storing the information does  have 
two  important  advantages.  First,  the totality of one-input 
decoders is considerably cheaper  than a single large 
decoder.  This  cost  spread  becomes  greater with a larger 
number of input  variables. Second, inspection of Fig. 5 
also shows  that  the original Boolean expressions which 
were  used to  generate  the  array personality are easily 

((3 
(1) 

( 3  

102 read out again. In  other  words,  the personality for  such 
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an  array is readily generated by a simple  one-to-one 
translation of the Boolean expression  directly into 
the table. The  advantages of this may not be apparent 
in the  current  example,  but  for large problems  (i.e., 
many  variables)  this is important  because  the generation 
of the full truth  table is something which would be very 
difficult for  the logic designer to  do.  These  reasons ex- 
plain why one-input decoder  arrays of this type  are be- 
coming increasingly  popular,  several  versions being 
commercially  available [ 31. 

Partitioning of inputs 
Returning  now to  the Boolean equations  for  the two-bit 
adder, we observe  that  Eqs. (2) and (3)  can be factored 
as shown  below. 

S ,  = ( A C   V A C )  . (BV 0) V (Ac V A C )  . B D  (4) 

K = A C V ( A V C ) , B D  ( 5 )  

Equations ( 1 )  , (4), and (5) show  that  we  have been able 
to  express  each  product  term as products of functions of 
the variables A and C only or of variables B and D only. 

This  observation suggests that we might be  able to 
derive some benefit by using only two  decoders,  rather 
than  four,  and feed  variables A and C into one  decoder 
and variables Band D into the  other [ 5 ] .  Using  a format 
similar to  that of Fig. 5 ,  we map the  factored Boolean 
expressions of Eqs. ( l ) ,  (4), and ( 5 )  into  the  table 
shown in Fig. 6. (A  blank here  represents a DON’T CARE 

or 1 1 1 1.) As in Fig. 5, we AND the personality  bits  se- 
lected by each  decoder;  these results in turn  are pre- 
sented  to  the  oa-box.  It  is  apparent  that by using the 
two-input decoders  (as  opposed  to  the one-input 
decoders)  the  total number of decoder  outputs  has  not 
been changed,  but  the  number of words  (rows in this 
example)  has been  reduced  from 11 to five. Thus, in- 
cluding the  oa-box,  the total bit count  has been  reduced 
to 55, an  amount nearly comparable  to  the  table lookup 
case  but still with the  advantage of lower cost  decoders. 

The question arises  as  to  whether  the saving  achieved 
here through the  use of two-input decoders is universal 
or merely a  special case  for this  particular  example. 
Might not one-bit decoders  prove  to be superior in other 
cases?  This  is  best  answered by reference  to Fig. 7 
which compares  the maximum and minimum number of 
bits  needed to implement any function of 16 variables as 
a function of the bits per  decoder  or,  conversely,  the 
number of decoders.  The  oa-box is not  included in the 
count. For simplicity, we consider only  symmetric  parti- 
tioning,  although in principle there is no  reason why the 
decoders should all be of equal size. 

The maximum and  the minimum number of bits  need- 
ed  to  express  any function addressed through a single 
decoder  (table lookup case)  are  the  same  and  are equal 
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1 2 4 8 16 

Number of decoders 

16 8 4 2 I 

Bits per decoder 

Figure 7 Maximum and minimum number of bits needed to 
implement any function of 16 variables as a  function of decoder 
size. 

to 216. For any other partition, however,  the  discrepancy 
between the minimum and maximum number of possible 
bits can be  very great. We also  note  that  the maximum 
possible is 2" (m lo6) for  the one-input decoder  case 
whereas  the minimum, 25 = 32, is the  same for both  the 
two-input  and  one-input cases.  (See Appendix A.)  This 
latter  observation is quite  general so it follows that  we 
can never lose  (in terms of bit count) by going to two- 
input decoders  and  may, of course, gain significantly. 
The identity in minimum bit count  for one-bit and two- 
bit decoders  results  from  the  fact  that  two one-bit decod- 
ers provide the  same  number of output lines as  one two- 
bit decoder. 

Thus,  for many functions, the number of bits  required 
for their  implementation  varies  drastically as a function 
of the partitioning that is used. An example of this is the 
EXCLUSIVE OR whose dependence  on  the  choice of de- 
coder partitioning is illustrated in Fig. 8. This particular 
example  was chosen  because  the  numbers  concerned  are 
readily calculable  from first principles. (See Appendix 
B.)  For this  particular case a minimum bit count is ob- 
tained when four  decoders of four inputs  each are  used. 
The  choice of partitioning can be critical because, in this 
example, the result  varied  from  a minimum of 2' bits, 
through 216 bits for  table  lookup,  to 2" bits for  the  case 
of one input per  decoder. 

Other factors influencing minimization of arrays 

Choice of correct output  phase 
Let us return  for a moment to  the Boolean expressions 
for  the two-bit adder.  The  carry K and the first order 
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1 2 4 8 16 

Number of decoders 

16 8 4 2 1 

Bits per decoder 

Figure 8 Number of bits  needed to implement the EXCLUSIVE 
OR of 16 variables as a function of number of bits per  decoder. 

sum S, were  given in Eqs. (3) and (4), respectively. One 
form of the complement of the  expression  for K is 
- 
K =  ( A C V X C )  . (ZVD) V A c  (6) 

It is immediately apparent  that, by choosing the comple- 
ment of the  carry, we can  express it so that it contains a 
term which also  appears in the  expression  for  the first 
order sum. 

Thus, still using the partition A ,  C - B ,  D, we can map 
the two-bit adder  into  the  array  as shown in Fig. 9. This 
reduces  the total  bit count needed to implement a two- 
bit adder  to 44, a figure that is actually less  than  for  the 
table lookup case; in addition, we have  the saving in the 
cost of the decoders. 

Sharing of output  columns 
We  note in Fig. 9 that a  row of the  oa-box  contains 
more  than  a single 1. Thus, in this example,  the third 
word, representing the function (AC  VAC) . ( B  V D), is 
shared by two  outputs,  the  carry complement  and the 
first order sum. In general, any minimization technique 
must  seek to  take  advantage of the possible  sharing of 
words between outputs [6]. This implies that we cannot 
afford to  generate personality  separately for  each  output 
but  must consider  the total  problem for all the  outputs  at 
one time. The minimization techniques to which we re- 
fer  later  are all of this  type. 

" " 

Split variables 
To this  point we have  assumed  that  each variable ap- 
pears  at  one and  only one  decoder, although we  have not 
restricted  the size of these  decoders.  It  is,  however,  also 103 
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1 t 
o u t  

A C   B D  K s, Sn 
” 

1 

1 

1 1  

1 

OR array 
(Two-bit adder) 

Figure 9 Mapping the two-bit adder  into  an  array  addressed 
through two two-input decoders but  with  the carry  term corn- 
plemented. 

In AB v AC V B C  

1 t 
A B   A C  

Figure 10 Minimization of a three-variable  function by in- 
creasing  effective number of variables to  four,  one of which 
appears twice. 

00 01 10 11 

1 0 0 0  

0 1  1 1  

’ ’ DON’T 
1 1 1 1 

DON’T 
CARES 

Figure 11 A  function of four-variables  containing three rnin- 
terms  and  two DON’T CARE min-terms. 

Figure 12 Array implementation of function in Fig. 11 using 
only the min-terms. 

In out 

1 t 

In Out 

1 t 
( A B  V AB)  (7‘Lj V C D )  -1 a 

Figure 13 Array implementation of the function in Fig. 11 in- 
cluding one of the DON’T CARE min-terms. 

possible that  the  same variable may be  used as input to 
more  than one decoder. It is not often that  the addition 
of another variable to  the problem  actually  leads to a 
smaller result, but such situations can  arise.  For exam- 
ple,  consider  the  expression 

AB V A C  V B C  

which, by suitable  factoring, becomes 

( A   V B )  . (2 V C ) .  

By using two  decoders,  one accepting  inputs A ,  B and 
the  other accepting inputs A ,   C ,  this  function  maps into 
a single word (as  shown in Fig. 10) for a bit count in the 
AND array of eight. Any  other arrangement of decoders 
(e.g. AB, C )  requires  at  least two words  to implement 
the function for a bit count of at  least 12. 

The reason the split  variable  method  can  be  powerful 
is that it creates a large number of DON’T CARE min- 
terms. These  are minterms about which we don’t care 
whether or not they  appear in any  particular  output. 
These minterms DON’T CARE are not to be  confused with 
input  variable DON’T CARE. As  an example of the  latter, 
in a function of A ,   B ,  and C ,  if we have  the term AB, we 
say that C is a DON’T CARE since the function does not 
depend  on  the value of C .  

Maximum  use of minterm DON’T CARES 

Usually when an engineer is formulating his logic design 
he writes down  those input  conditions for which certain 
outputs must  be at 1 and it is tacitly assumed  that  for all 
other input  conditions the  outputs must  be at 0. How- 
ever, more  detailed  analysis can often  show that  there 
are many input conditions which are really DON’T CARES 

for certain outputs  and  the more of these  that  can be list- 
ed by the  engineer,  the  better will be the minimization 
that  can  be  obtained.  The significance of these DON’T 

CARE conditions is that  the minterms to which  they cor- 
respond  need not be accounted  for when a solution to 
the problem is being generated.  On  the  other  hand,  the 
availability of a DON’T CARE may make it possible to 
generate a word that would otherwise  not be  possible. 
We illustrate  this in Fig. 1 1 where  we show  a  function of 
four variables,  partitioned AB,   CD,  which comprises 
three minterms  and two DON’T CARE minterms. In  the 
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absence of the DON'T CARES we would need two words 
to  express  the function as shown in Fig. 12, whereas by 
choosing to  use  one of the DON'T CARES, we are now 
able  to  generate  the one-word  solution  shown in Fig. 13. 

Physical  implementation of logic arrays 
In  terms of what  has been  said so far, a logic array  re- 
quires, in addition to  the decoding function, a means  for 
storing bit personality,  a means  for ANDing decoder  out- 
puts within each word and, finally, a  means for oRing the 
results of these AND operations. This simplest  way of 
implementing the AND and OR operations is shown in 
Fig. 14, where  the bit personality is symbolically shown 
as  opens  and  shorts  (zeros and ones,  respectively). Sig- 
nals from  various decoder lines of different  partitions 
are  thus driven  down to  the  inverters (1) that lie just 
before the OR-box. A single short (logical one) is suffi- 
cient to power  a word line and,  because  the signal is then 
inverted, this is seen to be logically equivalent to ANDing 
the  complements of the  outputs from the individual de- 
coders  (DeMorgan's  rule). 

For a  read-only store  the switches are readily imple- 
mented  almost as shown in Fig. 14 but for  read/write 
logic the ideal element to perform the  job of these 
switches  (directly as  shown) is not yet available. The 
next  best thing is a small memory cell which serves  to 
latch each intersection to  either 0 or 1 .  By also placing 
an AND gate at  each intersection the  same  net effect as 
the switch and diode  pairs of Fig. 14 is achieved. This 
device is illustrated in Fig. 15. An approximation to  the 
ideal switch that is available at this  time is found in 
MNOS technology where  the switch  could be replaced 
by the channel region of the MNOS device,  as shown in 
Fig. 16. 

In all cases,  the additional  circuitry  needed to  change 
the switches whenever desired adds  to  the total  circuitry 
on  the chip.  We may also  observe  that in certain  tech- 
nologies (notably FET) a zero  (short) may be a pre- 
ferred  state  for  the  device  because  no voltage appears 
across  the  gate  under this  condition, whereas a  device in 
the  one  (open)  state  has  the potential for failure in the 
future.  Hence minimization programs  designed to give 
the maximum number of zeros in the minimum solution 
are desirable, and  such techniques have been  developed 
[4]. Conversely, in other technologies we might want 
just  the  reverse, and  this  can be done  as well. For exam- 
ple, in an ideal technology such  as  that shown in Fig. 14, 
we still have  to  face  the problem of loading in the vari- 
ous lines as  current is drawn through them.  In  such a 
case  the  lower  the  number of ones  stored in the  array, 
the  less will be the loading and hence  the  greater the 
speed. We may also note  that techniques for doing dot 
ANDing and thus eliminating the need for  an  inverter 
step  are  also possible. 
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Figure 14 Idealized implementation of the AND and OR oper- 
ations in a logic array. 
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P = two-state memory cell 

A = A N D  gate 

Figure 15 Use  of small memory cells and an AND gate at each 
intersection to implement a logic array. 

V 

From decoders : t T I  

+ 
To OR box 

Figure 16 Use of MNOS devices to implement array logic. 

Other possible candidates  for  array logic are  CMOS 
(Complementary MOS) and  chalcogenide-type  bistable 
resistors. 105 

INTRODUCTION TO ARRAY LOGIC 



AND array 

from the  same technology as  the principal arrays them- 
selves [ 7 ] .  In  the example shown in Fig. 18 the  three 
variables A ,  B ,  C ,  are partitioned  into ( A ,  B )  and C .  
Because it has  been  constructed  from  an  array, this de- 
coder  can  have  several  spare lines  and the  decoder out- 
puts  can be generated in any  arbitrary order. For example, 
by simple  personalization change  we  can interchange the 

r""" 1 
I 
I I 

i I 
L"""-l i A B  and  the c output lines without disturbing the  order, 

Major disadvantages of this type of decoder might be 
that it is slower than a conventional  decoder  and it might 
use more space  on  the chip. However,  as shown in Fig. 
19, with the  array  decoder  one could drive many other 
array chips  without  worrying about  any  changes in per- 
mutation  since the variables  coming in to a chip will 
always  be in the  same  order.  Furthermore, through the 

OR box Out A ,  B ,  C ,  in which the inputs enter  the  decoder. 

Figure  17 The  three  basic "boxes" of a logic array. 

Personality changes and their effect on interactions 
between chips 
To recapitulate,  a logic array  consists of three main 
sections  as shown in Fig. 17. These  are  the  decoder,  the 
AND array  and  the OR-box. Up  to this  point we have 
assumed that decoding is done with conventional cir- 
cuits. For example, each variable, as it comes  in, is split 
into  true  and complement  forms. The signals from  these 
lines are  then combined  through a group of AND gates, 
providing an output line for  each possible  combination 
of values of the input  variables. 

There  are several  disadvantages to a conventional 
(fixed) decoder of this type: 

1 .  As we have already noted, optimization of a given 
function or  set of functions  depends  on  the  correct 
choice of partitioning.  If, because of the fixed decoder, 
the partitioning is pre-committed, the  number of func- 
tions that a given  chip can  be  made  to  store may be lim- 
ited. 
2.  When one logic array  drives several others,  the vari- 
ables  emerging  from one  array may be in a different or- 
der  (permutation) from that required to input a second 
or third array.  In this case,  extra  hardware must be in- 
terposed  to obtain flexibility of interconnection. 
3. If a failure  should occur inside the  decoder itself, the 
entire logic array is useless. 
4. It is clear  that if we have  spare  words  present in the 
AND and OR arrays, we can  deactivate a word line that 
contains  bad bits and  substitute  one of the  spares.  How- 
ever, this procedure would be  wasteful if the bits  were to 
lie along the  same  decoder line. We would then have  to 
disable one word for  every  bad bit. It would be prefera- 
ble if we could  also have a few spare  decoder lines. This 
option is not  possible with a fixed decoder. 

To eliminate these disadvantages it has been  proposed 
to replace the conventional (fixed)  decoder with an  ar- 
ray decoder of the  type shown in Fig. 18, building it 106 
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orebox, we can  permute  the emerging  variables into  the 
same  order. 

By repersonalizing the  decoder, we could, if we chose, 
use it to implement  a  conventional  random access mem- 
ory  or  an  associative memory. Thus, in a system con- 
taining a large number of array  chips  where we might 
want some  local storage, we would be  able  to  use  array 
logic technology  directly to make these small local 
memories. 

Feedback in logic arrays 
Most pieces of logic involve  considerable feedback, ei- 
ther within or between  various blocks of combinational 
logic. In  the  former  case, a  considerable  saving in chip 
pads  can be achieved if the  feedback is performed on  the 
chip itself. In  the most  general case we would like to 
have  the  freedom to feed  any signal from  the OR-box 
back into  the  decoder.  This  can be done through  a 
"feedback box" which is simply another  oa-box located 
in the  empty  quadrant  that  can  be  seen in Fig. 17. TO 
avoid race conditions,  a  register is placed between  the 
OR-box and  the  feedback  box  to allow the gating of sig- 
nals. .A possible  chip  layout of this type is shown in 
Fig. 20. 

In  some commercially  available array logic chips, 
feedback  on  the chip is hard-wired so that  some of the 
outputs  are permanently  committed to being fed  back. 
Also, hardware  exists  where, instead of an intervening 
register, each  output  that is fed  back  goes  through  a 
four-state (J-K) flip-flop. This arrangement has  the ad- 
vantage of storing the  state of each  output line rather 
than requiring it to be  regenerated on  each  cycle, but it 
is somewhat more  expensive. 

Reconfiguration 
We have  thus  far argued for  array logic on  the basis of 
significantly lower  cost  as a trade-off for a moderate 
drop in performance. There  is,  also, a unique feature of 
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Figure 18 Personalized decoder. 

array logic in that it can  be  changed in situ. Thus, in the- 
ory, we could store  the personalities for a large number 
of logic arrays  on a  suitable medium (such  as,  for exam- 
ple, a Direct  Access Storage Device (DASD))  and,  as 
needed, write these  into a machine that  has been built 
with a relatively small number of chips. 

Such an idea is reminiscent of the  cache in a two-level 
memory, but we must bear in mind that  the usefulness of 
the paging concept, which the memory cache embodies, 
depends  on  any given page being resident in the  cache 
for time  periods that  are  on  the  average substantially 
longer  than the time  needed to write  a page into  the 
cache.  At  the  present  state of the  computer  art it would 
be difficult to fulfill the equivalent  condition for  stored  or 
virtual logic. However,  we should bear in mind that 
many operations  are  currently performed in a highly 
sequential manner using a relatively small number of 
logic blocks. The  latter  are used in virtually all opera- 
tions that  the machine  performs  and it is only the se- 
quencing that changes (under microprogram control) 
from one  operation  to  the next. 

As improvements in LSI allow us to  use increasingly 
larger chips, it  will become possible to  reduce  the  extent 
to which various operations  have  to be  performed as a 
series of small steps.  This, in turn, will reduce the  extent 
to which the  same logic blocks can be  shared  by dif- 
ferent  sequences and virtual logic will provide a viable 
alternative, particularly under multiprogramming or 
time-sharing  conditions where time spent in reconfigur- 
ing  will not  mean  time lost  to  the CPU. 
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Figure 19 Array logic chips with personalized decoders  can 
drive several other similar chips without  requiring  an  intermedi- 
ate cross-point  switch. (a) Conventional  arrangement; (b) 
same logic with personalized decoders. 
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Figure 20 A chip layout with built-in,  but  alterable,  feed-back. 

Appendix A: Calculation of minimum and maximum 
number of bits needed to implement functions of 
16 variables as a function of decoder size 
The plots of minimum and maximum numbers of bits in 
the AND array needed to implement a function are illus- 
trated in Fig. 7 for 16 variables, and  show  extreme 107 
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Table 1 Total number of bits needed to implement a 16-input 
EXCLUSIVE OR. 

No. Inputs  Total 
of Per 

decoders decoder 
number of 

bits in AND array 
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1 
2 
4 
8 

16 

16 

4 
8 

2 
1 

216 = 65,536 
2’’ = 1024 
2’ =512 
2” = 4096 
2*’ = 1,048,576 

cases.  That  is,  some  functions of 16 variables will map 
into  the minimum curve,  some functions of 16 variables 
will map into  the maximum curve,  and  the remainder 
will map into  the  space  between  the min- and max- 
curves. 

Because  we  have  restricted  ourselves to symmetric 
partitioning, it is clear  that if we  have n variables  and 
p parts  (decoders),  we will have u = n / p  variables per 
part  (decoder).  The  number of output lines from  each 
decoder then  becomes 2” = 2””. Therefore,  the  number 
of bits per column, Bmin, becomes 

Bmin = p * 2” = p2”’”. 

Tabulating Bmin for n = 16, and p ranging from P = 1 to P 
= 16, we  have 

P Bmin  

1 216 
2 29 
4 26 
8 25 

16 25 

Bmin, plotted as a  function of p ,  is shown as  the  lower 
curve of Fig. 7. 

To obtain the plot of the maximum number of bits 
required to map a function,  we must characterize  the so- 
called “worst  case” functions. Such  functions, when 
mapped into  an  array of a given partitioning will require 
the maximum  number of columns. These columns  must 
have a different bit pattern in each partition when  com- 
pared  with bit patterns in the  same partition for all other 
columns needed  to implement the function. 

For example,  consider 16 variables  partitioned into 
two  groups of eight variables each. In this case, p = 2,  
and Bmin = 2’. We  can visualize  any function of 16 vari- 

ables being mapped into a Karnaugh  map of 256 rows 
and 256 columns, with a “worst  case” function being 
identified as having a different bit pattern in each of the 
256 columns and  rows of the Karnaugh map. Since  each 
column of the Karnaugh map  maps into a column of the 
AND array,  it is clear  that a “worst  case” function of 16 
variables, partitioned into p = 2 ,  will require 256 col- 
umns  at 512 bits per column. This may be  written in 
power of two notation as X 2’ = 2l 216. 

We  continue  this  analysis  for p = 4, 8, and 16, and 
write the general expression: 

Bmax = p - 2”. 

This is tabulated below for n = 16, and plotted as  the 
upper  curve in Fig. 7. 

P Bmax 

1 216 
2 217 
4 218 
8 219 

16  220 

Appendix B: Calculation of the number of bits 
needed to implement the EXCLUSIVE OR function of 
16 variables as a function of decoder size 
The EXCLUSIVE OR function may be stated  as follows: 
The function has  value 1 if an  odd  number of inputs 
each  have value 1.  Because this  must  be true indepen- 
dently of partitioning, we must  examine what effect, if 
any, partitioning the variables will have  on mapping the 
EXCLUSIVE OR into  an  array. 

For p = 1 ( 16 inputs into a single decoder),  the EX- 

CLUSIVE OR maps  into a single bit column of 216 (= 
65K) bits. For p = 16 ( 1  input  per  decoder),  the num- 
ber of columns  needed is 215, since there  are 215 min- 
terms in the canonical  formulation of the 16 variable 
EXCLUSIVE OR. For this part,  each column contains 25 
bits of storage, so the  total  number of bits needed for 
mapping the function in this array is 25 x 215 = 2” bits. 

It is clear  that  the EXCLUSIVE OR function is a “worst 
case” function for one input per  decoder partitioning. 

When we examine the  other  parts (eight  inputs per 
decoder,  four  inputs  per  decoder,  and  two  inputs  per 
decoder), we note  that we can use the  structure of the 
function to  determine its  mapping into  these  arrays. 

Thus  for eight inputs  per  decoder, we need two decod- 
ers  for  the 16 inputs.  Because the function is  symmetric, 
the  inputs may be  arbitrarily  grouped: (x1 . . . xs), 
( xg . . . . xlJ .  We  can  then  write  the EXCLUSIVE OR of 16 
variables as XOR( 16) = XOR(X; . . xs) X O R ( X ~ .  . . x16) V 
XOR(X, . . . x s )  . X O R ( X ~ .  . . . x l J .  Each half of the right 
hand side of this equation is mapped into a single column 
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of the two-decoder driven  array,  and  the function is ob- 
tained by oRing the two outputs.  Since  each column con- 
tains 5 12 = 2’ bits, the total number of bits  needed is 2 . 
2’ = 21° = 1024 bits. The argument  used above  can be 
readily extended  to  the  other array  configurations; for 
the four decoder driven array, the  number of columns 
required is eight.  Since there  are 64 = 26 bits per col- 
umn,  the total  number of bits is 23 X 26 = 2’ = 512. For 
the eight decoder  driven  array,  we need 128 = 27 col- 
umns. With Z5 bits per column, we get 2‘ . z7= 212 = 4096 
bits as the total  number of bits. The  results  are  tabulated 
in Table 1. 
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