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Composite Priority Queue 

Abstract: This paper presents formulas for calculating waiting time for customers in a queue with combined  preemptive and head-of- 
line (nonpreemptive) priority  scheduling  disciplines and  describes  the reasoning  behind them. This work  has been  applied in the  de- 
velopment of programmable  terminal  control  units. 

Introduction 
The  development of programmable terminal control 
units has  created  the need  for a new priority  queuing 
model, one taking into consideration both  preemptive 
and  head-of-line  priority  relationships  between devices 
and programming tasks. As  concurrent service demands 
occur,  extended waiting delays  and service  times are 
experienced by low priority demands.  The effect of higher 
priority demands  on  the mean and  standard deviation of 
response time at a particular  demand point is presented 
here. 

Previous  work  on priority queues  has been done by 
Cobham [ 1 1 ,  Gaver [2], Takacs [3], Chang [4], Jaiswal 
[ 51, and Herzog [ 61. Our model is an  adaptation of pre- 
emptive  and head-of-line priority queues, combining the 
separate  results  into a composite. 

In  this  paper  the model is first characterized, and  then 
the mathematics is developed using heuristic  reasoning. 
Finally, an example is presented  applying the model to 
a typical control  unit configuration. 

Mathematical description 
Suppose  that  customers of different  priorities are arriving 
at a counter in accordance with  a Poisson  process of 
density A. The  customers  are served by a single server 
in order of priority and  for  each priority in order of arriv- 
al. Each priority consists of two  parts: 

1 .  Preemptive-resume If a customer of higher preemp- 
tive  priority arrives when a customer of lower  preemp- 
tive  priority is being served,  the  server  interrupts  the 
current  service  and immediately starts serving the 
customer of higher  priority. The service of the  cus- 

78 tomer of lower priority is resumed when  no more cus- 

tomers of higher preemptive priority are  present in the 
system. The  server  is busy as long as there  are  cus- 
tomers in the system. There  are II levels of such pre- 
emptive  priority. 

2. Head-of-line  (nonpreemptive) Within each preemp- 
tive priority level, m classes of customers  have head- 
of-line priority with respect  to  each  other. If a cus- 
tomer of higher head-of-line priority arrives when a 
customer of lower priority is being served,  the  server 
does not interrupt  the  current service, as long as both 
customers  have  the  same preemptive  priority  level. 
At  the completion of the  current service, the  server 
chooses  the  customer  who arrived first among the 
customers with highest head-of-line priority  present 
in the  system. 

This  composite priority scheme is diagrammed in 
Fig. 1. 

It is convenient  to  assume  that a customer with a small- 
er priority number  has  precedence  over a customer with 
a greater priority  number. Accordingly, a customer in the 
jth head-of-line priority class within the ith preemptive 
priority level has priority number ij. The following nota- 
tion is used. Let 

h i j  = arrival rate of customers with priority  number ij 
Ai = ZJE1 Akj, aggregated  arrival rate of customers 

down to and including the ith preemptive priority 
level (A, = A) 

wi j  = mean service time for a customer of priority num- 
ber i j  

wij(')  = rth  moment of service time with priority num- 
ber 8. Here,  as well as below, the first moment 

T. W. GAY  AND P. H. SEAMAN IBM J. RES. DEVELOP. 



is denoted by omission of the  superscript.  Thus, 

aiir) = A," E:=, ;:l A k j  wkj"),  rth moment of aggregated 
service  times down  to  and including the ith pre- 
emptive priority level 

p . .  = hij w i j ,  utilization of the  server  due  to  customers 
of priority number i j  

U i j  = Xt:l pkz + p,,utilization of the  server  due 
to all customers  down  to  the ith preemptive pri- 
ority level, including those in the ith level across 
to  and including thejth head-of-line class. 

(1) - w . .  = w . . .  
I J  

2 3  

We wish to  determine  the total  time in the  system  ex- 
perienced by a customer of priority number ij. This time 
consists of a wait for  service, followed by the  service 
itself, subject to interruptions. The first and second mo- 
ments of these quantities are defined as: 

Wij = mean wait time for a customer of priority num- 
ber ij 

Wijr2) = second  moment of wait time  with  priority num- 
ber i j  

Tij = mean  service  time for a customer of priority 
number ij, extended by interruptions  due  to 
higher priority customers 

Tijr2' = second  moment of extended  service  time with 
priority  number i j  

Q i j  = mean  time in system  for a customer of priority 
number ij 

p i  je = variance of time in system  for a customer of pri- 
ority  number ij. 

The service  time is independent of the preceding  wait 
time. Therefore,  the  two  can be simply combined to de- 
termine the total  time in the system. The mean and vari- 
ance resulting  from  this  convolution would be, 

1- " '  A C  A- 

Head of line classes 

Figure 1 Composite priority scheme. 

2. A customer is affected by one  set of priority classes 
during his wait  time  and another  set during  service, 
so these periods must  be  treated separately. However, 
because wait and service times remain independent 
of each  other, they may be simply combined,  as  is 
done in Eqs. ( 1 ) and ( 2 ) .  

3. During the wait time of a customer with  priority num- 
ber ij, all arrivals in preemptive  levels above him (i.e., 
less  than i)  appear simply as arrivals to  an additional 
head-of-line priority  class above him (say  classj=O). 
While it is true  that this  additional  priority class is 
preemptive instead of nonpreemptive, this  affects only 
the  order of service of the  customers  ahead of cus- 
tomer ij, not the length or number of services. As 
far  as  customer i j  is concerned, his wait is the  same 
regardless of whether  the  arrivals with priority greater 
than his are preemptive or nonpreemptive. This was 
pointed out by Gaver [2]. 

4. During the  service time of a customer of priority num- 
ber ij, delays  are  caused by interruptions due  to arriv- 
als in preemptive priority  levels above him (i.e., less 
than i) .  However,  arrivals  on his own level do  not 
affect him because of the head-of-line discipline within 
the level. As before, when several interruptions  occur 
concurrently,  the  order in which  they are processed 
does not concern  the  customer interrupted because 
he  cannot  continue until all have been served  one way 
or  another. 

Heuristic reasoning 
It  appears  that  to  start from  basic  probabilities and  de- 
velop  the  required  distributions for this model would be 
very  laborious. Consequently, it is desirable  to  use avail- 
able  results  for simpler models and modify them to fit this 
case, if possible. It is important  to  emphasize  that if the 
reasoning used is valid, the  results will be  the same  as 
those obtained from the  more involved  derivation  from 
"first principles." 

In ascertaining what simpler models may be applicable, 
four points are basic to  the argument. 

1.  A customer of priority  number i j  is not affected by 
preemptive levels  below him (i.e., greater  than i), so 
those levels do  not  appear in the  equations. 

Mathematical development 
Following Takacs [ 31, the first two moments of wait time 
for a customer of priorityj in a system including m classes 
of head-of-line  priorities is given  by: 

v m  \ (2) 

W j  = tk=lAkwk 2 (  1 - uj, ( 1  - Uj-J  ' 

+ k=l  k k k = l  k IC 
-p ( 2 ) E J - l h  121 

(4) 
2(  1 - U j )  ( 1  - UjJ  ' 

supposing there  are  no  preemptive priority levels above 
this one  and eliding the i subscript. 79 
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Table 1 Configuration for a typical control unit. 

Interrupt  level no. 'J A 0 Erlang-m P U .. 

1. Cycle stealing for: 
Function a I I  15.4 0.0087 100 0. I34 0.134 

b 12  0.28 0.0 14 100 0.004 0.138 
C 13 2.1 0.010 100 0.02 1 0.159 
d 14  0.008 0.90 100 0.007 0. I66 

2. Line control 21  0.35 0.383 IO0 0. I34 0.300 
3. Keyboard 1 31 0.005 1.40 2 0.007 0.307 

Keyboard 2 32 0.005 1.40 2 0.007 0.3  I4 
Keyboard 3 33 0.005 1.40 2 0.007 0.32 1 
Keyboard 4 34 0.005 1.40 2 0.007 0.328 

4. Program 41 0.026 4.0 1 0. IO4 0.432 
5. Printer 5 1  0.022 4.57 2 0.100 0.532 

80 
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Jaiswall [SI gives  this also as Eq. V.6.28; however,  as 
printed the  exponent 2 is missing in the  denominator of 
the first term of W'". 

By using point 3 )  from  the reasoning above,  the re- 
quired  wait  time may be obtained by adding an additional 
priority class containing all the higher  level preemptive 
traffic from level 1 to i - 1. This includes  adding the  quan- 
tities Ai-lai-lcz) or Ai-lui-l(3) to  the various terms in the nu- 
merator and Ui-l,m  to  the utilizations in the  denominators. 
Thus, 

2( 1 - U i j y (  1 - q j - y  

Next  the  service time for a customer with  priority i j ,  
including interruptions, is to be  calculated. First,  consider 
a  service  distribution H (  t )  without interruptions and de- 
note  its transform by 

The  rth  moment of service is then given by w ( ~ '  = 

fl("(0). Now  let this  basic service time  be subject  to a 
Poisson stream of interruptions with density A. Assume 
that  the elapsed  time to  clear  each interruption has a dis- 
tribution G ( t )  , whose transform is given by 

with rth moment a'"= ( - l ) r A 1 r J ( 0 ) .  

The transform of the basic service time, extended by 
these  interruptions, is then expressed  as 

f l * ( ~ )  = f l { A [  1 - B ( s ) ]  + s} 

where B ( s )  = A { A [  1 - B ( s ) ]  + s}. ( 7 )  

For the  complete  argument,  see Jaiswal [ 51, pp 6-12. 
The  random variable represented by B ( s )  is the busy 
period for  the interruptions. 

Let  the rth moment of the  extended  service time be 
defined  as T") = ( - l ) r f l * l r ) ( 0 ) .  Then from Eq. ( 7 )  we 
obtain 

T=-  0 

1 - - 0 '  

Applying point 4) from the reasoning above,  we may 
translate  these  results into the notation of our model as 
follows: 

With this, the  development is complete.  Should higher 
moments be  required,  they  may  easily  be  obtained by 
calculating the additional  moments  from the basic trans- 
forms  and applying the modifications as  above. 

Example Consider  the configuration in Table I for a 
typical  control unit. Find  the  responses  for  the first and 
last keyboard on  interrupt level no. 3 .  Note  that  for an 
Erlang-m distribution with mean T ,  the second  moment is 
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( I  + ;IT’ and the third  moment is 

Alal(’) = 0.0012 + 0.00006 + 0.00021 + 0.0063 

= 0.0078, 

A2u,(” = 0.0078 + 0.052 = 0.060, 

A3a3“’ = 0.06 + (0.015 + 0.015 + 0.015 + 0.015) 

= 0.120, 

A3a3(” = (0.00001 + 0.000001 + 0.000002 + 0.0057) 

+ 0.0203 + (0.041 + 0.041 + 0.041 + 0.041) 

= 0.190, 

0.120 
w31 = 2( 1 - 0.307) ( 1  - 0.300) = 0.124, 

(2 1- 0.190 
w31 - 3( 1 - 0.307)  (1 - 0.300)’ 

0.120(0.06 + 0.015) + 
2( 1 - 0.307)‘( 1 - 0.300)2 

+ 0.120 (0.06) 
2(  I - 0.307) (1  - 0.300)“ 

= 0.187 + 0.019 + 0.015 = 0.221, 

1.4 
T31 = ( 1  - 0.300) = 2.0, 

2.1 1.4(0.06) Tfl’= + = 4.3 + 0.245 
( 1  - 0.300)’ ( 1  - 0.300)3 

= 4.55. 

Response time for keyboard 1 is 2.124 ms. Standard de- 
viation of response time is r(0.221 - 0.015) + (4.55 
-4)]7=0.87 ms. 

0.120 
w34 = 2(  1 - 0.328) (1  - 0.321) = 0.132 

w‘2” 0.190 
34 - 

3(1  -0.328)(1  -0.321)’ 

0.120(0.120) 
2(  1 - 0.328)’( 1 - 0.321)’ 

0.120 (0.06 + 0.045) 

’ 2( 1 - 0.328) (1  - 0.321)3 

= 0.205 + 0.035 + 0.030 = 0.270 

T34 = T31 

Tf4’= T,,“’ 

Response time for  keyboard 4 is 2.132 ms. 
Standard deviation of response time is [ (0.270 - 0.017) 
+ (4.55 - 4)]+ = 0.91 ms. If the 95th  percentile of re- 
sponse time is assumed to be at two standard deviations 
above  the  mean, then: 

Keybourd 95th  percentile 
1 3.86 ms 
4 3.95 ms 

Note that the difference here  is very slight because  the 
traffic load in interrupt level no. 3 is small. Notice also 
that  the activity in levels 4 and 5 do not affect the calcu- 
lations at level 3. 

Conclusions 
Formulas  have been presented  for a composite priority 
discipline. An implicit assumption is that  interruptions 
incur no extra  overhead  (or  “service orientation time”) 
when a  service is actually preempted.  In  the  areas  where 
the model has been  applied, this has been the  case,  or 
practically so. However, if service orientation is signifi- 
cant, a  more  complex model is required. This situation 
has been  studied by Gaver [7] and Jaiswal [ 5 ] .  
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