edekind

Segment Synthesis in Logical Data Base Design

Abstract: Identification and representation of entities and their relationships relevant to an application are some of the key problemsin
logical data base design. This paper presents an approach to synthesizing logical segments that are representations of such entities and
relationships. The major steps in this design are 1) collect all the pertinent functional relations in the application domain; 2) remove
redundant relations to obtain a minimal covering set; 3) minimize the number of relations in the covering set to obtain an optimal set of
relations in the third normal form; and 4) combine relations into logical segments according to prescribed performance requirements
and projected information maintenance activities. Synthesis of logical segments for an airline reservations application is used as an illus-

trative example.

Introduction

At the current state-of-the-art, the methods used in the
design of data base systems are essentially trial-and-er-
ror, supported by neither a scientific foundation nor an
engineering discipline. The haphazard approach to de-
sign frequently leads to inflexible solutions that do not
meet the prescribed requirements. Costly remedial
measures often produce more delay in operation without
a tangible improvement. Much of the existing informa-
tion on system design is presented in the form of case
studies [1]. These cases do provide valuable insight, but
they can hardly be adequate substitutes for a systematic
design discipline.

Before contemplating a basis for design, an appro-
priate conceptual framework of multilevel abstractions
must be established for an information system. At each
level, design issues and parameters can be localized with
minimal dependency on parameters of adjacent levels. It
is generally accepted that there should be at least three
basic levels of system abstractions: 1) the user’s level of
abstraction, viewed by individual users or application
programs; 2) the system logical level of abstraction,
combining the views of many applications into a central-
ly controlled and maintained logical data base, with
provisions for data sharing and security; and 3) the sys-
tem physical level of abstraction, reflecting all the imple-
mentational idiosyncracies of a system. Several recent
data base system proposals [2-4] have provisions for a
multilevel architecture.

In this paper, we consider only the design methods to
be employed at the user’s level of system abstraction.
Specifically, we consider the description of an applica-
tion problem in quantitative terms and the synthesis of
logical segments for the data base. Of particular interest

JANUARY 1975

is the set of primitive functional relations that represent
all the relevant entities, their properties, and their rela-
tionships in an application. This set of functional rela-
tions can be analyzed to remove redundancy and then
combined into an optimal set of relations in the third
normal form [5]. By taking into account the prescribed
performance requirements and the insertion, deletion and
update activities of the application [6], the optimal
collection of relations can be further combined into logi-
cal segments of the data base. An airline reservations
application is used as an example to elucidate the design
process.

Defining the problem domain for an application

Consider the object automobile, a well known entity. To
a person in the state Motor Vehicie Registration Depart-
ment, the notions of year, make, model, vehicle ID no.,
name legal owner are clearly important attributes of this
entity. To an auto repair shop, other attributes, such as
engine model, brake type, type of transmission, and
tire type and size, are much more relevant proper-
ties. The choice of an entity type is-not always a straight
forward operation. As an entity, an automobile has
many components, such as engine, brake, transmission,
etc. Each component, for example the engine, may be
considered an entity type in its own right. A component
can further be decomposed into subcomponents, all of
them may be considered as distinct entity types. It is
probably futile to seek a set of primitive concepts as the
building blocks for other concepts and objects simply
because knowledge is open-ended. On the other hand, it
is conceivable that within a well defined problem do-
main, the role of every concept can be identified. The

DATA BASE DESIGN

71

72

D (Doctor)

(Hospital) ! Q/\ ’ (Pa“ent)

C (County)

Figure 1 Graphical representation of functional relations

9 JC

E
D-<\/‘M
CT

Figure 2 An example of functional relations between em-
ployees and their departments.

world as viewed within the boundary of this problem
domain, called the mini-world, is surely much more re-
strictive than the world of our total knowledge.

In a mini-world of application, it may be reasonable to
enumerate all the important facts and concepts. There
are several established mini-world models, such as the
block’s world for robot research [7], the lunar rock
world {8], the driver's world for natural language ques-
tion-answering systems [9], the business-oriented appli-
cations [10], etc. The evidence indicates that a reason-
ably complicated application can be adequately described
by several thousand facts, a magnitude that is amen-
able to computerized handling. The World-of-Business
model currently being pursued by the automatic pro-
gramming group at MIT project MAC [11] and the
Business Definition System pursued by the automatic
programming project at IBM Research, Yorktown
Heights [12] are examples based on such a premise.

Representations of information objects

The idea of using sets to represent information objects
can be traced back to 1962 in the work of information
algebra [13]. More recent work on relational data bases
[2] established the relational representation of entities
and made it possible for the set algebra to bear on the
manipulation of information entities. Decomposition of
relations by means of more primitive functional relations
between attribute domains has led to the definitions of
three normal forms [5]. Even in a well defined problem

C. P. WANG AND H. H. WEDEKIND

domain, due to the inherent redundant nature of the de-
scriptive facts about that mini-world, it might still be
difficult to specify relations directly. A plausible alterna-
tive is to extract exhaustively all the relationships from a
set of descriptive facts and then subject the collection
of relationships to analysis to eliminate redundancy and
check consistency before synthesizing them into rela-
tions. As indicated, the number of distinct facts may be
in the thousands. It is unrealistic to expect that all the
relationships can be extracted completely and accurately
in one step. A more rational approach is to iterate the
analysis process and provide intermediate feedback to
reconcile incomplete and inconsistent relationships.

» Functional relations

Given a collection of n attribute domains, one can define
a relation whose members are n-tuples by taking one
element from each attribute domain. One can also ana-
lyze the functional associations between any two attri-
bute domains. The notion of functional relation has been
utilized by Codd [5] to define the second and third nor-
mal forms of relational representation of data bases and
be Delobel and Casey [14] to decompose a large collec-
tion of attribute domains into files. The basic notion of a
functional relation between two groups of attributes 4,,
Ay 0+, 4; and B, By, - -, B, can be defined as follows:
there exists a function f such that f(4,, 4,,- - - 4,) = (B,
B,, -+, B,). The notation — is used to denote a func-
tional relation, e.g., 4,, 4,," -, 4, —~> B,, B,," -, B,. Sucha
relation is called an elementary functional relation if no
proper subset of attributes 4,, 4,,- -, 4, C A4, 4, A4,
can be found such that 4, 4,, -, A, — B, B,,-*+, B, is
also a functional relation. If two attribute domains X
and Y are related in a one-to-one manner, this association
can also be expressed as functional relation in both di-
rections X - Y and Y — X. The properties of functional
relations have been studied elsewhere [14] and are not
repeated here.

From a given set of functional relations, the transitiv-
ity enables one to derive all the possible functional rela-
tions. Thus, if 4 — B and B — C are functional relations,
so is A — C. The set of all possible functional relations
is known as the transitive closure. To represent informa-
tion, the transitive closure is redundant because some
members are derivable from others. The notion of mini-
mal cover is a minimal set of relations from which the
closure can be derived [15]. For a given set of relations,
thére may be several minimal covers. Each is sufficient
to derive the closure. From a representation point of
view, a minimal cover is a logical choice for non-redun-
dant representation of information,

To illustrate the concept of minimum cover, consider
the set of functional relations represented by the graph
in Fig. 1, which depict the associations among patients,

IBM J. RES. DEVELOP.

doctors, hospitals and counties. Here, we assume that
every patient has only one doctor, every doctor can
practice in only one hospital and a hospital is located in a
county. The functional relations P — D, D — H, and
H — C are primitive, The functional relations P — H,
P — C, and D — C are transitive and are derivable from
the three primitive relations. In this case, the minimal
cover is unique, consisting of three arcs P— D, D — H,
and H = C.

As a second example, consider a set of functional rela-
tions pertaining to employees and their departments as
depicted in Fig. 2. The example was taken from refer-
ence [5]. Let E designate employee; JC, empioyee job
code; D, department of employee; M, manager of em-
ployee; and CT, contract type. Assume further that each
employee is given only one job code and assigned to one
department. Each department has only one manager and
is working on either defense related contracts or non-
defense related contracts, but not on both. The graph has
a cycle incident on the vertices D and M. The family of
minimal covers is given in Fig. 3.

e Minimal cover algorithm

For a given set of relations it is possible to provide a gen-
eral algorithm to derive all the minimal cover sets. The
following algorithm was proposed by Delobel [16].

Let T denote the transitive composition of two func-
tional relations. Let r, denote 4 — B, r, denote B — C,
and r, denote A — C. Then we can write T{r, r,) =r,.
We designate the set of minimal covers by cv{ sfm}.

Step 1 From the set of functional relations §* = {rr,
r.} remove an element r, if there exist r,, rr, €
S* such that T(r, rj) =r, Call the remaining set

N pk_l. If no element can be removed from S,

place S* in the set CV and terminate. In general,

one can find a family of collections, each contain-

ing only k — 1 elements designated by § *7', 5,77,
A S,,'Hy .y Sak'l. Clearly, r, U Sp""li' sk.p=1,
2,. ce A

Step 2 For each Sp’H repeat step 1 to obtain a family of
S*% sets. If no element can be removed from
§,571, add 5" to the set CV if CV is empty. If
the set CV'{S;"} is non-empty, add S,"™" to CV if
§M U T #S forall S;".

Step 3 Repeat step 2 uritil no element can be removed
from any collection. Then terminate; CV{Sim} is

the desired resuit.

* Forming relations in the third normal form

From the definitions of normal forms, an elementary
functional relation is a relation in the third form when the
left hand group of attribute domains is chosen as the
primary key. One might be inclined to think that the set
of third normal form relations in a minimal cover could

JANUARY 1975

E JCc E IC

' ——e
D M D%M

T CT
E IC E IC
® ®
D M D é\/l
CT CT

Figure 3 Four minimal covers for the example given in
Fig. 2.

be a candidate for the canonical representation of infor-
mation. Upon closer examination one finds that the num-
ber of relations is still too large. It is desirable to find a
set of general rules to combine them into a smaller
number of relations, yet still preserve their third normal
forms. Before proceeding with the description of the
combination rules, we first prove the following propo-
sition.

Proposition 1 If A — B and 4 — C are elementary func-
tional relations in a minimal cover, the composite func-
tional relation A — B, C is a relation in the third form.

Proof To show that the relation (4, B, C) is in the third
normal form, it is only necessary to show that both B and
C are functionally dependent on 4 but are not function-
ally dependent on each other. Suppose B and C are
functionally related by B — C. Then 4 — C is derivable
from A — B and B — C by transitivity. From the mini-
mal cover algorithm, relations 4 — B and A — C could
not both be members of the same minimal cover set. This
contradicts the assumption of the proposition. Similarly
if C — B, the relation A — B is derivable from A — C and
C — B and thus could not coexist in the same minimal
cover set with 4 — C. Because both4 — Band A > C
exist in a minimal cover, no functional relationship can
exist between B and C.

The above proposition suggests the following simple
rules to combine functional relations in a minimal cover.

1. Partition the minimal cover into disjoint subsets. With-
in each subset all functional relations have identical
left hand side attribute domains.

73

DATA BASE DESIGN

74

Input Output

Reservation
clerk
Passenger 1
Reservation printout
process
i Reference
Reservation Passenger information

Figure 4 A simplified information flow diagram for an airline
reservation system.

2. Combine each partition into a single functional rela-
tion.

The modified minimal cover set is an optimal set of rela-
tions in the third normal form and which has the following
properties:

1. All the relations in the collection are in the third nor-
mal form.

2. The relations in the collection preserve the informa-
tion about the application.

3. No other collection with fewer relations has the same
set of properties.

Referring back to the example given previously with
four minimal covers, we see that there is a representation
for each cover. These equivalent representations are

1. RI(E, D, JC) 2. R4(E, M, JC)

R2(D, M, CT) R5(M, D, CT)
R3(M, D) R6(D, M)

3. RI(E, D, JC) 4. R4(E, M, JC)
R5(M, D, CT) R2(D, M, CT)
R6(D, M) R3(M, D)

where the primary keys are underlined.

Example of an airline reservations system

To illustrate the applicability of this synthesis technique
to a realistic application problem, we consider an airline
reservations system. A prospective passenger telephones
an airline to indicate an intention to make a flight reserva-
tion. The reservation clerk responds to the call and ob-
tains, through a series of questions and answers, the name
of the prospective passenger, the home address and tele-
phone number, the departure and destination cities, the
desired departure date, the departure and arrival times,
the number of seats, and the desired class of accommoda-
tion. The task of the reservation clerk is to verify that
there is a scheduled flight between the two cities at the
time and date specified by the passenger, and that the

C. P. WANG AND H. H. WEDEKIND

specified number of seats and class are available on that
flight. If either no scheduled flight as requested can be
found or no seat is available, the clerk must advise the
passenger and select an alternate flight that closely
matches the request. Upon receiving a verbal agreement
from the passenger, the clerk must add the number of
seats for the requested class of accommodation to the
total number of seats already reserved; at the same time
he records other pertinent information about the passen-
ger. At this stage, the clerk is able to confirm the passen-
ger’s reservation and informs him of the pertinent flight
number, date, departure and arrival airports, times, the
reserved number of seats and class.

A simple information flow model for the flight reserva-
tion process is presented in Fig. 4. The process for book-
ing reservations is partially manual because the input in-
formation from a prospective passenger is usually ob-
tained through repeated questions and answers between
the passenger and the clerk. Normally no output is gener-
ated by the process and the confirmation is conveyed
verbally. When a permanent record is desirable, a con-
firmation slip can be printed by the system as an output.
The reference information in the model consists of four
major -entity types, flight, passenger, reservation and
plane, on which detailed information must be provided
to the clerk upon request. The logical design problem is
to determine, first, how each type of entity should be
defined and, second, whether the four listed entity types
in the model are complete to ensure the successful per-
formance of the reservation task.

An airline reservations system expert states the factual
assertions about this mini-world in the following manner:

1. A flight route is a sequence of route segments (locl,
loc2, d1, at), (loc2, loc¢3, dt, at), -, (locr, locs, dt, at)
serviced by the same airplane, where loci stands for
location /, and dr and at stand for departure and arrival
times, respectively. The airlines usually assign a
unique flight number (f1#) to each flight route. For
any given pair of locations loci and locj, a number of
flight routes can pass through the two locations but
these flight routes have different departure and arrival
times.

2. When a prospective passenger makes a reservation,
the following items of information have to be obtained
by the reservation clerk:

Passenger Name psgname agreed
Passenger Address addr to and
Passenger Phone No. phono selected
Route Segment loci, locj, dt, at <by both
Date date the pas-
Flight No. Jl# senger
No. of Seats Requested #seat and the
Class of Accommodation class [clerk

IBM J. RES. DEVELOP.

3. To ensure the orderly and timely sale of seats. the
number of seats already reserved for each route seg-
ment must be made available to the clerk upon request:

Route Segment

Date

No. of Seats Reserved, First Class load 1
No. of Seats Reserved, Tourist Class load 2

4. The type of equipment assigned to serve a flight route
determines the upper bounds of the numbers of seats
available in every class.

Type of Airplane equipcode
Seat Capacity, First Class seatcap 1
Seat Capacity, Tourist Class seatcap 2

From the above assertions, we are able to identify a
number of generic terms. Each term, whether consisting
of a single name or a group of names, represents an im-
portant concept. Of particular interest among term asso-
ciations is the functional relation between two terms or
two groups of terms. For example, a flight number fI# is
uniquely assigned to a flight route which may contain
several route segments. Thus, route segment — fl# is a
functional relation between two simple terms, but route
segment, date, equipcode — load is a functional relation
between a group of terms and a single term. After a care-
ful and thorough examination of the assertions previous-
ly made, one can find the following functional relations:

psghame — addr

psgname — phono

route segment —> fl#

fl# — equipcode

equipcode — seatcap | (N
equipcode — seatcap 2

route segment, date — loadl

route segment, date — load2

psgname, route segment, date —> class

psgname, route segment, date — #seats

In addition to the functional relations listed above, other
functional relations can be derived by means of transi-
tivity.

It is not difficult to show that the set of functional rela-
tions listed in (1) constitutes the minimal cover and is
the only cover for this application. After appropriate com-
binations, one obtains the optimal set of relations in third
normal form:

passenger (psgname, addr, phono)

fl-assign (route segment, fl#)

eq-assign (fl#, equipcode)

plane (equipcode, seatcapl, seatcap?2)

open-flight (route segment, date, loadl, load2)

reservation (psgname, route segment, date, #seats,
class)

JANUARY 1975

Here the names have been chosen to correspond as close-
ly as possible to the meaning of each relation. It should be
noted that in the initial design (Fig. 4) only four of the
six relations are envisioned. The procedure proposed
here not only leads to the precise definition of these re-
lations but also uncovers two more relations that are an
essential part of the reference information in the flow
model.

Some performance-oriented considerations in de-
fining logical segments

The rationale for defining a logical data base in terms of
a set of optimal relations in third normal form has been
stated succinctly by Codd in [5]. In practice, there are
some cases in which further combination or decomposi-
tion of an optimal collection may be warranted because
of performance-oriented considerations.

s Access reduction in an optimal collection of relations
In many applications, the completion of a complex trans-
action may involve accessing and manipulation of a num-
ber of simple facts. There are different types of facts. In
an optimal collection, there tends to be a corresponding
relation for each type. To minimize the response time of
the system for a complex transaction may require the
joining of a number of simple relations. This requirement
prevails in the airline reservation system where, to pro-
cess a reservation for a passenger, an instance must be
inserted into the passenger relation while one or more in-
stances must be inserted into the reservation relation. At
the same time, appropriate instances of open-flight, fl-
assign, eqg-assign must be checked to ascertain that seats
are still available on the requested route segment for a
specific date. A feasible design tradeoff to reduce re-
sponse time at the expense of some redundancy is to
join the above relation in the third normal form into fewer
relations in the first normal form.

o [nsertion/deletion and modification in an optimal
collection of relations
Consider two relations

RI (K, K,," "~ K,, 4, 4,,-- 4,)

RZ (Ki’ ij' " Km’ Bp Bzy.) Bb)’

both in the third normal form. In R/ there are n domains
in the key and a non-key domains. In R2, the correspond-
ing numbers are m and b. Assume that the key domain
of R2 isasubsetof that of R1 K, K,," ", K, C K, K;, ">
K,. After the two relations are joined on the common key
domains, the resulting relation becomes RI2(K,, K,,* ",

K,,A., A, B, - B,). In recording a complex fact,

75

DATA BASE DESIGN

76

for every u, instances inserted into relation R], there are
in general u, instances inserted into R2. Clearly, to insure
the state of the data base admissible with respect to the
schema R12 after each insertion, the condition u, = u,
must be satisfied. In other words, no component of the
primary key of any instance of the relation R21 may have
an undefined value.

The number of attribute value entries inserted for add-
ing p, instances to RI and p, instances to R2is u, (n+ a)
+ p,(m + b), and the number of attribute value entries
inserted for the same situation in R12 is u,(n + a + b).
Thus, the combined relation R12 reduces the number of
attribute value entries inserted if

w(n+a) +p,(m+b) >p (n+a+b),

or, equivalently,

Zs (ﬁ - 1).
b Ky
The condition can easily be extended to three or more
relations.

When a modification involves non-key attribute do-
mains, a minimal number of instances will be updated if
the collection is optimal. On the other hand, when a modi-
fication is to be performed on key attributes, say K, K;,
K, then u, instances are to be updated in R/ and u, in-
stances are to be updated in R2, giving rise to a total of
M, + u, instances. For RJ2, a non-optimal relation, only
., instances need to be updated.

* Space reduction via transitive decomposition

If the attribute domain B in a functional relation 4 — B
has relatively few distinct values and each value occupies
a great deal of space, then it may be beneficial to decom-
pose A — B via transitivity into two functional relations
A — B’ and B’ —> B, where B’ is a dummy attribute in-
troduced to establish transitivity but which has a much
smaller space occupancy than B. Let p be the number
of distinct values in domain 4; ¢, the number of distinct
values in domain B; /,, the number of characters to repre-
sent each value of 4; /, the number of characters to rep-
resent each value of B; I’ the number of characters to
represent each value of B’. It can be shown that space
reduction is achievable if

b prta

l' p—aq

e Logical segments for the airline reservations system
We now make use of these practical considerations to
guide the formation of segments. It is known that an
airline reservation is a real time application with a very
stringent response time requirement under heavy traffic.
We assume that the average number of passengers mak-
ing reservations in a single day is 45,000, involving seats

C. P. WANG AND H. H. WEDEKIND

on 50,000 different route segments. The foremost con-
sideration in the design is to minimize the response time
even at the expense of storing redundant information
that is rarely updated.

An effective way to reduce the response time at this
logical level is to reduce the number of relations in the
optimal collection by combining reservation, passenger
and fl-assign into a single segment, passenger-reserva-
tion, and by combining open flight, eq-assign and fl-assign
into another segment, flight. This eliminates the need for
sequentially accessing several different relations at the
price of some information redundancy. The consideration
of insertion activities also favors the joining of the rela-
tions reservation and passenger. In this case n=7, m=1,
a=2,b=2,u,=50000 and u, = 45,000. Clearly, the
condition m/b > (u,/p, — 1) is satisfied. The resulting
logical segments for the airline reservation system are

passenger-reservation (psgname, route segment, date,
fl#, addr, phono, #seats, class)

flight (route segment, date, fl#, equipcode, loadl, load2)

plane (equipcode, seatcapl, seatcap2)

Summary

Traditionally, logical segments in a data base are defined
on an ad hoc basis, intermixing logical representations
and other performance-oriented considerations. In this
paper, we have presented an approach that makes use of
the functional relation to represent relevant concepts in
an application. After removal of redundant relations and
reduction of the number of relations, one can derive an
optimal set of relations in the third normal form from the
original set of functional relations. It is easier to identify
primitive functional relations from the description of an
application than to define relations directly; therefore,
this approach is more efficient in defining the data base
completely and accurately.

Performance-oriented design considerations, such as
short response time, ease of maintenance, and attribute
value redundancy, can be introduced separately if neces-
sary. Specified criteria have been provided to guide the
combination of relations in the third normal form into
logical segments for any practical data base design.

Acknowledgment
The authors express their thanks to E. F. Codd for help-
ful discussions of the problem.

References
1. J. K. Lyon, Data Base Design, John Wiley and Sons, Inc.,
New York, 1971.
2. E. F. Codd, “A Relational Model of Data for Large Shared
Data Banks,” Commun. ACM 13,377 (1970).
3. CODASYL Data Base Task Group Report, Association
for Computing Machinery, New York, April 1971.

IBM J. RES. DEVELOP.

11.

. M. E. Senko, E. B. Altman, M. M. Astrahan, and P. L.
Fehder, “Data Structure and Accessing in Data-base Sys-
tems,” IBM Syst. J. 12, 30 (1973).

. E. F. Codd, “Further Normalization of the Data Base Re-
lational Model,” Data Base Systems, Volume 16, Courant
Computer Science Symposia Series, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1972.

. C. P. Wang, “Parameterization of Information System
Applications,” Research Report RJ-1199, IBM Research
Laboratory San Jose, California, 1973.

. T. Winograd, Understanding Natural Language, Academic
Press, Inc., New York, 1972, p. 117.

. W. A. Woods, R. M. Kaplan, and B. Nash-Webber, The
Lunar Sciences Natural Language Information System:
Final Report, Bolt Beranek and Newman, Inc., Cambridge,
MA, 1972.

. K. Biss, R. Chien, F. Stahl, and S. Weissman, ‘‘Semantic
Modeling for Deductive Question-answering,” Proceedings
of the Third Joint Conference on Artificial Intelligence,
Stanford University, Stanford, CA, 1973, p. 356.

. “Application Customizer Service, System/3, Application

Description Manual,” Manual GH20-0628, IBM Corpora-

tion, White Plains, NY, 1966.

W. A. Martin and R. Krumland, “MAPL, A Language for

Describing Models of the World,” Automatic Programming

Internal Memo 6, Project MAC, MIT, Cambridge, MA,

1972.

JANUARY 1975

12.

M. M. Hammer, W. G. Howe, and 1. Wladawsky, “An In-
teractive Business Definition System,” ACM-SIGPLAN
Very High Level Language Symposium, Santa Monica,
CA, March 1974.

. The Language Structure Group of the CODASYL De-

velopment Committee, “An Information Algebra,” Com-
mun. ACM 5, 190 (1962).

. C. Delobel and R. G. Casey, “Decomposition of a Data

Base and the Theory of Boolean Switching Functions,”
IBM J. Res. Develop. 17,374 (1973).

. A. V. Aho, M. R. Garey, and J. D. Uliman, “The Transi-

tive Reduction of a Directed Graph,” SIAM J. Comp. 1,
131 (1972).

. C. Delobel, “A Theory About Data in an Information Sys-

tem,” Research Report RJ-964, IBM Research Laboratory,
San Jose, California, 1971.

Received March 5, 1974, revised September 6, 1974

Dr. Wang is located at the Advanced Systems Develop-
ment Laboratory, Yorktown Heights, New York, 10598;
Dr. Wedekind is at the Technical University of Darms-
tadt, 61 Darmstadt, West Germany.

77

DATA BASE DESIGN

